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  Considering the displacement in the generalized random walk process of isotropic scattering 
neutrons as random variable, p„n(c), the probability density function after n steps is obtained 
through the use of the statistical characteristic function. The total neutron distribution 

p)(c).=
,/o„ (c) is expressed as a Fourier transform of the power series of this characteristic 

function. Using this statistical method, the total distributions p(c) are shown by means of 
concrete examples to agree with the solutions of the relevant linear Boltzmann equations which 
are already solved. The one dimensional space-angle dependent case is examined for a system 
containing random empty gaps. To evaluate p(c) for large n (n>1), the central limit theorem 
is used.

     I. INTRODUCTION 

 The common practice in reactor theory is 
to use as basic equation the expression of the 
balance of neutron numbers in a small volume 
in phase space, i. e., the Boltzmann equation. 

 The neutron distribution is on the other 
hand habitually calculated by the Multiple 
Collision Method. The present method is a 
statistical treatment of neutron random walk, 
which belongs to the latter category. 

 The random walk is regarded as a suc-
cession of "elementary events" composed of 
a collision and subsequent travers of free path. 
These events change the state of the system, 
and are assumed to be statistically independ-
ent of each other. To solve the random 
walk problem, we require the probability 
density pn(c) of the resultant displacement 
vector in phase space, i.e.c=(r,O,u), after n 
steps. Here r,O and u are respectively the 
displacement space vector, the direction vector 
and the velocity difference. 

 Many authors have adopted this approach: 
 Chandrasekar(1) developed the three dimen-

sional random flight problem using Markoff's 
method, and derived pn(c) for large n as a 
Gaussian function. Grosjean(2) treated the 
random flight of one-velocity particles in the 
space of arbitrary dimensions and represented 

p„n(c) by the linear recurrence relation. This

recurrence method is, however, too complicat-

ed for evaluating the total distribution p (c) in 

practical reactor problems. Wigner(3) studied 

the problem of multiple scattering of point 

particles under the condition that the transi-
tion is invariant under a group G, (the case of 

infinite homogeneous isotropic medium) and pro-

posed a structure for G in the velocity depend-

ent case. Guth & Inonu(4) applied this group 

theoretical treatment to time-dependent neu-

tron slowing down problems, and compared 

the results with Waller's'(5). They further 

clarified the connection between the general-

ized random walk and the related linear 

Boltzmann equation(6). 

 For the case of space-energy dependent 

transport of neutrons in an infinite medium, 

 Syros(7) expanded the neutron propagator, 

defined as the solution of the integral trans-

formation of the transport equation (Laplace 

and Fourier transformations for lethargy and 

space variables respectively), in a series of 

ascending power of a certain function c(o), 

and applied the central limit theorem to the 

Fourier inversion of {c (o) }n for n>1. 

 The present work is attempt to evaluate
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the density function pn(c) in infinite homo-
geneous medium by means of a statistical 
method that provides for conversion of random 
modulation into displacement. The treatment 
is generalized to the case where each elemen-
tary event is governed by an independent 
transition probability, which should provide 
information on the statistical aspects of the 
random walk problem. The evaluation of pn
,„(c) for large n is greatly facilitated by mak-

ing use of the central limit theorem(1) 
  We limit our consideration to the case 

where the transition probabilities can be re-
presented as functions of displacements in 
phase space, which displacements are regarded 
as random variables. This permits us to 
consider the succession of elementary events 
as an additive process, and the problem is 
reduced to one of finding the probability 
density of the cumulated sum of these inde-
pendent random variables. 

  For analytical representation of the density 
function pn(c) , the characteristic functions of
the transition densities play an important role. 
As concrete examples, space-energy dependent 
and space-time dependent cases are treated in 
Chap. III, where the analytical representations 
of total distribution are shown to coincide with 
the results of Papmehl, who solved linear 
Boltzmann equations for cases of physical 

 conditions identical to the present. In Chap. 
IV, the present statistical method is applied to 
a case of one-dimensional space-angle de-
pendency in a system containing random 
empty gaps. In this case, the once scattering 
probability density p1(c) is expressed by a 
combination of the orthodox exponential func-
tion and periodic functions that appear on 
account of the random modulation of free 
path. The effect of the oscillation term will 
be shown numerically, and for evaluating the 
total distribution, use is made of the central 
limit theorem. 

