Translations of
 MATHEMATICAL MONOGRAPHS

Volume 180

Calculus of Variations and Optimal Control

A. A. Milyutin

N. P. Osmolovskii

Contents

Preface xi
Introduction 1
Part 1. First Order Conditions 5
Chapter 1. Theory of a Weak Minimum for the Problem on a Fixed Time Interval 7

1. Problems of the calculus of variations 7
2. The problem on a fixed time interval. Necessary conditions for a weak extremum 8
3. Two examples 14
4. Weak extremals 18
Chapter 2. Theory of the Maximum Principle 23
5. Formulation of the maximum principle for the problem of $\S 1$ 23
6. Invariance of Pontryagin's convergence under the change of the independent variable 26
7. Proof of the maximum principle 32
8. Expansion formulas 40
Chapter 3. Extremals and the Hamiltonian of a Control System 43
9. Extremals 43
10. Solutions of a Hamiltonian system and extremals 47
11. Examples 51
11.1. Time-optimal control problems 51
11.2. Two optimal control problems on a fixed time interval 55
11.3. Isoperimetric problem 63
11.4. Singular extremals 66
12. Convexification of the right-hand side of a control system (sliding modes) 69
Chapter 4. Hamilton-Jacobi Equation and Field Theory 87
13. The Hamilton-Jacobi equation and sufficient conditions for a strong minimum 87
14. Solutions of the Hamilton-Jacobi equation and extremals 92
15. The field of extremals 105
15.1. The general field theory 105
15.2. A linear control system 112
15.3. The field in the problem with a general control system and a primitive endpoint part 116
15.4. Isoperimetric problem 121
Chapter 5. Transformations of Problems and Invariance of Extremals 125
16. Invariance of extremals 125
16.1. Change of variables 125
16.2. Change of the independent variable 134
16.3. Passage to a parametric form 140
17. Calculus of variations problems with pointwise equality constraints 140
18. Problems with pointwise mixed state-control equality and inequal- ity constraints 148
Part 2. Quadratic Conditions 153
Chapter 1. Quadratic Conditions and Conjugate Points for Broken Ex- tremals 155
19. Quadratic conditions in the simplest problem of the calculus of variations 155
1.1. The setup and assumptions 155
1.2. Minimum on a set of sequences 157
1.3. First order conditions 158
1.4. An additional condition of the Weierstrass-Erdmann type 160
1.5. The Legendre condition 162
1.6. Quadratic conditions for a weak minimum 162
1.7. Quadratic conditions for a Pontryagin minimum 163
1.8. Sufficient conditions for a bounded-strong minimum 166
1.9. θ-weak minimum 167
20. Conjugate points and conditions for positive definiteness of the quadratic form 168
2.1. Passage of the quadratic form through zero: the classical Ja- cobi condition 168
2.2. Positive definiteness of Ω on G_{2} 177
21. Conditions for nonnegativeness of the quadratic form 186
3.1. Nonnegativeness of ω on E_{2} 186
3.2. Nonnegativeness of Ω on G_{2} 187
3.3. Abstract model 189
3.4. Nonnegativeness of Ω on G_{2} (continued) 190
22. Investigation of a broken extremal by means of conjugate points theory: an example 196
Chapter 2. Quadratic Conditions for a Pontryagin Minimum and Sufficient Conditions for a Strong Minimum: Proofs 211
23. Higher orders, γ-conditions, and constant C_{γ} 211
5.1. Order γ 211
5.2. γ-conditions 214
5.3. Constant C_{γ} 215
24. Expansion of the integral functional on local sequences of variations 217
6.1. The structure of local sequences. The main lemma 217
6.2. Representation for the increment δF on local sequences 222
6.3. Proof of Lemma 6.1, continued 223
6.4. Proof of Lemma 6.1, concluded 225
6.5. Proof of Theorem 1.1 228
6.6. Estimation of $\|\delta x\|_{C}$ on local sequences 228
