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The Calderón problem for connections

Mihajlo Cekić

Summary

This thesis is concerned with the inverse problem of determining a unitary connection A

on a Hermitian vector bundle E of rank m over a compact Riemannian manifold (M, g) from

the Dirichlet-to-Neumann (DN) map ΛA of the associated connection Laplacian d∗AdA. The

connection is to be determined up to a unitary gauge equivalence equal to the identity at the

boundary.

In our first approach to the problem, we restrict our attention to conformally transversally

anisotropic (cylindrical) manifolds M ⋐ R×M0. Our strategy can be described as follows: we

construct the special Complex Geometric Optics solutions oscillating in the vertical direction,

that concentrate near geodesics and use their density in an integral identity to reduce the problem

to a suitable X-ray transform on M0. The construction is based on our proof of existence of

Gaussian Beams on M0, which are a family of smooth approximate solutions to d∗AdAu = 0

depending on a parameter τ ∈ R, bounded in L2 norm and concentrating in measure along

geodesics when τ → ∞, whereas the small remainder (that makes the solution exact) can be

shown to exist by using suitable Carleman estimates.

In the case m = 1, we prove the recovery of the connection given the injectivity of the X-ray

transform on 0 and 1-forms on M0. For m > 1 and M0 simple we reduce the problem to a

certain two dimensional new non-abelian ray transform.

In our second approach, we assume that the connection A is a Yang-Mills connection and

no additional assumption on M . We construct a global gauge for A (possibly singular at some

points) that ties well with the DN map and in which the Yang-Mills equations become elliptic.

By using the unique continuation property for elliptic systems and the fact that the singular set

is suitably small, we are able to propagate the gauges globally. For the case m = 1 we are able to

reconstruct the connection, whereas for m > 1 we are forced to make the technical assumption

that (M, g) is analytic in order to prove the recovery.

Finally, in both approaches we are using the vital fact that is proved in this work: ΛA is a

pseudodifferential operator of order 1 acting on sections of E|∂M , whose full symbol determines

the full Taylor expansion of A at the boundary.
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CHAPTER 1

Introduction

In a physical situation with a geometric context, that is modelled by a system of partial

differential equations, geometric inverse problems are concerned with the reconstruction of pa-

rameters governing this system from the measured data. Many of such physical problems are

very conveniently formulated on manifolds, using geometric concepts of metrics, connections,

geodesics etc. For the sake of completeness, let us list a few such notable problems:

• The Calderón problem: reconstruct the metric from the Dirichlet-to-Neumann (DN)

map (see [84] for a survey)

• X-ray transform problems: recover a function or a tensor from integrals along geodesics1

(see [65] for a recent survey)

• The boundary rigidity problem: determine the metric from the boundary distances (see

the introductions to [67] and to the recent [75])

• Inverse problems in spectral geometry (see [15] for a survey)

Each of these problems is a theoretical generalisation of a real-world problem in physics

or engineering; the corresponding applications are, respectively, in the Electric Impedance To-

mography (EIT), computerised tomography and medical imaging, seismic imaging, identifying

distant objects in the universe.

The full Calderón problem consists in determining a metric g on a manifold up to an isometry

that fixes every point of the boundary from the DN map. It has been one of the main drives

in the area of geometric inverse problems. In this generality the problem is still open, but

considerable partial results exist under suitable assumptions on the manifold. Moreover, a

very interesting variation is the “twisted” version (with a connection), where we consider the

connection Laplacian L = ∇∗∇, with ∇ a covariant derivative and ∇∗ its formal adjoint. By

identifying the components of a connection over the trivial line bundle on the space R3 with a

magnetic potential, one gets this operator to be the magnetic Schrödinger operator. In this case,

the obstruction to injectivity is the group of gauge transformations that fix the boundary, but

the quantity that is preserved is the magnetic field, that is given by the curvature (first Chern

class).

In what follows we will briefly survey the results and provide some motivation for the prob-

lems in the thesis, which is concerned with the Calderón problem for connections (or the inverse

problem for the magnetic Schrödinger equation) and give an overview of the existing results.

1.1. Notation

We write f . g, if there exists a constant C > 0 such that ‖f‖ ≤ C‖g‖ for an appropriate

norm ‖·‖.
We write dVg, dωg or just dV for the volume form on the Riemannian manifold (M, g).

