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Hartree-Fock electric polarizabilities have been calculated for Hs, He, Li, Be, LiH, and Nj. Perturba-
tion theory with all the coupling terms was employed variationally for the first five, using a variety of
basis sets for each. Each basis for the perturbation calculations was composed of a zero-order set, plus a
first-order set (appropriate to the direction of polarization, for the molecules). The two sets are disjoint
to ensure identical zero-order functions for the two molecular polarizability components and, hence, reliable
anisotropy values. Nonorthogonal theory as formulated by Das and Duff [Phys. Rev. 168, 43 (1968)],
assuming exact zero-order orbitals, was used for LiH. For practical reasons, the nitrogen molecule was
treated by the fully self-consistent approach which does not distinguish orders of perturbation. The results
for all six species are in very good agreement with experiment, reflecting both a reliable choice of polariza-
tion functions and, more significantly, the basic accuracy of the Hartree-Fock method for the static charge
distributions, both unperturbed and perturbed by an electric field.

I. INTRODUCTION AND THEORY

Among variational theories of molecular electronic
structure, the Hartree-Fock theory has proved par-
ticularly valuable for a practical understanding of such
properties as chemical binding, electric multipole
moments, and x-ray scattering. It provides the most
tractable method of calculating first-order properties
under external or internal one-electron perturbations,
either developed explicitly in orders of perturbation
theory or in the fully self-consistent method. Electric
polarizabilities,*™ and magnetic properties® such as
spin coupling, chemical shift, and susceptibility have
been treated with the theory. The accuracy and con-
sistency of first-order properties are poorer than those
of zero-order properties. Most often this is due to use of
explicit approximations in solving the first-order per-
turbation equations, or to the inaccuracies of the
zero-order molecular orbitals (MO’s) which may
undermine the variational principle for the second-order
energy. Theoretical studies using many-body theory®”
indicate that the Hartree-Fock theory itself is basically
sound for static or zero-frequency properties, and we
do not intend to draw further conclusions along this
line. Rather, we have performed representative cal-
culations of static electric polarizabilities for small
atoms and molecules to underscore the basic soundness
of perturbed Hartree-Fock theory, giving important
and practical guidelines for selecting the variational
basis sets for the first-order wavefunction.

Our first studies were on H; and the atoms He, Li, Be
using a variety of simple wavefunctions constructed
from Slater-type orbitals (STO’s). For such few-electron
species, the problem is best solved by constructing
explicit first-order perturbation equations for the per-
turbation ¢;! to the unperturbed molecular orbitals ¢.°.
The unperturbed electronic Hamiltonian contains
one-electron terms 4;® and two-electron terms gij=1/7;;

(in atomic units),

H= 3 b+ 33 gij.

i i<j

(1)

The perturbation due to an electric field & along the
axis k is
m= gzhi'l: 8Zrik)

and the zero-order and first-order Hartree-Fock equa-
tions are, respectively, :

B+ 2 @0 |- 6°)—e) =0, (2a)

(4 Z @° || ¢ —eL) i

| gAY ]—e) d0=0,
(2b)

with the usual convention of order-by-order orthog-
onality,

o)+ {°

+ (4 T[4

(3a)
(3b)

@0 | &)="83;,
@2 ¢1)=0.
Here we use the shorthand notation
(a]+|b)e={(a(7) | gs16(5))e(d) —{alF) | gii| () )b (5).
(4)

The zero-order equation is commonly solved variation-
ally using STO’s (x,") centered on the nuclei,

¢0= 2> i’ 10
) »

(5)

The first-order equation may be solved variationally in
a similar way. Operationally, this means making Eq.
(2b) hold for all projections with the first-order basis
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set {x'},
Gt | 104+ 2 (8,0 || &) —el | o)+ (ot | 7
+ X L@ | o)+ (o -] o) ]—el [ 62)=0 (6)

for all p and 4. Substitution of the appropriate basis
expansions for the ¢, including the explicit forms for
the matrix elements ¢, yields linear equations for the
first-order coefficients c;,!. This is equivalent to mini-
mizing the second-order energy, assuming the exactness
of the zero-order solution in the fofal basis {x}= {x°}+

{xt,

O | 10+ Z (00 -] #0)—e | 6:5)=0 (7
7 .
for all ».

