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NOMENCLATURE 

A i = coef f i c ien ts  o f  Pad6 approximant 

#\ = wing aspect r a t i o  

Bi  = coef f i c ien ts  o f  p a r t i a l  f r a c t i o n  of Pad@ approximant 

bn = l o c a l  span a t  the sect ion containing the  transducer as 

shown i n  Fig. 17(b) 

- 
c = reference chord 

c* = semichord lecgth o f  the a i r f o i l  

C(k) = Theodorsen funct ion 

cc(k) = general ized Theodorsen func t ion  

C1 = two-dimensional o s c i l l a t o r y  l i f t  coe f f i c ien t  

Cl o = two-dimensional steady s t a t e  1 i f t  c o e f f i c i e n t  

h = o s c i l l a t o r y  p i t ch ing  moment due t o  sinusoidal gusts 

F = Fourier transform 

F(k )  = C(k) [Jo(k)  - iJl(1:)I + iJ l (k) 

h(s)  = impulse l i f t  func t ion  due t o  nuclear b l a s t  

JO(k), J l ( k )  = Bessel functions o f  the  f i r s t  k ind 

k = w c / U , reduced frequency 

k '  = k / 0.61, e f f e c t i v e  reduced frequency 

L = Laplace transform 

L = o s c i l l a t o r y  l i f t  d i s t r i b u t i o n  

L '  (k)  = i n-phase component o f  o s c i l l a t o r y  1 i f t  c o e f f i c i e n t  

LW(k)  = out-of-phase component o f  o s c i l l a t o r y  1 i f t  coe f f i c ien t  

M = freestream Mach number 

r = i k ,  Laplace transform var iab le  

s = Ut/c* o r  ~ t / z ,  non-dimensional distance parameter 

S = reference wing area 



t = time coordinate 

T ( k )  = ~ ' ( k )  + iLU(k) ,  oscillatory l i f t  coefficient due to  

sinusoidal gusts 

U = frees tream vel oci ty 

V(k) + iW(k) = 1 -  T(k ) ,  [see Eq. (30)l 

Ha = vertical velocity component of the vortex sheet sitnulat- 

ing the airfoi l  i n  gust f ie ld  

wa* = amp1 itude of wa 

- 
wa = wa* / U 

wg = vertical velocity component of gust 

Wg* = amplitude of vertical velocity component of gust 

- 
wg = 3*/u 
W o = vertical velocity component of a sharp-edged gust 

- 
x = X/C* or  x/C, non-dimensional x-coordinate 

Xl e = x-coordinate of wing leading edge 

X~ 
= reference point for gust phase 

)( n = distance penetrated into a step gust, [see Fig. 17(b)l 

X ,Z = Cartesian coordinate system [see Fig. 11 

a = angle of attack 

B = ~1-M2 

B i  = root of the polynomial i n  the denomenator of Pad6 

approximant, which is always real 

6 (  t )  = delta ftrnction 

0 = blast intercept angle (see Fig. 20) 

P = frees trearn dens i ty 

@ = phase difference ( i n  degrees) of oscillatory l i f t  

$( s )  = indicia1 l i f t  due to step gusts 

w = radian frequency associated w i t h  the gust wavelength 



1. INTRODUCTION 

Estimation of the response of an aircraft due to atmospheric gusts 

has been the subject of numerous investigations from the viewpoint of 

producing useful data on the induced aerodynamic forces for the design o; 

active control systems for gust a1 leviation. 

In theorectical analyses, the change of l i f t  and momer,t on a wing 

passing through a sharp-edged gust was f i r s t  calculated for incompressible 

two-dimensional flow by Kdrmdn and Sears with simple mathema tical formulae 

(Ref. 1). Mi:es (Ref. 2)  extended the calculations to a travelling gust 

field, i .e. , sharp-edged gust moving either downstream or upstream rela- 

tive t o  the airfoil.  Drischler and Diederich (Ref. 3) presented results 

for a wide range of wings in both incompressible and compressible flows. 

Meanwhile, the response of an airfoi 1 entering a harmonic gust field was 

f i r s t  introduced by Sears (Ref. 4) .  Murrow, e t  a1 . (Ref. 5) provided many 

numerical results of l i f t  and moment for f ini te wings moving through a 

harmonic gust. Giesing, e t  a1 . (Ref. 6) also furnished some good sug- 

gestions in computing the oscillatory l i f t  and moment. One notable method, 

called the Doublet Lattice Method (DLM) which was originally developed by 

Albano and Rodden (Ref. 7 ) ,  was later improved to become a very useful 

tool in unsteady aerodynamics (Refs. P 9 ) .  

For the general harmonic analysis, the atmospheric gust was con- 

sidered as a random set of discrete gusts. Response had been predicted 

most comnonly with the assumption t h a t  the vertical component of gust 

varied along the flight path, b u t  did not vary along the span. This 

assumpti on was adopted by most researchers because the associated compu- 

tations were less extensive than thcse for the more general cases of 



random gusts. It may not  be s u f f i c i e n t l y  accurate f o r  very l a rge  a i r c r a f t ,  

bu t  i t  should provide usefu l  data for  most conf igurat ions. 

