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CALCULATION OF VOLTERRA KERNELS FOR SOLUTIONS OF
NONLINEAR DIFFERENTIAL EQUATIONS∗

J. LEO VAN HEMMEN† , WERNER M. KISTLER† , AND ERIK G. F. THOMAS‡

SIAM J. APPL. MATH. c© 2000 Society for Industrial and Applied Mathematics
Vol. 61, No. 1, pp. 1–21

Abstract. We consider vector-valued autonomous differential equations of the form x′ = f(x)+ϕ
with analytic f and investigate the nonanticipative solution operator ϕ �→ x = A(ϕ) in terms of its
Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of the
solution operator A are continuous functions, and establish recurrence relations between the kernels
allowing their explicit calculation. A practical tensor calculus is provided for the finite-dimensional
case. In addition to analytically calculating the kernels, we present an algorithm to numerically
obtain them from the output x(t) through sampling the input space by linear combinations of delta
functions. We call this “differential sampling.” It is a nonlinear analogue of the classical method
of impulse response. We prove a continuity theorem stating that, in the finite-dimensional case,
approximate delta functions give rise to approximate Volterra kernels and that continuity holds in
the sense of weak convergence. Finally, we discuss a practical implementation of differential sampling
and relate it to the Wiener method.

Key words. nonlinear system, causal, nonanticipative, Volterra kernel
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1. Introduction. In the 1940s and early 1950s Hodgkin and Huxley [8, 16]
analyzed the propagation of an action potential in the giant axon of the squid in the
presence of what they thought to be three ion channels, viz., sodium, potassium, and
chloride. Through an intricate data fit they arrived at a set of four coupled nonlinear
differential equations that earned them the Nobel prize for its surprising accuracy;
cf. the appendix. The equations are widely used in computational neuroscience. They
are a concrete example of a more general problem,

x′ = f(x) + ϕ,(1.1)

where x belongs to a Banach space E (here E = R
4), f is an analytic function

satisfying a Lipschitz condition, ϕ represents a time-dependent input, and the prime
denotes differentiation with respect to time. One meanwhile knows that not three but
many more types of ion channels (at least 25) are involved and, e.g., that in the cortex
the Hodgkin–Huxley equations are not a good description of neuronal excitation. In
other words, determining f is at the moment out of reach, but sampling the responses
of the system experimentally is not. Since often no one knows what the appropriate
differential equations are and they are likely to be very complicated, an alternative
way of modeling the problem is to analyze the underlying solution operator. This is
exactly what we do in the present paper.

How then should one sample a system’s response? At the membrane resting
potential, the system is in equilibrium and, without restriction of generality, we can
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2 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

assume this is at x = 0. Through the input ϕ we can sample the neighborhood of
x = 0. Since there exists a Volterra expansion (see below) about x = 0, the key
question is indeed, How do we sample? Wiener’s answer [40] was “through white
noise.” In this paper we will prove that, except for a trivial exception, the Volterra
kernels are continuous, in fact, smooth, functions. We will indicate an algorithm to
compute them, if f is known, and show how a more direct procedure than white-
noise sampling leads to a determination of the Volterra kernels and, hence, to a
characterization of the system’s response to an external stimulus, if f is not known
explicitly. The instrumental idea is to sample input space by Dirac delta measures
directly. This is justified since the kernels are demonstrated to be continuous, even
smooth. Finally, we will prove a continuity theorem stating that approximate delta
functions give approximate kernels. This is useful because, in experiments, delta
functions cannot be realized, whereas approximate delta functions are nearly always
easy to generate.

In a more general context, we aim at analyzing nonlinear differential equations
of the form (1.1) where x belongs to a Banach space E, usually R

N for some finite
integer N . We will study the unique nonanticipative solution operator ϕ �→ x = A(ϕ).
A solution operator is said to be nonanticipative, or causal, if for each t the value
A(ϕ)(t) depends on the restriction of ϕ to (−∞, t] only, i.e., on the past of the input.

In the case of a linear system with a linear operator L : E −→ E appearing in
the equation of motion

x′ = Lx + ϕ,(1.2)

the nonanticipative solution operator is the convolution operator A defined by

A(ϕ) = κ ∗ ϕ,(1.3)

where κ(t) = Y (t)etL is the unique solution T of the equation(
d

dt
− L

)
T = δ I,(1.4)

having its support in the interval [0,+∞); cf. Schwartz [36]. Here δ is the Dirac delta
measure (“function”), the unit mass at zero; I is the identity operator on E; and Y
is the Heaviside one-step function: 0 for t < 0 and 1 for t ≥ 0. We note that in (1.3)
ϕ may be any distribution whose support is limited to the left. In particular,

κ = A(δ),(1.5)

which is the reason why κ is called the impulse response.
In the nonlinear case the Volterra kernels κn replace the kernel κ = κ1 of the

linear case. Since Volterra [39] researchers have been interested in a series expansion
of the nonanticipative solution operator that represents the time evolution induced
by (1.1). The Volterra series expansion for the scalar case (N = 1) amounts to

A(ϕ)(t) = κ0 +
∑
n≥1

∫ t

−∞
ds1 . . .

∫ t

−∞
dsn κn(t− s1, . . . , t− sn)ϕ(s1) . . . ϕ(sn).

(1.6)

The nth-order term in this expansion will be called An(ϕ), An denoting the mapping
ϕ �→ An(ϕ). In that which follows we assume f(0) = 0 so that κ0 = 0.
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CALCULATION OF VOLTERRA KERNELS 3

A few words on convergence of the Volterra series (1.6) are in order. The solution
operators are not analytic, but “quotient-analytic” (Q-analytic), as set forth in [37].
The consequence of this for the present paper, in which we shall not go into the details
of Q-analytic maps, is that a Volterra series converges uniformly for t in a compact
interval I, for inputs ϕ in a neighborhood of zero, depending on I.

We can now precisely formulate the main purposes of the paper. They are three-
fold. First is to obtain a recurrence relation giving the nth-order term An in the
Taylor expansion (1.6) of the nonanticipative solution operator A as a function of
the lower-order terms A1, . . . , An−1. This is of particular relevance to its (extremely)
efficient handling by computer-algebraic software. The operators An are n-linear and
nonanticipative. The corresponding responses will be called nth-order responses.

Second is to generalize the classical impulse-response idea to the case of nonlinear
equations by a method which we call differential sampling. The method consists of
determining the kernels κn as nth-order responses to appropriate combinations of
delta measures (“functions”). We justify this by proving that even in the nonlinear
case the inputs ϕ may be measures. Furthermore, it is shown that the kernels κn with
n ≥ 2 are continuous, in fact, smooth, functions. In practice, we obtain the nth-order
responses directly from the solution operator A by a finite-difference operation. The
practical implementation of this is explained in detail in section 7.

