
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 2, Number 1, Winter 1972 

CALCULUS OF VARIATIONS IN COMPLEX 
VECTOR BUNDLES 

ALFRED GRAY 

1. Introduction. The theory of the calculus of variations, and in 
particular Jacobi vector fields, is a very important tool in the study 
of the topology of Riemannian manifolds. Recently Goldberg and 
Kobayashi [ 1] have introduced the notion of holomorphic bisectional 
curvature of a Kahler manifold. Actually this notion makes sense in 
an arbitrary almost Hermitian vector bundle (see §2). In fact in a 
slightly different form the notion of holomorphic bisectional curva
ture has been used by several authors [3], [5], [6] to define notions 
of positivity of holomorphic vector bundles which generalize that of 
holomorphic line bundles. 

In this paper we define and study a calculus of variations in almost 
Hermitian vector bundles via holomorphic bisectional curvature. The 
basis of our discussion is the following observation. Let M be a 
Kahler manifold with almost complex structure / . If a is a geodesic 
in M and Y is a Jacobi vector field along cr, then /Y is not a Jacobi 
vector field. Moreover if X = Y + /Y then X satisfies the differential 
equation 

(1.1) 2X" = JB.-„X, 

where R denotes the curvature operator of M. Now (1.1) makes sense 
in an arbitrary almost Hermitian vector bundle with a given covariant 
derivative. This is the starting point for our theory of the calculus 
of variations. We obtain new versions of several well-known theorems 
in the calculus of variations of a Riemannian manifold, including 
Myer's theorem and the Rauch comparison theorem. (We do not 
discuss the Morse index theorem, because versions of it already are 
known in the context of vector bundles, e.g., [7].) A defect in our 
theory is that there seems to be no good substitute for the exponential 
map of Riemannian geometry, although we define the notion of con
jugate point. 

In §2 we describe analogues for an almost Hermitian bundle E of 
Jacobi vector fields and the index form. We develop some properties 
of the index form in §3 and prove a version of Myer's theorem for 
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almost Hermitian vector bundles. Rauch's comparison theorem is 
generalized in §4. 

Our study parallels the treatment of the calculus of variations for 
Riemannian manifolds given in [4]. 

2. Fundamental definitions. Let M be a C °° differentiable manifold; 
denote by S?(M) the ring of C00 real valued functions on M, and by 
9((M) the Lie algebra of C°° vector fields on M. We assume that M 
is an almost Hermitian manifold, that is, the tangent bundle r(M) 
has an almost complex structure / and a Riemannian metric ( , ) such 
that </X, /Y) = <X, Y> for all X, Y G <Y(Af ). 

Let E be another complex vector bundle over M. We use the same 
letter / to denote the almost complex structure of E. Denote by 
<S(E) the C00 sections of E; <£(E) is a module over D(M). We shall also 
assume that E is an almost Hermitian vector bundle in the sense that 
E has a Riemannian metric ( , ) such that (JA, JB) = ( A, B) for A, B G 
<£(E). Note that the tangent bundle T(M) is by assumption almost 
Hermitian in this sense, and 9((M) = J>(T(M)). 

Denote by V a covariant derivative for E which is compatible with 
/ and ( , ). In other words we require that V : 9((M) X <£(£)-> <S(E) 
and has the following properties 

(2.1) V X ( A + B)= V X A + VXB, 

(2.2) V X ( / A ) = / V X A + ( X / ) A , 

(2.3) V / x + g Y = / V x + g V y , 

(2.4) X(A, B) = <VXA, B) + <A, VXB>, 

(2.5) V X / A = / V X A , 

for X, Y G D((M)9 A,BG S(E\ and/, g G V(M). 
Such a covariant derivative always exists. The curvature operator 

of V is given by the usual formula 

(2.6) RXYA= V [ X , Y ] A - [ V X , V Y ] A. 