Besides a1 1 these numerical ca lcu lat ions,  no t  much experimental work 

appeared t o  have been done o r  t o  be avai lab le.  Roberts and Hunt (Refs. 10, 

11) made a ser ies  of  measurements o f  t r ans ien t  pressures on a narrow de l ta  

wing of AR= 1.2 due t o  v e r t i c a l  gusts, and Pate1 presented some experi-  

mental r e s u l t s  f o r  a couple o f  de l ta  wings (Ref. 12) and other  types o f  

wings (Ref. 13) i n  harmonic gust f i e l d s .  

I n  current  aerodynamic research, the vortex f low phenomenon i s  

drawing much a t ten t i on  because i t  offers s i g n i f i c a n t  cont r ibu t ions  t o  

aerodynamic charac ter is t i cs  on low-aspect-rat io wings w i th  sharp o r  t h i n  

edges. For these types o f  conf igurat ions, the pressure d i s t r i b u t i o n s  due 

t o  the leading-edge vortex separat ion are d r a s t i c a l l y  d i f f e r e n t  from those 

given by the conventional 1 i near  theory. The complex f lowf ie ld  a lso makes 

i t  more d i f f i c u l t  t o  p red i c t  aerodynamic forces accurately.  Most of the 

aforementioned unsteady aerodynamic methods arc? based on the l i n e a r  theory, 

and can not  p red i c t  the leading-edge vortex effect.  Although At ta,  e t  al., 

(Ref. 14) developed an unsteady 1 i f t ing-sur face method w i t h  vortex f low 

by using tha unsteady v o r t e x - l a t t i  ce method, no app l ica t ion  t o  various 

gust problems has been presented and the computing cost i s  expected t o  be 

very expensive . 
I n  t h i s  repor t ,  an unsteady l i f t i n g - s u r f a c e  method from reference 15 , :  

i 

w i l l  be used t o  ca l cu la te  the l i f t  and p i t ch ing  moment due t o  sinusoidal I : E 

gusts f o r  several wing planforms. The calculated r e s u l t s  are compared w i t h  I 
other  theories fo r  the attached f low and w i t h  experimental data fo r  vortex 

flow. I n  ca l cu la t i ng  the response of a winy t o  a sharp-edged gust, Garr ick - f  @ I 

(Ref. 16) developed a r e l a t i o n  between the o s c i l l a t o r y  forces due t o  f l i g h t  
I 

1 : 
C 



through c~n t inuous  tiarmonic gusts and the i n d i c i a l  forces due t o  sharp- 

edged gusts. Instead of Fourier transform taken by most other  theor ies 

i n  handling t h i s  rec iprocal  re lat ionship,  the  present method w i l l  use Pad6 

approximant t o  represent the harmonic response and Laplace transform w i  11 

be used t o  ca lcu la te  the  i n d i c i a l  functions. The problem formulat ion and 

computed resu l t s  are presented i n  the fo l lowing chapters. 

For many years, m i l  i t a r y  personnel have been cont inously in teres ted 

i n  the pred ic t ion  o f  the response o f  an a i r c r a f t  r e s u l t i n g  from a nuclear 

b l a s t  wave. Karman AviDyne (Ref. 17) d i d  a ser ies o f  experiments t o  mea- 

sure the b l a s t  pressures on a r i g i d  h;ghly sweptback wing a t  high subsonic 

speeds. McGrew, e t  a1 . (Refs. 18, 19) recent ly  used the  DLM t o  develop a 

nuclear b l a s t  response computer program f o r  winq-body conf igurat ions . Yet 

the method i s  v a l i d  only fo r  the attached flow. The present method, basnd 

on the unsteady suct ion analogy, w i l l  be used t o  demonstrate the capab i l i -  

ty o f  prsd ic t ina  the nuclear b l a s t  response invo lv ing  the vortex flow. 

Some resu l t s  i n  s imulat ing experimental data i n  reference 17 w i l l  be shawn. 



2. MATHEMAT I CAL FORMULATION 

2.1 Two-Dimensional Gust Penetrat ion 

Consider t h a t  a t h i n  a i r f o i l  moving w i t h  a v e l o c i t y  U, enters a 

region o f  atmospheric gust w i t h  v e l o c i t y  d i s t r i b u t i o n  wa normal t o  the - 
d i r e c t i o n  o f  motion (see Fig. 1). The boundary cond i t i cn  requires tha t  

the t o t a l  v e r t i c a l  ve loc i t y  due t o  the gust and the vortex sheet simulat-  

i n g  the a i r f o i l  must vanish: 

f o r  z = 0, -c* L x 5 c*, 

where w, i s  the v e r t i c a l  v e l o c i t y  component o f  the vortex sheet, x,z are 

the coordinate systems attached t o  the a i r f o i l  and c* i s  the semichord 

length o f  the a i r f o i  1. 

To solve a simple harmonic gust problem, the fo l low ing expression 

i s  used t o  speci fy  the s inusoidal  gust: 

where w{ i s  the amplitude of wg and w i s  the radian frequency associated 

w i t h  the gust wavelength. Subs t i t u t i ng  i n t o  Eq. (1) and canceling ou t  

the time f a c t o r  eiut, Eq. (2 )  leads t o  

By way o f  in t roducing the reduced frequency, k = wcf/U, Eq. (3) then be- 

comes 



It i s  convenient t o  d iv ide both sides by U and use the expression ji = x/c* 

as the non-dimensional x-coordinate, 

where = wa* / U and 4 = %* / U . 

