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Calculation of total cross sections
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A method for calculating the extinction, absorption, and scattering cross sections of clusters of neighboring
spheres for both fixed and random orientations is developed. The analysis employs the superposition for-
mulation for radiative interactions among spheres, in which the total field from the cluster is expressed as a
superposition of vector spherical harmonic expansions about each of the spheres in the cluster. Through the
use of addition theorems a matrix equation for the expansion coefficients is obtained. Further application
of addition theorems on the inverse of the coefficient matrix is shown to yield analytical expressions for the
orientation-averaged total cross sections of the sphere cluster. Calculations of the cross sections of pairs of
spheres and fractal aggregates of several spheres are presented. It is found that a dipole representation of the
field in each sphere does not adequately predict the absorption cross section of clusters of small-size-parameter
spheres when the spheres are highly conducting. For this situation several multipole orders are required
for an accurate calculation of the absorption cross section. In addition, the predicted absorption of sphere
clusters can be significantly greater than that estimated from the sum of the isolated-sphere cross sections.

1. INTRODUCTION

Aerosol particles formed in combustion processes, such as
carbonaceous soot, are frequently in the form of clusters
of small, primary spheres.' The radiative absorption and
scattering properties of such particles are of key interest
in the prediction of heat transfer rates from flames and
the interpretation of laser diagnostic measurements. An
accurate prediction of these properties, in turn, must ac-
count for the radiative interactions among the primary
spheres in the cluster.

One approach to formulating the radiative behavior
of a sphere cluster is to use the principle of superposi-
tion. Developed first by Brunning and Lo2 and later in-
dependently obtained by Borghese et al.,3 this analysis
constructs the scattered field from the cluster as a super-
position of individual fields scattered from each of the
spheres. The individual fields, in turn, are expressed in
terms of expansions of vector spherical harmonics written
about the origin of the sphere. By employing addition
theorems, in which a harmonic about one origin can be
expanded as harmonics about another origin, one obtains
a system of equations for the scattered-field expansion
coefficients for all the spheres in the cluster. Recent in-
vestigations of the radiative behavior of sphere clusters
using the superposition formulation have been presented
by Fuller and Kattawar,4 7 and recurrence relations for
calculation of the addition coefficients have been devel-
oped by Mackowski.8

An alternative yet equivalent approach to the radia-
tive analysis of sphere clusters begins with an integral
formulation of Maxwell's equations.9 Jones,' 0 in a paper
explicitly dealing with soot particles, used this formula-
tion in conjunction with a Rayleigh-limit approximation
of the field in each of the primary spheres to obtain a
system of equations for the vector components of the elec-
tric field within each of the spheres in the cluster. Es-
sentially, his approach is equivalent to a discrete-dipole

model." Further application of the integral formulation
to sphere clusters has been developed by Iskander et al.2

The reader is referred to a recent paper by Ku and Shim
for a comparison of superposition and integral formula-
tions as applied to soot particles.1 3

With regard to aerosols in general and soot aggre-
gates in particular, the orientation-averaged absorption
and scattering properties are ultimately desired. Exact
analytical methods for calculating the cross sections of
randomly oriented sphere clusters have been developed
by Borghese et al. 4 In the present paper an alternative
formulation of the cross sections in both fixed and ran-
dom orientations is developed. As we will see below, the
methods offer some computational advantages in predic-
tion of the cross sections.

2. GENERAL FORMULATION

The approach used here adopts the superposition solu-
tion. As I discussed in Section 1, the scattered electric
field from the entire cluster is taken to be the super-
position of scattered fields from each of the spheres in
the cluster, i.e.,

N,

Es,= E., i,
I

(1)

where N denotes the number of spheres in the cluster.
The vector spherical harmonic expansion of each individ-
ual scattered field is written about the sphere origin as

x n
E = Ei Yi [an N3(4r', OL, Pi)

n=1 m=-n

+ bmniM(3) (ri, Oi, i)], (2)

where = 2/A is the wave number of the incident radia-
tion having wavelength A, amni and bmni are expansion
coefficients, and N and Mn) are vector harmonics. 5
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The superscript (3) on the harmonics denotes that they
are based on the spherical Hankel function h,(4r). The
internal field in each sphere is represented by a similar
expansion of the form

x n

Eli = E E [dmniN (m'4r', 9L, Xi)

n=l m=-n

+CmnMml)(m'4r', O', hi)], (3)

where mi = n + ik denotes the complex refractive
index of sphere i and the superscript (1) denotes that
the harmonics are now based on the spherical Bessel
function j(mhr).

Determination of the scattering coefficients (amni, bmni)

for each sphere is the objective of the problem. We ob-
tain equations for the coefficients by applying the bound-
ary conditions for the electric and magnetic fields at the
surface of each sphere in the cluster. The field arriving
at each of the surfaces can be broken into two sources.
The first consists of the external incident field that drives
the scattering process in the first place. About a particu-
lar sphere i the incident field can be expressed by the
general expansion

xn

Eo I- Z EpmnNmn(4r', fl, 4,')
n=l m=-n

+ qmn'Mmn(4r', 0', 4')], (4)

where the coefficients (Pmn, qmni) are specified before-
hand from the propagation direction and polarization of
the incident field. The dependence of these coefficients
on the incident direction and polarization will be dis-
cussed below.

The second source of incident radiation at the surface
of sphere i arises from radiation scattered from all other
spheres in the cluster. To formulate the contribution
of these sources into the boundary conditions, we must
rewrite the expansions for the scattered fields in terms
of vector harmonics about origin i. For the case r <

Ri, where Rii denotes the distance from the centers of
spheres j and i, the addition theorem appears in the form

M =) i Z [¶?n'0Ii, '' ")524',O,4
mnn (,4r i,>0is¢ 

x3I

= [Amnkl(4ER"i 03i, (D'J)Mlkri 4r',' 0i)
1=1 k=-l

+ Bmnkl(4R"j, Wi, i)Nl (r', 0', 4,)] (5)

N m3n( ri, it, 10 i)

= Z 2 [A~mnk#(hR"i, 0'-J, cFi)N, l(4r', 0', 4i)
1=1 k=-l

+ Bk 1(R", 0,', (Fi')M(')(/,ri, Oi, Xi)]. (6)

The addition coefficients A and B depend entirely on the
distance and the direction of travel between j and i, as

contained in 4Ri, 0iJ, and (JiJ. The superscript (3) on
the coefficients denotes that the coefficients are based on
the spherical Hankel function. Were the situation that
r' > RIJ, the addition theorem would be given as

rnn(4ri, i, ¢j)

xo I

= E Y_ [Ankl(4R"i, )'J, q ii)Mkl (r', 00, 0i)
1=1 k=-l

+ Bmnkl(Rti, oi, Vi)Nl (4r',i i;)] (7)

Nmn(rJ, OJ, <;J)

= E: X£ [A~2nkl(4R", 0iJ, VJ)N~l3(4r', 0, O i)

1=1 k=-l

+ BmklI(4R ,n, ci)M^3)(4rt 0i, Xi)], (8)

where the superscript (1) on the addition coefficients now
indicates that the coefficients are based on the spherical
Bessel function. Addition theorems for the harmonics
Nln) and MM3 are given by the above two equations with

Nkl and MkW replaced by Nl) and MN,1 , respectively. In
addition, the addition theorems for this case are uniformly
convergent, regardless of the value of Rii. Calculation
of the addition coefficients with the use of recurrence
relations is discussed in Appendix A.

