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1. Introduction

One of the classical problems of mathematics consists in finding a closed
plane curve of a given length that encloses the greatest area: the isoperimetric
problem. The legend says that the first person who solved the isoperimetric
problem was Dido, the Queen of Carthage, who was offered as much land as she
could surround with the skin of a bull. Dido’s problem is nowadays part of the
calculus of variations [23, 35].

Fractional calculus is a generalization of (integer) differential calculus,
allowing to define derivatives (and integrals) of real or complex order [25,30,32].
The first application of fractional calculus belongs to Niels Henrik Abel (1802–
1829) and goes back to 1823 [1]. Abel applied the fractional calculus to the
solution of an integral equation which arises in the formulation of the tautochrone
problem. This problem, sometimes also called the isochrone problem, is that of
finding the shape of a frictionless wire lying in a vertical plane such that the
time of a bead placed on the wire slides to the lowest point of the wire in the
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same time regardless of where the bead is placed. The cycloid is the isochrone
as well as the brachistochrone curve: it gives the shortest time of slide and marks
the born of the calculus of variations.

The study of fractional problems of the calculus of variations and respec-
tive Euler–Lagrange type equations is a subject of current strong research due
to its many applications in science and engineering, including mechanics, chem-
istry, biology, economics, and control theory [27]. In 1996–1997 Riewe obtained
a version of the Euler–Lagrange equations for fractional variational problems
combining the conservative and nonconservative cases [33, 34]. Since then, nu-
merous works on the fractional calculus of variations, fractional optimal control
and its applications have been written—see, e.g., [4,7,8,11–14,20–22,26,28] and
references therein. For the study of fractional isoperimetric problems, see [5].

In the pioneering paper [2], and others that followed, the fractional nec-
essary optimality conditions are proved under the hypothesis that admissible
functions y have continuous left and right fractional derivatives on the closed
interval [a, b]. By considering that the admissible functions y have continu-
ous left fractional derivatives on the whole interval, then necessarily y(a) = 0;
by considering that the admissible functions y have continuous right fractional
derivatives, then necessarily y(b) = 0. This fact has been independently re-
marked, in different contexts, at least in [5, 11,13,24].

In our work we want to be able to consider arbitrarily given boundary
conditions y(a) = ya and y(b) = yb (and isoperimetric constraints). For that we
consider variational functionals with integrands involving not only a fractional
derivative of order α ∈ (0, 1) of the unknown function y, but also the classical
derivative y′. More precisely, we consider dependence of the integrands on the
independent variable t, unknown function y, and y′ + k aD

α
t y with k a real pa-

rameter. As a consequence, one gets a proper extension of the classical calculus
of variations, in the sense that the classical theory is recovered with the partic-
ular situation k = 0. We remark that this is not the case with all the previous
literature on the fractional variational calculus, where the classical theory is not
included as a particular case and only as a limit, when α → 1.

The text is organized as follows. In Section 2 we briefly recall the neces-
sary definitions and properties of the fractional calculus in the sense of Riemann–
Liouville. Our results are stated, proved, and illustrated through an example,
in Section 3. We end with Section 4 of conclusion.

2. Preliminaries

In this section some basic definitions and properties of fractional calculus
are given. For more on the subject we refer the reader to the books [25, 30, 32]
and historical survey [27].
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Definition 1. (Left and right Riemann–Liouville derivatives) Let f be
a function defined on [a, b]. The operator aD

α
t ,

aD
α
t f(t) =

1

Γ(n − α)
Dn

∫ t

a

(t − τ)n−α−1f(τ)dτ ,

is called the left Riemann–Liouville fractional derivative of order α, and the
operator tD

α
b ,

tD
α
b f(t) =

−1

Γ(n − α)
Dn

∫ b

t

(τ − t)n−α−1f(τ)dτ ,

is called the right Riemann–Liouville fractional derivative of order α, where
α ∈ R

+ is the order of the derivatives and the integer number n is such that
n − 1 ≤ α < n.

Definition 2. (Mittag–Leffler function) Let α, β > 0. The Mittag–
Leffler function is defined by

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
.