Using Eq. (5 ) .  the exact l i f t d i s t r i bu t i on  for incompwsrible f low 

can be shown t o  be (Ref. 20), 

where C(k) i s  the Theodorsen's function, Ja (k )  and 31 (k) are  Bessel func- 

t ions o f  the f i r s t  kind. For compressible flow, C(k, w i l l  be replaced by 

generalized Theodorsen's function** Cc(k) and a l l  other terms i n  Eq. (6) 

remain the same. 

Furthermore, the l i ft caused by an a A i  t r a r y  wg can be calculated 

from Eq. ( 6 ) .  For a sharp-edged gust s t r i k i n g  the leading edge ot' the 

a i  r f o i  1 a t  t = 0, the boundary condition i s  

x > Ut - c*. 

x < U t  - c*. 

T h e  generalized Theodorsen's function was generated by Mr .  Chung-Hao Hsu 

i n  h i s  e a r l i e r  work f o r  calculat ing l i f t  on wings due t o  step change i n  

angle o f  attack. 



Then, wg can be represented by the Fourier i n t e g r a l ,  

which can be inverted i n t o  

f (o)  = wg e 
-m 

d t .  

Since wg = 0 f o r  t c- '+'* , Eq. (9 )  can be shown t o  be, by fol lowing 
U 

the Fourier transform o f  a constant (Ref. 20, p.287) ,  

Substituts-q Eq. (10) back i n t o  Eq. (8 ) ,  the boundary condition f o r  the 

sharp-edged gust t:comes 

where s = Ut /@ i s  the non-dimensional distance parameter. The a i r f o i l  
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l i f t  due t o  the harmonic gust (Eq. (5 ) )  i s  given by Eq. (6). Therefore, 

for the step gust based on Eq. ( l l ) ,  the l i f t  can be calculated as 

[ " {C(k)[Jo(k) - i ~ l ( k ) ]  + i ~ l ( k ) l  e ik(s-1) L = pUc*u - .  - dt. (12) 

From Eq. (12), the non-dimensional l i f t  development due t o  a step 

gust, $(s), i s  given by 

wi th 

m 
iC(k)  [Ja(k) - i J , ( k ) l +  i J l ( k ) )  e 

ik(s-1)  
dk. 

a i k  
(14) 

Let  ~ ( k )  = C(k) [Jo(k) - i J l ( k )  1 + iJl(k), then 

As k i s  always greater than o r  equal t o  zero, Eq. (15) can eas i ly  be 

inverted t o  



Let r = i k .  Then, 
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where L i $ ( s )  1 i s  the Laplace transform o f  $(s). 

Hence, the ind ic ia1 l ift function can be obtained from the inverse 

Laplace transform invc lv ing the amplitude o f  l i f t  d i s t r i bu t i on  due t o  a 

s i nusoi dal gust. 

2.2 Three-Dimensional Gust Penetration 

Now consider a r i g i d  t h i n  wing t r a v e l l i r g  a t  speed U through an 

i n f i n i t e  array o f  h a m n i c  gusts w i th  ve r t i ca l  ve loc i t ies  wg, uniformly 

across the wing span. The boundary condit ion i s  s im i la r  t o  that  for  a 

two-dimensional sinusoidal gust: 

where k egain i s  the reduced frequency w i th  a reference chord length ?, 

and xR i s  a reference point  f o r  the gust phase. 

Following reference 21, the osc i l l a to ry  l i f t  force due t o  the har- 

monic gust (Eq. (19)) i s  



where S i s  the reference area o f  the wing, and L '  (k )  , LM(k)  are the i n -  

phase and out-of-phase components o f  the dimensionless l i f t  force. 

Next consider a wing entering a sharp-edged gust. Again the 

boundary condit ion i s  very s im i la r  t o  Eq. ( 7 ) ,  

where x l e  i s  the x-coordinate o f  ihe leading-edge o f  the wing. From Eq. 

(20), one can determine thc ind ic ia1 1 i f t  funct ion representing dimen- 

sionless l i f t  development due t o  a step gust, $(s), 

w i th  

Let 

T(k) = L '  (k)  + iL" (k) ,  

With the same procedures from Eqs. (15) - (18), $(s)  can be obtained from 

the inverse Laplace transform involv ing the dimensionless l i f t  d is t r ibu -  

t i o n  due to  a harmonic gust, 
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2.3 Pad6 Approximant 

To be able t o  ca lcu la te  the inverse Laplace transform indicated i n  

Eqs. (18) and ( 2 6 ) ,  i t  i s  convenient t o  express T(k) and ~ ( k ) e ' ~  as closed- 

form functions o f  r. I n  any i i f t i n g - s u r f a c e  computation, T(k) o r  F(k)  are 

calculated only a t  a f i n i t e  number o f  k's. These values can then be i n -  

terpolated by Pad6 approximant as suggested by Vepa (Ref. 22). Following 

Vepa, an [ N,N ] zequence o f  Pad6 approximant t o  approximate T(k) i n  three- 

dimensional case ano ~ ( k ) e - ~  i n  two-dimensional gust can be w r i t t e n  as, 

where A i  are the coe f f i c i en ts  o f  Pad6 approximant. 