By applying the field boundary conditions at each
sphere and using the addition theorem given in Eqs. (5)
and (6), one can obtain a linear relationship among the
scattering coefficients of the spheres. After we truncate
the scattered-field expansions for each sphere after a suf-
ficient number of orders n = Nt1 , the relationship can be
expressed by the system of equations

N. N (3

amn = an Pni E [Aklmn (4R"j, E, I-)akli
i=w 1=1 k=-l
joi

+ B 3m(3R) , 0ij, 1')bkl i]] 

bmn' = bn- Lqmni

(9)

N. N i E (3) .. .. ..

- I I I 1Ah1n(4R", 0)", 'J)bkl1
i-i 1=1 k=-l
jii'

+ Bkrnn(4Ri, E)i, 'i)akl]} (10)

Here ani and bn8 are the TM and TE Lorenz/Mie coeffi-
cients defined by15

- i M'On (xi)qfn (mixi)- Pn(Xi)l( X )

ien'(xi)On(xi) - n(X )Pn (mixi)

n i On'(X)#Pn(Mixi) - mi1An(xi)irn'(mixi)

en'(X')'Pn(M'X') - M'n(X)'Pon'(MiXi

(11)

(12)

where xi = 4ai is the size parameter of sphere i, rn and
46n are Ricatti-Bessel functions, and the prime denotes
differentiation with respect to the argument.

In a compact form Eqs. (9) and (10) can be combined
into

N. Nt 1 2
amnpi + afpi I I I Hmnpkl'q aklqj = anp Pmnp'-

j-1 1=1 k=-l q=l
joi

(13)

The added subscripts p and q in Eq. (13) denote the
mode (TM and TE, respectively) and take on the value 1
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or 2. Thus amni = amni and amn2 = bmni, and like-
wise for mnpi and npi. The quantity H represents
the Hankel-function-based addition coefficients, with
elements given by

Hmnlkllij Hmn2kl2ij = Ak1'mn(/1Rij, Oij, ,Dij),

Hmnlkl2ij Hmn2kllij = Bk mn(ARL, , LJ). (14)

The number of orders retained in the expansions, Nt, will
generally depend on the size parameter of the spheres and
their proximity to neighboring spheres. Determination
of Nt is discussed in Section 4 below. Also note that the
total number of unknown scattering coefficients for each
sphere (including order, degree, and mode), denoted ML,
will be given by

M = 2Nt(Nt + 2). (15)

By formally inverting the system in Eq. (13) we can
identify a transition matrix T of the cluster of spheres
such that

N, N 1 2

amnpi = I I I I Tnpki jPklqj- (16)
j=1 1=1 k=-l q=1

As defined above, the T matrix represents the individ-
ual scattered fields from each sphere in the cluster. This
limits its usefulness in describing the scattered field from
the cluster as a whole, and transformations will be de-
scribed below that combine the superimposed fields from
the cluster into a single field based on a single coordinate
origin. Nevertheless, it will be advantageous to retain
the sphere-centered formulation of the T matrix in for-
mulating the orientation-averaged cross sections of the
cluster.

The representation of the scattered field from the clus-
ter in a single expansion has been discussed by Borghese
et al.3 and Mackowski. 8 The first step in the process is
to identify an origin of the cluster. This could represent
the average of the sphere positions but in general is ar-
bitrary. The expansion coefficients for the incident field
at the origin of sphere i, p, can be obtained by a transla-
tion of the incident-field coefficients expanded about the
cluster origin, p, to origin i through

Pmnp' = Jmnpklq Pklq° (17)

where the matrix J is similar to H given in Eqs. (14),
except that the addition coefficients are now based on
Bessel, rather than Hankel, functions. Above and in
what follows, the summation over order, degree, and mode
is implied for repeated subscripts. In a similar fashion
the combined scattered field from all the spheres can be
expressed as a single expansion written about the cluster
origin by a translation of the fields from the spheres to
the cluster origin. The expansion coefficients represent-
ing the total scattered field are thus given by

N,

amnp = I Jmnpklq aklq (18)

Putting the preceding equations together, one obtains

amnp = Jmnpmn'p' i Tmnp 'k1q'iJJk1'qklq jOPklq°
ij

= Tmnpklq Pklq° (19)

The cluster transition matrix T treats the cluster of
spheres as a single particle with a single origin; in this
sense it is equivalent to the T matrix obtained from inte-
grallextended boundary condition method techniques. 6

1
7

One might intuitively suspect that T° will typically be
smaller in order than T-since the fields from many ori-
gins have been boiled down to a single origin-but this is
not generally the case. As noted by Borghese et al., 14"18

the number of orders required for an accurate representa-
tion of both p0 and al increases with the distance from the
original sphere origin to the cluster origin. With regard
to Eqs. (17) and (18), this implies that the J matrix is gen-
erally not square. For example, the number of columns
in J' will be M [where M is defined in Eq. (15)], yet
the number of rows will depend on the number of orders
required for a reexpansion of the field from sphere i about
the cluster origin. Since translating the field expansion
from its original origin to a second origin will generally
increase the number of orders required for convergence
of the expansion, the number of rows in J0" will typically
exceed the number of columns. Likewise, the number of
columns in JjO will exceed the number of rows. For clus-
ters consisting of relatively few, widely spaced spheres the
sphere-centered T matrix would likely be smaller in order
than the TO matrix. On the other hand, for a cluster of
a large number of densely packed spheres the increase
in order that is due to translation would be offset by the
combination of the individual sphere expansions into a
single expansion. In this case T would be smaller in
order than T.