Theorem 3. (Integration by parts) If f, g and the fractional derivatives

aD
α
t g and tD

α
b f are continuous at every point t ∈ [a, b], then

∫ b

a

f(t)aD
α
t g(t)dt =

∫ b

a

g(t)tD
α
b f(t)dt (1)

for any 0 < α < 1.

Remark 4. If f(a) 6= 0, then aD
α
t f(t)|t=a = ∞. Similarly, if f(b) 6= 0,

then tD
α
b f(t)|t=b = ∞. Thus, if f possesses continuous left and right Riemann–

Liouville fractional derivatives at every point t ∈ [a, b], then f(a) = f(b) = 0.
This explains why the usual term f(t)g(t)|ba does not appear on the right-hand
side of (1).

3. Main results

Following [24], we prove optimality conditions of Euler–Lagrange type
for variational problems containing classical and fractional derivatives simulta-
neously. In Section 3.1 the fundamental variational problem is considered, while
in Section 3.2 we study the isoperimetric problem. Our results cover fractional
variational problems subject to arbitrarily given boundary conditions. This is
in contrast with [2–4,15], where the necessary optimality conditions are valid for
appropriate zero valued boundary conditions (cf. Remark 4). For a discussion
on this matter see [11,13,24].
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3.1. The Euler–Lagrange equation

Let 0 < α < 1. Consider the following problem: find a function y ∈
C1[a, b] for which the functional

J (y) =

∫ b

a

F
(

t, y(t), y′(t) + k aD
α
t y(t)

)

dt (2)

subject to given boundary conditions

y(a) = ya, y(b) = yb, (3)

has an extremum. We assume k is a fixed real number, F ∈ C2([a, b] × R
2; R),

and ∂3F (the partial derivative of F (·, ·, ·) with respect to its third argument)
has a continuous right Riemann–Liouville fractional derivative of order α.

Definition 5. A function y ∈ C1[a, b] that satisfies the given boundary
conditions (3) is said to be admissible for problem (2)–(3).

For simplicity of notation we introduce the operator [·]αk defined by

[y]αk (t) =
(

t, y(t), y′(t) + k aD
α
t y(t)

)

.

With this notation we can write (2) simply as

J (y) =

∫ b

a

F [y]αk (t)dt .

Theorem 6. (The fractional Euler–Lagrange equation) If y is an
extremizer (minimizer or maximizer) of problem (2)–(3), then y satisfies the
Euler–Lagrange equation

∂2F [y]αk (t) − d

dt
∂3F [y]αk (t) + k tD

α
b ∂3F [y]αk (t) = 0 (4)

for all t ∈ [a, b].

P r o o f. Suppose that y is a solution of (2)–(3). Note that admissible
functions ŷ can be written in the form ŷ(t) = y(t) + ǫη(t), where η ∈ C1[a, b],
η(a) = η(b) = 0, and ǫ ∈ R. Let

J(ǫ) =

∫ b

a

F

(

t, y(t) + ǫη(t),
d

dt
(y(t) + ǫη(t)) + kaD

α
t (y(t) + ǫη(t))

)

dt.

Since aD
α
t is a linear operator, we know that

aD
α
t (y(t) + ǫη(t)) = aD

α
t y(t) + ǫaD

α
t η(t).
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On the other hand,

dJ

dǫ

∣

∣

∣

∣

ǫ=0

=

∫ b

a

d

dǫ
F [ŷ]αk (t)dt

∣

∣

∣

∣

ǫ=0

=

∫ b

a

(

∂2F [y]αk (t) · η(t) + ∂3F [y]αk (t)
dη(t)

dt
+ k∂3F [y]αk (t)aD

α
t η(t)

)

dt.

(5)

Using integration by parts we get

∫ b

a

∂3F
dη

dt
dt = ∂3Fη|ba −

∫ b

a

(

η
d

dt
∂3F

)

dt (6)

and
∫ b

a

∂3FaD
α
t ηdt =

∫ b

a

η tD
α
b ∂3Fdt. (7)

Substituting (6) and (7) into (5), and having in mind that η(a) = η(b) = 0, it
follows that

dJ

dǫ

∣

∣

∣

∣

ǫ=0

=

∫ b

a

η(t)
(

∂2F [y]αk (t) − d

dt
∂3F [y]αk (t) + k tD

α
b ∂3F [y]αk (t)

)

dt.