 II. METHOD 

 Tracing the process of neutron random 
walk, we consider the sequence of elementary 
events e1, e2,..en, of which the final i-th ele-
mentary event is described by the transition 
density fi(c) (i=1,..,• •n), defined as the transi-

tion probability with displacement variables, 
where x is the displacement in the phase space 
which contains the time coordinate, i. e.,c=

(Dr,DO,Du,Dt). z1v, 
 The initial state of the neutron is deter-

mined by the random variable denoted by 

X0 with probability density f0(c) (source den-
sity). At the first step the state is changed 
as specified by the random variable let with 
density f1(c), at the second step by X2 with 

 f2(c) and so forth. Each random variable Xi, 
with probability density function fi(c) is stat-
istically independent, so that the state of the 
neutron after n steps will be the sum of the 
independent random variables Sn,,=X0+X1+•.. 
+Xn which itself is also a random variable. 

 To find the neutron distribution after n 
steps, we only need to find the probability 
density function of this sum Sn of independent 
random variables. 

 We define the characteristic function of 

 f1(c) by 

 Xi(o)= <e-ipc> 

 (1) 

where c' is the transpose of the vector c. 
Then the characteristic function for the ran-
dom variable Sn is expressed by 

 <e-io8n> = <e-ioc0'> <e-iocn > • <e-''4> 
 =X0(80)X1(8):::X.(8). ( 2 ) 

Hence, we have  

        where k is the number of phase space dimen-

sions. 

 For n> 1,pn(c) can be approximately deriv-

ed from the central limit theorem as a Gaus-

sian function, provided the existence of the 

mean vectors me and covariance matrices ci 

of fi(c)(i=0, 1, 2,..,•n n)(1'/ : 

where m is the sum of the mean vectors mi, 

and C is the sum of covariance matrices 

 Ct (i= 0, 1, .., n): 

 mi,= <c>> m 

= S mt
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 C < ( — ( • — ,) > 
          it 

 C= C, 
 i=, 

 Habitually, the space and time displace-
ments are expressed respectively as di' = I di' I. 
and At= I di' I In, where 1 th'. I is the free path 
length, O the direction vector, and u the velo-
city at that elementary event. Hence the 
transition density at i-th elementary event will 
have the form 

 , dv; v,)  

• (I 2V) (I I In,— , 
              (5) 

where g, (I Ai- I , .113, Au; £3, is the density func-
tion of It171, AO, du, and the Dirac delta-func-
tions are the projection of these displacements 
to space and time displacements. If the cross 
sections are space independent, the density gi
may be written in the form 

   gi,(I di', ,61,S3 ,v) 
    =(/16 , Ay,'"vt)exp(—E(vi) zii"I) 

and for i=0, 

   g0(IS-1,6,v)=S(s,,v)exp(— (v)|Dr|), 
where S(O,v) is the velocity vector source 
density, and 2,.(26,4v,6,0 the probability of 
displacement 'Iv, AO at v, 6, and Z the total 
cross section-which may include absorption. 
Also, 

 u i= vo+ dui+ • • + 
 Oi,=O0- 

where u0,O0 respectively are the initial velocity 
and direction, Ave, A6, the velocity and direc-
tion displacements in i-th elementary event. 
Both displacements DO and Du, which are 
random variables of the displacement density 

S3,(DO,Du,;O,u), depend on the kind of collision. 
 In the space-time-energy dependent case, the 

displacements of neutron random walk are, 
strictly speaking, not statistically independent, 
because the space and time displacements di-, O

ti at the i-th elementary event depend on 
the sum of all the previous displacements: 

Oi=O0+ .. +DOi,ui=u0+..+Dui. In this case, 

the characteristic function ci(o;O,u) of the 

probability density Eq.(5) has the velocity 
vector as variable, and if we average it with 
an appropriately given weight function, and 
introduce these averaged characteristic func-

tions into Eq.(3) we have an approximated 

representation for pn(c 

 In what follows, however, we shall consider 

the cases where the characteristic functions 

do not explicitely contain velocity variables, 

and where scattering is assumed to be isotrop-

ic. In such cases, excluding X0(o), all the 

remaining characteristic functions c0(o)(1, 

2,..) becomes mutually identical and we then 

have the exact analytical form of the total 

neutron distribution: 

 go (±')= E9,,(1) 
           n=o  

II I. CALCULATION OF GREEN'S 

    FUNCTION 

 1. Purely Energy Dependent Slowing Down 

 We consider only the lethargy dependent 
neutron slowing down process, and assume 
the scattering of neutrons to be elastic and 
isotropic in the L-system. The random vari-
able of lethargy difference is given from the 
common transition density  