Given a zero-order basis {x°} and the direction or
axis of polarization %, the polarization functions {x'}x
can be picked judiciously to include all important shifts
in orbital amplitudes while remaining few in number. A
major part of the work reported herein concerns just
such a choice of the basis. We have shown that the
distortion of ¢,° can be adequately described by allow-
ing each atomic orbital in the MO to distort in the
electric field as a pure hydrogenic orbital would distort.
For the H; molecule and the three atoms He, Li, Be,
our work is further simplified since the polarization
functions are automatically of a different symmetry
from the occupied orbitals: o, vs ¢, for Hy and p vs s for
the atoms. The calculations proceed very straight-
forwardly to the second-order energy in the electric

field,
GE®=83 (¢ | 1| 6:°), (8a)
which directly measures the polarizability as
E®=—1q, (8b)

We obtained excellent agreement with most reliable
values, either experimental or theoretical. The results
were markedly insensitive to the choice of zero- and
first-order bases.

We were encouraged to try molecules of low sym-
metry and more electrons. The first case was LiH,
previously treated by Lipscomb and Stevens! in similar
fashion. Now our simple expedient of distorting the
atomic orbital basis functions as if they described
hydrogenic atoms yields a first-order basis composed
of functions #of automatically orthogonal to the
occupied orbitals by symmetry. We can Schmidt
orthogonalize the x,' to the x before doing any
perturbation calculations, but this involves much
manipulation of the raw one- and two-electron integrals
over basis functions. The nonorthogonal perturbation
formalism of Das and Duff® performs instead a sym-
metric deorthogonalization in the matrix equations (6).
They perform the deorthogonalization before separating
orders of perturbation in the Hartree-Fock equations
and minimizing the second-order energy with respect to
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the ¢.1. Thus, they obtain extra terms in the first-order
equation due to inexactness of the ¢.° in the augmented
basis {x®}+ {x!}s: Eq. (7) is not satisfied. Most often
these terms are small and can be dropped much as
Das and Duff do in their final presentation., We then
have at hand a formalism for computing separately the
two polarizability components a; (e and a.,) in small
total bases while retaining reliability of the anisotropy
ap— ],

Finally we tried the N, molecule, with its many
electrons and many occupied symmetry types of
orbitals. Practical zero-order bases of Gaussian-type
orbitals (GTQ’s) do not keep the ¢ inexactness terms
in the perturbation equations sufficiently small any
more. Even in LiH, GTO’s cause this problem. The
inexactness terms are too prolific to include. The prob-
lem is avoided by shifting both zero- and first-order
calculations to the common, enlarged basis {x°}+ {x*}x.
The unoccupied virtual orbitals from zero order can
then act as the new x,'. To once more avoid much
manipulating of two-electron integrals, we abandoned
the perturbation formalism in favor of the fully self-
consistent approach, equivalent at low fields . The basic
Hartree-Fock equations unseparated into orders are
solved, given a finite electric field. The field is small
enough such that ¢;~ip+¢;' and E~~E+EEDVHEE®
and higher orders are negligible (for Nz, E®=0, too).
Now, if one computed the two polarizability com-
ponents separately, the anisotropy ax—a: would be
less reliable because the unperturbed energy is doubt-
lessly shifted differently in the two different fofal bases
)+ {x4e {(x°}+{x'}:.. We thus prefer one large
basis {x°}+{x}s+{x!}: for all calculations. For-
tunately, for N, a good zero-order basis {x°} already
contains many functions which may also act as polariza-
tion functions and {x°} is not greatly enlarged by adding
the nonredundant parts of {x'}x and {x!}:.

Beyond the approximation of finite basis expansion
for the molecular orbitals ¢; (in all orders), several
approximations to Hartree-Fock theory have been
proposed. The explicit perturbation equations (2b)
are altered in these approximations to eliminate the
need for all or most of the iwo-electron integrals over
basis functions. Dalgarno® has discussed these methods,
and the approximations have been evaluated relative to
the “full theory” by Langhoff, Karplus, and Hurst.?
While these theories save most of the effort in evaluating
a first-order property, they consistently undervalue
the polarizability to an unpredictable extent. We wish
to test the accuracy of full Hartree-Fock theory which
neglects only instantaneous correlation. We do not
consider further the approximations to its perturbation
formalism.