For N = 3 and use T(k )  as an example, 

and f o r  N = 2, 

T ( k j  = 1 -  or^+ A l r  

r 2 +  A 2 r  + A s  

Let  

1 - T(k) = V(k) + iW(k). 

From Eq. (30), i t  fo l lows tha t  for  N = 3, 
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Eq. (31) can be expanded and separated i n t o  rea l  and imaginary 

;!rrts respect ive ly  t o  g i  ve , 

rea l  par t :  

imaginary par t :  

Normally, more values o f  k ' s  are chosen t o  ca lcu la te  T i k )  than the 

number o f  unknowns Ai i n  Eq. (32a) and (32b). Therefore, a l e a s t  square 

technique t o  be described next i s  used t o  determine A i  's. 

2.4 Least Square Technique 

The l p  s t square p r i n c i p l e  i s  based on the requi rements t h a t  A i  ' s  

are detemined by minimizing the sum o f  squares o f  errors:  

M M 
Sum= 1 (L.H.S. of Eq. ( 3 ~ a ) ) ~ +  1 (L.H.S. of Eq. (32b))f (33) 

1 1 

where M i s  : . "e number o f  k ' s  o f  which T(k) i s  calculated by any ex i s t i ng  

1 i f t i n c - s u r f a c e  theory. 

A t  a minimum, a l l  the p a r t i a l  der ivat ives w i t h  respect t o  A i ' s ,  

;ch a? aSum/aAo, 3Sum/aAl , " - o * o o  , aSum/aAj, must vanish. These condi- 

t ions  t.esult .In i + l  equations f o r  i + l  unknown coe f f i c i en ts  A i l s .  Thus, 

Ails LC': 3e solved from Eq. (33) w i t h  M d i f f e r e n t  l i f t  values a t  corre- 

syqt~ding k's.  
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2.5 Ind ic ia1  L i f t  Function 

After a1 1 coef f ic ients o f  the Pad6 approximant are determined, Eq. 

(29a) can be r e w r i t t e n  as, 

By p a r t i a l  f r ac t i on  method, Eq. (34) leads t o  

where B i  i s  the i t h  r o o t  o f  the polynomi a1 i n the denomena t o r  o f  Eq. (34)  

and B i  i s  the corresponding c o e f f i c i e n t  o f  p a r t i a l  f r a c t i o n  i n  Eq. (35). 

Based on Eq. (26), the i n d i c i a 1  l i f t  func t ion  $(s)  can be obtained 

by applying the inverse Laplace transform t o  Eq. (35), 

2.6 Nuclear B las t  Response 

Calculat ion of the 1 i f t  development o f  a t h i n  wing encountering a 

nuclear b l a s t  wave w i  11 fo l low the same way as i n  computing the sharp- 

edged gust response. No major change has t o  be made except the boundary 

condit ion. The shock wave induced by the nuclear b l a s t  i s  assumed t r z v e l -  

i ng  a t  sonic speed. Thus, an impulse func t i on  b(s )  i s  used instead o f  the 

u n i t  step func t ion  i n  the gust response cond i t ion  (Ref. 24), 



where 5 i s  the magnitude o f  the vector sum o f  the shock wave ve loc i t y  and 

the freestream ve loc i ty .  Eq. (9)  now becomes, 

- ' le ) 
-io( 

= woe 

Comparing Eq. (38) wi th  Eq. ( l o ) ,  the main d i f ference i s  the fac to r  " i w "  

i n  the denomenator o f  Eq. (10). This a lso  fo l lows f rm~  the f a c t  t h a t  the  

impulse i s  equal t o  the time de r i va t i ve  o f  the  step input .  Hence, 

where h ( t )  i s  the u n i t  impulse, A ( t )  i s  the step funct ion and Fi i s  

the Four ier  transform. 

Rewrit ing Eq. (25) f o r  the impulse response, i t  fol laws that ,  

or,  

h (s )  = L-' { T(k) 'i . 

The Pad6 approximant used f o r  t he  i n d i  c i  a1 response analysis re- 

mains appl i cab le  , except the inverse transform ca lcu la t i on  has changed. 

For example, N = 2 Pad6 approximant can be w r i  t t e n  as, 



From Eq. (41) ,  the impulse l i f t  function h(s) can obtained, 



3. NUMERICAL RESULTS AND DISCUSSIONS 

3.1. Gust Penetrat ion 

3.1.1. Sinusoidal gust problem 

The 1 i ft devel~pment d ~ e  t o  a harmonic gust i s  calculated by the 

computer program based upon the unsteady quasi -vortex-1 a tti ce method de- 

veloped by Lan (Ref. 23). 

For a t h i n  a i r f o i l ,  30 vortex elements are used i n  the computation. 

The steady s ta te  two-dimensional 1 i f t  values are simply calculated by the 

equation C1 = 2n/B, where €4 = J m  , M i s  the freestream Mach number. The 
0 

computed resu l t s  are compared w i th  Sears' f o r  incompressible f low and w i t h  

Graham's fo r  several d i f f e r e n t  Mach numbers a t  reduced frequency 2. Both 

comparisons, showing good agreement, are tabulated i n  Tables I and 11. 