      0 otherwise 

where  

 qm= —log a, 

and A is the mass of the target atom. From 
the definition (1) we obtain the characteristic 
function of f(Du):  

 From expression (3), 

 If the source density f0(u) is the delta-function 
— i.e. f0(u) =d(u) and the corresponding char-
acteristic function c0(o) equals unity, then the 
integral of Eq. (9) is calculated exactly by 
the residue theorem as Waller(11) has showwn: 
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where j is the maximum number that still 
keeps the term u—jqm positive . This result 
can also be obtained by the direct operator 
method, which is useful for cases where the 
cross sections are functions of lethargy. This 
approach will be the subject of a forthcoming 

paper. The total distribution becomes

 (11)

This is also a Green function of the relevant 

linear Boltzmann equation, and the integral 

is evaluated by the residue theorem.

2. Space-Energy Dependent Slowing Down

 We assume an infinite plane symmetrical 
medium, constant cross sections and isotropic 
neutron scattering in the L-system. The ran-
dom variable of free path length must be 

projected onto the x-axis parallel to the direc-
tion of the plane. For this, we use the ran-
dom variable of direction cosine. Then the 
random variable of the x component, the 
lethargy difference and the direction cosine in 
each elementary event will be given from 

transition density:

(12)

where z is the free path length, m the direc-

tion cosine. In the case of isotropic scatter-

ing, the direction of free path at the i-th step 

is independent of the previous direction of 

free path, so that m can always be taken for 

the direction cosine referred to the x-axis, and 

the sum of random variables of angle dis-

placements need not be obtained. Fourier 

transformation of Eq. (12) with respect to 

space DX and to lethargy Du leads to the 

characteristic function with parameter p:

(13)

integration of which with respect to m leads 

to the characteristic function

(14)

If a plane source is placed at the origin and 

we assume mono-directionality with lethargy 

zero, the initial density function corresponding 

to the elementary event Ea will be given by

(15)

and the characteristic function of fo(Dx, m, u) 

becomes

(16)

The angular dependence of neutron distribu-

tion is determined by the initial and final 

directions of neutron paths, hence we have a 

sequential series of characteristic functions 
 X0(o1, o2; m0) , X (oI, o2), , X (oL, o2), X (oI, o2; m), 

corresponding respectively to the elementary 

events eo, ei,.. e,. We obtain the angular 

dependent distribution after n steps for n.�1:

(17)

and p (x, mo, m,u)=fo(x, m, mo, u). (18)

From the expression (17) one will easily see 

that p,(x, mo, m, u) is separated into space and 

energy parts. We have then the correspond-

ing total distribution

(19)

Integrating p (x, mo, m, u) by mo and m, we obtain 

the total space-energy dependent distribution

(20)

 Papmehl' derived the same result in the form 

of a Green function of the relevant linear 

Boltzmann equation. He evaluated the inte-

grals of Eq. (20) for sufficiency large distances 
from source, and derived the age diffusion 

approximation.
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3. Space-Time Dependent Case

 We assume isotropic scattering in a plane 

symmetrical infinite medium, together with 

energy independence, and describe the process 

by space-time variables. The random vari-

ables of free path length and direction cosine 

in each elementary event are sampled with 

the transition density ‡”, exp(- z‡”) and 1/2, 

then projecting these variables onto space and 

time coordinates, we have transition density

(21)

Similarly, the initial density function of the 

elementary event co is given by

(22)

where v is the neutron speed which we as-

sume to be constant. The characteristic 

function of f(Dx, Dt, m) with parameter p is 

given by

(23)

Integrating Eq. (23) with respect m over C 1, 1] 

 we obtain the characteristic function

(24)

We have also the characteristic function of 

 fo(tlx, dt, p):

 X, (o1, o2; mo) -=(‡”+i(ohmo+oo2/1)))-1. (25)