A necessary optimality condition is given by dJ
dǫ

∣

∣

ǫ=0
= 0. Hence,

∫ b

a

η(t)
(

∂2F [y]αk (t) − d

dt
∂3F [y]αk (t) + k tD

α
b ∂3F [y]αk (t)

)

dt = 0. (8)

We obtain equality (4) by applying the fundamental lemma of the calculus of
variations to (8).

Example 7. Note that for k = 0 our necessary optimality condition
(4) reduces to the classical Euler–Lagrange equation [23,35].

3.2. The fractional isoperimetric problem

As before, let 0 < α < 1. We now consider the problem of extremizing a
functional

J (y) =

∫ b

a

F
(

t, y(t), y′(t) + k aD
α
t y(t)

)

dt (9)

in the class y ∈ C1[a, b] when subject to given boundary conditions

y(a) = ya , y(b) = yb, (10)
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and an isoperimetric constraint

I(y) =

∫ b

a

G(t, y(t), y′(t) + k aD
α
t y(t))dt = ξ . (11)

We assume that k and ξ are fixed real numbers, F,G ∈ C2([a, b] × R
2; R), and

∂3F and ∂3G have continuous right Riemann–Liouville fractional derivatives of
order α.

Definition 8. A function y ∈ C1[a, b] that satisfies the given boundary
conditions (10) and isoperimetric constraint (11) is said to be admissible for
problem (9)–(11).

Definition 9. An admissible function y is an extremal for I if it satisfies
the fractional Euler–Lagrange equation

∂2G[y]αk (t) − d

dt
∂3G[y]αk (t) + k tD

α
b ∂3G[y]αk (t) = 0

for all t ∈ [a, b].

The next theorem gives a necessary optimality condition for the fractional
isoperimetric problem (9)–(11).

Theorem 10. Let y be an extremizer to the functional (9) subject to
the boundary conditions (10) and the isoperimetric constraint (11). If y is not
an extremal for I, then there exists a constant λ such that

∂2H[y]αk (t) − d

dt
∂3H[y]αk (t) + k tD

α
b ∂3H[y]αk (t) = 0 (12)

for all t ∈ [a, b], where H(t, y, v) = F (t, y, v) − λG(t, y, v).

P r o o f. We introduce the two parameter family

ŷ = y + ǫ1η1 + ǫ2η2, (13)

in which η1 and η2 are such that η1, η2 ∈ C1[a, b] and they have continuous left
and right fractional derivatives. We also require that

η1(a) = η1(b) = 0 = η2(a) = η2(b).

First we need to show that in the family (13) there are curves such that ŷ satisfies
(11). Substituting y by ŷ in (11), I(ŷ) becomes a function of two parameters
ǫ1, ǫ2. Let

Î(ǫ1, ǫ2) =

∫ b

a

G(t, ŷ, ŷ′ + kaD
α
t ŷ)dt − ξ.
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Then, Î(0, 0) = 0 and

∂Î

∂ǫ2

∣

∣

∣

∣

∣

(0,0)

=

∫ b

a

η2

(

∂2G − d

dt
∂3G + ktD

α
b ∂3G

)

dt.

Since y is not an extremal for I, by the fundamental lemma of the calculus of
variations there is a function η2 such that

∂Î

∂ǫ2

∣

∣

∣

∣

∣

(0,0)

6= 0.

By the implicit function theorem, there exists a function ǫ2(·) defined in a neigh-
borhood of zero, such that Î(ǫ1, ǫ2(ǫ1)) = 0. Let Ĵ(ǫ1, ǫ2) = J (ŷ). Then, by the
Lagrange multiplier rule, there exists a real λ such that

∇(Ĵ(0, 0) − λÎ(0, 0)) = 0.

Because

∂Ĵ

∂ǫ1

∣

∣

∣

∣

∣

(0,0)

=

∫ b

a

η1

(

∂2F − d

dt
∂3F + ktD

α
b ∂3F

)

dt

and

∂Î

∂ǫ1

∣

∣

∣

∣

∣

(0,0)

=

∫ b

a

η1

(

∂2G − d

dt
∂3G + ktD

α
b ∂3G

)

dt,

one has

∫ b

a

η1

[

(

∂2F − d

dt
∂3F + ktD

α
b ∂3F

)

− λ

(

∂2G − d

dt
∂3G + ktD

α
b ∂3G

)

]

dt = 0.