Third is to prove a continuity theorem stating that, when the input is a mea-
sure, the operators An are continuous with respect to the weak (vague) topology on
measures with support in a fixed compact set. Hence Volterra kernels depend con-
tinuously on the initial conditions in the weak topology so that approximate delta
functions give rise to good approximations to the kernel κn. In this way we justify
experimental praxis where delta measures are hard to realize but generating good
approximations is straightforward. For instance, in hearing research an approximate
delta function is an utter triviality: a click, which is ideal in experiments and widely
used—though not yet for probing input space and, hence, the output systematically.

In itself, the idea of determining the Volterra kernels through “impulse response”
is not new but, to the best of our knowledge, the suggestions [2, 32, 34] so far have
not been proven to be effective. We have shown elsewhere [20] that the numerics of
the differential-sampling algorithm, which is explained here for the first time, is fast
and easy to handle when being applied to, e.g., the Hodgkin–Huxley system [8, 16];
cf. the appendix. See Figure 1 for a plot of the corresponding second-order kernel κ2.

In biological and physical practice [1, 3, 5, 7, 9, 10, 11, 12, 13, 17, 23, 24, 25, 26, 33],
the response x(t) is given experimentally. As we have already indicated, there is in
general no hope of reconstructing (1.1), i.e., f , from its output x(t). It is therefore
preferable to compute the kernels κn since they determine the response to an external
input ϕ; in reality, e.g., in the neighborhood of a fixed point, a few small n (say ≤ 2)
often suffice [17, 20]. Rather than determining the Wiener kernels through sampling
the input space by white noise [4, 21, 22, 28, 29, 30, 31, 40], which is somewhat hard
to generate and handle, and through averaging, which means that one has to repeat
the white-noise sampling many times so as to obtain an average, we will show that we
may take the input ϕ to be a simple linear combination of Dirac delta functions (i.e.,
point masses). In so doing, we recuperate the Volterra kernels κn in (1.6) directly
from the corresponding output x(t) by differentiation.

Not only from an experimental but also from a theoretical point of view is studying
the Volterra kernels worthwhile. An analytic expansion such as the Volterra series
in (1.6) cannot be extended beyond a singularity, e.g., an action potential (spike)
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4 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS
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Fig. 1. The second-order Volterra kernel κ2 of the Hodgkin–Huxley system [8, 16]—see also the
appendix—on its natural domain R

2
+. This system was devised to describe action potentials in the

giant axon of the squid. It consists of four nonlinear ordinary differential equations, of which only
the first is accessible to experimentation and, thus, to physical input. The Volterra kernels directly
give the system’s response to the input; cf. (1.6).

originating from the Hodgkin–Huxley equations when the input current I exceeds a
critical value Ic; see the appendix. The important question is now: How can one
modify the kernels so that they do take into account the last or, even better, all
previous action potentials? It has been shown elsewhere [20] that for the Hodgkin–
Huxley system the last spike in conjunction with a modified first-order kernel and a
threshold suffices to give a faithful, though not perfect, description of the times at
which the action potentials originating from the system occur. The corresponding
kernels can be determined numerically, and efficiently, through differential sampling.
Since the ensuing arguments are beyond the scope of the present paper, we refer to
Kistler, Gerstner, and van Hemmen [20] for details and return to our main theme,
determining the Volterra kernels.

We illustrate differential sampling by considering a simple example. In one di-
mension, N = 1, we start by taking ϕ = λδt′ in (1.1), where δt′ denotes a Dirac delta
measure, the unit point mass at t′. Equation (1.6) then takes the form

xλ(t) =
∑
n≥1

λnκn(t− t′, . . . , t− t′),(1.7)

which, for t in a given compact interval, converges provided λ is sufficiently small
[37]. Differentiating the series once with respect to λ at λ = 0 we obtain κ1(t − t′).
Similarly, substituting ϕ = λ1δt1 + λ2δt2 in the series (1.6) and differentiating with
respect to λ1 and λ2 at 0, we obtain κ2(t− t1, t− t2).

The paper is organized as follows. In the next section we establish recurrence
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CALCULATION OF VOLTERRA KERNELS 5

relations for the nth-order terms of the Volterra expansion, and derive the kernels
which belong to them in section 3. The finite-dimensional case allows for a practical
formulation in terms of tensors (section 4) and is illustrated by way of some examples
(section 5). In section 6 we use the method of differential sampling to obtain the
Volterra kernels and prove the continuity theorem. Finally, we present a numerical
implementation of our procedure (section 7) and discuss our results (section 8).

2. Recurrence relations. Let E be a real Banach space and f : E → E, f(0) =
0, be a function having a holomorphic extension to the strip {z ∈ E+ iE : |Im z| < ε},
and satisfying the Lipschitz condition |f(u)− f(v)| ≤ Lε |u− v| for all u and v in the
strip. We consider the differential equation

x′(t) = f(x(t)) + ϕ(t) , x ∈ C1
+(R, E) , ϕ ∈ C+(R, E).(2.1)

Here C+(R, E) denotes a space of continuous functions from R to E that vanish on
some interval (−∞, a] with a ∈ R. The space C1

+(R, E) of continuously differentiable
functions is defined similarly.

An operator A : C+(R, E) −→ C1
+(R, E) such that A(0) = 0 and such that A(ϕ)

is a solution of (1.1) for all ϕ ∈ C+(R, E) is called a solution operator. The operator
A is nonanticipative if for all τ ∈ R

ϕ1(t) = ϕ2(t) for all t ≤ τ =⇒ A(ϕ1)(τ) = A(ϕ2)(τ),

or, equivalently,

ϕ1(t) = ϕ2(t) for all t ≤ τ =⇒ A(ϕ1)(t) = A(ϕ2)(t) for all t ≤ τ.

There exists a unique nonanticipative solution operator A : C+(R, E) → C1
+(R, E),

and this operator is Q-analytic [37, Thm. 6.1]
The solution operator can be expanded into a series, viz.,

A(ϕ) =
∞∑

n=1

An(ϕ) , An(ϕ) =
1

n!
(DnA)(0)(ϕ, . . . , ϕ).(2.2)

Here (DnA)(0)(ϕ1, ϕ2, . . . , ϕn) denotes the nth-order directional derivative at 0 in the
directions ϕ1, . . . , ϕn, the dependence upon t being understood; see also (1.6). More
precisely, the fact that A is Q-analytic implies that for every compact interval I ⊂ R

there exists a neighborhood of zero O = O(I) ⊂ C+(R, E) such that the series

A(ϕ)(t) =

∞∑
n=1

An(ϕ)(t)(2.3)

is convergent for every ϕ ∈ O and every t ∈ I; cf. [37, Remark 1.9]. Thus the series
in (2.2), with a given ϕ, does not necessarily converge for all t ∈ R.