II. APPLICATIONS AND RESULTS

Many polarizability, magnetic susceptibility, and
magnetic shielding calculations have been done for He,
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Tasre I. Polarizability of H, for various wavefunctions.

STO bases {x°}, {x'}® for
Hartree-Fock (HF) or valence

R bond (VB) wavefunctions a|j (% error)? a1 (9 error)
A 1.402 {0] =15 (1.197) HF 6.345(—1.0) 4.238(—7.5)
{1}=2p, 3p (1.197)
B 1.406 {0} =15 (1.166) VB 6.003(—7.1) 4.441(—3.4)
{1}=2p, 3p (1.166)
C {1}=2p, 3p (1.100) 4.469(—2.8)
1.402 {0} =1s (1.378), 25 (1.176) 6.090(—4.9) 4.102(~10.5)
25 (1.820) HF
(1}=2p, 3p (1.378)
E (1) =2p, 3p (1.378) 6.321(—1.3) 4.597(+2.9)

2p, 4p (1.176)

2 First-order bases are constrained as linear combinations by the solution of Eq. (10) (see text).
b Error is relative to the accurate theoretical values of Ref. 14 (see text). Accurate values of («a[|, i) are (6.407, 4.584) at R=1.402
and (6.460, 4.597) at R=1.406. All values are atomic units (a.u.), e

by all manners of perturbation theory and with all types
of unperturbed wavefunctions. We focused on the
simpler zero-order wavefunctions, the Coulson" and
Ransil®? Hartree-Fock (HF) functions, and the Wang®
valence-bond (VB) function. The Coulson and Wang
wavefunctions use only one 1s atomic orbital on each
center, while the Ransil function includes one 2s and
one 29, in addition. In each case the wavefunction was
perturbed by letting each basis function x,* assume the
variational form (there is only one MO),

(9)

with ¢ a variational constant. For the two HF wave-
functions this is equivalent to the perturbed HF
formalism outlined previously,

bi—¢-Epil.

The analogous VB treatment involves straightforward
minimization of the second-order energy.

The x;! were selected initially as solutions of the
hydrogenlike atom in an electric field with x,° as the
unperturbed wavefunction,

[—3V2—(Z/r)+ (Z2/2n5%) I+ (—ta—ea) x2=0.
(10)

Here #n, is the principal quantum number of x,?, ¢, is
the orbital exponent, Z is the effective nuclear charge
#p{p, and ey! is the first-order energy associated with
the perturbation —&r, along the Cartesian axis k.
Thus a 15 STO in a z-directed field yields as x,! a linear
combination of 2p, and 3. of the same {,; a 25 Slater—a
2p., 3p., and 4p, combination; a 2p,—a 3d., and 4d,,;
a 2p,—a 1s, 25, 35, 4s, 3ds,»—, and 4dz,2_,2 All of the
hydrogen molecule trials used the STO’s in the x,!
frozen in their original linear combinations, even if, for

XX+ cExY,

example, only 2, and 4p, were used for the 25 polariza-
tion. The molecular calculations on LiH and N, in
contrast used Eq. (10) simply as an indication of
important primitive basis functions, STO or GTO, to
include in bases unconstrained by any linear com-
binations.

The results are in Table 1. Trials A, B, and E are
most relevant, as they compare three different simple
wavefunctions under essentially complete polarization
according to Eq. (11). They are compared to the
extremely accurate polarizabilities of Kolos and
Wolniewicz* who used a 54-term zero-order wave-
function and 34 terms in first order. Quadratic inter-
polation was done to the internuclear distances R used
in our calculations. Sufficiently accurate experimental
polarizabilities are only available at optical frequencies.
The insensitivity of our results to the choice of the zero-
order functions along with the first-order wavefunction
chosen according to Eq. (11), and their agreement with
experiment are very encouraging. Result C shows that
optimization of the exponents for polarization functions
is unnecessary, and case D indicates a need for polariz-
ing the majority of the zero-order basis.

