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CALCULATION QF TRANSONIC FLOW; USING AN EXTENDED INTEGRAL EQUATION

METHOD

-	 D. Nixon*

Queen Mary College (London University)

London, U.K.

Abstract

An extended integral equation method for transonic flows is

developed. In the extended integral equation method velocities; in

the flow field are calculated in addition to values on the aerofoil

surface, in contrast with the less accurate ' standard' integral

equation method in which only surface velocities are calculated.

The results obtained for aerofoils in subcritical flow and in

supercritical flow when shock waves are present compare satisfactorily

with the results of recent finite difference methods.

* Senior Research Fellow
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Introduction

At the present time the most common method of calculating the

invscid pressure distribution around aerofoils at transonic speeds

is by using finite difference techniques. For subcritical flows

one of the most accurate methods is that of Sells (1). For super-

critical flows with shook waves the initial work of Murman and Cole

(2) has been followed by many developments, notably those by Murman

and Krupp (3), Garabedian and Korn (4) and by Jameson (5) It is

pointed out by Murman (6) , however, that the difference scheme

used in these methods is incorrect at the shock location, leading

to incorrect shock jump relations; corrected results are presented

in Ref.(6).

One of the earliest attempts to solve the transonic flow problem

was the integral equation method first developed for non-lifting

flows by Oswatitsch (7) with subsequent extensions by Spreiter and

9lksne (8). Later developments to include lifting flows are by

Norstrud (9) and Nixon and Hancock (10) although it should be noted

that the formulation used by Norstrud for lifting flows is incorrect

(11).

In the integral equation method for two-dimensional flows the

non—linear partial differential equation for the perturbation vel-

ocity potential is written in integral form using Green's Theorem.

The resulting integral equation fot the velocity potential can

be differentiated to give the perturbation velocity in terms of

a line integral over the aerofoil chord, involving only linear terms

and a surface integral over the flow field involving only non-linear

terms. The line integral can be easily evaluated using standard

methods but the evaluation of the field integral requires a know-

ledge of the velocity distribution over the Entire flow field. In

the standard integral equation method the field integral is reduced

to a line integral by representing the transverse variation of the

velocity by a fairly arbitrary approximation function involving

only the velocity on the aerofoil surface. The resulting integral

equation for the surface velocity can be solved without much diff-

iculty. This approximate evaluation of the field integrals although

accurate for Shock . frev	flows, is not sufficiently accurate to

give satisfactory results when shook waves are present.

Many problems in subsonic 'linear' aerodynamics, both in steady

L
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flow and oscillatory flows, can be formulated in terms of integral

equations and there exists a considerable expertise in the solution

of these equations. Similarly many problems in transonic aerodynamics,

again both for stead
y
 and oscillatory flows, can be formulated as

integral equations; examples of steady flow problems are given by

Norstrud (9) and an example of osaillat&ry flows is given by Nixon

(12). The transonic integral equation contains a line integral

similar to one appearing in subsonic aerofoil theory and the available

expertise in the evaluation of this integral can be incorporated into

any solution of the transonic integral equatfion. The main advantage

of the integral equation methods over finite difference methods is

that, in principle, the numerical solution of the integral equation

is easier than the solution of the differential equation and is

typified by rapid convergence. The main disadvantage of existing

solutions of the transonic integral equation is the unsatisfactory

results due to the rather primitive and inaccurate approximation

of the field integral component of the transonic integral equation.

If the accuracy of the evaluation of the field integral can be

improved then it is suggested that integral equation methods will

become a useful technique in a wide range of problems in transonic

aerodynamics.

In the extended integral equation method presented in this paper

an alternative means of evaluating the field integral is developed.

The flow field is divided into a number of streamwise strips and the

transverse variation of the perturbation velocities across each of

these strips is approximated by 
an 

i nterpolation function in terms

of values on the strip edges. The field integral is then reduced

to a line integral which is in turn evaluated by quadrature. The

fundamental integral equation is thus approximated by a set of noD-

linear algebraic equations.