The An are homogeneous polynomials of degree n, defined on C+(R, E), with
values in C1

+(R, E). Since we have, for every t ∈ R,

An(ϕ)(t) =
1

n!

(
d

dλ

)n

A(λϕ)(t)|λ=0,(2.4)

the operator ϕ �→ An(ϕ) itself is nonanticipative.

2.1. Scalar case. We will first investigate the scalar case with E = R. The
generalization to Banach spaces will be discussed in the next subsection.

In order to derive a recurrence relation for the operators An we expand f in a
Taylor series around 0,
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6 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

f(x) =

∞∑
k=1

ckx
k , ck =

1

k!
(Dkf)(0) ∈ R,(2.5)

substitute the series expansions of f and A into (2.1), and obtain formally

∞∑
n=1

An(ϕ)
′ = c1

( ∞∑
n=1

An(ϕ)

)
+ c2

( ∞∑
n=1

An(ϕ)

)2

+ · · ·+ ϕ.(2.6)

Next, we replace ϕ by λϕ with λ ∈ R,

∞∑
n=1

λn An(ϕ)
′ = c1

( ∞∑
k=1

λk Ak(ϕ)

)
+ c2

( ∞∑
k=1

λk Ak(ϕ)

)2

+ · · ·+ ϕ,(2.7)

and identify the nth-order terms in λ.
The variable t is not mentioned explicitly in (2.6) and (2.7), so it must be borne

in mind that the convergence is valid uniformly for t in a compact interval I, provided
ϕ, or λ, belongs to a sufficiently small neighborhood of the origin depending on I.
This is a consequence of the Q-analyticity of the solution operator [37]. Hence for any
t we can, as usual, identify terms of the same degree in λ.

Obviously, in first order we obtain the linearized differential equation,

A1(ϕ)
′ = c1 A1(ϕ) + ϕ.(2.8)

Let Y be the Heaviside one-step function, i.e., Y (t) = 0 for t < 0 and Y (t) = 1 for
t ≥ 0, and let Yc1(t) = Y (t) ec1 t. Then Yc1 is the fundamental solution of (2.8) with
support in [0,∞), i.e.,

Y ′
c1 − c1 Yc1 = δ,(2.9)

δ being the Dirac delta function. The nonanticipative solution operator for (2.8) is
then given by

A1(ϕ) = Yc1 ∗ ϕ,(2.10)

where “∗” denotes a convolution, i.e., (f ∗ g)(t) =
∫
ds f(t− s) g(s).

To identify higher-order terms in the series expansion of the solution operator A,
we note that a restriction of the sums in the right-hand side of (2.7) to 1 ≤ k ≤ n
affects only terms of order at most n in the left-hand side. Thus using the multinomial
equation,

(x1 + x2 + · · ·+ xn)
l =

∑
j1+···+jn=l

(
l

j1 . . . jn

)
xj1

1 xj2
2 . . . xjl

n ,(2.11)

we finally get

An(ϕ)
′ =

n∑
l=1

cl
∑

j1+···+jn=l
j1+2j2+···+n jn=n

(
l

j1 . . . jn

)
A1(ϕ)

j1 A2(ϕ)
j2 . . . An(ϕ)

jn , n ≥ 2.(2.12)

If l = 1, the sum over j1, . . . , jn contains only a single term because j1+j2+ · · ·+jn =
1 implies that only a single index jk equals one and all the others vanish. From
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CALCULATION OF VOLTERRA KERNELS 7

j1 + 2 j2 · · · + n jn = n we conclude that jn = 1 and j1, . . . , jn−1 = 0. It is easy to
see that l = 1 is also the only case with jn �= 0. So we put the term with l = 1 apart
from the rest of the sum and obtain

An(ϕ)
′ = c1 An(ϕ) +

n∑
l=2

cl
∑

j1+···+jn−1=l
j1+2j2+···+(n−1) jn−1=n

(
l

j1 . . . jn

)
A1(ϕ)

j1 A2(ϕ)
j2 . . . An−1(ϕ)

jn−1 .

(2.13)

This is a linear differential equation for An(ϕ) and, the operator An being nonantic-
ipative, its solution is given by a recurrence relation for the operator An, n ≥ 2, in
terms of the operators A1, . . . , An−1, i.e.,

An(ϕ) = Yc1 ∗
n∑

l=2

cl
∑

j1+···+jn−1=l
j1+2j2+···+(n−1) jn−1=n

(
l

j1 . . . jn

)
A1(ϕ)

j1 A2(ϕ)
j2 . . . An−1(ϕ)

jn−1 .

(2.14)

This will be justified more adequately in the next section.

2.2. Vector case. If we generalize the above calculation to arbitrary Banach
spaces, the coefficients in the series expansion (2.5) of f are no longer real numbers
but elements of the space Ln(E;E) of bounded multilinear operators from En to E.
Instead of (2.5) we now find

f(x) =

∞∑
n=1

Cn(x, . . . , x︸ ︷︷ ︸
n times

) , Cn =
1

n!
(Dnf)(0) ∈ Ln(E;E).(2.15)

Since the operators Cn are symmetric, the application of the multinomial formula
remains valid and the calculation of the recurrence relation goes through almost un-
changed as compared to the scalar case. We only have to be more careful with our
notation.

A combination of (2.15) and (2.2) yields

∞∑
n=1

An(ϕ)
′ = C1

( ∞∑
n=1

An(ϕ)

)
+ C2

( ∞∑
n=1

An(ϕ),

∞∑
n=1

An(ϕ)

)
+ · · ·+ ϕ.(2.16)

As before, the first-order term corresponds to the linearized differential equation,

A1(ϕ)
′ = C1 A1(ϕ) + ϕ,(2.17)

with the solution

A1(ϕ) = YC1
∗ ϕ,(2.18)

where YC1 is the fundamental solution of the corresponding homogeneous differential
equation, with support in [0,∞),

YC1
(t) = Y (t) exp(t C1),(2.19)
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8 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

C1 now being a bounded linear operator in E. The terms of order n ≥ 2 are identified
as above, and we obtain the differential equation

An(ϕ)
′ = C1 An(ϕ)

+

n∑
l=2

∑
j1+···+jn−1=l
j1+2j2+···+(n−1) jn−1=n

(
l

j1 . . . jn

)
Cl

(
A1(ϕ)

j1 , A2(ϕ)
j2 , . . . , An−1(ϕ)

jn−1
)
,

(2.20)

where we have introduced the abbreviation

Cl

(
A1(ϕ)

j1 , . . . , An−1(ϕ)
jn−1

)
= Cl

(
A1(ϕ), . . . , A1(ϕ)︸ ︷︷ ︸

j1 times

, . . . , An−1(ϕ), . . . , An−1(ϕ)︸ ︷︷ ︸
jn−1 times

)
.