It is linear in all variables with respect to elements of *?(M); in 
addition, it has the following properties: 

(2.7) R X Y = - R Y X , 

(2.8) (RXYA,B)= - <KXYB,A), 

(2.9) RXYJA = JRXYA, 

for X,Y G 9((M) and AyBG <S(£). 
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Following [1] we define the holomorphic bisectional curvature 
BXA of V (X G 9f(M), A G «5(E)) by the formula 

(2.10) B X A | |Xp | |A | | 2 = (RxjxAJA) 

wherever X and A are nonzero. The holomorphic bisectional curva
ture plays almost the same role for the almost Hermitian vector bundle 
E that the ordinary sectional curvature plays for the tangent bundle 
of M. Strictly speaking, however, the holomorphic bisectional curva
ture is the sum of two sectional curvatures. The Ricci curvature k of 
£ (with respect to V ) is given by 

(2.11) *(X,Y)= È (RXJYEÌJEÌ) 

where {E1; • • •, E„, JEi, • • -, JEn} is a local orthonormal frame for 
E, and X, Y G <X(M). Thus whenever X f 0, 

(2.12) fc(X,X)=||X||*£ BXE, 
i = l 

Let y be a curve in M with velocity y '. A section A of E along y 
is a function which assigns to each point t in the domain of y an 
element Ay(t) G Ey(t), where Ey(t) denotes the fiber of E over y(t). If 
A is a differentiate (i.e., C00) section along y, we define another such 
section A' by A'(t) = (VyA)y(f). (As usual, one must extend A and 
y ' to sections of E in a neighborhood of each point of y, and then 
prove the independence of such extensions, in order to insure that 
A '(f) is well defined.) 

DEFINITION. Let a be a unit speed geodesic in M, and let A be a 
piecewise differentiable section of E along a. 

(i) A is parallel if and only if wherever A is differentiable we have 

(2.13) A' = 0. 

(ii) A is a J-section if and only if wherever A is differentiable we 
have 

(2.14) 2 A " = J H , V A 

From the theory of ordinary differential equations we have the 
following result. 

PROPOSITION (2.1). Let A be a differentiable section of E along a 
geodesic a. 

(i) If A is parallel, then A is uniquely determined by its value at 
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any one point of o\ In particular the dimension of the space of 
(continuous) parallel sections along cr is equal to the (real) fiber 
dimension of E. 

(ii) If Ais a J-section, then A is uniquely determined by the values 
of A and A ' at any one point of cr. In particular the dimension of 
the space of differentiable J-sections along a is twice the (real) fiber 
dimension ofE. 

In contrast to the situation with ordinary Jacobi vector fields, the 
following is true. 

PROPOSITION (2.2). If A is a J-section, so is JA. 

Next we describe the index form and the notion of conjugacy with 
respect to an almost Hermitian vector bundle. 

DEFINITION. Let A and B be piecewise differentiable sections of 
E along a geodesic segment cr : [a, b] —» M. Put 

(2.15) I(A,B)= \h {2(A',B')- (!{„.„ A, JB)}(t) dt. 
J a 

Then / is a symmetric bilinear form on the space of piecewise dif
ferentiable sections of E along cr which we call the index form of E 
along cr. When the limits a and b are important we write I(A, B) = 
lah(A9 B). 

For geometric interpretations of our results we shall find the fol
lowing notion useful. 

DEFINITION. Let p,q G. M, and assume cr : [a, b] —» M is a geodesic 
with a(a) = p and <j(b) = q. Then p and q are E-conjugate along 
a (with respect to the connection V of E) if and only if there exists 
a nonzero differentiable /-section along cr which vanishes both at 
a and b. The multiplicity of E-conjugate points p and q is the dimen
sion of the space of nonzero differentiable /-sections along cr which 
vanish a t p and*/. 

The following fact, which may be deduced from the theory of 
ordinary differential equations, will be useful. 

PROPOSITION (2.3). Let a : [a, b] -» M be a geodesic segment. If 
a^ c^ b, then there exists a neighborhood U of c in [a, b] such 
that no point of U is E-conjugate to any other point of U along a. 

COROLLARY (2.4). Let cr : [a, b] —» M be a geodesic segment. If 
there exists an E-conjugate point of a (a) along a, then there exists 
a first E-conjugate point to a(a). 