3. CROSS SECTIONS

In situations in which the cross sections of the cluster for
particular orientations are desired, it is advantageous to
fix the positions of the spheres and rotate the direction
and the polarization of the incident radiation to the de-
sired configuration. In this way the H matrix in Eq. (13)
need only be calculated once for the given cluster geome-
try, and the properties can be obtained for multiple orien-
tations by solution of Eq. (13) for various incident-field
states. To specify the incident-field coefficients for an
arbitrary direction and polarization, we take the plane
incident wave to propagate in a direction k defined by
a polar angle /3 and an azimuthal angle a with respect
to the cluster coordinates. The incident radiation is lin-
early polarized, with the electric vector at an angle y
from the k-z plane. Essentially, a, /3, and y define the
Euler angles of rotation of the incident field from a z-
propagating, x-polarized state.'9 The incident-field coef-
ficients at sphere i can then be expanded by

(Pmn, qL) = (mn, q)exp i[Z cos + (sin 8)

X (XL cos a + Yi sin a)],

Ann = - f+i [Tmn(3)COS Y - iTmn(/) sin ]
Emn

X exp(-ima),

qmn = - [Tmn(/3)in y + imn(/3)cos Y]
mn

X exp(-ima), (20)

where XL, yi, and Zi denote the origin of i with respect
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to the cluster origin,

n(n + 1) (n + m)!
Emn 2n + 1 (n - m)!

Tmn(f3) = d Pnm(cos B3), rmn(1) = .n Pnm(COSsin 8

are separated by large relative distances. For these sit-
uations it would be advantageous to retain the sphere-

(21) centered formulation of the analysis in computing the
orientation-averaged cross sections. To do this, we first
substitute Eq. (19) into Eq. (28), resulting in

13).

(22) Cext = 2, Re(JmnpmlnJplO)iTmn 1ijJk111,1mnpj°) (29)

In Eqs. (22), Pnm is the associated Legendre function.
For the given state of the incident radiation the extinc-

tion cross section of sphere i in the cluster is obtained
from the optical theorem as8 "15

CeXti = 4ir Re(EmnPmnp' amnp iL (23)

where the superscript * denotes the conjugate. From
conservation of energy, the total extinction cross section of
the cluster is the sum of the individual sphere extinction
cross sections for all spheres in the cluster, i.e.,

Ns

Cext Cext 
i=l

(24)

Alternatively, the extinction cross section of the cluster
can be obtained from the single scattered-field expansion
given in Eq. (18) by3

CeXt =' 4j Re(EmnPmnp O*amnp °) * (25)

By using Eq. (19) in Eq. (25), one obtains

Cext = k2 Re(Emn PmnpOTmnpklq Pklq ) (26)

The orientation-averaged extinction cross section of the
cluster can now be obtained by an integration of Eq. (26)
over all incident directions and polarizations. To do this,
we employ the integral relationship

1 27r rf 27r

87r2 f fo fo Pmnp Pklqdy cos 13 d,1da

= m2En km
3
ln

8
pq, (27)

where 6 is the Kroneker delta function. Consequently,
the orientation-averaged extinction cross section is

where the sum over the sphere indices i and j is implied.
The above equation is reduced by the introduction of some
properties of the J translation matrix. First, the conju-
gate of a J matrix is related by

EmnJmnpklq i = EklJklqmnp 

Also, a translation from i to j and then from j'
is equivalent to a translation directly from i to j.
leads to

(30)

to j
This

n' 2

I I I Jmnpm'n p'i Jm nlplklq = Jmnpklqi. (31)
n1=1 m=-n' p'=1

We have explicitly written the summations in Eq. (31)
to emphasize that the identity is exact only in the limit
n'- o. Comparing the above relation with Eq. (29), one
sees that the summation over m and n can be analytically
taken to infinity. This results in

CeXt = 2 Re(Jkzqmnpj Tmnpklq i)- (32)

It is important to realize that the number of rows and
columns in the matrix JJi will be Mi and Mi. Thus the
size of Jii is fixed by the number of orders retained in the
expansions about spheres i and j and is not dependent on
the distance between i and j. Consequently, the above
formulation for the orientation-averaged extinction cross
section eliminates the problems associated with reexpand-
ing the fields about a common origin and the ensuing in-
crease in expansion order. By using the relationship for
J in Eq. (30) and noting that Jmnpklqii = 

8
km 3ln ipq; we ob-

tain the following equivalent expression for Cext:

Cext= T2 Re[Tmnpmnp " + (JmnpklqiTklqmnpi

+ - Jklqmnp iTklqmnpi) I
Emn

j> i. (33)

Cext = 42 Re Tmnpmnp
0

= 2v Re(Tr TO). (28)

The above result has been obtained by Borghese et al.'4

(who used a somewhat different approach) for the spe-
cific case of sphere clusters as well as by Khlebtsov2 0 and
Mishchenko2 l for the case of general nonspherical parti-
cles described by a TO matrix.

Obviously, to exploit the result in Eq. (28) it is nec-

essary to transform the sphere-centered T matrix into
the cluster-centered TO matrix by means of Eq. (19). As
we mentioned in Section 2 above, this can significantly
increase the order of the expansions when the spheres

In Eq. (33) it is understood that i and j go from 1 to N,

and i + 1 to N,, respectively. From a numerical point of
view, Eq. (33) is better suited than Eq. (32) for calculating
Cext, in that the matrices JiJ need only be calculated for

j > i.

The scattering cross section of the cluster for a par-
ticular incident field is given by

Csca 2 Emnamnp amnpO. (34)

The above formulation, while it is conceptually simple, is

often not the best way to calculate the scattering cross sec-
tion. As was the case in Eq. (25), it requires the trans-
formation of the sphere-centered scattered fields into a
single expansion. However, using the properties of the
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J matrix developed above, one can formulate expressions
for the scattering cross section, in both fixed and random
orientations, that retain the sphere-centered expansions.
By substituting Eq. (18) into Eq. (34) and using the rela-
tions given in Eqs. (30) and (31), one obtains

Csca = 47 Re(Ekjak1, Jkjqmnp amnpj)

Expanding further, we reduce Eq. (35) to

Csca = 4ir Emn[amnpL*amnpi

+ 2 Re(amnp *JmnpkiqiJaklq) )]I

(35)

j > i. (36)

As we can see, the above formulation involves only the in-
dividual sphere expansions. In addition, the two terms
in Eq. (36) can be recognized as the independent (single-
sphere) and dependent (multiple-sphere) contributions to
total scattering from the cluster. A similar equation for
the scattering cross section of the cluster has been ob-
tained by Fuller:7