(2.21)

The recurrence relation in the vector case is

An(ϕ) = YC1
∗

n∑
l=2

∑
j1+···+jn−1=l
j1+2j2+···+(n−1) jn−1=n

(
l

j1 . . . jn

)
Cl

(
A1(ϕ)

j1 , A2(ϕ)
j2 , . . . , An−1(ϕ)

jn−1
)
.

(2.22)

This is a consequence of the following lemma.
Lemma 1. Let F : R −→ E be a locally integrable function, or a distribution,

with support bounded from below. Let C be a continuous linear operator in E. Then
the differential equation

x′ = Cx + F(2.23)

has a unique solution with support bounded from below, viz.,

x = Y etC ∗ F.(2.24)

Proof. The solution (2.24) has its support contained in the support of F , limited
to the left. The most general solution has the form Y etC ∗ F + etCq for some q ∈ E,
and this is different from zero for all t to the left of the support of F, unless q = 0.

Since the operator An is nonanticipative, and ϕ has support limited to the left,
the function An(ϕ) has support limited to the left as well. Thus, according to the
lemma, (2.20) implies (2.22).

3. Derivation of the kernels. We are going to show, by induction on n, that
the operators An are integral operators with kernel κn, viz.,

An(ϕ)(t) =

∫
ds1 . . .

∫
dsn κn(t− s1, . . . , t− sn)ϕ(s1) . . . ϕ(sn).(3.1)

In the scalar case κn is a function of n variables. If E is a Banach space, then
κ(s1, . . . , sn) is no longer a real number but a bounded multilinear operator from
Ln(E;E).1 So we use the notation

An(ϕ)(t) =

∫
ds1 . . .

∫
dsn κn(t− s1, . . . , t− sn)

(
ϕ(s1), . . . , ϕ(sn)

)
.(3.2)

1κn is thus a family of operators parameterized by n real parameters.
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CALCULATION OF VOLTERRA KERNELS 9

We have seen that the solution to the linearized differential equation (2.17) cor-
responds to a convolution with the fundamental solution YC1 . The first-order kernel
is therefore readily determined to be

κ1 = YC1 .(3.3)

Higher-order kernels follow from the recurrence relation (2.22). We go on to derive
explicit expressions for κ2 and κ3. For n = 2, (2.22) reads

A2(ϕ) = YC1 ∗ C2

(
A1(ϕ)

2
)

= κ1 ∗ C2(κ1 ∗ ϕ, κ1 ∗ ϕ) .(3.4)

Evaluating this at t we obtain

A2(ϕ)(t) =

∫
du κ1(t− u) C2

[∫
ds1 κ1(u− s1)ϕ(s1),

∫
ds2 κ1(u− s2)ϕ(s2)

]

=

∫∫
ds1 ds2

{∫
du κ1(u)C2

(
κ1(t− s1 − u)(·), κ1(t− s2 − u)(·))} (

ϕ(s1), ϕ(s2)
)

=:

∫∫
ds1 ds2 κ2(t− s1, t− s2)

(
ϕ(s1), ϕ(s2)

)
.

(3.5)

Here we have exploited the fact that the Cn are linear in each argument so that we
may interchange the linear operation with C2 and the (Bochner) integration over s1

and s2. The dots indicate the positions where the arguments ϕ(s1) and ϕ(s2) are
to be plugged in. The braced subexpression corresponds to the second-order kernel
κ2(t− s1, t− s2) ∈ L2(E;E). Comparing the left two expressions in (3.5) we readily
see that

κ2(s1, s2) =

∫ min(s1,s2)

0

du κ1(u)C2

(
κ1(s1 − u)(·), κ1(s2 − u)(·)),(3.6)

which is symmetric in s1 and s2. The integration limits are due to the fact that
κ1(t) = 0 for t < 0. Also κ2(s1, s2) = 0 if s1 < 0 or s2 < 0.

Finally, for n = 3, (2.22) reads as

A3(ϕ) = YC1
∗

3∑
l=2

∑
j1+j2=l
j1+2j2=3

(
l

j1j2

)
Cl

(
A1(ϕ)

j1 , A2(ϕ)
j2
)

= YC1 ∗
{
2C2 (A1(ϕ), A2(ϕ)) + C3

(
A1(ϕ)

3
)}

.(3.7)

In order to evaluate this expression at time t we handle the two contributing terms
separately. First, we have

(3.8) 2 {YC1 ∗ C2(A1(ϕ), A2(ϕ))} (t)
= 2

∫∫∫
ds1 ds2 ds3

∫
du κ1(t−u)C2

(
κ1(u−s1)ϕ(s1), κ2(u−s2, u−s3)ϕ(s2)ϕ(s3)

)
.

The second term boils down to

(3.9)
{
YC1 ∗ C3

(
A1(ϕ)

3
)}

(t)

=

∫∫∫
ds1 ds2 ds3

∫
duκ1(t−u)C3

(
κ1(u−s1)ϕ(s1), κ1(u−s2)ϕ(s2), κ1(u−s3)ϕ(s3)

)
.
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10 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

From (3.8) and (3.9) we read off the third-order kernel κ3,

κ3(s1, s2, s3) =

∫ min(s1,s2,s3)

0

du κ1(u)
{
2C2

(
κ1(s1 − u)(·), κ2(s2 − u, s3 − u)(·, ·))

+ C3

(
κ1(s1 − u)(·), κ1(s2 − u)(·), κ1(s3 − u)(·))}.(3.10)

This expression is apparently not symmetric in s1, s2, and s3. The reason is that we
have derived the polar form of A3, i.e., the three-linear operator with three different
arguments A3(ϕ1, ϕ2, ϕ3), from an equation where A3 appears only in its polynomial
form A3(ϕ). There is, however, nothing wrong in using the nonsymmetric form of
κ3 because the sole context in which this kernel appears is in connection with three
identical arguments ϕ1 = ϕ2 = ϕ3. Of course, we could do a cosmetic symmetrization
and replace κ3 by

κ̃3(s1, s2, s3) =
1

3!

∑
σ∈S3

κ(sσ(1), sσ(2), sσ(3)),(3.11)

where S3 is the set of all permutations of {1, 2, 3}.
Once we have seen how the procedure works in the cases n = 2 and n = 3, we can

easily provide the general form of the nth-order kernel κn. Equation (2.22) reappears
as

(3.12) κn(s1, . . . , sn) =

∫ min(s1,...,sn)

0

du κ1(u)

n∑
l=2

∑
j1+···+jn−1=l
j1+2j2+···+(n−1) jn−1=n

(
l

j1 . . . jn

)

× Cl

(
κ1(s1 − u), . . . , κ1(sj1 − u)︸ ︷︷ ︸

j1 times

,

κ2(sj1+1 − u, sj1+2 − u), . . . , κ2(sj1+2j2−1 − u, sj1+2j2 − u)︸ ︷︷ ︸
j2 times

, . . . , κn−1(. . . )︸ ︷︷ ︸
...