By a procedure quite similar to that used in 

deriving Eq. (17) in the previous example, the 

angular dependent probability density function 

after n steps is obtained for n ?? l:

(26)

This time, however, the characteristic func-
tions are not separated with respect to o and  o

, so that separation of the variables x and 
 t is not obtained in p (x, m, t), as it was in the 

preceding case. Introducing the characteristic 
functions (23), (24) and (25) into Eq. (19), we 

obtain the corresponding total neutron distri-
bution :

(27)

Integrating p (x, mo, m, t) with respect to mo and  m

, the total space-time dependent distribution 
is derived :

(28)

The integrand of Eq. (28) can be separated 

into real and imaginary parts, and the imagi-

nary part is shown to be an odd function of 

 of and o2, and consequently vanishes. The 

real part is an even function and can be 

calculated numerically. These results agree 

with the Green function of the space-time 

dependent Boltzmann equation, as treated by 

 Papmehl(g>.

VI. SYSTEM CONTAINING 

  RANDOM GAPS

 In a system containing random empty 
holes, the length of the free path will be 
modified by the distribution, shape and size 
of the voids. We will here treat a one-dimen-
sional space-angle dependent isotropic multiple 
collision process of neutrons in an infinite 
medium containing anisotropic random holes. 
We assume the shape of the holes to be a 

gap of width D perpendicular to the space 
coordinate. This random gap model is a one-
dimensional approximation of a series of 
closely spaced (strongly correlated) spherical 
holes along a line perpendicular to the x direc-
tion, a configuration that is quite likely to 
occur in a boiling water -reactor. Let p( z, m)
denote the probability of a neutron traversing 
n gaps in the direction m, covering thereby a 
distance through the medium between the 

values of z and z+ dz. Then, the system is 
characterized by the probability p. (z, m) as 
well as by the cross sections of atoms con-

stituting the medium. The probability density 
of a neutron that has a free path length z

— 14 —
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and a direction cosine p passing through n 

gaps is p(z, m)‡”,exp( z‡”)/2. Thus, the free 

path length z is lengthened by nDI I mI , the 

probability density being p (z, m) X , exp(—z‡”)/2, 

and we denote this lengthened free path by 

z'. The event of encountering n gaps in a free 

path is mutually exclusive for each n, hence 

the probability of a free path which has 

length z and direction cosine m encountering 

any number of gaps will be the sum(")

Projecting the lengthened free path z' for each 
n onto the x coordinate, and integrating in 
the interval (0, oo) with respect to z and zi, 
we obtain the transition density of the space 
difference, with parameter m, for each ele-
mentary event except eo:

(29)

The corresponding density function of the 

elementary event eD will be given by

(30)

 We assume the probability of the occur-

rence of gaps in a given interval along the 
x coordinate to be Poissonian in distribution, 
and that the average number of gaps in a 
unit length of x to be N. For the projected 
length ziml, the mean number of holes will 
then be zrmIN, whence we have

(31)

Substituting the relation (31) into Eq. (29), we 

obtain the Fourier transform of f(x, m) with 

respect to x, which is the, characteristic func-

tion with parameter m:

(32)

Similarly the characteristic function of fo (x, m) 

is

 Xo(o;m0)=-‡”.E+ Imo AT 

 • {1 exp(oDm0/1m0 1)) +1omLOD-1. (33)

Integration of X (o, m) with respect to m leads

to the characteristic function

(34)

where g+ (o) io N{1 exp ( ioD)} 

 g_ (o) =io N{1 e xp (foo D)) . (35)

From the definition expressed by Eq. (35) we 

easily obtain the relation g+ (o) =  g_(oco) , so 

that we can rewrite the expression (34) in the 

form

(36)

where (37)

A treatment similar to the preceding section 

leads to the angular dependent density after 

n steps:

(38)

and the total distribution:

(39)

Integrating p(x, mo, m) with respect to mo and  m

, we have

(40)

In a system devoid of hole, i. e., N=0 or D=0, 

the expression (39) is reduced to

(41)

This expression agrees with the Green func-
tion for the space-angle dependent linear 
Boltzmann equation applicable to a corre-
sponding physical condition('->. 