To obtain the random-orientation scattering cross sec-
tion, we use Eqs. (16) and (17) in Eq. (35) to eliminate a.
The incident field is then integrated over all incident di-
rections through Eq. (27), and the J properties in Eq. (31)
are again put to use. This results in

-~ ~~e 27 Jmnpuiib'Tuwq'j

Csca = 42 e1 E [JmnpuvwiTuvwklq

X (Tmnpulvw ijJulvwlklq/ j)*]J (37)

We can expand Eq. (37) in terms of the T° matrix to yield

Zsca = B2 Emn (Tmnpkiq
0

Tmnpklq0*), (38)

which again is in agreement with general relations for
the To matrix.20,21

Traditionally, one uses analytical methods to deter-
mine the extinction and scattering cross sections, and
the absorption cross section Cabs is obtained simply from
their difference. With regard to the sphere clusters, it
is shown below that it is actually advantageous to deter-
mine Cabs directly-and to use it along with Cext to deter-

mine Csca-

For a particular orientation the absorption cross section
for each sphere can be obtained from an integration of the
normal component of the internal radiant intensity at the
sphere surface over the area of the sphere by means of

ai2
r 

2
7rC1r

Cab J Il(r = asin 0 dOdO

= Re[iJ (EoH0* - E0Hlo*)Ir=ai

x sin ddO], (39)

where H denotes the magnetic field. By direct integra-
tion of the internal field expansions and a bit of alge-
braic manipulation the following expression is ultimately
obtained

8
:

Cabs 42 E Emn(dnijin + bni (40)
n=1 m=-n

where the real-valued quantities d and c are given by

d i= Re[iOnI(mixi)n*(mixi)mi*]

c i= Re[iqn'(MiX91Pn*(MiXi1i

Un-n(MlXf)0nr(X9 -Mi1n(xi)Pnf(mixi)1
2

(41)

(42)

The cluster absorption cross section is simply the sum of
the individual sphere absorption cross sections, i.e.,

Ns

Cabs = Yi Cabs .
i=1

(43)

In the condensed form the absorption cross section of
the cluster is

Cabs = 42 Emndnp amnP amnpi* , (44)

where dnl = dn, dn2 = ,n, and the sum over subscripts
and superscripts is again implied. As one can see by a
comparison of Eqs. (36) and (44), direct calculation of the
absorption cross section can be performed with consider-
ably less computational effort than direct calculation of
the scattering cross section, in that the expression for the
absorption cross section does not explicitly contain a de-
pendent scattering contribution. As a result, it is much
more efficient to calculate Ce5 t and Cabs directly and to
determine Csca from their difference. Of course, if the
spheres are nonabsorbing, Eq. (44) will be identically zero
(since d will be zero), for which Csca = Cext-

The orientation-averaged absorption cross section is ob-
tained by application of the same approach used above
with Cext and C sca. The result is

Cabs = ,anp4 E-n Re(TmnpklqijJklqklllqljITmnpk/llq;LjI*),

(45)

which can be reduced to

-
2

iT - -Em i ~ mpl J*

Cabs = B2 dnp' ER [Tmnpklq Tmnpklq

+ 2 Re(TmnpklllqliJklllqlklqj jTmnpkljq ij)],

j > j. (46)

Note that computation of Cabs by means of Eq. (46) in-
volves one fewer matrix multiplication than calculation
of Csca from Eq. (37).

4. RESULTS AND DISCUSSION

To test the veracity of the formulation, we compared calcu-
lation results against previously published experimental
measurements of Wang et al.

2 2 The experimental sys-
tem consisted of a pair of spheres, with incident radiation
propagating along the axis connecting the two spheres.
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Fig. 1. Comparison of theoretical predictions of complex
forward-scattering amplitude for a two-sphere cluster with the
experimental measurements of Wang et al.

2 2

Using a microwave approach, Wang et al. measured the
magnitude and the phase of the forward-scattered radia-
tion, from which the complex forward-scattering ampli-
tude S(0) could be inferred. We make a comparison with
the present analysis by noting that, from Eq. (23), the di-
mensionless forward-scattering amplitude is given by

S(0) = 4 N,

2G YEmnpmnp'*amnpi, (47)

where G is the sum of the geometrical cross sections
of the two spheres. The calculations for the two-sphere
system were carried out by solution of Eq. (13) for an
incident field given by a = = y = 0. In general, the
two-sphere system offers a considerable reduction in the
order of the equations, provided that the spheres are
situated so that they share a common z axis. In this
configuration the azimuthal modes are decoupled, and the
equations can be solved sequentially for each azimuthal
mode m. In addition, the case /3 = 0 results in a further
simplification of the problem, in that the incident-field
expansion coefficients Pmnp will be zero except for m = 1.

The comparison of experimental and theoretical results
is given in Fig. 1, where the imaginary part of S(0) is
plotted versus the real part (which corresponds to the
extinction efficiency Q0xt), with separation distance Ad

as a parameter. Note that the theoretical results track
fairly well the experimental results. A likely cause of the
difference between experiment and theory is uncertainty
in the sphere refractive index.

An identical comparison between the Wang et al. data
and theory was made by Borghese et al.,'8 and the theo-

retical results presented here appear to agree exactly
with the previous calculations. However, the approach
of Borghese et al. was based on reexpansion of the scat-

tered fields from the spheres about a common origin of

the cluster, leading to Eq. (25). As those authors noted,
this approach resulted in numerical problems as Ad in-
creased because of the high number of orders required in

the expansion. These difficulties prevented them from
extending their calculations beyond a maximum value of
kd. In contrast, the approach used in Eq. (23), in which
the sphere-centered expansions are retained, results in
no numerical problems for increasing Ad. Indeed, as the
spheres become more separated, the number of required
scattering orders for each sphere actually decreases,
which is due to the decreasing field coupling between
the spheres.