The pressure distribution around both lifting and non-lifting thick

aerofoils in suboritical flow is calculated and compares favourably

with the results of o*her exact methods. The pressure distribution

around aerofoils in supercritical flow with shook waves is also

calculated and there is good agreement with the results of recent

finite difference methods. The computing time for a lifting sup-

ercritical example is about 80-100 seos. on an ICL 19043 computer.
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Basic

^ 	guano_
A two dimensional Cartesian co-ordinate system is chosen with

the origin at the leading edge of the aerofoil;	the	axis is in

the freestream direction and the z—axis is normal to the freestream;

x and z are non dimensional zed with respect to the aerofoil chord.

In order to simplify the governing equations for transonic Plow

it is frequently assumed that the flow is bath isentropic and irrot-

ational even when shook waves are present.	Ths perturbed flow

may thus be represented by a perturbation velocity potential,

(^f z) f defined by

where u and w are the non-di.mensiinal perturbation velocities in

the x and z directions	respectively, relative to the freestream

velocity.	The full potential equation for steady flow is of third

order in	but for transonic flows a number of the higher order

terms may be neglected for post practical applications.

The variables

O{S(12)40" l) Oa x= Ama).' a-142)-"	bK^ys)

X	2=OZ	 {2}

are introduced where, if	is the freestream Mach number and 7f

is the ratio of specific heats

and

A second order paten*ial equation for transonic flow can then be

written as

+
where	-	-	 -	- -

9{t,3)	UL12 ♦	i^i^)	{J^}

If the second term on the right-hand side of Eq. (5) is neglected

then Eq. (4) reduces to the transonic small disturbance equation.

The boundary conditions area
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(a) that the perturbation velocity potential and its derivatives

vanish at an infinite distance upstream of the aerofoil,

(b) that the flow direction of the aerofoil surface is tangential

to the aerofoil surface,

(c) that for a subsonic trailing edge the Kutta condition of finite

pressure at the trailing edge must be satisfied.

If z = z,(x) and z = z4 (x) are the equations of the upper and

lower surfaces of the aerofoil respectively then the tangency

boundary condition can be written in the variables of Eq. (2) as

Qat.^= 7xuf1+fOCRj2jj

W CRAV= (6)

where

2 410 2A7JM, 7,CX) n.*Zcx)

t^)=Z^t^ ^ ^t^- ^ z^cx)

It can be -shown th-:t Eq. (4) is elliptic (subsonic) when QQ-

hyperbolic (supersonic) when U71-
O ff

I 
'L onic conditions exist when

2.	
f.

Us1-(4%'-97
& 

When Eq. (4) is hyperbolic in character then a solution

of Eq. (4) may have discontinuities in the velocity components S19.

These discontinuities are the shook waves of Eq. M. The shock

jump relations can be found fairly easily from A-M since it is

written in conservation form; thus

+	Cc SC no 2f) = 0 (7a)

where r	jtdenotes the jump across the shook wave and cos (n,4

	

cos (n,3* ) are the direction cosines of the shock wave.	It should

also be noted that

0	 (7b)

Treatment of Rmdary Conditions

There are two common methods of treating the boundary conditions

in aerofoil theoryq namely thin aerofoil theory and thick aerofoil
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theory. Thin aerofoil theory introduces an approximation to the

exact problem by using the assumption that the disturbanc ,,a from

the freestream are of the same order of magnitude as some peer

of the thickness/ohord ratio of the aerofoil section, which is

usually small compared with unity. The boundary conditicna and

and the potential equation are then expanded as a series in powers

of the thickness/chord ratio giving an infinite set of differential

equations with their associated boundary conditions
	

Generally

only the first few terms of these series are retained. The tangency

boundary condition for each equation is now satisfied on the plane

z = t 0 rather than on the aerofoil surface. The accuracy of than

aerofoil theory can be improved by progressively including more

terms in the series. This method of solution gives rise to sing-

ularities due to the assumption of small disturbances breaking down

in the neighbourhood of the leading edge and these singularities

:.u,lt be removed in the course of the solution.