3. Properties of the index form. In this section we show that 
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analogues of some basic formulas for the index form for ordinary 
Jacobi fields also hold for the index form of /-sections. Denote by 
cr: [a, b] —» M a unit speed geodesic segment. 

THEOREM (3.1). Let A and B be piecewise differentiate sections 
of E along a. Assume that [a, b] is subdivided as a = t0 < tx < • • • 
<th=b so that A is differentiable on each subinterval [^_i, tj\. 
Then 

/(A, B) = - f <2A" - JKia'A, B)(t) dt 
J a 

(3.1) + 2 2 X < A ' ( $ - ) - A ' ( $ + ) , B($)> 

+ 2(A'(b),B(b)) - 2(A'(a),B(a)), 

where A'(tj~) and A'(tj+) denote the left- and right-hand derivatives of 
Aattj(l^j^h- 1). 

PROOF. From (2.15) and the fact that {A', B) ' = (A",B) + (A',B') 
(wherever A and B are differentiable) we have 

(3.2) /(A, B) = 2 p {2<A\ B) ' - <2A" - / ^ V A , B»(f) df. 

Then (3.1) follows easily from (3.2). 
We next obtain three consequences of Theorem (3.1). 

COROLLARY (3.2). Let A be a differentiable J-section along a, and 
let B be any piecewise differentiable section of E along a. Then 

I(A, B) = 2<A'(fc), B(fe)> - 2<A'(a), B(a)). 

COROLLARY (3.3). Suppose the holomorphic bisectional curvature 
of E is nonpositive along a (i.e., if A is a section of E along a then 
BaA ^ 0 wherever A ^ 0). Then no two points of a are E-conjugate 
along a. 

PROOF. Let A be a differentiable /-section along a which (without 
loss of generality) vanishes at both a (a) and o-(fe). By Corollary 
(3.2) we have /(A, A) = 0. By hypothesis, 2||A'| |2 - (Ra.Ja>AJA) ^ 0 
on [a, b], and so | |A' | |2 = 0 on [a, b]. Since A vanishes at <r(a), this 
implies that A = 0 on [a, b] by Proposition (2.1). Thus the corollary 
follows. 

COROLLARY (3.4). A is a differentiable J-section of E along a if 
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and only if /(A, B) = 0 for all piecewise differentiable sections B of 
E along a. 

PROOF. If A is a differentiable /-section, it follows easily from (3.1) 
that /(A, B) = 0 for all piecewise differentiable sections B of E along 
(J. 

Conversely assume that /(A, B) = 0 whenever B is a piecewise 
differentiable section of E along o\ Let / b e a differentiable function 
such that f(tj) = 0, j = 1, • • , h, and is positive everywhere else. 
Set B = /(2A" - / i ^ v A)- Then from (3.1) we see that 

0 = /(A, B)=- \h
a /||2A" - / /WA||2(*) A. 

Hence A is a /-section which is differentiable on each subinterval 
[£j-i, tj]. Moreover let C& be a piecewise differentiable section of 
E such that C*(fc) = A'(fc-) - A'(£fc

+) and Cfc($) = 0 for j ^ fc. 
Then from (3.1) we have 

0 = 2\\A'(tk-)- A'(tk+)\\*. 

Hence A'(tk~) = A ' (^ + ) for fc = 1, • • -, h — 1. Since A is determined 
on each subinterval [tj-i, tj] by its value at any point of the sub-
interval (Proposition (2.1)) it follows that A is a differentiable / -
section of E along all of a. 

PROPOSITION (3.5). Suppose A and B are J-sections along a. Then 
(i) (A, B ' ) — (A\ B) is constant along a; 
(ii) if A and B vanish at some point of a, then {A,B') = ( A ' , B ) . 

PROOF. We have 

2<A? B'> ' = 2<A', B'> + 2<A, B"> = 2<A', B'> - (JA, B^^B) 

= 2(A',B') - (JB, iVvA> = 2<A\ B) '. 

Hence ((A,B') — (A',B))' = 0, and so the proposition follows. 