The required number of orders in the expansions for
the scattered fields is an issue that had not been ad-
dressed in detail in previous theoretical investigations of
neighboring-sphere scattering. Borghese et al. 14"18 noted
that, in reexpansion of the fields about a common origin of
the cluster, the number of orders required for convergence
was proportional to the size parameter based on the maxi-
mum dimension of the cluster. In the present paper, in
which the sphere-centered expansions are retained, one
expects the number of orders for each sphere to be pro-
portional to the size parameter of the sphere. Indeed,
results show that, for most cases, the criterion developed
by Wiscombe23 and modified by Bohren and Huffman 5

will provide a good, conservative estimate of the required
number of orders. This criterion is given as'5

(48)

Surprisingly enough, the results indicate that the one
situation in which the above criterion fails is the com-
bination of touching spheres having size parameters sig-
nificantly less than unity and relatively large real and
imaginary parts of the refractive index. Results of calcu-
lations that illustrate this behavior are shown in Table 1,
where the extinction and absorption cross sections of clus-
ters of two identical touching spheres, normalized by that
predicted from Lorenz/Mie theory for isolated spheres, are
given for various sphere size parameters and refractive in-
dices and three states of the incident radiation. The case
, = y = 0 has the incident radiation parallel to the pair
axis, /6 = 900 and y = O has the radiation perpendicular
to the axis and polarized parallel to the axis, and /3 = 90'
and y = 90' is the same as for the previous case, except
that the polarization is perpendicular to the axis. The
last column in the table lists the number of expansion or-
ders that we required to achieve cross sections that were
within 0.5%, on a relative basis of the converged (Nt - c)

result. For the first refractive index (m = 1.6 + 0.6i) and
small size parameters (x = 0.1) the results indicate that
the spheres behave almost as dipoles. Indeed, calcula-
tions that retained only the first electric dipole term for
these cases resulted in cross sections that were only a
few percent smaller than the listed values, which include
the first two electric and magnetic orders. As one would
expect, the cross sections for the /3 = 900 and y = 0' con-
figuration are appreciably larger than those for two other
cases when the size parameters are small. For this situ-
ation the pair, when it is aligned with the electric-field
vector, is polarized to a greater extent than when it is
aligned perpendicular to the field. The same behavior is
predicted for prolate spheroids and infinite-length cylin-

ders in the Rayleigh limit.
For spheres having a larger magnitude of m2 the re-

sults show that we require a surprisingly large num-
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Table 1. Results for a Cluster of Two
Identical Touching Spheres0

x m ,8 y Cet/Cexti Cabs/Cabssi Ntb

0.10 1.6 + 0.6i 0 0 0.915 0.914 2
0.10 1.6 + 0.6i 90 0 1.272 1.271 2
0.10 1.6 + 0.6i 90 90 0.913 0.913 2
1.00 1.6 + 0.6i 0 0 1.067 1.067 3
1.00 1.6 + 0.6i 90 0 1.030 0.907 3
1.00 1.6 + 0.6i 90 90 0.856 0.810 3

10.00 1.6 + 0.6i 0 0 0.612 0.592 14
10.00 1.6 + 0.6i 90 0 0.981 0.966 14
10.00 1.6 + 0.6i 90 90 0.995 1.015 14

0.10 2.0 + 1.Oi 0 0 0.878 0.877 2
0.10 2.0 + 1.0i 90 0 1.576 1.574 5
0.10 2.0 + 1.0i 90 90 0.876 0.875 2
1.00 2.0 + 1.Oi 0 0 1.059 1.088 3
1.00 2.0 + 1.Oi 90 0 0.986 0.869 3
1.00 2.0 + 1.Oi 90 90 0.802 0.770 3

10.00 2.0 + 1.Oi 0 0 0.613 0.600 14
10.00 2.0 + 1.Oi 90 0 0.977 0.962 14
10.00 2.0 + 1.Oi 90 90 0.994 1.032 14

0.10 3.0 + 2.Oi 0 0 0.845 0.842 2
0.10 3.0 + 2.Oi 90 0 2.546 2.541 10
0.10 3.0 + 2.Oi 90 90 0.842 0.839 2
1.00 3.0 + 2.Oi 0 0 1.014 1.196 3
1.00 3.0 + 2.Oi 90 0 0.948 0.916 6
1.00 3.0 + 2.0i 90 90 0.746 0.739 3

10.00 3.0 + 2.Oi 0 0 0.618 0.629 14
10.00 3.0 + 2.Oi 90 0 0.975 0.967 14
10.00 3.0 + 2.0i 90 90 0.991 1.055 14

aCross sections are divided by the result obtained for isolated
Lorenz/Mie spheres.

bNumber of orders required for a less than 0.5% relative residual error
in series expansions.

ber of expansion orders to resolve the extinction and
absorption cross sections of small-size-parameter spheres.
For example, a pair of x = 0.1 and m = 2 + i spheres
aligned parallel to the incident electric vector requires
5 orders, and for m = 3 + 2i the number goes up to 11.
Note that Nt is actually larger for x = 0.1 than it is for
x = 1. One can explain this behavior, which is somewhat
counterintuitive, by borrowing from electrostatics con-
cepts. Here the electric field would be represented by the
gradient of a potential. As the spheres become more con-
ducting (i.e., larger nk), the internal potential within each
sphere would become increasingly more uniform. When
the spheres are aligned parallel to the incident electric
field (i.e., in the direction of the incident potential gradi-
ent), the highly conducting spheres would attain uniform
yet different values of internal potential. At the contact
point between the spheres one would thus find a signifi-
cant gradient in external potential. Essentially, the flux
(represented by the electric field) gets concentrated at the
contact point. Consequently, the field inside each sphere
may be uniform, yet the external field adjacent to the
spheres can be highly nonuniform. As a result, several
expansion orders are required for resolution of the field
about the contact point.

It should also be noted that the required number of
orders given for x = 0.1 does not decrease as the size pa-
rameters become smaller. However, the magnetic (TE)
modes in the spheres become negligible in comparison
with the electric (TM) modes for small size parameters,

and we could reduce the equations in this case by neglect-
ing the TE contributions in the expansions. Neverthe-
less, severe numerical problems arise when one attempts
to calculate the cross sections of small, highly conducting
sphere clusters, in that it is necessary to calculate Bessel
functions of appreciable order for small arguments. An
alternative approach would be to apply an electrostatics
analysis to the sphere cluster, which would be valid when
the overall size of the cluster is significantly smaller than
the radiation wavelength.2 4

The calculation results presented here have significant
implications in the modeling of extinction and absorption
of sphere clusters such as soot aggregates. Because the
diameters of the primary spheres constituting the aggre-
gate are typically much smaller than visible and IR wave-
lengths, several previous modeling efforts have started
with a dipole approximation of the spheres. 01 2 13 Re-
sults indicate that the dipole approximation can seriously
underestimate the cross sections of clusters for large nk.
This is illustrated in Fig. 2, where the absorption cross
section of a two-sphere cluster, divided by that for in-
dependent spheres, is plotted versus the number of ex-
pansion orders for three values of refractive index. The
size parameter of the spheres in the cluster is 0.01, and
the results are for random orientation of the cluster. For
m = 1.6 + 0.6i, which is appropriate for carbonaceous soot
in the visible, a dipole model (Nt = 1) provides a good esti-
mate of the absorption, yet the increase in absorption for
the cluster over that for independent spheres is not espe-
cially significant. Once the refractive index increases to
2 + i and 3 + 2i, which would be appropriate for soot in
the near to far IR, both the increase in absorption of the
cluster relative to independent spheres and the error in
using a dipole model increase markedly.

