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ABSTRACT. We introduce a version of the calculus of variations on time scales, which includes
as special cases the classical calculus of variations and the discrete calculus of variations. Necessary
conditions for weak local minima are established, among them the Euler condition, the Legendre
condition, the strengthened Legendre condition, and the Jacobi condition.
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1. INTRODUCTION

In order to motivate the results presented in this paper, we start by recalling the

well-known Legendre necessary condition from the classical calculus of variations as

well as the corresponding result from the discrete theory.

Result 1.1 (Legendre’s Necessary Condition). If ŷ is a weak local minimum (see [7])

of the variational problem

(1.1) L(y) =

∫ b

a

L(t, y(t), ẏ(t))dt→ min, y(a) = α, y(b) = β,

where a, b ∈ R with a < b; α, β ∈ Rn with n ∈ N, and L : R2n+1 → R is a C 2-function,

then necessarily

(1.2) P (t) ≥ 0 for all t ∈ [a, b],

where P = Lvv(·, ŷ, ˙̂y).

Note that the above P is the second derivative of L w.r.t. the third variable.

It is an n × n-matrix-valued function, and P (t) ≥ 0 means that P (t) is a positive

semidefinite matrix.

Result 1.2 (Discrete Version of Legendre’s Necessary Condition). If ŷ is a local

minimum (see [3]) of the discrete variational problem

(1.3) L(y) =
b−1∑
t=a

L(t, y(t+ 1),∆y(t))→ min, y(a) = α, y(b) = β,
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where a, b ∈ Z with a < b; α, β ∈ Rn with n ∈ N, and L : Z × R2n → R is a

C 2-function in the last two variables, then necessarily

(1.4) P (t) +R(t) +RT (t) +Q(t) + P (t+ 1) ≥ 0 for all t ∈ [a, b− 2] ∩ Z,

where P (t) = Lvv(t, ŷ(t + 1),∆ŷ(t)), Q(t) = Lxx(t, ŷ(t + 1),∆ŷ(t)), and R(t) =

Lxv(t, ŷ(t+ 1),∆ŷ(t)).

Note that above the subscript x denotes differentiation of L w.r.t. the second

variable.

On the first view conditions (1.2) and (1.4) do not have much in common. E.g.,

neither of the two conditions implies the other one. In fact we may have in the discrete

scalar case a local minimum at ŷ such that p(t) = Lvv(t, ŷ(t+ 1),∆ŷ(t)) < 0 at every

other time (for example, if L(t, x, v) = (−1)tv2 + 1
2
x2 and α = β = 0, then ŷ = 0 is a

local minimum), which is of course impossible in the continuous case.

In this paper we will present (among other results) a version of Legendre’s neces-

sary condition that contains both Result 1.1 and Result 1.2 as special cases. A theory

that allows to establish this kind of results has been introduced by Stefan Hilger in [8]

and continued in e.g., [1, 2, 4–6, 9], namely the calculus on time scales. It is able to

explain the nature of differences as e.g., occurring between Result 1.1 and Result 1.2,

and allows an extension of the results to other time scales, possibly different from

those that correspond to the continuous and to the discrete case. To illustrate this

approach we finish this introduction by now stating Legendre’s condition for an ar-

bitrary time scale T. In order to compare this result with Result 1.1 and Result 1.2

it is at this point sufficient to know that

• if T = R, then σ(t) = t, µ(t) = 0, [a, b]κ
2

= [a, b],

f∆ = f, and

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt;

• if T = Z, then σ(t) = t+ 1, µ(t) = 1, [a, b]κ
2

= [a, b− 2] ∩ Z,

f∆ = ∆f, and

∫ b

a

f(t)∆t =
b−1∑
t=a

f(t).

We abbreviate f ◦ σ by fσ.