The three-dimensional unsteady aerodynamic program o f  reference 15 

i s  then revised t o  account f o r  the gust response. The present attached 

f low resu l t s  o f  l i f t  and moment f o r  a de l ta  wing o f  75' sweep a t  M = 0.4 

are compared i n  Figs. 2 and 3 wi th  those calculated by a kernel func t ion  

method (Ref. 5). 

Results o f  ca l cu la t i on  w i l l  also be compared w i t h  experimental data. 

I n  references 12 and 13, a gust tunnel which could generate a sinusoidal 

v e r t i c a l  gust was used t o  measure the o s c i l l a t o r y  l i f t  and moment on two 

de l ta  wings o f  AR=l and 2, and several other  comnonly used wing planforms. 

The tes ts  were performed f o r  a l l  wings a t  two mean freestream ve loc i t i es  

o f  12.43 and 20 .OO m/s. However, the osci 11 a tory  gust waves convected 

downstream w i th  a ve loc i t y  o f  0.61 o f  the mean freestream ve loc i ty .  This 

would indeed inf luence the gust wavelength, i .e., the frequency parameter. 

Thus, i n  the present calculat ions based on gust moving w i t h  the freestream 
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ve loc i t y  , an e f f e c t i v e  frequency (k  ' = k/0.61) , as suggested by Patel, w i l l  

be used i n  the  fo l low ing comparisons. 

I n  Fig. 4, t e s t  data f o r  a rectangular  wing o f  = 6 (Ref. 13) a re  

compared w i t h  two sets of theore t ica l  resu l t s .  I t  i s  seen t h a t  the pre- 

sent theory agrees we1 1 w i t h  Graham's (Ref. 24) i n  the predic ted in-phase 

component of the o s c i l l a t o r y  l ift. The phase l a g  i s  underpredicted and 

both theories overpredi c t  the 1 i ft ampl i tude. 

To demonstrate the vortex f low e f fec t ,  a d e l t a  wing o f  /$!=I i s  used 

t o  compare w i t h  Pate l ' s  data (Ref. 12) a t  a = 0 and 12 degrees i n  Fig. 5. 

The present theory pred ic ts  we l l  the 1 i f t  amplitude a t  both angles o f  a t -  

tack. A t  u = lzO,  the phase l a g  i s  a lso adequately predic ted by the pre- 

sent theory. On the o ther  hand, the phase l a g  a t  u = 0' i s  not  accurately 

predicted. I n  seeking the reasons f o r  these deviat ions, several points  

should be noted: 

(1 )  A t  a = 0 degree, the attached f low preva i ls .  I t  i s  o f  i n t e r e s t  

t o  compare the present r e s u l t s  w i t h  the doub le t - l a t t i ce  method (Refs. 8,9) 

f o r  t h i s  de l ta  wing o f  A?= 1 . I n  Fig. 6, agreement between the present 

resu l t s  and doub le t - l a t t i ce  method's i s  exce l len t  i n  1 i f t  ampl i tude and 

phase angles. 

(2)  As depicted i n  reference 12, fo rce  measurements were made re-  

l a t i v e  t o  the undisturbed freestream gust a t  the r o o t  2/3rd chord point .  

Another p o i n t  a t  the gust tunnel e x i t  was a lso used as a reference. I t  

i s  not  known whether the condit ions a t  the e x i t  p o i n t  were disturbed once 

the t e s t  model was placed i n  the tunnel. 

(3)  Also, Pate1 ind ica ted  i n  reference 12 from t e s t  data t h a t  the 

incremental 1 i f t  due t o  vortex 1 i f t  con t r i bu t i on  Mas important i n  magni- 

tude only  w i t h  no measurable con t r i bu t i on  t o  phase angles. However, the 



present theory shows tha t  t h i s  i s  approximately t r u e  only  w i t h  respect t o  

some reference points  [ i .e. ,  x~ a t  Eq. (19)l. This i s  i l l u s t r a t e d  i n  Fig. 

7 w i t h  the r o o t  midchord p o i n t  and wing apex as reference points .  There- 

fore, the r e s u l t s  by the present theory very much depend on the prec ise 

l oca t i on  o f  the reference about which the phase angle i s  calculated. 

A t  any rate,  reasons f o r  the discrepancy i n  the predic ted phase 

angles a t  a = 0 degree f o r  the de l ta  wing o f  PR = 1 are s t i l l  unknown a t  

the present time. 

3.1.2. Pad6 approximant 

Two d i f f e r e n t  sequences o f  Pad6 approximant a re  constructed here 

t o  fit various freestream condit ions. For a i r f o i l s  i n  compressible flows, 

Pade approximant w i t h  N = 3 i n  Eq. (27)  ( c a l l e d  Pad6 A6)  i s  used. On the 

other  hand, Pad6 approximant w i t h  N =  2 ( c a l l e d  Pad6 A3) i s  used f o r  a i r -  

f o i l s  i n  incompressible f low and a lso f o r  three-dimensional condit ions. 

These choices are  made through numerical corb3el at ions . The corresponding 

matrices f o r  deciding the unknown coef f i c ien ts  A i  i n  Eq. (28 )  are present- 

ed i n  Appendix A. 