In t:ick aerofoil theory no assumption regarding the magnitude

of the flow disturbances is made and consequently thick aerofoil

theory is generally more difficult than thin aerofoil theory and

the numerical procedures are more complex although, of course, the

'exact' result is computed.

The considerable experience available in using both the'standard'

(80910) and extended (13) integral equation method is based on the

formulation of the problem using the thin aerofoil boundary conditions,

particularly that the boundary conditions are satisfied on the plane

z =± 0 rather than on the actual aerofoil surface. In transonic

flows when the non--linear potential equation, Eq.(4 ) 9 is a;,plicable,

the series solution normaly used when the non—linear terms in Eq.(4)

can be neglected is impractical and some alternative must be sought.

The principle requirement is that the tangency boundary condition

must be satisfied on the plane z =±O.

If it is assumed that the external flow (that is, external to

the aerofoil) can be continued analytically inside the aerofoil

to the plane z = +0 1 z = —0, for the upper and lower half planes

respectively, with the corresponding boundary conditions on the

plane z = ±0, then existing expertise can be used in formulating

the integral equation for a modified problem, the domain of which

now includes both the real external flow and a fictitious internal
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flow. Since it is assured that the interior flow is an analytic

continuation of the external flow then the value of PCR t o) can

be obtained from the physical bounds.:-y conditions Eq. (6) using

a Taylors series expansion; thus for exple wCit,ta) is given by

{

If only the first two terms of the series in Eq. (} are taken then

on using Eqs. (4,6) the boundary conditions for the modified flow

are	
W(lts;o) = Jam ^^f^1Rs

WX

W(Qj Q = 4C%-off _ VQ f1 S` rt m	{9}

The boundary conditions, Eq. (9), are used in the subsequent

analysis. Since there is no assumption of small disturbances

except possibly in the number of terms retained in the Taylors

series expansion, no singularities due to approximations in the

bolintary conditions need arise. Once the solution to the modified

problem is known the solution to the physical problem is found by

considering only external flow.

Thehe Inte raal E quaff s

The partial differential equation for the velocity potential

Eq. (4), with the associated shock relations Eq. (7), can be written

in integral form using Green's Theorem; thus

Y 042) = ^}j ^#Xlsf3i,cdti j(p) - y, atialoJb¢ 010

'AT1^^tits3=s) 1dd^10)

where ( s r ) are co—ordinates equivalent to (RA)

WCtso=s?) = lhf {3t-1f#(t-?fj*	
{11)

and the operator ' 4 ' is defined for R9A) as

The surface integral in-r q r10, is cTefina for r>0 as

f1 ^ d	a,,m (f it .. f d4F}d
SO 

	d ^ d t ♦, ( ^F df
rya o 	r	 r -^.

so

4, f Fd^ ^d f (j^d ^I`Fd	 /

where F., , RrL denote the location of the shock waves on the upper

and lower half planes respectively.



Eq. (10) can be differentiated with respect to X to give the

velocity component C7CR,1V	thus

0M	1) 1, aa plyl-

E

The term-d'	arises from differentiation of the limits around

the singular paint (2,A) in the field integral.	If the second

Litegral on the right -hand side of Eq. ( 14) is integrated by parts

then	 -
jj ^

It may be nhown that

Vyf #W	I*

^	 {16}

whirs	 =---

$	 {17}

and the surfaceintegral in Eq. (17) is defined. by

f Fdtd " ;lira
1t{ 

f̂ '° 1d^♦ 'r 6 j..