1This problem was first considered in the well-known paper by Radon [68] in 1917, where he proved a reconstruc-
tion formula – it is interesting to note that it took more than fifty years to find an application for this problem
in computerised tomography.

1



2 1. INTRODUCTION

For a domain Ω ⊂ Rn, we will write C∞
0 (Ω) = C∞

c (Ω) for the space of compactly supported

smooth functions in Ω. For a manifold with boundary M , we will write C∞
0 (M) = C∞

c (M) to

denote the space of smooth functions, compactly supported in the interior M int =M◦ of M .

By W k,p(X) we will denote the Lp based Sobolev space with k weak derivatives; the L2

based space will be denote by Hk(X) = W k,2(X). Here X is either a manifold or a subdomain

of Rn.

For clarity, let us list some of the abbreviations frequently used in the text: CGO for

the Complex Geometrical Optics, CTA for the Conformally Transversally Anisotropic, DN for

the Dirichlet-to-Neumann map, LCW for Limiting Carleman Weights, UCP for the Unique

Continuation Principle and SUCP for the Strong Unique Continuation Principle, YM for Yang-

Mills, DCT for the Dominated Convergence Theorem.

By C∞(M ;E) we denote the space of smooth sections of a vector bundle E over a manifold

M .

For topological spaces X and Y with X ⊂ Y , we write X ⋐ Y to say that the closure of X

in Y is compact.

1.2. Overview of the main problem

We will now set out a bare minimum of notation to state the main questions in this thesis.

Let (M, g) be a compact Riemannian manifold of dimension n with non-empty boundary, E

a Hermitian vector bundle of rank m over M equipped with a unitary connection A. We

will identify the connection A with the associated covariant derivative that we will denote by

dA = d+A where A is now a matrix of one-forms, by slightly abusing the notation. Given this,

we may define the associated DN map ΛA : C∞(∂M ;E|∂M ) → C∞(∂M ;E|∂M ) by uniquely

solving the Dirichlet problem:

d∗AdA(u) = 0, u|∂M = f (1.1)

and setting ΛA(f) = dA(u)(ν), where ν is the outwards pointing normal at the boundary.

Furthermore, if given a section Q of the endomorphism bundle of E, also called an electric

potential, then one can solve the associated problem for the operator LA,Q := d∗AdA + Q and

denote the corresponding DN map by ΛA,Q.

A gauge equivalence ψ is a section of the automorphism bundle AutE, that is a bundle

isomorphism that preserves the Hermitian structure. One then has a natural gauge invariance

of ΛA (coordinate change invariance) – if we denote the pullback connection by dB = ψ∗dA =

ψ−1dAψ and in addition we assume ψ|∂M = Id, then ΛA = ΛB. As with many similar inverse

problems, the question is: is this the only obstruction to injectivity of the map A 7→ ΛA? One

can then pose the following question, which is the main protagonist of the thesis [2,11,21,22,

26,45,60,71,77]:

Conjecture A (Uniqueness). Given two unitary connections A and B on E, we have the

equivalence: ΛA = ΛB if and only if there exists a gauge equivalence that is the identity at the

boundary that pulls back B to A.

If we add a potential Q, then ΛA,Q is invariant under the change (A,Q) 7→ (ψ∗A,ψ∗Q),

where ψ∗Q = ψ−1Qψ and we have the corresponding conjecture. Let us note here that the

invariance present in this problem is analogous to the Calderón problem for metrics, where the

DN map Λg is defined by solving the Dirichlet problem for the metric Laplacian ∆g. As before,

we have an invariance under coordinate change, i.e. Λg1 = Λg2 if g2 = ϕ∗g1, where ϕ :M →M

is a diffeomorphism and ϕ|∂M = Id – the question is whether this is the only obstruction to
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injectivity of g 7→ Λg. The geometric approach to these problems has the advantage that the

presence of a coordinate change symmetry is most naturally understood.

Besides uniqueness, there are a few other topics that have been studied and that belong to

the class of common questions one can ask about inverse problems – they are usually ill-posed,

failing uniqueness and have bad stability properties. Here is such a list of possible problems [71]:

• Uniqueness: as posed above in Conjecture A.