THEOREM (3.6). Let a : [a, b] —> M be a geodesic segment such 
that a (a) has no conjugate point along a. Let B be a piecewise 
differentiable J-section along a which vanishes at a (a). Suppose 
A is any piecewise differentiable section along a such that A(a) = 0 
and A(b) = B(b). Then 

(3.3) /(A, A) ^ 7(B, B). 

Equality holds if and only if A = B. 

PROOF. Let 2n be the (real) fiber dimension of E. By Proposition 
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(2.1) there exist linearly independent /-sections Bx, • • -, B2n along 
a which vanish at a (a); these /-sections form a basis for the space of 
/-sections along a which vanish at a (a). Hence there exist constants 

0 1 , * ' *>#2n S u c n t n a t 

2n 

B = S ckBi. 
t = i 

Furthermore Biy • • -, B2n are linearly independent at each point of 
<r(t), a = tè b. Therefore they form a basis for E*(ty It follows that 
there exist piecewise differentiable functions fx, • • •', f2n defined on 
[a9b] suchthat A = ^ÌZJÌBÌ. We have 

(3-4) ||A'||* = ||2J5'I*II2+ IE^ftf||2+2<2i5#ft,2/A'>. 
Since each Bi is a/-section, 

(3 5) ~ ( ^ > , 4 / A ) = " 2^<H,*'Bb/A> 

Furthermore 

ŒjSBbS^ft')'- <2^'B.,SJ5B.'> + l iscili2 

(3'6) + <S/A, S/i 'Bi ' > + <S/A, S'/A" )• 
Combining equations (3.4), (3.5) and (3.6), we obtain 

2||A'||» - (K-vA,JA) = 2\\Zfi'Bi\\2 + 2|E^i'H2 

= 2E/i'Bi|l2+2<E/*Bi.S^Bi'>' 

By Proposition (3.5) we have 

<S/«'ft.S/A'> - <2/A,2/»'ft'> 
, , R v = 2 {fi'MB^B/y-fif/iBi,]}/)} 
(<}.») ij 

= 2j»'i«B«,V>-<B,' ,$» = 0. 

Thus from (3.7) and (3.8) we obtain 

(3.9) 2||A'||2 - ( f l ^ A J A ) = 2|Ej5'B,| |2 + 2 < 2 / i B i , £ / i B i ' > ' . 

Hence 
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I(A, A) = f {2||A' p - (H^A, JA)}(t) dt 
(3.10) 

= 2 f Wfi'B^it) dt + 2(^fiBi,^fiBi')(b). 
J a 

The same argument applied to B shows that 

(3.11) I(B, B) = 2ÇZaiBi,
yZaiBi')(b). 

From the assumption that A(b) = B(b) we obtain a* = fi(b) for 
i= 1, • • -, n. Hence from (3.10) and (3.11) we have 

(3.12) I(A, A) - l(B, B) = 2 f \\fi 'B^t) dt ̂  0, 
Ja 

proving (3.3). If 1(A, A) = I(B, B), then we must have fi' = 0 on 
[a, fe] for i = 1, • • -, 2n, by (3.12). Thus A = B. 

COROLLARY (3.7). L#£ a : [a, fo] —» M foe a geodesic segment such 
that a (a) has no conjugate points along a. If A is a piecewise dif
ferentiate section along a such that A(a) = A(b) = 0, then /(A, A) §^ 0. 

PROOF. In Theorem (3.6) let B = 0. 

THEOREM (3.8). Suppose the Ricci curvature of E (with respect to 
V ) is positive definite with all eigenvalues §^ 2nho > 0, where 2n 
is the (real) fiber dimension of E. Then for every geodesic <r of M, 
the distance between any two consecutive conjugate points of a 
is at most 7TIVho. 

PROOF. Let <J(C) be the first conjugate point of a along a (a). 
Let a < b < c. Let {Ei, * * -, En, /E1 ? • • -, JEn} be parallel sections 
of E along <r, and assume E1? • • -, En, /E 1 ? • • -, JEn are orthonormal 
at each point of o\ Let / b e a nonzero real valued function defined 
on [a, b] with f(a) = f(b) = 0. By Corollary (3.7) we have 

i = l 

(3.13) = f J2Ì ||/'£i||2-/2 E (H^EiJEdl^dt 

=£2nf (f'2-hoP)(t)dt. 
J a 

Let/(f) = sin (77(£ — a)l(b — a)). Then (3.13) reduces to 

b - a ^ TTNK. 
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Let/(f) = sin (ir(t - a)l(h - a)). Then (3.13) reduces to 

b- a^ rrlVho. 