$	̂°e ^.o laFd^	
(f Fdf)dj

so
kFdf)dj+ fFd ^^dj j
o	-.' '^'	 tl -ar

On substition of Eqs. (15, 16) into Eq. (14

ocR,R)- 9CR.2) ; I^c:t.=^+I^t .^.&)	(19)

where	-	 pQt )d

3^R 1 {,:,Q?Ai7c)d	(20)

If the limit as 3-0+0 is taken it can be shown that Eq. (0)

reduces to
j} - {gc #o)- RM

,,tom
= >4ff jWtck, s o,o)tzwtf)d j- fff i lth0, I x

e	 ^

-f)i dfdl {  21 }

which is symmetric with respect to the 2-axis.	A similar result

occurs if the limit as !+ -0 is taken. The additional equation

to give the anti-symmetric component of U(R,to) , d 17M , can be

_



obtained by differefitiating Eq. (10) with respect to IL and taking

the limit as 3#t0. Thus , after some manipulation

where

and

S	
(24)

where

g0MO 
9cli - 0) r O

Eq. (22) can be inverted to give

drAIM	
yt

r^

g	Combination of Eq. ( 25) and Eq.(21) then gives the required OCR#tQ).

If the integral IL (,R i	is redefined as

C ^ f *d

(26)

and if the integral	(R tOl ^F is redefined as

;i*JfWrjt('tSr; 0^ 090, ft- 90.4"dt

Oza
S

(27)

then Eq. (19) can be usid for all =.

In order to simplify the present analysis it is assumed that

any shook naves in the floe are normal to the freestream. Using

this assumption the shod relations, Eq. (7a) become

^r^:±

If shock waves are present in the flow then, with g( xs z ) given

by Eq. (5) 9 it can be shorn that in order to ensure finite accel-

eration through the	11ne {U = 1), Eq. ( 19) must be solved

subject to the conditions
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x • P,tS) a

f it PC*) C3

x•2*(JU	(29a^

where Tr =R.42) denotes the(O at) line. It can be shown that Eq. (29c)

is alwa,a satisfied; The remainin equat%ona q.(2 a, 29b) are

sufficient to give location of the (D * O lime ReCt.) acid the shook

locations ki S^t .

The perturbation velocity component 64f Z) can then be found

from Eq. (1 ) with Eq. { 9) anJ Eq. ( 2 ) . Having found OC Ro W the

velocity component	can be found usi?g the irrotationality

relation

-ems

Evaluation cft^ h^nte-Zs

In order to solve Eck.(19) the line integral X&Q Z) and the

field integrals in 1stk,3,34) need to be evaluated. The line

iLtegral involves only the value of 12t1?,2) on the aerofoil surface

thrown the bourdery conditions Icl•(9) and can be evaluated unin

standard techniques in terms of specific values of tt'L R,2) on the

aerofoil surface. The evaluation of the field integrals i

^,Ca?, l R#) is more cc ..,.plea since they invo l ve  C; f) over the field

An aPproxima.te, although sufficiently a.ccura% e, evaluation of

_TfCg,2,7,r) is possible if 14J) is known at specific points in

the flow field and an interpolation frnetion used to express IC^ If)

over the rest of the flow field. The practical requirement is an

accurate estimation of the velocity on the aerofoil surface and hence

an acceptable solution to Eq.(10 ne>d not *necessarily be very accurate

in the far field provided the surface velocities are calculated to

sufficient accuracy.

Let the flow field be divided into 2N strips as shown in Fig.l.