Since η1 is an arbitrary function, (12) follows from the fundamental lemma of
the calculus of variations.
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3.3. An example

Let α ∈ (0, 1) and k, ξ ∈ R. Consider the following fractional isoperimet-
ric problem:

J (y) =

∫ 1

0

(

y′ + k 0D
α
t y

)2
dt −→ min

I(y) =

∫ 1

0

(

y′ + k 0D
α
t y

)

dt = ξ

y(0) = 0 , y(1) =

∫ 1

0
E1−α,1

(

−k (1 − τ)1−α
)

ξdτ.

(14)

In this case the augmented Lagrangian H of Theorem 10 is given by H(t, y, v) =
v2 − λv. One can easily check that

y(t) =

∫ t

0
E1−α,1

(

−k (t − τ)1−α
)

ξdτ (15)

• is not an extremal for I;

• satisfies y′ + k 0D
α
t y = ξ (see, e.g., [25, p. 297, Theorem 5.5]).

Moreover, (15) satisfies (12) for λ = 2ξ, i.e.,

− d

dt

(

2
(

y′ + k 0D
α
t y

)

− 2ξ
)

+ k tD
α
1

(

2
(

y′ + k 0D
α
t y

)

− 2ξ
)

= 0.

We conclude that (15) is the extremal for problem (14).

Example 11. Choose k = 0. In this case the isoperimetric constraint
is trivially satisfied, (14) is reduced to the classical problem of the calculus of
variations

J (y) =

∫ 1

0
(y′(t))2dt −→ min

y(0) = 0 , y(1) = ξ,

(16)

and our general extremal (15) simplifies to the well-known minimizer y(t) = ξt

of (16).

Example 12. When α → 1 the isoperimetric constraint is redundant
with the boundary conditions, and the fractional problem (14) simplifies to the
classical variational problem

J (y) = (k + 1)2
∫ 1

0
y′(t)2dt −→ min

y(0) = 0 , y(1) =
ξ

k + 1
.

(17)
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Our fractional extremal (15) gives y(t) = ξ
k+1 t, which is exactly the minimizer

of (17).

Example 13. Choose k = ξ = 1. When α → 0 one gets from (14) the
classical isoperimetric problem

J (y) =

∫ 1

0

(

y′(t) + y(t)
)2

dt −→ min

I(y) =

∫ 1

0
y(t)dt =

1

e

y(0) = 0 , y(1) = 1 − 1

e
.

(18)

Extremal (15) is then reduced to the classical extremal y(t) = 1 − e−t of (18).

Example 14. Choose k = 1 and α = 1
2 . Then (14) gives the following

fractional isoperimetric problem:

J (y) =

∫ 1

0

(

y′ + 0D

1

2

t y

)2

dt −→ min

I(y) =

∫ 1

0

(

y′ + 0D

1

2

t y

)

dt = ξ

y(0) = 0 , y(1) = −ξ

(

1 − erfc(1) +
2√
π

)

,

(19)

where erfc is the complementary error function. The extremal (15) for the
particular fractional problem (19) is

y(t) = −ξ

(

1 − eterfc(
√

t) +
2
√

t√
π

)

.

4. Conclusion

Fractional variational calculus provides a very useful framework to deal
with nonlocal dynamics in Mechanics and Physics [6, 16]. It has received con-
siderable interest in recent years, with several researchers applying this field to
develop fractional classical and quantum mechanics [10, 18, 29]. Motivated by
the results and insights of [5,8,24], in this paper we generalize previous fractional
Euler–Lagrange equations by proving optimality conditions for fractional prob-
lems of the calculus of variations where the highest derivative in the Lagrangian
is of integer order. This approach avoids the difficulties with the given boundary
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conditions when in presence of the Riemann–Liouville derivatives [24]. For the
case with the Caputo fractional derivatives ( [32]) we refer the reader to [31].

We focus our attention to problems subject to integral constraints (frac-
tional isoperimetric problems), which have recently found a broad class of im-
portant applications [9,17,19]. For k = 0 our results are reduced to the classical
ones [35]. This is in contrast with the standard approach to fractional variational
calculus, where the integer-order case is obtained only in the limit.
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