Soot aggregates formed in combustion processes are
rarely simple pairs of spheres. Depending on the resi-
dence time in the flame and the particle concentration,
the aggregates can contain from tens to thousands of pri-
mary spheres.' It is obviously of interest to determine
whether the conclusions obtained for a binary cluster
carry over to a cluster of several spheres. To examine
this, we performed calculations on fractallike clusters of
spheres. When they are formed from diffusion-limited
aggregation (DLA), soot aggregates have a structure that
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Fig. 2. Random-orientation absorption cross section of a
two-sphere cluster, divided by that for independent spheres,
versus the number of orders in the scattered-field expansion.
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Fig. 3. 40-sphere fractal cluster generated with the sequential
algorithm.

can be represented by25
,
26

N. fdp 1 49

where dP is the primary sphere diameter, Rg is the ra-
dius of gyration, Df is the fractal dimension, and kf is a
prefactor constant. For a specified number of equal-sized
spheres in the cluster, Rg is given by

Rg2
= >jlri2,

Ns i=1

the first electric dipole term in the calculations-which
corresponds to a discrete dipole approximation of the
cluster-along with the extinction and the absorption
predicted from Lorenz/Mie theory for an equivalent
sphere having the same refractive index as that of the
spheres and a size parameter of xv. This latter model
has been suggested by Drolen and Tien27 as a good ap-
proximation for the cross sections of soot clusters.

The computational overhead in calculating the ex-
act orientation-averaged cross sections is considerable.
Since the number of scattering coefficients for the cluster
will be 2N8 Nt(N + 2), calculation of cluster extinction
and absorption for the second refractive index would in-
volve inversion of a 1200 x 1200 complex-valued matrix
along with subsequent matrix multiplication. The ex-
act orientation-averaging formulation is perhaps not the
most efficient means to obtain the averaged cross sections
for fractal clusters of small spheres. Because of the ran-
dom structure of the clusters the cross sections are not
strongly dependent on the direction and the polarization
of the incident radiation. In addition, the equations for
the scattering coefficients for a fixed orientation converge
rapidly with conjugate gradient iteration methods. It

XV

2.0

(50)
1.6

where r is the distance from sphere i to the center of
mass of the cluster. Rather than performing numerical
DLA simulations to obtain the particle positions in a clus-
ter, we developed a sequential algorithm that mimicks
Eq. (49). Beginning with a pair of contacting spheres
and specified values of kf and Df, a third sphere was ran-
domly attached to the surface of one of the two spheres,
with the constraint that the radius of gyration calculated
for the three-sphere cluster exactly satisfy Eq. (49). The
process was then repeated for the fourth, fifth, and ad-
ditional spheres. Values of kf = 5.6 and Df = 1.9 were
used in the calculations, which correspond to values ob-
tained from direct DLA simulations.2 6 The properties of
the aggregates generated with this algorithm obeyed the
known statistical relationships of DLA aggregates, 25 yet
the positions could be calculated in a fraction of the time
required for DLA simulations. An illustration of a 40-
sphere cluster generated from the sequential algorithm is
given in Fig. 3.

Using the multipole formulation, we calculated radia-
tive extinction and absorption properties of the 40-sphere
fractal cluster in Fig. 3, and results appear in Figs. 4 and
5. Presented are the random-orientation cluster extinc-
tion efficiency ion efficiency Qabs, divided
by the cluster volume mean size parameter xv = xNs l1s
versus the primary sphere size parameter x,. In Fig. 4
the sphere refractive index is m = 1.6 + 0.6i, and in Fig. 5
it is m = 2 + i. The number of expansion orders used in
the calculations was Nt = 2 and 3, respectively. The ef-
ficiency Q is defined according to the volume mean radius

av, so that C = 7rav 2Q. The quantity Q/xv is thus pro-
portional to CIV, and in the limit xv - 0 this ratio will
become constant. Also given are results for the same
refractive indices that we obtained by including only

1.2

0.8

0.4

0.0 L.
0.01 0.1

Xp

Fig. 4. Ratio of cluster efficiency and volume equivalent size
parameter xv versus size parameter for exact (Nt = 2), electric
dipole, and volume equivalent-sphere predictions. The refrac-
tive index is m = 1.6 + 0.6i.
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Fig. 5. Same as Fig. 4 but with m = 2 + i.
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thus makes more sense to calculate the averaged cross
sections by a suitable quadrature of the fixed-orientation
cross sections over incident directions. This approach
was taken in calculation of the cross sections of the 40-
sphere cluster. We used Gaussian quadrature to inte-
grate over /3, and the trapezoid rule was used for a and
y. Four points each for a and /3 and two points for y
were required for 0.1% accuracy in the calculated cross
sections.

Results for m = 1.6 + 0.6i indicate that all three formu-
lations (multipole, dipole, and equivalent sphere) agree
well for small volume mean size parameter xv. Once
xv increases to near unity, the equivalent-sphere and
multiple-sphere models predict significantly different
trends. The equivalent sphere shows a strong resonant
extinction and absorption for xv 1, whereas the reso-
nance is not nearly so strong in the dipole and multipole
results. In addition, the location of the maximum ex-
tinction for the dipole and multipole results occurs for
xv approximately equal to 2.5, and for larger xv the
equivalent-sphere and multipole predictions are signifi-
cantly different. When m = 2 + li, the discrepancy in
the three formulations becomes more apparent over the
entire range of size parameters. The equivalent-sphere
model significantly underpredicts absorption for small xv
and overpredicts the resonant extinction and absorption
occurring at xv 1. Note that in both Figs. 3 and 4
the ratio of the dipole and multipole absorption results
is roughly constant over a wide range of size parameters.
This suggests that results from the dipole model, which
are considerably easier to compute than the multipole
results, could be corrected by a constant empirical factor
that would depend on the sphere refractive index and the
structure of the cluster.