 To evaluate the angular dependent total 
distribution near the source, we first calculate 
the once scattered neutron distribution po, 

 m,m). From Eq. (38),

(42)

 We here assume that m is positive, and if 

 m>0, the expression (42) becomes
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(43)

The integral of Eq. (43) is evaluated by the 

residue theorem, and if x>0, it is written

(44)

where

 I(x, u) = ‡” exp (iooIx)(1 +ND exp ( ioo; D))-1, 

             (45)

and where oD; (m) is the j-th root of the trans-

cendental equation ‡” g+(o) = 0. One of 

these roots is situated on the imaginary axis, 

and the other poles are located at symmetrical 

points referred to the same axis, all the points 

being in the upper half of the co-plane. Denot-

ing the pure imaginary root by ice, and the 

coordinates of other poles by

 co; -= +-Reo Ioc;

the expression (43) may be written in the 

form

(46)

The above expression depends mainly on the 
magnitude of the imaginary part of the poles 

 oo; (j= 1,2,  ). If the gap width D is sufficient-
ly small, the imaginary part of CO; o(j=1,2,..) 
becomes large enough to let the second term 
of Eq. (46) become negligible. If N=0 or D=0, 
expression (44) is reduced to the familiar 
form of a system without void:

 I(x, m)=exp(.L.'xl g).

When N->oo or D->oo, the corresponding roots 

 co; are definite and from Eq. (44), I(x, p) tends 

to zero. 

 When m0>0 and m>0, there are no poles 

in the lower half of the o-plane, and con-

sequently

 p (x,m o, m) =0 for x<0. (47)

This relation is physically reasonable for once-

scattered neutron distribution. For negative 

values of m, we obtain the expression

The roots of ‡” + g_(o)m=0 are equal to the

roots of ‡”+g+(o)m=0, but with the sign of o 

inverted. Then we have

(48)

 We now use the central limit theorem to 

evaluate the total distribution. In this case, 

the mean vector m and the covariance matrix 

 C., in the formula (4) are reduced to mean 

 Mt and variance oil respectively. As isotropic 

 scattering is assumed, the angular dependent 

distribution depends only on the first and final 

directions taken by the neutron. For the 

process of random walk of neutrons the series 

of displacement densities fo(x, m), f(x) , • • f(x), 

f(x, m) are the same as in Sec.II-2. The mean 
value and variance of fo (x, m) are obtained as

 mo= (1+ND)mo/‡”z

With respect to 1(x),

and for those of the last step displacement 

density f(x,m),

 m (m) = (1 + ND) m/‡”a'

Then the distribution after n steps can be 

approximated for n•t1 from Eq. ( 4 ) in the 

form

(49)

where nz= (1+ND) (m + m) / ‡”

The curves for total angular distribution com-

puted with the above expression for n ?? 2 are 

represented in Fig. 1. 

 For spatial density, the second term of the 

expression (45) indicates the existence of spa-

tial oscillation, whose periods are proportional 

to the real part of the compl.ex poles o4. The 

space dependency of once-scattering density 

 p (XImo, m) is as shown in Fig. 2.
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 We now drive the asymptotic form of the 

total space dependent distribution (40) for 

isotropic source by means of the residue 

theorem. The poles of the integrand (40) are 

the roots of the transcendental equation

 X(o)=1, (50)

and the characteristic function X (c) has the 

property

 X (o) = X (-o). (51)

Therefore, if co is a root of Eq. (50), so is oi. 

The poles and branch cuts in the upper half 

of the o-plane present the form shown in 

 Fig. 3. Hence, the integral of (40) can be 

expressed by

(52)

where R2.,(o,) means the residue at the j-th 

pole c,:

(53)

The results of numerical calculations on the 

asymptotic term of Eq. (52) are shown in 

Fig. 4.

V. DISCUSSION

 As shown in Chap.II, if the displacements 

of neutron random walk at each step are 

statistically independent, the collision probabil-

ities p(x) can be obtained exactly by Fourier 

inversion of the derived characteristic func-

Fig. 1 Angular dependence of total distribution  

(‡”=1, ‡”,=0.5, x=4) with N,D and /mo 

   as parameters (Broken line taken from 

   Beach, et al.(") for N= D=0)

Fig. 2 Plane parallel (m=0.99) once-scattering 

   density for monodirectional source 

 (‡”=1, ‡”, =0.5, m =1 ; Broken lines are for 

 m= -1.)