The He, Li, and Be atoms were treated next, using
Clementi’s!® unperturbed wavefunctions computed in
double-zeta basis sets. An accurate He polarizability,
a=1.397 a.u., has been obtained by Johnston et al.’® by
extrapolation of the experimental dielectric constant to
zero pressure. Dutta ef al¥ have used many-body
theory on He and found a=1.407 a.u. Our result of
1.319 a.u. is 6.09, low relative to the experiments, the
first in a trend to undervaluing the correct polarizability
for atoms. The true Li polarizability is probably in the
range 160-170 a.u. The most precise measurement!®
is on bulk lithium metal, using Stark splitting, and it
vields a= 182 a.u. Atomic-beam deflection experiments
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are far less precise but do involve isolated atoms as we
wish. The best value®™ among these is 148414 a.u.,
but this is probably too low.!8®-18¢ Qur Li wavefunction,
which is of unrestricted Hartree-Fock form, gave a
result of 167.6 a.u., 7.99% below the experimental value
of 182 a.u. The beryllium atom provided our greatest
success, as it has for several other calculations using
Hartree~-Fock theory; the computed value of 45.28 a.u.
lies only 3.29, lower than the accurate many-body
result of 46.77 a.u. due to Kelly? No experimental
results are reliable. All three atomic calculations showed
negligible, usually negative contributions to & by the
core orbitals, as might be expected.

The LiH molecule, as a heteronuclear species with
two electronic shells, provides a somewhat better test
of Hartree-Fock theory, particularly its nonorthogonal
formulation discussed in the previous section. Ransil’s?®
wavefunction was chosen for zero order at the experi-
mental internuclear distance R=R,=3.015 a.u. The
perpendicular polarization was represented by the full
set of four hydrogenic-model polarization functions
xp—see Eq. (11). Standard orthogonal perturbation
theory® could be used for a., yielding the value 26.22
a.u. This agrees well with the most reliable theoretical
estimate of 27.00 a.u. by Stevens and Lipscomb.! The
parallel component is more difficult, requiring non-
orthogonal theory. We chose to test here many of our
ideas on the adequacy of polarization functions, and so
we pooled all 13 primitive x,' as unconstrained in-
dividual STQ’s, plus the two virtuals from zero order.
The complete basis yielded «)=25.29. Stevens and
Lipscomb! did not compute «;; because of the change of
zero-order basis necessary to retain the orthogonal
perturbation theory. Kolker and Karplus? have made
cruder calculations, a;=25.38 a.u. and ar=34.42 a.u.,
which are in poor agreement with ours, but at least
show a negative anisotropy «;—a1=—9.04 a.u.; our
value is —0.93 a.u. We could conclude that the 2p,
3p-like orbitals from polarization of the tight isy;, the
2p from the 2s1; (nearly redundant with the zero-order
2p), and the 2s from the 2pr; polarization were all
unimportant. This new basis {x!} yielded aa=25.04 to
confirm our judgment. Many other deletions were tried,
with a nine-function set being the smallest to give a
good result: the two virtuals plus the 3p, 4p STO’s
from the 2sg;, the 1s, 3s, 3d from the 2pr;, and the
2p, 3p from the 2su gave «;=24.63 a.u. In all these
calculations the inner core orbital was seen to back-
polarize slightly, following the trend of the atoms.

The N; molecule is tractable only in a Gaussian basis
set due to the large number of two-center, two-electron
integrals required. For experience in selecting the {x,'},
we returned to the LiH molecule in a GTO basis. We
attempted to reproduce the nonorthogonal perturbation
theory results for STO’s, choosing Gaussians contracted
by Huzinaga’s®* prescription to mimic the STOQ’s for
atoms. While the zero-order energy was close, the dipole
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moment was poorer and the polarizability using just
the two virtual orbitals was two-thirds that obtained
using the STO’s. This indicates poor tails for the
Gaussian wavefunctions. We tried to add to the non-
orthogonal perturbation theory the extra terms due to
inexactness of the ¢.°, but these proliferated wildly.
Instead we settled for an equivalent fully self-consistent
approach discussed earlier. The polarizability is taken
from the ratio of the induced dipole moment to the
electric field, possibly extrapolated to zero field for
greater accuracy. We did not do such extrapolations,
since the larger inherent error of Hartree-Fock theory
does not warrant it.