Result 1.3 (Legendre’s Necessary Condition for Time Scales). If ŷ is a weak local

minimum (see Definition 3.1 below) of the variational problem

(1.5) L(y) =

∫ b

a

L(t, yσ(t), y∆(t))∆t→ min, y(a) = α, y(b) = β,

where a, b ∈ T with a < b; α, β ∈ Rn with n ∈ N, and L : T × R2n → R satisfies the

assumption in Lemma 3.4 below, then necessarily

(1.6) P (t) + µ(t)
{
R(t) +RT (t) + µ(t)Q(t) + (µ(σ(t)))†P (σ(t))

}
≥ 0, t ∈ [a, b]κ

2

,
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where

(1.7) P = Lvv(·, ŷσ, ŷ∆), Q = Lxx(·, ŷσ, ŷ∆), R = Lxv(·, ŷσ, ŷ∆),

and where α† = 1
α

if α ∈ R \ {0} and 0† = 0.

It is interesting to compare (1.5) with (1.1) and (1.3), and (1.6) with (1.2) and

(1.4).

This paper is organized as follows. In the next section we give a brief introduction

into the time scales calculus. Section 3 introduces the variational problem (1.5) and

its so-called first and second variation. In Sections 4 and 5 we then present versions of

Euler’s and Legendre’s (see Result 1.3) necessary conditions, respectively. Finally, in

Section 6, we discuss the strengthened Legendre condition as well as Jacobi’s condition

on time scales.

2. THE TIME SCALES CALCULUS

A closed subset T of R is called a time scale. The jump operators σ, ρ : T → T

are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

(supplemented by inf ∅ = supT and sup ∅ = inf T). A point t ∈ T is called right-

dense, right-scattered, left-dense, and left-scattered if σ(t) = t, σ(t) > t, ρ(t) = t, and

ρ(t) < t, respectively. Throughout we let a, b ∈ T with a < b. For an interval [a, b]∩T
we simply write [a, b] when this is not ambiguous. We also define

[a, b]κ = [a, b] \ (ρ(b), b] and [a, b]κ
2

= [a, b] \ (ρ(ρ(b)), b].

Next, the graininess µ is defined by µ(t) = σ(t)− t. We say that a function f defined

on T is differentiable at t ∈ T if for all ε > 0 there is a neighborhood U of t such that

for some α the inequality

|f(σ(t))− f(s)− α(σ(t)− s)| < ε|σ(t)− s|

is true for all s ∈ U , and in this case we write f∆(t) = α. Note that in right-dense

points f∆(t) = lims→t
f(t)−f(s)

t−s provided this limit exists and in right-scattered points

f∆(t) = f(σ(t))−f(t)
µ(t)

provided f is continuous at t. For differentiable f , the formula

(2.1) fσ = f + µf∆

is very useful and easy to prove. If f and g are both differentiable, then so is fg with

(2.2) (fg)∆ = f∆g + fσg∆.

Next, a function f on T is called rd-continuous if it is continuous in right-dense

points and if its left-sided limit exists in left-dense points. By Crd we denote the set

of all rd-continuous functions, while C1
rd denotes the set of all differentiable functions
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with rd-continuous derivative. It is known that rd-continuous functions possess an

antiderivative, i.e., there exists a function F with F∆ = f , and in this case an integral

is defined by
∫ b
a
f(t)∆t = F (b)− F (a). It satisfies

(2.3)

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

We need one more result that has not been available in the literature so far. But

its proof is easy and we will sketch it below. To present this result we need another

definition.

Definition 2.1. A function f defined on [a, b]×R is called continuous in the second

variable, uniformly in the first variable, if for each ε > 0 there exists δ > 0 such that

|x1 − x2| < δ implies |f(t, x1)− f(t, x2)| < ε for all t ∈ [a, b].

Lemma 2.2. Suppose that F (x) =
∫ b
a
f(t, x)∆t is well defined. If fx = ∂f

∂x
is contin-

uous in x, uniformly in t, then F ′(x) =
∫ b
a
fx(t, x)∆t.