In principle the outermost strips in each half plane extend to infinity

but in practice they need only extend to a slkita.ble finite location

in the - far field. It is assumed that the function 30F.,F)	in

known on each at rip edge ( If - J?I 1 9 2 t) 2 Al ) and the variation of
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{ {̂ ,t) in each strip is represented by some interpolation function$

in tie present work linear interpolation is used. Thus in the
nth 

strip	
F

(31)
E

Using Eq. (31) the integrations with respect to f in the field

integrals can be performed. The subsequent line integrals in the

direction can be evaluated using standard methods in terms of

g( fi, rt ) where the Vi (i = 1, h7) are specified values off. On

putting l _ Ti and I _ ?i = !j the integral equation Eq. (19) reduces

to a set of non—linear algebraic equations for	if

is assumed known; thus

(32)

which may be solved by iteration.

se the 0 (11; , ty) are known the	can be fount. from

71(-, (30-) and tip su.r' ce v€ loci stet can or- f cu ' 	interpolation.ion.

ince high accuracy is required on l y at the aerofoi`! :surface

tte functior g(R' ,I ) on a certain number of outer strip ed-eE

may be a equately estimate' in terms of values on the inner strip

ed ee using some suitable approximation function without sign--'ic—

antly 0"f ectin the acenr icy of the calc nation of the surface

velociti es. In the present work it is anre f. that

9th, v =	SC to f 	1F^,,,If	 „

(33)

where

9(1	It r

and f is some value of r in ea ch half plane.

Calculation Procedure for Supercritical Flow with Shock Waves

When no shock waves are preset{t Eq. 1% j'23 ) can be solved directly.

then shoo'_ waver. are present Eq. (32) must lle solved. subJect to the

conditions gq.(2 ).	It is difficult to satisfy Eq. (29) at each
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stage of the iteration by altering the shock location st1 since the

location of the discontinuity in D(R R) then chimes at each

iteration. An alternative method of satisfying Eq. {20} is as

follows.

Eq.( 32 ) can be written in the- form-

(34)

where the E	is a parameter which is constant along each strip

edge. An initial estimate is made of the shook locations

Xr , the function g{,; } and t1(kt 9	The integrals

IA. (	and Ts	3y , l } can then be evaluated. The parameter

F { } and the locat._ion of the (0 = 1) point on the strip edge

{}: R.( } are evaluated by enforcing the condition of finite

streamwlse acceleration along each strip edge, that is satisfying

Eq. (29a, 29b) along each strip edge. New values of tt (X;, ^t },

g( Ri , Ri ) are then computed and the paces- repeated until conver-

gence of the{zi}. The shook locations are then changed and

the procedure outlined above repeated. The shock locations are

correct when the E (^j) are unity. Since high accuracy is re-

quired only on the aerofoil surface the accuracy of the solution

in the flow field can decrease as	P -D provided the surface

solution is not affected to any significan* degree. In practice

this is taker o mean that the converged value of E(R,} may be

allowed to dif-7 er from unity on the outermost strip edges.

Result- s

The pressure distributions over several aerofoils have been

computed for both su1?critica.l and supercritical flows with shock

waves. For the subcritica.l flows the function g(R,!) is defined

by Eq.(§) and the transonic parameter k, Eq.(3) 9 is defined af

4	

ter

tancock`1) to be

a} cr-Z)PQ ^ :	(tea

For supercritical flows with shock waves the function g{x.,^}

is taken to be

in order to simplify the computa.tion,, and the paraMerer k is

taken to be

k	(alt r) ^Go:
	 07)

In all cases the exact pressure-velocity relation is used.
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Three examples of suboritical flow calculations are shown in Figs. 2-5

and are compared to enact results. The results of the standard integral

equation method 
(15) 

are shown for comparison. In Fig. 2 the flow around

a NACA 0012 aerofoil at 00 incidence and X. - 0.72 is shown and it can be

seen that the present results compare well with the 'exact' results of

Sells 
(16). 

In Fig. 3 the pressure distribution aroun4 a NLR 0.1 - 0.75

1.25 aerofoil at 00 incidence and M. - 0.745 is shown. The agreement

..=th the 'exact' result {16} is fairly good except in the vicinity of the

leading edge. In Fig. 4. the pressure distribution around a NACA 0012

aerofoil at 20 incidence and M. = 0.63 is shown. The agreement with the

t exact' result 
(16) 

is good again except in the neighbourhood of the

leading edge. A similar agreement with the 'exact' result is shown in

Fig. 5. for the pressure distribution around a 14fi the 'k NPL 3111 aerofoil

at 1.20 incidence and M. = 0,66'1.