• Boundary determination: given ΛA,Q, determine the values of A and Q at the boundary

∂M (and the normal derivatives).

• Partial data: if the measurements are available only on a part of the boundary, i.e.

ΛA,Q|Γ = ΛB,Q′ |Γ for Γ ⊂ ∂M open, prove F ∗(B) = A and F ∗(Q′) = Q for some F

that fixes E|Γ.
• Reconstruction: given ΛA,Q and E trivial line bundle, find an algorithm to reconstruct

dA and Q.

• Stability : assuming ΛA,Q and ΛB,Q′ are close, prove Q and Q′, and A and B are close

in some sense.

Let us now survey some partial answers to the Conjecture A and revise the main ideas

present in the proofs. Firstly, there is a big distinction between the n = 2 and n ≥ 3 case. In

the n = 2 case, the conjecture has been fully solved (including a potential and low regularity) by

Albin, Guillarmou, Tzou and Uhlmann [2] (see also [36]). Their method is based on a reduction

argument to a first order Dirac system on an auxiliary bundle, on which they construct the

Complex Geometrical Optics (CGO) solutions using a “Morse holomorphic phase”; this is all

special, since such a reduction is only valid for surfaces, where ∆g factors in a nice way. The

partial data case for trivial line bundles was covered relatively recently by Tzou [82], by using

a geometric reflection method; the same author and Andersson consider the stability problem

in the same setting [3].

In the latter n ≥ 3 case, the full question is still open. In general, the metric and connection

Calderón problems have a lot of things in common (as we will see) and historically, progress in

the metric problem was followed by the analogous progress in the connection problem [10]. One

of the essential methods is due to Sylvester and Uhlmann [78], who prove the identifiability in

the metric problem for conformally Euclidean metric in domains and can be summarised in the

following few steps:

(1) Prove a suitable integral identity based on integration by parts.

(2) Prove the necessary Carleman estimates and obtain the existence of the Complex Ge-

ometrical Optics (CGO) solutions.

(3) Insert these solutions in the identity and use their density to make a global conclusion

about the involved quantities.

(4) Reduce the problem to a question of injectivity of an X-ray transform (or some other

transform).

Complex Geometric Optics (CGO) solutions are the solutions of LA,Qu = 0, of the form

u = e−
ϕ
h (a+ rh), where we think of a as an approximate solution

e
ϕ
hLA,Qe

−ϕ
h a ≈ 0 (1.2)

and rh is a small residue that makes this solution precise, solving an inhomogeneous equation.

Furthermore, h > 0 is a small parameter which we will take in the limit to zero and ϕ is a suitable

Carleman weight. The CGO solutions were first constructed for the conductivity equation in
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Rn in [78] (equivalently solving ∆ceu = 0, where e Euclidean metric and c a scalar function),

motivated by Calderón’s original exponential solutions.

1.2.1. Euclidean case. Based on the steps (1)–(4), there has been a number of partial

results for the conjecture for full data, Euclidean subdomains and trivial line bundles, while

gradually reducing the regularity of A and Q: possibly the first one is by Sun [77], where the

author considers the n ≥ 3 case and proves identification of a generic electric W 1,∞ potential

and a small W 2,∞ magnetic field, by adapting the CGO construction. Under a smoothness

assumption, the CGOs were constructed for any A by Nakamura and Uhlmann [58,59], who

used a pseudodifferential conjugation method (i.e. they perform a pseudodifferential gauge

transformation) to reduce to the case of a small A, which can then be solved by a Neumann series

argument. Moreover, the same authors and Sun [60] prove identification in the smooth case for

any A and q. Tolmasky, Panchenko and Salo reduce the regularity assumption to C1, some less

regular, but small potentials and Dini continuous, respectively, in the upcoming years in [79], [63]

and [72]. Arguably the best results were obtained by Krupchyk and Uhlmann [45] who reduce

the regularity assumption to only L∞ electric and magnetic potentials, while Haberman reduces

the regularity to small A ∈ W s,3 and q ∈ W−1,3 in R3 for s > 0. In [81], Tzou quantifies

the uniqueness results and proves a “log log” stability estimate for partial data, containing

measurements on slightly more than half of the boundary. Finally, a very important result for

us, the first one to consider systems (m > 1 case) that we are aware of is by Eskin [26], where

he proves the identifiability of a C∞ magnetic and electric potential.