)
.

In order to avoid blowing up this expression even more, we have omitted the dots
indicating the arguments of the operators κ1, . . . , κn−1. It is plain that the operator
κ1 takes one argument, the operator κ2 two, and so on. The present expression can
be read as an operator equation if we define the operation of Cl on the operators κk

in the natural way, i.e., C1(κ1)(ϕ) = C1(κ1(ϕ)), and so on. A consequence of (3.12)
is the following.
Theorem 1. For n ≥ 2, the kernels κn are continuous functions on R

n and
vanish on the complement of the hyperquadrant [0,∞)n. For all n ≥ 1, we have

supp(κn) ⊂ [0,∞)n.(3.13)

Moreover, the kernels κn are real-analytic (polynomial-exponential) functions on (0,∞)n,
outside the “diagonal skeleton” si = sj with i �= j.

Detailed expressions illustrating the theorem can be found in section 5.

4. Tensor notation. If E is a finite-dimensional vector space, e.g., E = R
N ,

tensor calculus may provide a convenient framework for the calculations that have
been presented above in a coordinate-free notation.
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CALCULATION OF VOLTERRA KERNELS 11

In the following we will use lower indices to denote vectors and upper indices for
elements from the dual space E′. We will also employ the Einstein summation rule:
every pair of identical upper and lower indices has to be summed over from 1 to N .
In order to avoid confusion with indices denoting the order of the operators κn and
cn and those denoting specific components, we omit the indices that give the order of
the operators and identify these objects by the number of their arguments or indices.

The differential equation in tensor notation is

(4.1) xi(t)
′ = fi(x(t)) + ϕi(t) ,

x = (xi)1≤i≤N ∈ C1
+(R, E) , ϕ = (ϕi)1≤i≤N ∈ C+(R, E),

and the Taylor series for f reads

fi(x) =

∞∑
k=1

cj1 j2...jk
i xj1 xj2 . . . xjk ,(4.2)

with

cj1...jki =
1

k!

∂k

∂xj1 . . . ∂xjk

fi(x)

∣∣∣∣
x=0

, ck =
(
cj1...jki

)1≤j1...jk≤N

1≤i≤N
∈ E ⊗ E′ ⊗ · · · ⊗E′︸ ︷︷ ︸

k times

.

(4.3)

The first-order kernel is the fundamental solution of the linearized equation. This
can be translated into tensor notation as

κj
i (s) = Y (s)

[
exp(c1)

]j
i
.(4.4)

The expression (3.6) for the second-order kernel is

κj1j2
i (s1, s2) =

∫ min(s1,s2)

0

du Ck1k2
m κm

i (u) κj1
k1
(s1 − u) κj2

k2
(s2 − u),(4.5)

and the third-order kernel, as given by (3.10), is

(4.6)

κj1j2j3
i (s1, s2, s3) =

∫ min(s1,s2,s3)

0

du κm
i (u)

{
2Ck1k2

m κj1
k1
(s1−u) κj1j2

k2
(s2−u, s3−u)

+ Ck1k2k3
m κj1

k1
(s1 − u) κj2

k2
(s2 − u) κj3

k3
(s3 − u)

}
.

In the next section we take advantage of the above formalism and calculate the first
few kernels for a couple of examples.

5. Examples. In this section we present some examples illustrating our proce-
dure. First we treat the scalar case (R) and then turn to the vector case (RN ), where
the first derivative of f at x = 0, a matrix, is (or is not) diagonable.

5.1. Scalar case. Let us calculate the first few kernels for a one-dimensional
differential equation explicitly. The first-order kernel is the fundamental solution (or
the Green’s function located at zero) so that we obtain

κ1(s1) = Y (s1) e
c1 s1 .(5.1)
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12 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

The second-order kernel is given in (4.5), i.e.,

κ2(s1, s2) =

{
Y (s1, s2)

c2
c1

ec1 (s1+s2)
[
1− e−c1 min(s1,s2)

]
, c1 �= 0,

Y (s1, s2) c2 min(s1, s2), c1 = 0.
(5.2)

If c1 �= 0, the third-order kernel turns out to be

(5.3) κ3(s1, s2, s3) = Y (s1, s2, s3)

(
c2
c21

+
c3
2c1

)
ec1 (s1+s2+s3)

[
1− e2c1 min(s1,s2,s3)

]
− Y (s1, s2, s3)

2c22
c21

e−c1 min(s2,s3)
[
1− e−c1 min(s1,s2,s3)

]
.

If c1 = 0, we have

κ3(s1, s2, s3) = Y (s1, s2, s3) min(s1, s2, s3)
[
c3 − 2c22 min(s1, s2, s3) min(s2, s3)

]
.

(5.4)

5.2. Vector case with diagonal Jacobi matrix. We start with an N -
dimensional system of differential equations and assume the Jacobi matrix (∂fj/∂xk)
at x = 0 to be diagonable. If we denote the eigenvalues of the Jacobi matrix by λj ,
1 ≤ j ≤ N , we can put the differential equation in the form

xj(t)
′ = fj(x(t)) + ϕj(t) , with ckj ≡ ∂fj

∂xk
(0) = λj δ

k
j .(5.5)

The fundamental solution to the linearized equation is

κk
j (s) = δkj Y (s) eλj s.(5.6)

Using (4.5) we can readily calculate the second-order kernel,

κj1j2
i (s1, s2) = Cj1j2

i

∫ min(s1,s2)

0

du Y (u) exp [λi u + λj1 (s1 − u) + λj2 (s2 − u)]

=

{
Cj1j2

i Y (s1, s2) exp (λj1s1 + λj2 s2)
exp[(λi−λj1−λj2 ) min(s1,s2)]−1

λi−λj1−λj2
if λi �= λj1 + λj2 ,

Cj1j2
i Y (s1, s2) exp (λj1s1 + λj2s2)min(s1, s2) if λi = λj1 + λj2 .

In general, this kernel is not diagonal and the calculation of the nonsymmetric part
of the third-order kernel in (4.6) becomes rather tedious. From the general form
(3.12), however, we can deduce that all kernels κn are linear combinations of pure
exponentials if the eigenvalues λ1, . . . , λN are incommensurable.