25. Upper bound for C_{γ} 229
7.1. The constant $C_{\gamma}^{\text {loc }}$ 229
7.2. Extension of the set $\Pi^{\mathrm{loc}}(E)$ 230
7.3. Canonical representation for sequences in $\Pi_{O(\gamma)}^{\text {loc }}$ 233
7.4. Passage to sequences with $\delta v=0$ 234
7.5. Passage to sequences with discontinuous state components 235
7.6. The set of sequences S^{3} 241
7.7. The sets of sequences S^{4} and S^{5} 241
7.8. The space $Z(\theta)$ and subspace G 243
7.9. Passage to G_{2} 244
7.10. The $C \Gamma$-strict maximum principle 245
26. Lower bound for C_{γ} 249
8.1. Extension of the set $\Pi(E)$ 249
8.2. Passage to local sequences 249
8.3. Simplifications in the definition of $C_{\gamma}\left(\Phi, \Pi_{o(\sqrt{\gamma})}^{\text {loc }}\right)$ 256
8.4. Application of the Legendre condition 258
8.5. Passage to sequences with discontinuous state components 260
8.6. Condition $D^{k}(H) \geq 2 C_{\Gamma}(H)$ 261
8.7. Passage to the equality in the differential constraint 265
8.8. The final lower bound for C_{γ}. The result of deciphering 266
8.9. Proof of Theorem 5.1 267
8.10. Proof of Theorem 5.2 267
27. Sufficient conditions for bounded-strong and strong minima in the simplest problem of the calculus of variations 271
9.1. Sufficient conditions for a bounded-strong minimum. Proof of Theorem 1.5 271
9.2. γ-sufficiency on $\bar{\Pi}^{S}$ 275
9.3. Sufficient conditions for a strong minimum 275
Chapter 3. Quadratic Conditions in the General Problem of the Calculus of Variations and Related Optimal Control Problems 283
28. Formulation of quadratic conditions in the general problem of the calculus of variations 283
10.1. The problem setting and assumptions 283
10.2. First order conditions; the set M_{0} 284
10.3. Critical cone 286
10.4. The quadratic form 287
10.5. Quadratic necessary condition 289
10.6. Strong and bounded-strong minima 290
10.7. The strict maximum principle and strictly Legendrian ele- ments 291
29. Quadratic conditions in the general problem of the calculus of vari- ations on a fixed time interval 293
11.1. Formulation of quadratic conditions 293
11.2. γ-sufficiency 295
11.3. Discussion of the proofs of quadratic conditions 296
30. Quadratic conditions in problems that are linear in control 298
12.1. Linear in control problem on a fixed time interval 298
12.2. Quadratic conditions in the linear in control problem on a non-fixed time interval 302
12.3. Quadratic conditions for a piecewise constant control 303
12.4. Quadratic conditions in the minimum time problem for a sys- tem linear in control 308
31. Quadratic conditions in time-optimal control problems for linear systems with constant coefficients 310
13.1. Problem setting, maximum principle, and simple sufficient conditions 310
13.2. Quadratic necessary condition 314
13.3. Quadratic sufficient condition 318
13.4. Nonemptiness of the set Ξ 322
13.5. The case where M_{0} is a singleton 323
Chapter 4. Investigation of Extremals by Quadratic Conditions: Examples 325
32. Time-optimal control problems for linear systems with constant coefficients 325
14.1. Two-dimensional chain 325
14.2. Oscillating system 328
14.3. Three-dimensional chain 331
14.4. Oscillating system with an additional integral constraint on the control 336
33. Investigation of extremals in nonlinear systems 341
15.1. Saw-shaped extremals 341
15.2. Isoperimetric problem 344
15.3. M_{0} consisting of many elements 349
34. Appendix 361
16.1. Integrals of convex combinations 361
16.2. A property of systems that are linear in control 366
16.3. Lyusternik's theorem 368
16.4. Condition for inconsistency of a system of linear inequalities 368
Bibliography 371