Whether the analytical equations for orientation-
averaged cross sections are of practical utility is open
to question. The main stumbling block to their applica-
tion is the need to obtain the T matrix, which can involve
numerical inversion of rather large matrices. Perhaps a
more useful application of the orientation-averaged for-
mulation is in the examination of simple pairs of spheres.
As was mentioned above, the azimuthal decoupling that
results when spheres share a common z axis results in
a considerable reduction in the order of the equations
and makes feasible the numerical inversion process. We
can obtain a further reduction in order for sphere pairs
by formally factoring out one of the sets of scattering
coefficients in Eq. (13). If we eliminate, for example,
the coefficients amnp1 in Eq. (13), the following system is
obtained for amnp 2:

(- np Hmnpmn'p' n Hmn p/miq )amlq

= anp
2
(Pmn

2
- Hmnpmn/p 

1
dn'p/ Pmn' ), (51)

Note that the decoupling of degree m is implicit in the
above equation, and the sum is taken over orders I and n'
and modes q and p'. The T-matrix elements for sphere 2
are readily identified as

22 = (I -- 
2 H2 'H1 2

)- 112,

T21 = -T2221

(52)

(53)

and the elements for sphere 1 are given in terms of T22 by

(54)

(55)

12= 1I222

Tl = a91( +H122221l.

It would obviously make the most sense to choose sphere 2
so it were the smaller of the two and thus would require
fewer orders in the field expansion. The order of the
inverted matrix in Eq. (52) will thus be minimized.

With the use of Eq. (32) the orientation-averaged ex-
tinction cross section of sphere 2 is given by

C.xt = - -e(Tmnpmnp Tmnpmn' p
2 2

21 1 2)XHmnip'mlq alq Jmqmnp 1) (56)

One can develop a relatively simple formula for the
orientation-averaged absorption cross section of sphere 2
by combining Eqs. (46), (52), and (53) to yield

Cabs2
= ,2 Re(Smnpmnp

2
+ Smnpmlq

2
Umnpmlq

2
), (57)

where the matrices S and U are defined by

2 T 2m 22m 22*/T
Smnpmlq = Emnidn/p/ Tmn'pmnp 

2
Tmnp'mlq /ml S

2 21 12'~1*- 1
Umnpmlq2 = Emj fn'p lHmnpmnp'21 (Hmlqmnp p, dn/p11*

- 2Jmlqmn/p 21*)/Emn -

(58)

(59)

Equations for the orientation-averaged extinction and ab-
sorption of sphere 1 are obtained from Eqs. (56) and (57)
by interchange of the superscripts 1 and 2. Of course, if
the spheres were equal, so would be their averaged cross
sections. For the specific case of a pair of identical elec-
tric dipoles separated by a distance R12 the T matrix can
be calculated analytically, which leads to the relatively
simple formulas

- 47rT
Cext,2,dp =,2

[2g,(f1 - dig,) 92(f 2 - 12

Re (a -al[ 1 2 (dD 2 g + 1- _ (a1g2)2 )

(60)

C, 47r d 12
Cabs,2,dp = ,

x Re (3 - di 2g,[(algl)*(Ilglg1
2 - 1) + 2(fi - dig,)]

+ 92[a92*01 - 1) + 2(f2 19i2 )] 161
+11i - (a 1g2) 2 12 ] (61)

where al and d, are defined in Eqs. (11) and (41) and the
quantities f and g depend only on the separation distance
between the spheres and are given by

g = ho(4R
12

) - /2h2(/R12

92 = ho(4R 12
) + h2 (4R

12
),

fi = jo(AR12
) - 1/2j 2 (4R

1 2
),

f2 = jo(4R12) + j2(4R 12). (62)

Note that the first term in Eqs. (60) and (61) represents
the extinction and the absorption for the isolated spheres,
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and the subsequent terms provide the corrections for field
interactions between the spheres.

In closing, it should be mentioned that the results pre-

sented here have not attempted to address the angular
dependence of the scattered radiation from the sphere

cluster (i.e., the differential scattering cross sections).
Unlike the case for the total cross sections, it does not
appear possible to express the differential cross sections

for random orientation in terms of relatively simple ex-
pressions involving the matrix element Tj. That this
is the case is not surprising. As was mentioned above,

the number of orders in the vector harmonic expansion
representing the total scattered field from the cluster will
be greater than the number of orders representing the

fields scattered from the individual spheres. Although

these higher orders (resulting from dependent scatter-
ing effects) were seen to disappear from the expressions
for the total cross sections, they must be accounted for
in the differential scattering cross sections. The trans-
formation of the T matrix into the T matrix is thus
unavoidable in formulating the orientation-averaged dif-
ferential cross sections. The reader is referred to the
recent papers by Khlebtsov2 0 and Mishchenko 2

1 for the

analysis of orientation-averaged scattering quantities
from the T0-matrix representation.

APPENDIX A: ADDITION COEFFICIENTS

Although explicit relations exist for the addition coeffi-

cients Aklmn and Bklmn,
28 these coefficients are most effi-

ciently calculated from recurrence relations. Details of
the derivation of the recurrence relations can be found in
Mackowski 8 ; only the working relations are given here.
The vector harmonic addition coefficients can be calcu-
lated from the scalar harmonic addition coefficients Cklmn

through

AW [2n 1 ) -m)(n + m + 1)C+1lm+ln

+ 2mkC~l•mn + ( + k)(l - k + 1)Ck)i,mi-n],

(Al)

Bklmn 2n(n + 1)(2n - 1) [(n-m)(n - m-1)

X Ck+1l;m+,n1 + 2k(n - m)Ckmn-l - ( + k)

x (I - k + l)Ck )ll;m-1,n-i] (A2)

21 + 1 [(1 + k)C~l) mn - ( - k + )Ckl+1,mn]

T, _+l nM- mll~n
n -m CM n + m + 1 (v)

2n- 1 klmn-l 2n + 3 Cklmn+1-
(A5)

In the above equations it is understood that the addition
coefficients Aklmn, Bklmn, and Cklmn are zero if Ikl > or
ml > n.

Starting values for the above recurrence relations are
obtained explicitly from the formula

(v)
COOmn

(-l)n+m (2n + )jn(4Rii)Pn-m(cos )i)exp(-im(Ii)

= 1

+ )hn(4Rii)Pn-m(cos 0 )exp(-im'Ij)

v = 3

(A6)

where the angles EJ'j and Vi' denote the direction of

origin i relative to origin j. It should be noted that the

recurrence relations in Eqs. (A3)-(A5) are uncondition-

ally stable. However, to calculate Cklmn up to I = n = Nt

orders, one must begin with COOmn calculated to n = 2Nt

orders.