5.3. Vector case with nondiagonal Jacobi matrix. If some of the eigenval-
ues of the linearized equation are degenerate, the Jacobi matrix (∂fj/∂xk) at x = 0
need not be diagonable. In order to illustrate this situation, we investigate the case
with N = 2 and the Jacobi matrix being in Jordan normal form, i.e.,(

∂fj
∂xk

(0)

)
1≤j,k≤2

=

(
λ 1
0 λ

)
.(5.7)

The first-order kernel is the fundamental solution of the linearized equation,

(
κk
j (s)

)
1≤j,k≤2

=

(
eλ s s eλ s

0 eλ s

)
Y (s).(5.8)

D
ow

nl
oa

de
d 

12
/1

8/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CALCULATION OF VOLTERRA KERNELS 13

Even in this simple case the expressions for the second-order kernel are rather lengthy.
Here we show only a few exemplary components of κk1k2

j :

κ11
1 (s1, s2) = Y (s1, s2)

eλ (s1+s2)

λ2

{
λ c111 + c112

}
− Y (s1, s2)

eλ max(s1,s2)

λ2

{
λ c111 + c112

[
1 + λ min(s1, s2)

]}
,(5.9)

κ22
1 (s1, s2) = Y (s1, s2)

eλ(s1+s2)

λ3

{
c221 λ2 + c121

[−2λ + λ2 (s1 + s2)
]

+ c122
[−4 + λ (s1 + s2)

]
+ c222 λ

}
− Y (s1, s2)

eλ max(s1,s2)

λ3

{
c221 λ2 + c121

[−2λ + λ2 |s1 − s2|
]

+ c122
[−4 + λ (s1 + s2 − 4min(s1, s2)) + λ2 min(s1, s2) |s1 − s2|

]
+ c222 λ

[
1 + λ min(s1, s2)

]}
,(5.10)

κ11
2 (s1, s2) = Y (s1, s2)

c112 eλ(s1+s2)

λ

{
1− e−λ min(s1,s2)

}
,

(5.11)

κ22
2 (s1, s2) = Y (s1, s2)

eλ(s1+s2)

λ2

{
c122

[−2 + λ (s1 + s2)
]
+ c222 λ

}
− Y (s1, s2)

eλ max(s1,s2)

λ2

{
c122

[−2 + λ max(s1, s2)
]
+ c222 λ

}
.(5.12)

In contrast to the nondegenerate case, the kernels now contain combinations of expo-
nentials and polynomials in the si.

6. Sampling input space by delta functions. By the results of [37, sect. 7]
it follows that the differential equation (1.1) has a solution, if ϕ is a measure with
compact support, and that the solution, in the sense of distributions, exists in the
space R(R, E) of right-continuous functions having left limits, with values in E. The
unique nonanticipative solution operator

A : Mc(E) −→ R(R, E)

is, moreover, Q-analytic; cf. [37, Thm. 7.1] for a more precise result.
Q-analyticity ensures uniform convergence, for t in a given compact interval I, of

the series

A(ϕ)(t) =

∞∑
n=1

An(ϕ)(t),(6.1)

for ϕ in a sufficiently small neighborhood, O = O(I), of zero in Mc(E). Moreover,
since for t ∈ I and ϕ ∈ O (6.1) is a Taylor series, it follows that the series may be
differentiated termwise with respect to ϕ as often as desired, a fact which we will use
below when differentiating with respect to the parameters λi.

Let us consider an “input” ϕ that is made up of a sum of δ pulses at times
t1, . . . , tn, multiplied by real prefactors λ1, . . . λn,

ϕ =

n∑
i=1

λi δti , with δti(t) = δ(t− ti).(6.2)
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14 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

Then the series (6.1) converges uniformly on the interval I, provided the numbers λi

are sufficiently small. The corresponding “output” x(t) = (Aϕ)(t) is of the form

x(t) =

n∑
i=1

λi κ1(t− ti) +

n∑
i,j=1

λi λj κ2(t− ti, t− tj) + · · · .(6.3)

We can single out the terms of order k by taking a kth derivative with respect to the
parameters λi at λ1 = · · · = λn = 0. In doing so, we obtain

∂x(t)

∂λi

∣∣∣∣
λ1...n=0

= κ1(t− ti) ,(6.4)

∂2x(t)

∂λi ∂λj

∣∣∣∣
λ1...n=0

= κ2(t− ti, t− tj) + κ2(t− tj , t− ti) ,(6.5)

...

∂nx(t)

∂λ1 . . . ∂λn

∣∣∣∣
λ1...n=0

=
∑
σ∈Sn

κn(t− tσ(1), . . . , t− tσ(n)).(6.6)

Here Sn is the permutation group of order n and λ1,...,n is an abbreviation of the
vector (λ1, . . . , λn).

Since only the symmetric components of the kernels κ are relevant, we may assume
that the kernel κn is symmetric. So all terms in the sum over all possible permutations
of the indices {1, . . . , n} in (6.6) are equal and we obtain an explicit expression for
the nth-order kernel κn,

κn(t− t1, . . . , t− tn) =
1

n!

∂nx(t)

∂λ1 . . . ∂λn

∣∣∣∣
λ1...n=0

.(6.7)

If we introduce the abbreviation

κt1,...,tn(t) = κn(t− t1, . . . , t− tn)(6.8)

and resubstitute the definition of x,

κt1,...,tn(t) =
1

n!

∂nA
[∑n

i=1 λi δ(t− ti)
]

∂λ1 . . . ∂λn

∣∣∣∣∣
λ1...n=0

≡ 1

n!
DnA(0; δt1 , . . . , δtn)(t),(6.9)

we see that κt1,...,tn is simply the nth derivative of the solution operator A taken at
ϕ = 0 in the directions δt1 , . . . , δtn . With a convenient abbreviation this amounts to

κt1,...,tn = An(δt1 , . . . , δtn),(6.10)

where An is n-linear symmetric and such that, as previously, An(ϕ) = An(ϕ, . . . , ϕ).
In [37] it was noted that the Q-analyticity on the space of measures with the strong

topology was not satisfactory because, in this topology, the subspace of absolutely
continuous measures is closed, and δh does not converge to δ0 ≡ δ as h → 0. The
recurrence relations for the operators An allow us to prove their continuity with
respect to a more convenient, weaker topology.

D
ow

nl
oa

de
d 

12
/1

8/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CALCULATION OF VOLTERRA KERNELS 15

We consider, on the space of measures with compact support, the so-called weak
topology for which

ϕi → ϕ ⇐⇒ 〈ϕi, f〉 → 〈ϕ, f〉(6.11)

for all real-valued continuous functions f. Here 〈ϕ, f〉 =
∫
ϕ(ds) f(s). If ϕ is vector-

valued, the quantity 〈ϕ, f〉 still makes sense as a vector in E. For the sake of simplicity
we assume E to be finite-dimensional. We note that standard approximations of
the Dirac delta function, with support in a fixed compact set, converge in the weak
topology.
Theorem 2 (continuity theorem). Let E be finite-dimensional. Let the measures

ϕi ∈ Mc(E) with i ∈ N converge weakly to the measure ϕ, keeping their support in a
fixed compact set. Then the following results hold:

(i) A1(ϕi) = κ1 ∗ ϕi converges to A1(ϕ) in the space L1
loc(R, E).