Since b is arbitrarily close to c, the theorem follows. 

COROLLARY (3.9). Suppose the holomorphic bisectional curvature 
of E satisfies BAC = 2h0 > 0. Then for every geodesic a of M, the 
distance between any two consecutive conjugate points of a is at 
mostn/y/ho. 

THEOREM (3.10). Let a : [a,b] —> M be a geodesic segment in M. 
Then there is an E-conjugate point a(c) of a along a with a< c < b 
if and only if there is a piecewise differentiable section A of E along 
a such that A(a) = A(b) = 0 and I(A, A) < 0. 

PROOF. If there exists a piecewise differentiable section A of E 
along a such that A(a) = A(b) = 0 and I(A, A) < 0, then by Corollary 
(3.7), a(a) has an E-conjugate point a(c) with a< c < b. 

Conversely let <r(c) be a conjugate point of a(a) with a< c < b. 
By Proposition (2.3) there exists a neighborhood U of c such that no 
point of U is E-conjugate to any other point of U along a. Let 
8 > 0 be such that c - 8 G U and c + 8 G U. Denote by r the 
geodesic segment a \ [c — 8, c + 8]. Since r(c — 8) is not con
jugate to T(C + 8), the linear mapping from the set of /-sections on 
T into ET(c_g) © E,.(C+8) is one-to-one and therefore onto, because 
both spaces have the same dimension. Hence there is a /-section with 
prescribed values at both ends of T. 

Let B be a /-section along a \ [a,c] with B(a) = B(c) = 0, and 
let C be a /-section along T = < T | [ C — 8, c + 8] with C(c — 8) = 
B(c — 8) and C(c + 8) = 0. Define a piecewise differentiable section 
A of E along a by 

A(f)= B(t\ a^t^-c- 8, 

= C(t), c - 8^t^c+ 8, 

= 0, c+ 8 ^ t ^ b . 

Also define a piecewise differentiable section D of E along r by 

D(f)= B(t), c - S g ^ c , 

= 0. c^tJßc+8. 
By Corollary (3.2) we have 

(3.14) 0 = IS(B, B) = Iac-\B, B) + IC
C_Ô(B, B). 

Also, from Theorem (3.6) it follows that 
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(3.15) IC
C+Ì(C, C) < fc-ÌHD9 D). 

From (3.14) and (3.15) we obtain 

Ia
b(A, A) = Iac-*(A, A) + / C

C1Ô
Ô(A, A) + C8(A, A) 

= Ia°-\B, B) + IC
C1Ô

8(C, C) 

= - IC
C18

8(D, D) + Itl&C, C) < 0. 

This completes the proof. 

4. Comparison theorems. In this section we show that the Rauch 
comparison theorem generalizes completely to /-sections of almost 
Hermitian vector bundles over almost Hermitian manifolds. Our 
main result is the following. 

THEOREM (4.1). Let E and F be almost Hermitian vector bundles 
over almost Hermitian manifolds M and 2V, respectively. Assume 
that E and F have the same fiber dimension. Let a and T be unit 
speed geodesies defined on [a,b] in M and N, respectively. Also, 
let C be a J-section of E along <r and D a J-section of F along r. 
Assume 

(i) C(a) = D(a) = 0; 
(ii) | |C'(a)| |=| |D'(a)| |; 
(iii) a (a) and r{a) have no E-conjugate (resp. F-conjugate) points 

along a (resp.r); 
(iv) if x G Er(t) and y G Fr{t), the holomorphic bisectional curva

tures of E and F satisfy 

(4.1) Ba,(t)x^ BT,(t)y. 

Then we have \\C(t)\\ g \\D(t)\\for a ^ t ^ b . 