The good agreement between the calculated resu l t s  from the unsteady 

QVLM and by Pad6 approximant f o r  a t h i n  a i r f o i l  i n  the harmonic gust i s  

shown i n  Fig. 8 f o r  incompressible flow, Fig. 9 f o r  Mach 0.5 and Fig. 10 

f o r  Mach 0.7. The o s c i l l a t o r y  l i f t  f o r  a d e l t a  wing of R = 1.2 t o  be used 

f o r  ca l cu la t i ng  step gust response i s  shown i n  Figs. 11 and 12 fo r  upward 

and downward gust respect i  ve ly  . 
Most other  theor ies use Four ier  transform t o  handle the rec ip roca l  

re la t i onsh ip  between the osci  1 l a t o r y  and i nd i c ia1  l i f t  forces. So they 

need harmonic 1 i f t  values a t  a la rge  number o f  d i f f e r e n t  frequencies. 



But the number of k requi red by the present method i s  only  7 ( i nc lud ing  

k = O), and the i n d i c i a l  l ift resu l t s ,  which w i l l  be seen i n  the next sec- 

t i on ,  s t i l l  show good accuracy. 

3.1.3. 1;Picial l i f t  func t ion  

The i n d i c i a l  l i f t  resu l t s  performed by using the inverse Laplace 

transform described i n  the preceding chapter w i  11 be presented. F i r s t ,  

f o r  a t h i n  a i r f o i l  passing through step gusts i n  incompressible and com- 

press ib le  flows, Fig. 13 shows p l o t s  f o r  Kussner funct ion,  and Figs. 14, 

15 e x h i b i t  the i n d i c i a l  l i f t  a t  Mach 0.5 and 0.7. qood r e s u l t s  have 

been expected because o f  the accurate approximant shown i n  l a s t  sect ion. 

The exact so lu t ions  are  calculated through the data i n  Table 6-2 o f  refer-  

ence 20. From Fig. 16, i t  i s  apparent t h a t  the compress ib i l i t y  e f f e c t  

decreases the r a t e  o f  l i f t  bui ld-up i n  two-dimensional f low. 

Second, i n  t h i n  wing gust penetrat ion, f o r  lack  o f  experimental 

fo rce  data to  make a d i r e c t  comparison, some pressure data (Ref. 11) w i l l  

be employed t o  compare the t rend produced by calculated t o t a l  l i f t .  

The conf igurat ion o f  the d e l t a  wing used i n  reference 11 i s  shown 

i n  Fig. 17(a). The model wing was ca r r i ed  along a s t r a i g h t  ra i lway  t rack 

on a rocket-propel led sledge, through the ef f lux from an open-jet wind 

tunnel blowing across the track. The v e l o c i t y  of the sledge was 180 ft l  

sec., the tunnel e f f l u x  v e l o c i t y  was 47 f t l s e c .  , and the model was a t  zero 

angle o f  attack. For measurements o f  t rans ien t  pressure, four transducers 

wore posit ioned a t  locat ions being 0.3, 0.4, 0.5, 0.6 r o o t  chords a f t  of 

the apex, and along a 1 i n e  a t  75% semispan [see Fig. 17(a) I .  I n  accord- 

ance w i t h  f igures  i n  reference 11, the i n d i c i a l  1 i f t  i s  p l o t t e d  against 

l oca l  distance parameters xn/bn i n  comparing w i th  pressure values through 



transducers A, B and C, where xn and bn are defined i n  Fig. 17(b). 

Fig. 18 shows the s i m i l a r  trend between measured t rans ient  pressure 

and the calculated ind i c ia1  l i f t  f o r  both upward and downward sharp-edged 

gust. I t  i s  seen t h a t  the development o f  a gust-induced gain o f  l i f t  i s  

very gradual. On the contrary, the gus t-induced loss of 1 i ft O(:curs 

r e l a t i v e l y  ins tant ly .  I n  the calculat ions, the vortex l a g  d e s c r i ~ ~ d  i n  

reference 15 i s  assumed t o  be present i f  the l i f t  i s  increasing and theye 

i s  no vortex l a g  i f  the l i f t  i s  decreasing. This assumption appe: s be 

reasonably accurate f o r  the leading-edge vortex flow. This can a I ,  ., * 

seen from Fig. 19 which i l l u s t r a t e s  the comparisons among the vortex flow 

and potent ia l  resu l ts .  There i s  some s i g n i f i c a n t  d i f fe rence f o r  the up- 

ward gust wh i le  the t rend i s  q u i t e  c lose i n  the downward gust condit ion. 

3.2. Nuclear B las t  Response 

The unsteady aerodynamic program o f  reference 15 i s  again used t u  

ca lcu la te  the nuclear b l a s t  responses o f  a i r c r a f t  f l y i n g  a t  h igh subsonic 

speeds. 