Proof. Let ε > 0. Then there exists δ > 0 such that |fx(t, x1)−fx(t, x2)| < ε whenever

|x1 − x2| < δ and t ∈ [a, b]. Let h ∈ R with |h| < δ. Then∣∣∣∣F (x+ h)− F (x)

h
−
∫ b

a

fx(t, x)∆t

∣∣∣∣ =

∣∣∣∣∫ b

a

f(t, x+ h)− f(t, x)

h
∆t−

∫ b

a

fx(t, x)∆t

∣∣∣∣
=

∣∣∣∣∫ b

a

fx(t, x+ θh)∆t−
∫ b

a

fx(t, x)∆t

∣∣∣∣
≤

∫ b

a

|fx(t, x+ θh)− fx(t, x)|∆t < ε(b− a),

where θ = θ(t, x) ∈ (0, 1).

3. THE VARIATIONAL PROBLEM

We now consider the variational problem (1.5).

Definition 3.1. For f ∈ C1
rd we define the norm

||f || = max
t∈[a,b]κ

|fσ(t)|+ max
t∈[a,b]κ

|f∆(t)|.

A function ŷ ∈ C1
rd with ŷ(a) = α and ŷ(b) = β is called a (weak) local minimum of

(1.5) provided there exists δ > 0 such that L(ŷ) ≤ L(y) for all y ∈ C1
rd with y(a) = α

and y(b) = β and ||y− ŷ|| < δ. If L(ŷ) < L(y) for all such y 6= ŷ, then ŷ is said to be

proper. Finally, an η ∈ C1
rd is called an admissible variation provided η(a) = η(b) = 0.

Now, for an admissible variation η, we define a function Φ : R→ R by

Φ(ε) = Φ(ε; y, η) = L(y + εη), ε ∈ R.
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The first and second variation of the variational problem (1.5) are defined by

L1(y, η) = Φ̇(0; y, η) and L2(y, η) = Φ̈(0; y, η),

respectively.

The following two results are easy to prove (see e.g., [1, Theorems 1 and 2] and

offer necessary and sufficient conditions for local minima of (1.5) in terms of its first

and second variation.

Theorem 3.2 (Necessary Conditions). If ŷ is a local minimum of (1.5), then

L1(ŷ, η) = 0 and L2(ŷ, η) ≥ 0 for all admissible variations η.

Theorem 3.3 (Sufficient Condition). Let ŷ ∈ C1
rd with ŷ(a) = α and ŷ(b) = β. If

L1(ŷ, η) = 0 and L2(ŷ, η) > 0 for all nontrivial admissible variations η, then ŷ is a

proper weak local minimum of (1.5).

Functionals L2 that satisfy the condition from Theorem 3.2 and Theorem 3.3 are

called positive semidefinite and positive definite, respectively.

In view of the above two results it will be important to find another representation

of the first and second variation. This is done in the following lemma.

Lemma 3.4. Put f(t, ε) = L(t, yσ(t) + εησ(t), y∆(t) + εη∆(t)). If fε and fεε are

continuous in ε, uniformly in t, then

L1(y, η) =

∫ b

a

{
Lx(t, y

σ(t), y∆(t))ησ(t) + Lv(t, y
σ(t), y∆(t))η∆(t)

}
∆t,

L2(y, η) =

∫ b

a

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t,

where P , Q, and R are defined by (1.7) (with ŷ replaced by y).

Proof. This is a direct consequence of Lemma 2.2.

In the sequel we always assume without mentioning it further that L satisfies the

assumption of Lemma 3.4 for all y and η.

4. EULER’S CONDITION

We start with the following easy extension of the fundamental lemma of varia-

tional analysis to time scales.