PROOF. Let u(t) = \\C(t)\\2 and v(t) = \\D(t)\\2. Then u(t) f 0 
and v(t) / 0 for a < t^ b. Set 

H(t)= u(t)-i f { 2 | | C ' | | 2 - {K<vC,JC)}{t)dt, 
J a 

p(t)= o(t)-1 P ^D'ik* - <R,.„D,JD)}(t)dt. 
J a 

Then u'(t) = u(t)n(t) and v'(t) = v{t)v(t). Thus for every c with 
a < c < b we have 

u(t) = u(c) exp fi(t) dt and v(t) = v(c) exp v(t) dt. 
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On the other hand by L'Hospitai's rule, we have 

u ( 0 ,. <C,C')(c) = 1 . ( | | C y | | a + < C C , » ( € ) , 1 
!™o(€) ÏÏ?<D,D'>(€) ÏÏ?(||D'p+<D,Df»(€) * 

Therefore u(t)lv(t) = exp Jfl* (/i(f) - i<*)) d* for all a < t^ b. 
To complete the proof, it suffices to show that fi(t) = v(t) whenever 

a<t^b. Fix c_ with a< c < b. Set C = u(c)~ll2C and D = 
v(c)~ll2D; then ||C(c)|| = ||D(c)|| = 1, and C and D are /-sections. 
Let fc : FT(C) —* £^(c) be any metric preserving linear isomorphism with 
fc(D(c)) = C(c). Denote by as

r : J5r(r)-> E^(s) (resp. T / : FT(r)-> FT(s)) 
the parallel translation along a (resp. r) from a(r) to cr(s) (resp. 
r(r) to T(S)). Then set /* = <rt

c ° / ° TC', and define a section A of 
£ along or_ by A(t)_ = ft(D(t)). We then have A(0) = 0 = C(0)_and 
A(c) = fc(D(c)) = C(c). Also, it can be verified that A'(t) = ft(D'(t)) 
for a < t < b. Hence by Theorem (3.6), and assumption (iv) we have 

IAC,C)^ Ia<(A,A) = [ {2\\A'\\^-Bv.A\\A\\^(t)dt 
J a 

g [C {^D,f-BT,ö\\Df}{t)dt=Ia°(D,D). 
J a 

Thus 
H(c) = u(c)-%c(Q C) = 7^(C, C) ^ V(D, D) 

= Ü ( C ) - 1 V ( D , D ) = ^ ) . 

Since c is arbitrary, the theorem follows. 

COROLLARY (4.2). Let E and F be almost Hermitian vector bundles 
over M and N, respectively, and assume that E and F have the same 
fiber dimension. Let a and r be unit speed geodesies in M and N, 
respectively, both defined on [a, b]. Assume that if x Œ E^^ and 
y G FT(t), the holomorphic bisectional curvatures of E and F satisfy 

Bai(t)x = ßr'(t)y 

Then if<r(a) has no E-conjugate point along a, r(a) has no F-conjugate 
point along T. 

PROOF. Assume the contrary. By Corollary (2.4) there exists c such 
that a< c'ê-b and r(c) is the first F-conjugate point of r(a) along r. 
Let D be a nonzero /-section of F along^r such that D(a) = D(c) = 0. 
By Proposition (2.1) there exists a /-section C of E along a such that 
C(a) = 0 and ||C'(a)|| = ||D'(a)||. By Theorem (4.1) we have ||C(*)|| ^ 
||D(f)|| for a ^ t < c. Hence we have 
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\\C(c)\\ = lim ||C(t)|| S lim \\D(t)\\ = 0, 
t-*c t^*c 

and so C(c) = 0. This contradicts the assumption that cr(a) has no 
E-conjugate points along o\ 

COROLLARY (4.3). Let E be an almost Hermitian vector bundle 
over an almost Hermitian manifold M and assume the holomorphic 
bisectional curvature of E satisfies 

0<2b0^ BXA ^ 2bl9 

where b0 and bx are constants, for X G 9((M), A G <£(£). If<r : [a, b] 
—> M is a unit speed geodesic such that a(b) is the first E-conjugate 
point of a (a) along <r, then 

irNb^b-a^irNK 
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