(ii) If n ≥ 2, then An(ϕi)(t) converges to An(ϕ)(t) uniformly for t in a compact
subset of R.

(iii) If for 1 ≤ j ≤ n the measures ϕ
(j)
i , with supports in a fixed compact set,

converge weakly to ϕ(j) as i → ∞, then we have

An(ϕ
(1), . . . , ϕ(n))(t) = lim

i→∞
An(ϕ

(1)
i , . . . , ϕ

(n)
i )(t),(6.12)

uniformly for t in a compact set.
Proof. (i) We first consider the case E = R. It is well known that, if ϕi ≥ 0 and f is

a locally bounded Borel function, we have 〈ϕi, f〉 → 〈ϕ, f〉 provided f is continuous at
the atoms of ϕ. Here, κ1 being discontinuous at 0, this means that

∫
ϕi(ds)κ1(t− s)

converges to
∫
ϕ(ds)κ1(t − s) for all t with ϕ({t}) = 0, in particular, for all but

countably many t. By the uniform boundedness principle the total masses of the ϕi

remain bounded. Thus the functions κ1 ∗ ϕi remain uniformly bounded on compact
intervals and so, by Lebesgue’s theorem, the convergence takes place in L1

loc. If the
measures ϕi are not nonnegative, we can extract a subsequence so that the positive
and negative parts converge weakly, and for this subsequence the same conclusion
holds. But since any subsequence of ϕi similarly contains a subsequence converging
in L1

loc to κ1 ∗ ϕ, and L1
loc is metrizable, it follows by a standard argument that the

sequence itself converges.
In the case E = R

N one can apply this argument to each component of the vector
measure ϕi.

(ii) We have seen that, at least for some subsequence, A1(ϕi) converges to A1(ϕ)
at almost every t, while remaining uniformly bounded on compact sets. Then it fol-
lows from Lebesgue’s theorem that A2(ϕi)(t) = κ1 ∗ (C2(A1(ϕi), A1(ϕi))(t) converges
uniformly on compact sets. In fact let fi(t) = C2(κ1 ∗ ϕi(t), κ1 ∗ ϕi(t)) and let f(t)
be similarly associated with ϕ, then, if ϕi and ϕ have support in [a, b], it follows that
fi and f vanish for t < a and that, for t ≥ a,

A2(ϕi)(t)−A2(ϕ)(t) =

∫ t

a

κ1(t− s)[fi(s)− f(s)]ds.

If |κ1(t− s)| ≤ Ma,b for a ≤ s ≤ t ≤ b, then we have

|A2(ϕi)(t)−A2(ϕ)(t)| ≤ Ma,b

∫ b

a

|fi(s)− f(s)|ds,
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16 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

which, by part (i), converges to zero, uniformly with respect to t ∈ [a, b].
More generally, the induction formula (2.21) shows that An(ϕi)(t) converges to

An(ϕ)(t) uniformly on compact sets. Since the space of continuous functions on R

with the topology of uniform convergence on compact sets is metrizable, we see again
that the conclusion holds for any sequence ϕi converging weakly to ϕ and with support
contained in a fixed compact set.

(iii) In the case of A2 we have the expression

A2(ϕ
(1), ϕ(2)) =

1

2
[A2(ϕ

(1) + ϕ(2))−A2(ϕ
(1))−A2(ϕ

(2))].

For n > 2 there are similar, but more complicated, expressions of the symmetric
multilinear form in terms of its restriction to the main diagonal. In fact, we have the
following general lemma, in which we make use of the notation

(∆hv)(x) = v(x + h)− v(x).

Lemma 2 (polarization formula [38]). Let X and Y be linear spaces over R. Let
u : Xn −→ Y be a symmetric n-linear map. Let v(x) = u(x, . . . , x) be the restriction
to the diagonal. Then

u(x1, . . . , xn) =
1

n!

(
∆xn . . .∆x1v

)
(0).(6.13)

This implies, in particular, that if X and Y are topological vector spaces the multilinear
map u is continuous if and only if its restriction to the main diagonal is continuous.
Applying this with X, the space of measures with support in a fixed compact interval,
equipped with the weak topology, we obtain the desired result.

As for the proof of the lemma, it suffices to prove it in the case of a finite-
dimensional (n-dimensional) space X. So we may assume that X and Y are finite-
dimensional, and equip them with their natural topologies. We have

u(x1, . . . , xn) =
1

n!

∂n

∂t1, . . . , ∂tn
v(t1x1 + · · ·+ tnxn),(6.14)

whatever t1, . . . , tn. Integration of (6.14), n times in succession, between 0 and 1, now
yields (6.13); cf. [27, Eq. 3], [34, Eq. 5.4–10] for a related result.

7. Numerical procedure: Differential sampling. Equation (6.7) provides
a means of calculating the kernels κn numerically. If we put t = 0 and si = −ti,
i = 1, . . . , n, we get

κn(s1, . . . , sn) =
1

n!

∂nx(0)

∂λ1 . . . ∂λn

∣∣∣∣
λ1...n=0

, with x = A

[
n∑

i=1

λi δ−si

]
.(7.1)

The derivatives on the left-hand side of (7.1) can be expressed by a differential quo-
tient, e.g.,

κn(s1, . . . , sn) =
1

n!
lim
ε→0

1

(2ε)n

∑
{qi=±1; 1≤i≤n}

(∏n

i=1
qi

)
A

[
ε

n∑
i=1

qi δ−si

]
(0).(7.2)

In order to evaluate κn(s1, . . . , sn) we have to determine the response of the system
described by the operator A to 2n different input functions ϕ, namely to ϕ(t) =

D
ow

nl
oa

de
d 

12
/1

8/
18

 to
 1

29
.1

25
.1

48
.1

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



CALCULATION OF VOLTERRA KERNELS 17

ε
∑n

i=1[±δ̂(t + si)], with all possible combinations of positive and negative signs, δ̂
being an approximate δ function, and ε a “small” constant.

By the continuity theorem of section 6, the approximate kernels

κ̂n(t− t1, . . . , t− tn) = An(δ̂t1 , . . . , δ̂tn)(t)(7.3)

converge to the ideal kernel

κn(t− t1, . . . , t− tn) = An(δt1 , . . . , δtn)(t).(7.4)

Generalization to vector-valued systems is straightforward, the λk now being in-
terpreted as vectors in E. In the finite-dimensional case the scalar sample input ϕ is
replaced by

ϕi =

n∑
k=1

λk δjki δtk .(7.5)

Here, δjki is the Kronecker δ and δtk = δ(t − tk) the Dirac delta function as before.
The upper indices j1, . . . , jn are kept fixed and used to select a specific component of
the kernel we are interested in; cf. (4.5) and (4.6).