Lemma 4.1 (Dubois–Reymond). Let g ∈ Crd, g : [a, b]→ R
n. Then

(4.1)

∫ b

a

gT (t)η∆(t)∆t = 0 for all η ∈ C1
rd with η(a) = η(b) = 0

holds if and only if

(4.2) g(t) ≡ c on [a, b]κ for some c ∈ Rn.
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Proof. First suppose that (4.2) holds. Then, by the definition of the integral,∫ b

a

gT (t)η∆(t)∆t =

∫ b

a

cTη∆(t)∆t

= cT
∫ b

a

η∆(t)∆t

= cT (η(b)− η(a)) = 0

if η ∈ C1
rd with η(a) = η(b) = 0, and hence (4.1) holds. Next, assume (4.1), and put

G(t) =

∫ t

a

g(τ)∆τ, t ∈ [a, b] and c =
G(b)

b− a
.

Define η(t) = G(t) − (t − a)c for t ∈ [a, b]. Then η∆(t) = g(t) − c so that η ∈ C1
rd.

Also,

η(a) = G(a) = 0

and

η(b) = G(b)− (b− a)c = G(b)− (b− a)
G(b)

b− a
= 0.

Hence, by (4.1),

0 =

∫ b

a

gT (t)η∆(t)∆t =

∫ b

a

gT (t) {g(t)− c}∆t

=

∫ b

a

{g(t)− c}T {g(t)− c}∆t+

∫ b

a

cT {g(t)− c}∆t

=

∫ b

a

|g(t)− c|2 ∆t+ cTG(b)− cT c(b− a)

=

∫ b

a

|g(t)− c|2 ∆t.

Therefore (see e.g., [8]) g(t)− c = 0 for all t ∈ [a, b]κ so that (4.2) holds.

Now, using the fundamental lemma from above, we can derive Euler’s necessary

condition.

Theorem 4.2 (Euler’s Necessary Condition). If ŷ is a local minimum of (1.5), then

the Euler–Lagrange equation

(4.3) L∆
v (t, ŷσ(t), ŷ∆(t)) = Lx(t, ŷ

σ(t), ŷ∆(t)), t ∈ [a, b]κ

holds.
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Proof. Let ŷ be a local minimum of (1.5) and suppose that η is an admissible variation.

Then we have by Theorem 3.2

0 = L1(ŷ, η) = Φ̇(0)

=

∫ b

a

{
Lx(t, ŷ

σ(t), ŷ∆(t))ησ(t) + Lv(t, ŷ
σ(t), ŷ∆(t))η∆(t)

}
∆t

=

∫ b

a

{[∫ t

a

Lx(τ, ŷ
σ(τ), ŷ∆(τ))∆τη(t)

]∆

−
[∫ t

a

Lx(τ, ŷ
σ(τ), ŷ∆(τ))∆τ

]
η∆(t)

+Lv(t, ŷ
σ(t), ŷ∆(t))η∆(t)

}
∆t

=

∫ b

a

{
Lv(t, ŷ

σ(t), ŷ∆(t))−
∫ t

a

Lx(τ, ŷ
σ(τ), ŷ∆(τ))∆τ

}
η∆(t)∆t.

Therefore, by Lemma 4.1, we have

Lv(t, ŷ
σ(t), ŷ∆(t)) =

∫ t

a

Lx(τ, ŷ
σ(τ), ŷ∆(τ))∆τ, t ∈ [a, b],

and hence (4.3) follows.

Example 4.3. Find the solution of the problem

(4.4)

∫ b

a

√
1 + (y∆(t))2∆t→ min, y(a) = 0, y(b) = 1.

Writing (4.4) in the form of (1.5), we have α = 0, β = 1, n = 1, and

L(t, x, v) =
√

1 + v2.

Next,

Lx(t, x, v) = 0 and Lv(t, x, v) =
v√

1 + v2
.

Suppose ŷ is a local minimum of (4.4). Then, by Theorem 4.2, the Euler equation

(4.3) must hold, i.e.,

(4.5) L∆
v (t, ŷσ(t), ŷ∆(t)) = 0, t ∈ [a, b]κ.