 Fig. 3 Inversion contour (broken line) in 
 o-plane (o,o  and C, are poles, 

    branch points and cut lines, respectively.)

Fig. 4 Asymptotic space dependence of total 
   density p (x) (Broken line taken from 
   Beach, et al.(") for N= D=0)
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tion. When n is small (n=0,1), pn(x) is domi-

nant in the transient part of the total distri-

bution, while for n>>1 —when the central limit 

theorem can be applied in the evaluation— 

(x) contributes instead to the asymptotic 

part. 

 In the space-time-energy dependent case, 

the relations between displacements, ‡™->r = |‡™->r|ONO 

and ‡™t=|‡™->r|/v cause the displacements between 

each elementary event to be statistically inter-

dependent, so that in this case the correlations 

between displacements must be taken into 

account in calculating pn(x). 

 In the random gap system of Chap.IV, the 

behavior of the angular dependent probability 

density curves (Fig.1) is similar to that of 

the density of a system devoid of holes, the 

only difference being in the vertical position 

of the curve, depending on the width of the 

gaps and on the numbers in which they 

occur. The total distribution thus determined 

has only one term that is exact, which is pi 

for once-scattered neutron density ; subsequent 

terms are approximated by Eq.(49), where 

the number of pn„ terms has been increased 

until the ratio 0pm+1/mS1pn dropped below 10-3 

(needing about 10 terms). In Fig.2 one will 

see how after one collision, the presence of 

the random gaps carries the neutron further 

from the source as compared with the case 

of no gap, and how the spatial oscillations 

increase their prominence with the progression 

of N and D. When scattering is in the for-

ward direction, the gap width D being unity, 

neutrons having traversed n gaps will not be 

found in the region x<n, but will all have 

reached n<=x<oo, so that the neutrons in the 

interval n<xn+1, will have passed at most 

only n gaps. Thus the density p1(x,1,0.99) of 

once-scattered neutrons in the forward direc-

tion represents in the interval 0x<1 the 

probability of a neutron not encountering any 

gap. The probability of encountering a gap 

would therefore increase along with the free 

path length, while p1(x,1,1) would decrease 

more rapidly as compared to the case of D=0. 

In the interval 1�xthe curve of p1(x,1,1) 

represents the probability of passing at most 

one gap, and in the interval 2<x<3 at most 

two gaps and so on. Thus, p1(x,1,1) with

unit mean free path (S=1) decreases exponen-
tially with x. 

 In the backward direction, the behavior of 
the density p1(x,1,-1) is explained as follows: 
From Eq.(48), p1(x,1,m) for x>0, m<0 is in-
versely proportional to m, hence m1(x,1,-0) = 

 2p1(x,1,-1), indicating that the upward (down-
ward) direction density p1(x,1,-0) behaves in 

the same manner as the back ward direction 
density p1(x,1,-1). For upward (downward) 
direction, the projection of the second step 
displacement onto the x coordinate is zero, so 
that p1(x,1,-0) will be equivalent to the pro-
bability of progression of one step further 
from the forward direction neutron source 
with respect to space dependence. Thus the 
behavior of p1(x,1,-0) can be explained by 
analogy with the preceding case. 

 In the space dependent total distribution 
represented by Eq.(40), the poles of the inte-

grand correspond to the inverse diffusion 
length in the eigen-value problem. The first 
fundamental mode is real, and higher modes 
become complex, which causes spatial oscilla-
tion of the total distribution p(x). One may 
consider this spatial oscillation of p(x) to mean 

physically that random gaps affect the diffu-
sion of neutrons just as if the gaps were at 
regular intervals. When N=1 and D=1, we 
have obtained the values o0=0.426i and o1= 

 ±4.80+1.57i by the method of conformal map-

ping. The asymptotic curves obtained with 
these values are presented in Fig.4, along 
with the case of no gaps. It shows how the 

presence of gaps distinctly affects the funda-
mental modes (the slopes of lines), as compared 
to the case of gap-free system. The figure 
also reveals that the oscillation term provides 
little influence at ample distances from 
sources. 

 The machine time on IBM 360 H 50 was a 
few seconds per curve.
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