We began our LiH calculations with a very large
basis of 2z functions covering a full range of exponents
in 1s, 2p, and 3d GTO’s for Li and 15, 2p for H. By trial
and error we pared the basis to 15 functions, which
yielded a;=21.06, ar=22.56. The anisotropy is nega-
tive as for STO’s, but absolute magnitudes are down
about 159, somewhat disturbingly. Perhaps lack of
closely spaced exponents for the Gaussians is respon-
sible, as this disallows construction of more diffuse
functions with radial nodes.

Proceeding to N, we built from the zero-order basis
of Dunning® consisting of 13 contracted GTO’s (22
primitives) on each nitrogen, four of the s type, three of
each p component. The calculations were done at the
experimental internuclear distance, 2.068 a.u. We added
on each center a diffuse 1s ({=10.0800) for z polarization
of the 2p. or x polarization of the 2p.; a similarly
diffuse 2p (0.0800) of all three directions for x and
polarizations of the o orbitals; and a host of 4 functions
all of moderately diffuse exponent 0.200. Among the
d functions the two-center linear combination XX -
XXy covers the x field on 7,* orbital; YV ,+VVg is
simply the complement to the above for the s-orbital
balance; XY s+ XYy covers the x field on =,% while
YZs4+YZgs is for the z field; XZ4 and XZp are used
independently to represent the x polarization of o, o,
and the 2 polarization of the m,* orbital.

The computed o) and a1 are 14.97 and 9.46 a.u.,
respectively. It is of practical interest that it was
extremely difficult to obtain convergence of the SCF
procedure for the z-polarized case. Three-point extrap-
olation® by the ¢, procedure for oscillating and diverging
series was used, as outlined by Petersson and McKoy.?
The comparable experimental values are a;=16.06
and «1=9.78 a.u. obtained dynamically with Na D
light.?* Dispersion corrections may be estimated to give
static polarizabilities of 15.9 and 9.7 a.u. The agreement
of theory and experiment is quite remarkable. It may be
partly fortuitous, due to a 59,-159%, underestimation of
a when using a GTO basis, or to increased inaccuracy
of the highly polarizable valence orbitals in systems of
many electrons. One more interesting feature of the N;
polarization is the coupling of orbitals in pairs under the
field influence. The 1¢,, l¢, orbitals are essentially
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unpolarized for both field directions. For an x field,
the 20, gives 11.49, of the polarizability and the 2g,
31.09%; the 30, and 1r,* couple, with the latter anti-
polarizing, to give another 42.49,; and the 17,¥ yields
the last 15.29. In a z field the 20, contributes 4.19;
the 2¢,-3¢, coupled give 26.0%,; the 1=,* 31.1%,; and
the 1mw,¥ 38.8%,. The disparity of the last two contri-
butions is due to a slight inequivalence in the zero-order
descriptions of the two orbitals: the xzs, xzp polariza-
tion functions also enter into the unperturbed 17,2

III. CONCLUSIONS

Hartree-Fock theory for the static first-order prop-
erty of polarizability appears adequate when solved
exactly within a modest basis, under quite general
circumstances of molecular structure and of basis set
composition. The smallness of electron correlation
effects has been previously displayed explicitly with
many-body theory®” in special cases, and the work
reported here supports this conclusion more widely.
Hartree—~Fock theory may give poor electronic excitation
frequencies, but at all perturbing field frequencies low
relative to correlation processes for virtual or real
excitations it does well for properties. The model should
be useful for calculating such experimentally inaccessible
properties as molecular polarizabilities in their depend-
ence on internuclear distance, a(R). The variation of
the polarizability of a pair of atoms as a function of
distance has well-defined effects, including increased
cross section for vibrational excitation in electron—
molecular collisions, strong contribution to the second
dielectric virial coefficient,” collision-induced light
scattering,” and a nonlinear refractive index.?” Of course,
one must be careful in using molecular Hartree-Fock
wavefunctions far from equilibrium internuclear separa-
tions R,: For molecules dissociating into fragments with
unclosed shells, the Hartree-Fock wavefunction is
incorrect except near R,. Multiconfiguration self-
consistent field calculations can remedy this fault while
increasing the computing effort; the fully self-consistent
approach to polarizabilities remains viable in this
framework.
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