Now (4.5) implies that there exists a constant c ∈ R such that

Lv(t, ŷ
σ(t), ŷ∆(t)) ≡ c, t ∈ [a, b],

i.e.,

(4.6) ŷ∆(t) = c
√

1 + (ŷ∆(t))2, t ∈ [a, b]

holds. It is easy to solve equation (4.6) to obtain

ŷ(t) =
t− a
b− a

for all t ∈ [a, b],

i.e., ŷ is the line connecting the points (a, 0) and (b, 1), as expected.
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5. LEGENDRE’S CONDITION

In this section we prove Result 1.3 stated in the introduction.

Proof of Result 1.3. Let s ∈ [a, b]κ
2
. We consider two cases. First, we suppose that

s < σ(s) < b. Let γ ∈ Rn be arbitrary and define η : [a, b]→ R
n by

η(t) =

{
γ
√
µ(s) if t = σ(s),

0 otherwise.

It follows that η(a) = η(b) = 0 and that η is an admissible variation. We have

η∆(s) =
η(σ(s))− η(s)

µ(s)
=
γ
√
µ(s)

µ(s)
=

γ√
µ(s)

and

η∆(σ(s)) =
η(σ(σ(s)))− η(σ(s))

µ(σ(s))
= −

γ
√
µ(s)

µ(σ(s))
.

Furthermore, η∆(t) = 0 for all t ∈ [a, b] \ {s, σ(s)}. Thus,∫ σ(s)

a

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t

= µ(s)
{

(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆
}

(s)

= γT
{
P (s) + µ(s)

[
R(s) +RT (s) + µ(s)Q(s)

]}
γ.

The integral ∫ b

σ(s)

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t

is equal to zero if σ(s) is right-dense, and it is equal to

µ(σ(s))(η∆(σ(s)))TP (σ(s))η∆(σ(s)) =
µ(s)

µ(σ(s))
γTP (σ(s))γ

if σ(s) is right-scattered. In either case, by adding the integrals from a to σ(s) and

from σ(s) to b and by using Theorem 3.2, the matrix in (1.6) for t = s is indeed

positive semidefinite.

Second, suppose that s ∈ (a, b) is right-dense, i.e., σ(s) = s. (If the point s = a

is right-dense, one can use continuity of the matrices occurring in (1.7) in order to

show (1.6) for t = a, and similarly for t = b is b is left-dense.) We assume that s is

also left-scattered (the case that s is also left-dense can be treated similarly). Then

there exists a strictly decreasing sequence {sk : k ∈ N} ⊂ [a, b] with limk→∞ sk = s.

Let γ ∈ Rn and define for k ∈ N

ηk(t) =

{
γ sk−t√

sk−s
if t ∈ [s, sk],

0 otherwise.
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Again it follows that ηk is an admissible variation, and we have∫ s

a

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t

= µ(ρ(s))
{

(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆
}

(ρ(s))∆t

= µ(ρ(s))

{
(sk − s)γTQ(ρ(s))γ + 2

sk − s
µ(ρ(s))

γTR(ρ(s))γ +
sk − s

(µ(ρ(s)))2
γTP (ρ(s))γ

}
= (sk − s)γT

{
2R(ρ(s)) + µ(ρ(s))Q(ρ(s)) +

1

µ(ρ(s))
P (ρ(s))

}
γ

and∫ b

s

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t

=

∫ sk

s

{
(sk − σ(t))2

sk − s
γTQ(t)γ − 2

sk − σ(t)

sk − s
γTR(t)γ +

1

sk − s
γTP (t)γ

}
∆t.

By Theorem 3.2, we have

L2(ŷ, ηk) ≥ 0,

and letting k →∞, we obtain

γTP (s)γ ≥ 0.

Again, the matrix in (1.6) is (note µ(s) = 0) positive semidefinite.

6. JACOBI’S CONDITION

We need the following result from [1,10].