The addition coefficients Aklmn, k = -1, 0, 1, are in-

volved in the computations of sphere clusters in which

the size parameters of the spheres are significantly less

than unity (i.e., the Rayleigh approximation). Explicit

relations for these coefficients are

(- 1)nL~
A-iimn = 2n(n + 1) [(n + 1)(n - m)(n - m - l)U-m-i,n-i

- n(n + m + 1)(n + m + 2)um_1,n+], (A7)

Aoimn - n(-1)m+n [(n + 1)(n - m)U-m,n-1
n(n + 1)

- n(n + m + 1)U-m,n+i],

Ailmn - (_ )m+n [(n + l)U-m+,n-1 - u-m+1,n+1l,
n(n + 1)

(A8)

(A9)

where Umn denotes the scalar spherical harmonic,

Umn = Zn(R'j)Pnm (cos 01-J-)exp(imVJi3), (A10)

and Zn refers to jn or hn-

The scalar addition coefficients, in turn, can be obtained

from the recurrence relations

1 C 1 'l- ,mn + C(l+1,mn1
21 + ,

=_ 1 lCik-;m-1,n-1 + 1 Ck-1i;m-1,n+i1 (A3)2n -1 ~2n + 3

[(1 + k)(l + k + l)Ck)l,mn

+ ( - k)(l - k + 1)Ckl+l,mn]

_ (n - m)(n - m - 1 C im
2n- 1 k+ll;m+l,n-1

(n + m + 1)(n + m +2) 

+ 2n + 3 Ck+1l;m+1,n-1) (A4)

ACKNOWLEDGMENTS

The author wishes to acknowledge helpful discussions and

collaborations with P. Flatau and K. Fuller.

REFERENCES

1. R. A. Dobbins and C. M. Megaridis, "Morphology of flame-
generated soot as determined by thermophoretic sampling,"
Langmuir 3, 254-259 (1987).

2. J. H. Brunning and Y. T. Lo, "Multiple scattering of EM
waves by spheres. Part I. Multipole expansion and ray-
optical solutions," IEEE Trans. Antennas Propag. AP-19,
378-390 (1971).

3. F. Borghese, P. Denti, R. Saija, G. Toscano, and 0. I.
Sindoni, "Multiple electromagnetic scattering from a cluster
of spheres. I. Theory," Aerosol Sci. Technol. 3, 227-235
(1984).

Daniel W. Mackowski



Vol. 11, No. 11/November 1994/J. Opt. Soc. Am. A 2861

4. K. A. Fuller and G. W. Kattawar, "Consummate solution
to the problem of classical electromagnetic scattering by
an ensemble of spheres: I. Linear chains," Opt. Lett. 13,
90-92 (1988).

5. K. A. Fuller and G. W. Kattawar, "Consummate solution
to the problem of classical electromagnetic scattering by an
ensemble of spheres: II. Clusters of arbitrary configura-
tion," Opt. Lett. 13, 1063-1065 (1988).

6. K. A. Fuller, "Optical resonances and two-sphere systems,"
Appl. Opt. 33, 4716-4731 (1991).

7. K. A. Fuller, "Scattering and absorption cross sections of
compounded spheres. I. Theory for external aggregation,"
J. Opt. Soc. Am. A (to be published).

8. D. W. Mackowski, "Analysis of radiative scattering for mul-
tiple sphere configurations," Proc. R. Soc. London Ser. A 433,
599-614 (1991).

9. D. S. Saxon, "Lectures on the scattering of light," Depart-
ment of Meteorology Sci. Rep. 9 (University of California at
Los Angeles, Los Angeles, Calif., 1955).

10. A. R. Jones, "Electromagnetic wave scattering by assemblies
of particles in the Rayleigh approximation," Proc. R. Soc.
London Ser. A 366, 111-127 (1979).

11. B. T. Draine, "The discrete-dipole approximation and its ap-
plication to interstellar graphite grains," Astrophys. J. 333,
848-872 (1988).

12. M. F. Iskander, H. Y. Chen, and J. E. Penner, "Optical
scattering and absorption by branched chains of aerosols,"
Appl. Opt. 28, 3083-3091 (1989).

13. J. C. Ku and K.-H. Shim, "A comparison of solutions for light
scattering and absorption by agglomerated or arbitrarily-
shaped particles," J. Quant. Spectrosc. Radiat. Transfer 47,
201-220 (1992).

14. F. Borghese, P. Denti, R. Saija, G. Toscano, and 0. I.
Sindoni, "Macroscopic optical constants of a cloud of ran-
domly oriented nonspherical scatterers," Nuovo Cimento B
81, 29-50 (1984).

15. C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, New York, 1983).

16. P. C. Waterman, "Symmetry, unitarity, and geometry in
electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971).

17. P. W. Barber and C. Yeh, "Scattering of electromagnetic
waves by arbitrary shaped dielectric bodies," Appl. Opt. 14,
2864-2872 (1975).

18. F. Borghese, P. Denti, R. Saija, and 0. I. Sindoni, "Reliability
of the theoretical description of electromagnetic scattering
from nonspherical particles," J. Aerosol Sci. 20, 1079-1081
(1989).

19. A. R. Edmunds, Angular Momentum in Quantum Mechanics
(Princeton U. Press, Princeton, N.J., 1957).

20. N. G. Khlebtsov, "Orientational averaging of light-scattering
observables in the T-matrix approach," Appl. Opt. 31,
5359-5365 (1992).

21. M. I. Mishchenko, "Light scattering by randomly oriented
axially symmetric particles," J. Opt. Soc. Am. A 8, 871-882
(1991).

22. R. T. Wang, J. M. Greenberg, and D. W. Schuerman, "Experi-
mental results of dependent light scattering by two spheres,"
Opt. Lett. 6, 543-545 (1981).

23. W. J. Wiscombe, "Improved Mie scattering algorithms,"
Appl. Opt. 19, 1505-1509 (1980).

24. J. M. Gerardy and M. Ausloos, "Absorption spectrum of
clusters of spheres from the general solution of Maxwell's
equations: the long wavelength limit," Phys. Rev. B 22,
4950-4959 (1980).

25. R. Jullien and R. Botet, Aggregation and Fractal Aggregates
(World Scientific, Singapore, 1987).

26. R. D. Mountain and G. W. Mulholland, "Light scatter-
ing from simulated smoke agglomerates," Langmuir 4,
1321-1326 (1988).

27. B. L. Drolen and C. L. Tien, "Absorption and scattering of
agglomerated soot particles," J. Quant. Spectrosc. Radiat.
Transfer 37, 433-448 (1987).

28. 0. R. Cruzan, "Translational addition theorems for spherical
vector wave functions," Q. Appl. Math. 20, 33-39 (1962).

Daniel W. Mackowski