Three examples of supercritical flow are shown in Figs. 6-8. In Fig.6

the pressure distribution arou.zd a NACA oo12 aerofoil at zero incidence

and D%.= 0.816 is shown and the present results agree fairly well with

the finite difference results calculated using the method of Garabedian

and Korn(4) u.' 7 the non-conservative difference scheme. In Fig.7 the

pressure distr. xtion around a NACA 0012 aerofoil 2 0 incidence and M, =0.7;

in compared to the finite _-Terence rasu^ 's calculated by Dave -.' ĉ^no ^o:?i{17}c- 

using both non-conservative' and 'conservative' difference schemes. As in

the non-lifting example the present results agree fairly well with the 'non-

conservative' results. In Fig.8 the pressure distribution around a NACA

64A410 aerofoil at 00 incidence and M..= 0.72 is shown. As in the previous

example the present results agree fairly well with the'non-conservative'

finite difference results. This tendency of the present calculations to

agree with the 'non-conservstive' rather than the correct toonservativet

results may be attributed to the use of the transonic small perturbation

equation for the integral equation calculations as opposed to the use of

the full potential equation by Bauer and Korn
{17}

, and Jameson 
{18}&

For the suboritical example-- 30 streamwise elements and 5 strips in each

half plane are used	The velocity on the outer strip edge.= in	=aa'f

plane is estimated using Eq. (33). Convergence is obtained after about 10

iterations.

In the supercritical examples 30 streamwise elements and 8 strips in each

half plane are used. The velocity on the 3 outer strip edges is

estimated using 	j	̂̀g	q. { ;g3}:	r::., each shock location
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convergence of the E(21) is obtained after about 10 iterations.

A typical computing time for the lifting supercritical example:

is 80 - 100 secs. on an ICI, 1904S. Further improvements in the

numerical scheme are feasible and it is probable that the computing

time can be considerably decreased.

Conclusions

An extended integral equation method has been developed for the

transonic flow around lifting and non-lifting aerofoils. The

dumber of iterative steps to convergence is small and this is

reflected in the comparatively low computing time. Improvements

in the numerical solution of the integral equation are possible

which should decrease the overall computing time. The results

obtained for both lifting and non-lifting aerofoils in subcritical

flow agree satisfactorily with 'exact s results. The extended

integral equation method gives considerably improved results over

the earlier standard integral equation method. The results for

supercritical flows with shock waves are in fairly good agreement

with existing finite difference results, although there appears

to be better agreement with the incorrect 'non-conservative'

finite difference results than with the correct 'conservative'

results. This is attributed to the present use of the transonic

small disturbance potential equation as opposed to the full

potential equation used in the finite difference calculations.

References

1. Sells, C.C.L.	'Plane Superitical Flow Past a

Lifting Aerofoil'

Proc.Roy.Soc.A308	(1969)

2. Murman,E.and	tCalculation of Plane Steady

Cole,J.B.	Transonic Flows'

A.I.A.A. Journal, Vol. ) 9 No.l,

pp-114 - 121	(1971)

3. Krupp,J.A. and	'Computation. of Transonic Flows

Murman,E.	Past Lifting Airfoils and Slender

Bodies'

A.I.A.A. Journal, Vol.10 9 No.79

pp.880 - 896	 (1972)

mom



4. aarabedian,P. and
	

AAnalysis of Transonic Airfoils'

Korn,D.
	