Theorem 6.1. Suppose A, B, and C are n×n-matrix-valued rd-continuous functions

on T such that I − µ(t)A(t) is invertible, B(t) is invertible and symmetric, and C(t)

is symmetric for each t ∈ T. Then
∫ b
a

{
(xσ)TCxσ + uTBu

}
(t)∆t > 0 for all pairs

(x, u) with x(a) = x(b) = 0, x 6= 0, and x∆ = Axσ + Bu, if and only if the linear

Hamiltonian dynamic system

(6.1) x∆ = A(t)xσ +B(t)u, u∆ = C(t)xσ − AT (t)u

is disconjugate on [a, b], i.e., the n × n-matrix-valued solution (X,U) of (6.1) with

X(a) = 0 and U(a) = I satisfies

(6.2) Xσ invertible, X(Xσ)−1(I − µA)−1B ≥ 0 on [a, b]κ.

We now give a condition (the so-called “strengthened Legendre condition”) that

ensures that we can rewrite L2 as a quadratic functional of the form given in Theorem

6.1.
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Lemma 6.2. Suppose the strengthened Legendre condition

(6.3) P (t) and P (t) + µ(t)R(t) are invertible for all t ∈ [a, b]κ

holds. Then

L2(ŷ, η) =

∫ b

a

{
(ησ)TCησ + ξTBξ

}
(t)∆t,

where ξ = Pη∆ +RTησ, B = P−1, and C = Q−RP−1RT .

Proof. We have

L2(ŷ, η) =

∫ b

a

{
(ησ)TQησ + 2(ησ)TRη∆ + (η∆)TPη∆

}
(t)∆t

=

∫ b

a

{
(ησ)T [C +RBRT ]ησ + 2(ησ)TRBPη∆ +(Pη∆)TB(Pη∆)

}
(t)∆t

=

∫ b

a

{
(ησ)TCησ + [Pη∆ +RTησ]TB[Pη∆ +RTησ]

}
(t)∆t

=

∫ b

a

{
(ησ)TCησ + ξTBξ

}
(t)∆t.

This proves our result.

The question of positive definiteness of L2, which arises when trying to apply

Theorem 3.3, is now satisfactorily answered by the following theorem. For this we

put

A = −P−1RT , B = P−1, C = Q−RP−1RT

and note that ξ = Pη∆ +RTησ is equivalent to η∆ = Aησ +Bξ.

Theorem 6.3 (Jacobi’s Condition). Assume that the strengthened Legendre condition

(6.3) holds. Then L2 is positive definite if and only if the linear Hamiltonian system

η∆ = A(t)ησ +B(t)ξ, ξ∆ = C(t)ησ − AT (t)ξ

is disconjugate on [a, b].

Proof. Note that (6.3) implies that

I − µA = I + µP−1RT = P−1(P + µRT ) =
{

(P + µR)P−1
}T

is invertible.

Hence our theorem is a special case of Theorem 6.1.

Remark 6.4. If R is symmetric and differentiable, then we can write

(ηTRη)∆ = (ησ)TR∆ησ + (ησ)TRη∆ + (η∆)TRη

= (ησ)TR∆ησ + 2(ησ)TRη∆ − µ(η∆)TRη∆
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and hence

L2(y, η) =

∫ b

a

{
(ησ)TQησ + (ηTRη)∆ − (ησ)TR∆ησ

+µ(η∆)TRη∆ + (η∆)TPη∆
}

(t)∆t

=

∫ b

a

{
(ησ)T Q̃ησ + (η∆)T P̃ η∆

}
(t)∆t,

where Q̃ = Q−R∆ and P̃ = P + µR. We hence have the following result.

Theorem 6.5. Let R be symmetric and invertible. If the alternative strengthened

Legendre condition

P (t) + µ(t)R(t) is invertible for all t ∈ [a, b]κ

holds, then L2 is positive definite if and only if the linear Hamiltonian system

η∆ = P̃−1(t)ξ, ξ∆ = Q̃(t)ησ

is disconjugate on [a, b].
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