Reference 17 i s  the only obtainable t e s t  data which can be used t o  

check the leading-edge vortex separation e f fec t ,  predicted by the present 

method, on a i r c r a f t  nuclear b l a s t  response. The sideview o f  a t h i n  wing 

intercepted by nuclear b l a s t  waves i s  shown i n  Fig. 20. Fig. 21 show the 

t e s t  model which consists o f  a swept wing o f  67' leading-edge sweptback 

angle w i t h  a nose and p a r t i a l  fuselage section. I n  the tes t ,  the model 

was mounted on a h igh speed dual r a i l  rocket  s led  a t  an i n i t i a l  angle o f  

at tack o f  3.2' . The sled, t r a v e l l i n g  a t  Mach 0.76, was intercepted pro- 

gressively by b l a s t  waves from sequential detonation o f  charges o f  TNT 

w i t h  the b l a s t  i n te rcep t  angle 8 = 20' (see Fig. 20). Twenty pa i r s  of 



pressure transducers were installed on the left wing half t o  measure the 

blast- i nduced pressures. 

For the purpose of correlation w i t h  the test model, a semiwinq used 

by the present method i s  illustrated in Fig. 22. For such a configuration, 

the concept of augmented l i f t  is  included I n  the present c a l c u l a t i ~ ~ ~ .  The 

definition for the characteristic length is adopted from reference 26. With 

negative augmented vortex l i f t ,  the vortex 1 i f t  effect may not be as strong 

as expected even the leading-edge sweptback angle is  6 7 O  for the test model. 

Fig. 2", reproduced from reference 17, shows the prcssure variatim 

measured by transducer 13 which was positioned a t  ha1 f semi span and along 

qzerter chord line. Like DLM, the ?resent theory underpredict the blast- 

induced incremental pressure loadings because the nonlinear vortex effect 

is  not included in the calculation of pressure differential. The present 

theory, being based on unsteadj suction analogy, can only demonstrate the 

vortex effect by the variation of total l i f t  or moment. Fig. 24 shows the 
I 

comparison of vortex flow with attached flow for impulse l i f t .  I t  is  evi- 

dent t h a t  the vortex lag decreases the rate of l i f t  decay after the blast 

intercept. 

There are several factors which must be mentioned in connection with 

Figs. 23 and 24: 

(1) The blast amplitude is determined by peak material velocity 

(gust) behind the shock front and is  assumed invariant throughout the 

present calculation. 

( 2 )  In the experiment, because of different locations of transducers, 

the blast intercept time (time a t  the shock arrival) is  different for each 

transducer. In the present calcu'~ation, the coordinate origin i s  set a t  

the apex of the wing, so that the intercept i s  exactly a t  s-0 as 



shown i n  Fig. 24. However, t o  cor re la te  w i th  the t c s t  data, a s h i f t  has 

been made i n  Fig. 23. 

(3) The steady s ta te  l i f t  value i s  used f o r  a l l  t ime parameters 

less than zero since there i s  no incremental l i f t  o r  pressure d i f f e r e n t i a l  

values fo r  s < 0 i n  the present ana ly t ica l  resul ts .  

For a more s i g n i f i c a n t  vortex l i f t  ef fec t ,  the impulse l i ft ofi a 

de l ta  wing o f  #4 = 2 a t  Mach 0.5 intercepted by a b l a s t  wave w i t h  the same 

in tercept  angle as t h a t  i n  Fig. 20 i s  considered. The i n i  t ia :  angle of 

attack i s  ass& t o  be 15" and the peak blast-induced angle o f  at tack 

i s  assumed t o  be an addi t ional  15". The attached-flow o s c i l l a t o r y  l ift 

can be we1 1 represented by a P ad6 approximant as ind icated i n  Fig. 25. 

However, w i th  the vortex 1 i f t  e f f e c t  included, the Pad6 approximant 

f a i l s  t o  approximate the calculated resu l t s  accurately as shown i n  Fig. 

26. Because o f  t h i s  reason, the ca lcu la t ion  o f  impulse 1 i f t  f o r  t h i s  

del t a  wing was no+ successful ; and hence, the resul  t s  are not  presented 

i .re. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

An unsteady 1 i ft ing-surface computer program based on quasi-vortex- 

l a t t i c e  method along w i t h  leading-edge suct ion analogy has been developed 

t o  estimate the o s c i l l a t o r y  a i r  forces on wings o f  general planforms i n  

gust flow a t  any frequency. Pad4 approximant and Laplace transform have 

made i t  prac t i ca l  t o  convert the o s c i l l a t o r y  a i r  forces t o  i n d i c i a l  a i r  

forces. 

Both the experimental data and other theore t ica l  resu l t s  are used 

t o  check the accuracy of the present calculat ions i n  attached flow and 

wi th  vortex l i f t  e f f e c t .  It i s  shown tha t  the present method can accu- 

r a t e l y  p red ic t  the o s c i l l a t o r y  and i n d i c i a l  1 i f t  on wings i n  d i f f e ren t  

gust f i e l d s .  Also, the phenomenon o f  the gust-induced gain o f  l i f t  being 

very gradual and the  gust-induced loss o f  l i f t  occurr ing r e l a t i v e l y  ab- 

r u p t l y  can be explained by the presence o r  absence of vortex l a g  effect.  

The present program i s  extended t o  accol~nt for  t he  nuclear b l a s t  

response as wel l .  Though there i s  no l i f t  data ava i lab le  a t  t h i s  time, 

the t rend f o r  the vortex l ag  i s  c l e a r l y  seen from the comparison between 

the attached f low and vortex resu l t s  predicted by the present method. 

The fo l lowing points should be noted t o  improve the  e f f i c iency  

and capab i l i t y  of the  present method. 