Comm.P.and Appl.Maths, Vol.XX1V,

PP-841 - 851	 (1971)

5. Jameson,A.	'Iterative Solution of Transonic

Flows over Airfoils and things

Including Flows at mach It

Comm.P. and Appl.Maths. Vol.XXV21,

pp.283 - 309	 (1974)

6. Murman,E.	'Analysis of Embedded Shock Waves

Calculated by Relaxation Methodst

A.I.A.A. Journal, Vol.12, NO-5,,

pp.626 - 633	 (1974)

7. aswatitsch,K.

8. Spreiter,J.R. and

Alksne,A.Y.

9. Norstrud,H.

'Die Geschwindigkeitsverteilung an

Symmetrischen Profilen beim Auftreten

lokaler Uberschaltgebiete'

Acta Pbysica Austriaca, Vol.4,

pp.228 - 271	 (1950)

'Theoretical Predictions of Pressure

Distributions on Non Lifting Airfoils

at High Subsonic Speeds'

NACA Rpt. 1217	 (1955)

'High Speed Flow Past Wings'

NASA CR - 2246	 (1973)

10. Nixon,D. and	'High Subsonic Flow Past a Steady

Hancook,G.J.	Two-Dimensional Aerofoilt

A.R.G. CP 1280	(1974)

11. Nixon,D.	 'A Comparison of Two Integral Equation

Methods for High Subsonic Lifting

Flows,

Aero.Quart. Vol.XXVI Part I

PP-56 - 58	 (1975)



.11

12. Nixon,D.

	

	'An Aerofoil Oscillating at Low

Frequency in a High Subsonic Flow'

A.R.C. CP 1285	 (1974)

13. Nixon,D.	'Extended Integral Equation Method

for Transonic Flogs'

A.I.A.A. Journal Vol.13 No.7

pp 934 — 935	 (1975)

14. Hancook,G.J.

	

	'Some Aspects of Subsonic Linearised

Wing Theory with Reference to Second

Order Forces and Moments'

A.R.C. Paper ARC 34689	(1973)

15. Nixon,D. and

Patel,J.	'The Evaluation of an Integral Equation

Method for Two-Dimensional Shock Free

Flows'

Aero.Quart. Vol.XXV1 Partl,

pp . 59 — 70	 (1975)

16. Lock,R.C.	'Test Cases for Numerical Methods

in Two-Dimensional Transonic Flows'

AGARD-R-575-70	 (1970)

17. Bauer,F.and	'Computer Simulation of Transonic

Korn,D.	Flows past Airfoils with Boundary

Layer Correction'

Proceedings of A.I.A.A. 2nd

Computational Fluid Dynamics Conf.

Hartford, 1975 June

pp. 184 - 204

18. Jameson,A.	'Transonic Potential Flow Calculations

Using Conservative forms'

Proceedings AIAA 2nd Computat oal

Fluid Dynamics Conf. pp. 148-161

(1975)



Pyre C apt ions

Fig. 1. Arrangement of stripe

Fig. 2. Pressure distribution around a NACA 0012 aerofoil

= at C?o inoidence;	0.?

Fig. 3. Pressure distribution around an NLR 0.1 — 0.75	1.25

aerofoil at 0	incidence;	t, = 0.745

- Fig. 4. Pressure distribution around a NACA 0012 aerofoil

at 20 incidence;., = 0. 63 •^

Fig. 5. Pressure distribution around an NFL 3111 aerofoil

at 1.2
0
 incidence;	Mw- 0.667

Fig. 5. Pressure distribution around a NACA 0012 aerofoil

at Oo incidence;	N. _ 0. 816

Fig. 7. Preseur	distribution around a ITACA -0012 aerofoil

at 20 incidence;	N.,= 0.75

Fig. 8. Pressure distribution around NACA 64A410 aerofoil

at 0	incidence;	Ni. = 0.72
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Pressure distribution around an NLR 0.1 - 0.75 - 1.25

aerofoil at 00 incidence; Mw	0.745
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Pressure distribution around an NPL 3111 aerofoil at

1.20 incidence; Ma. = 0.667

Fig. 5
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