If we substitute this ansatz into the Volterra series, we obtain

xi(t) =

n∑
k=1

λk κjk
i (t− tk) +

n∑
k,l=1

λk λl κ
jkjl
i (t− tk, t− tl) + · · · .(7.6)

As before, we differentiate with respect to the parameters λk and obtain

∂nxi(t)

∂λ1 . . . ∂λn

∣∣∣∣
λ1...n=0

=
∑
σ∈Sn

κ
jσ(1)...jσ(n)

i (t− tσ(1), . . . , t− tσ(n)).(7.7)

Analogous to the scalar case, we exploit the symmetry of the kernels which now
involves a permutation of the arguments and of the indices of the kernel, i.e.,

κ
jσ(1)...jσ(n)

i (t− tσ(1), . . . , t− tσ(n)) = κj1...jn
i (t− t1, . . . , t− tn).(7.8)

The result is a generalization of (7.1),

κj1...jn
i (s1, . . . , sn) =

1

n!

∂nxi(0)

∂λ1 . . . ∂λn

∣∣∣∣
λ1...n=0

,(7.9)

with

xi = A
[∑n

k=1
λk δjki δ−sk

]
.(7.10)

This completes the description of the algorithm to compute the Volterra kernels from
the output x(t). It is fair to call it “differential sampling” as the Volterra kernels
are obtained by sampling the input space through (approximate) delta functions of
strength λi and differentiating the output with respect to the λi at zero so as to obtain
the kernels themselves. As such it is a differential method. It is to be contrasted with
integral methods such as that of Wiener [40], which need to perform an average over
a stochastic process, an integral based on some probability space.

For practical purposes, it is not necessary to determine the Volterra kernels for
all values of their arguments. It is a consequence of Theorem 1 that a finite ε net
suffices. Here ε is to be determined by the numerics.
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18 J. L. VAN HEMMEN, W. M. KISTLER, AND E. G. F. THOMAS

8. Discussion. We have studied the nonlinear differential equation (1.1) de-
scribing some process in a Banach space E, viz., x′ = f(x) +ϕ with ϕ representing a
time-dependent input, here a “perturbation” of the equilibrium state x = 0. We have
seen that differential sampling is a direct method of determining the Volterra kernels
with respect to a given equilibrium state. With the benefit of hindsight, a natural
question is now, What is the relation between differential sampling, taking a linear
combination of delta functions as input, and the Wiener approach [40], starting with
white noise?

If for the purpose of this discussion we assume E to be a finite-dimensional Eu-
clidean space, we can show that our solution operator A can indeed have white noise,
starting for instance at t = 0, as input. In fact, the integral equation

x(t) =

∫ t

−∞
f(x(s))ds + Φ(t)(8.1)

has a unique solution x ∈ C+(R, E) for every Φ ∈ C+(R, E). In particular, if we
take Φ at random in C0([0,+∞), E) = {Φ ∈ C([0,+∞), E) : Φ(0) = 0} according
to Brownian motion, the resulting random output x may be viewed as x = A(ϕwn)
where ϕwn is white noise. Moreover, one can show that for each t > 0 the map
ϕ �→ x(t) = A(ϕ)(t) is in L2 with respect to white noise and, hence, susceptible to be
analyzed by Wiener’s method, i.e., expanded in Fourier–Hermite functions [6]. This
is explained extensively in the literature [40, 6, 31, 34].

In contrast to the Wiener approach, the present method need not generate white
noise and, thus, avoids a notoriously hard task. Furthermore, instead of a Fourier–
Hermite expansion we directly obtain the Volterra kernels themselves, a key advan-
tage. The latter characterize the response of the system under consideration, whereas
the former is intrinsic to white noise. Finally, we have implemented differential sam-
pling by a straightforward numerical algorithm as described in section 7. The av-
eraging over many white-noise realizations is now replaced by a sampling through
approximate delta functions so as to numerically perform partial differentiation and
obtain the Volterra kernels; cf. (7.9). It is here that our continuity theorem (section 6)
pays off. Whereas a delta function poses no problem during the numerical integra-
tion of a differential equation, approximate delta functions are more appropriate in
experiments.

From our point of view, the key idea behind the Wiener approach is that Gaus-
sian white noise allows determination of the kernels because its variance is a delta
function (concentrated at 0): 〈ϕwn(t)ϕwn(t + s)〉 = δ(s), the angular brackets de-
noting an expectation value obtained through averaging. In the linear case where
x(t) =

∫
ds κ(t− s)ϕ(s) one finds

κ1(t− t′) = 〈x(t)ϕwn(t
′)〉.(8.2)

A formal calculation shows the idea behind (8.2) most clearly:

〈x(t)ϕwn(t
′)〉 =

∫ ∞

0

ds κ1(t− s)〈ϕwn(s)ϕwn(t
′)〉

=

∫ ∞

0

ds κ1(t− s)δ(s− t′)

= κ1(t− t′).(8.3)
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CALCULATION OF VOLTERRA KERNELS 19

In the general case, the Wiener expansion, in contrast to its Volterra counterpart,
uses an orthogonalization à la Gram–Schmidt which we do not discuss; see [14, 15,
18, 19, 6, 40].

In a sense, we have suggested returning ad fontes and taking advantage of Wiener’s
idea directly. That is to say, instead of generating delta functions through white noise,
we directly focus on delta functions as input.

Appendix. The Hodgkin–Huxley equations [8, 16] constitute a four-dimensional,
highly nonlinear system of ordinary differential equations. The first equation describes
the time evolution of the membrane voltage V under the influence of a given input
current I,

C
dV

dt
= I − [gNa(V − VNa) + gK(V − VK) + gL(V − VL)],

where C is a capacitance per unit area, the terms on the right between square brackets
describe ionic currents (Na+, K+, and Cl−), and

gNa = ḡNa m3h , gK = ḡK n4

are time-dependent conductances with ḡNa, ḡK, and gL being constants while x = m,
n, and h are three auxiliary variables satisfying a differential equation of the form

τx(V )
dx

dt
= x∞(V )− x.

If V were constant, e.g., under voltage clamp, then x would approach its limit x∞(V )
at an exponential rate determined by the relaxation time τx(V ). The nonlinearity is
here in the functions τx = 1/[αx + βx] and x∞(V ) = αx/[αx + βx], where αx and βx

have been determined by Hodgkin and Huxley as a function of V through an extensive
numerical fit. The terms VNa, VK, and VL are reversal potentials, known constants.
The Hodgkin–Huxley system is difficult to analyze [8, section 2.5]. The only variable
that is accessible to experimentation is the membrane potential V . If the input ϕ is a
current I, then the system we are left with is one-dimensional (N = 1). The Volterra
kernel κ2 of the corresponding Volterra series has been plotted in Figure 1.
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