(1) I n  the present calculat ions,  72 vortex elements were used for  

h a l f  wingspan - 6 i n  the chordwise d i rec t i on  and 12 i n  the spanwise d i -  

rect ion. It i s  recomnended t h a t  40 elements (e.g., 4 i n  the  chordwise 

d i rec t ion ,  10 i n  the  spanwise d i rec t i on )  could be used i n  l i e u  of 72 for  

small reduced frequencies ; thus, the s i ze  o f  the  aerodynamic i n f  1 uence 

coef f i c ien t  matr ice could be g rea t l y  reduced. 



(2) The present method can only deal w i t h  nuclear b l a s t  locat ions 

being on the p l  ape of symnetry, i .e. , the X-Y plane. For more general 

b l a s t  or ientat ions,  the present method should be extended t o  ca lcu la te  the 

a i r c r a f t  wing response o f  the b l a s t  waves coming from any a r b i t r a r y  d i rec-  

t ion,  since an asymnetric cond i t ion  can always be t reated as a combination 

o f  a symnetric and an ant isymnetr ical condit ions. 

(3 )  Among the ex i s t i ng  approximation schemes f o r  the unsteady aero- 

dynamic loads, Karpel ' s approximant (Ref. 28) provides b e t t e r  accuracy than 

Fdd6's. It i s  suggested the present method should inc lude more than one 

approximant t o  meet d i f f e r e n t  gust and b l a s t  condit ions. 
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Table I. Osci l latory L i f t *  on an A i r f o i l  i n  Sinusoidal 
Gusts a t  M = 0. 

Presev: Method sears ** 

* 
Clr and CIi are  the in-phase and out-of-phase components. 

** 
Sears ' results  are copied from reference 27. 
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Table 11. Osci l la tory  L i f t  on an A i r f o i l  i n  Sinusoidal 
Gust a t  k = 2.0. 

Present Method Graham' s 

* 
The resul ts  correspond t o  $ = 1 i n  Eq. ( 4 ) .  

** 
Graham's resul ts  a r e  taken from reference 23. 
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\ 
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Ref. 5 --- 

Out o f  Phase 

. 

.L. 

Fig. 2 General ized osc i l  l a t o r y  1 i f t  f o r  a 75' d e l t a  wing due to 

harmonic gusts with Gg= 1 a t  t l -0.4.  
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I I I 1 1 

Present Theory - 
Ref. 5 --- 

- 

F ig .  3 Generalized o s c i l l a t o r y  pitching moment f o r  a 75' a e l  t a  

wing due t o  harmonic gusts with $ = 1 a t  M = 0.4; pitching axis 

a t  root  mldchord point .  
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2 t  Present Theory - 
I Graham's Theory ---- 

I 
0 20.00 m/s 

Test Data (Ref. 13) U = 
12.43 m/* 

Out o f  Phase 

---- n n a  

Fig. 4 Incremental 1 ift f o r  a rectangular wing of m = 6 due to 

sinusoidal gusts fo r  a.0' with irg =0.0314 and reference point a t  

m o t  quarter chord poi nt ,  



W 
9 

Amp1 i tude 

Pres ent Theory --- 

1 Test Data (Ref, 12) 

Fig. 5 Incremental l i f t  fo r  a delta wing o f  PRLI i n  sinusaidal 

gusts fo r  a =  0 and 12 degrees with sf 0.0314 and reference polnt 

a t  root 2/3rd chord point. 



1 present Theow - ) ~ t t a c h e d  Flow --- 

Fig. 6 incremental lift for a delta wlng of A 1 i n  s~nusofdal 

gusts for a- 0' ~ i f h  i =  9 0.0314 and reference pol" a t  t o t  213rd 



$J 1 deg. 

- Test Data 0 1 2O 

a = + x 3 O  

Present Theory R - 
root  2/3rd chord 

\ \ 

-- root  midchord 

-60 - --- apex 'b 
-70 - \ 

o0 \ 

Fig. 7 Variations o f  phase angle due to  changes o f  angle o f  attack 

and reference points for a dsl ta  wing o f  PR = 1 i n  sinusoidal gusts. 
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POSITIONS 

TUIImER -7 

Fig. 17(a) Gereral conffguration and transducer positions of the 

test aodel i n  reference 11. 



PRESSURE 
TRANSDUCER 

GUST LEADING EDGE 

Fig. 17(b) Definitions o f  the local span and distance parameter 

penetrated into the ver t ica l  gusts. 
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Wing Spur 
Wing Aspect Ratio 
Taper Ratio 
Centerline Chord 
(A t  U.L.=O) 
Leading Edge Sweep 
Quarter-Chord Sweep 
Ttr il ing Wge SueCp 

46.80 In Fuselago Diameter 8 in  
2.67 Win8 Section MA012 
0.29 ihlckness Rat io  12% 

30.60 in (In Strcamwise Sections) 
Mean Chord 18.95 i n  

62.0 dug Win8 Planfora Area 6.16 f t2  
6t.8 deg (Including Port ion 
55.0 d e ~  Subur8.d Within 

Furelage) 

Fig. 21 General configuration of the tes t  model used for nuclear blast 

response (taken from reference 17). , 
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Fig.  22 Sfmplified wing planform used by the present theory 

far nuclear blast response analysis. 
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