1.2.2. CTA manifolds. On manifolds, we will mostly limit ourselves to the geometry of

special type of cylindrical manifolds, on which we may construct the CGO solutions:

Definition B. Let (M, g) be a smooth, compact, n-dimensional Riemannian manifold with

boundary, such that n ≥ 3 and let T = (R ×M0, e ⊕ g0), where e is the Euclidean metric and

(M0, g0) a compact (n−1)-dimensional Riemannian manifold with boundary. We say that (M, g)

is conformally transversally anisotropic (CTA) if (M, cg) is isometrically embedded into T for

some positive function c on M .

If M is CTA with M0 simple2, in [21] the conjecture was reduced to an injectivity problem

of the X-ray transform on M0, which is well known [65]. For the metric problem, in [23] CGOs

are constructed for any compact M0 and an electric potential is identified if M0 has just an

injective X-ray transform, by using the approximate solutions concentrating on geodesics called

Gaussian Beams, as in (1.2).

In this thesis and in [11], by generalising the Gaussian Beam construction to include the

case of connections on arbitrary bundles and considering specific partial data, we were able to

gauge identify two connections for m = 1; for the higher rank m > 1 case, in the same paper

we reduced the conjecture to a new non-abelian ray transform. Finally, in the recent works [46]

for the CTA case, generalising [11] when m = 1, the authors gauge identify two continuous

connections (and thus reduce the regularity); for M0 simple they identify magnetic fields and

electric potentials in the L∞ case.

The partial data problem (measurements available only on a subset of the boundary) in

the Euclidean subdomains and trivial line bundles was studied by Dos Santos Ferreira, Kenig,

Sjöstrand and Uhlmann [22], who prove the recovery of a C2 magnetic field and L∞ electric

2A Riemannian manifold (M, g) is called simple if the exponential map expp is a diffeomorphism onto M from
its domain of definition for all points p; in addition, one also asks that the boundary is strictly convex (second
fundamental form positive definite).
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fields, given data on specific subsets of the boundary determined by the acute (or obtuse) angle

of rays hitting the boundary from a fixed point in the exterior of the subdomain (front and back

faces). Their work is based on the construction of the CGOs for the A = 0 case that was covered

by Kenig, Sjöstrand and Uhlmann [40], who identify two potentials – this was the first instance

that the technique of the Carleman estimates was used to construct CGOs. More precisely, the

authors introduce the notion of limiting Carleman weights (LCW) and use a convexification

idea to prove the estimates. This was extended to Hölder continuous coefficients by Knudsen

and Salo [41].

In general, Carleman estimates can be used to prove uniqueness results by using an “alge-

braic” invariance of the form: Pu = 0 if and only if Pϕω = 0, where Pϕ = e−ϕPeϕ and ω = e−ϕu,

with the aim to obtain positivity in the operator. Here, ϕ is called a Carleman weight and needs

to be specified.

Following on the work of [40], Dos Santos Ferreira, Kenig, Salo and Uhlmann [21] have

classified all possible LCWs in the Euclidean case and found a nice geometric condition on

(M, g) equivalent to having an LCW: the conformal class of g needs to have a unit parallel

vector field (see Definition B); this condition is of course non-generic (see [51]) and it remains

an open problem to construct such solutions in full generality. In [13], Chung constructs CGOs

for the magnetic equation that have compact support at the boundary and generalises the results

of [40] to non-zero A. A slightly related to the systems case is the result in [14], where the

authors consider the case of differential forms.

1.2.3. Boundary determination. Finally, let us review a few results about boundary

determination (see [71] for more details). The first result that considered the anisotropic case,

or equivalently any Riemannian metric, was by Lee and Uhlmann [50], who proved that the full

symbol of Λg as a pseudodifferential operator of first order determines the Taylor expansion of g

at the boundary – the same method can be applied to other inverse boundary problems [58]. In

the Euclidean setting and the case of a trivial line bundle, Nakamura, Sun and Uhlmann prove

the boundary determination for any A in [60]. However, pseudodifferential methods are limited

to the C∞ setting and they assume the well-posedness of the Dirichlet problem, i.e. that zero is

not an eigenvalue of LA,Q. There are other methods one can use to prove the identification at the

boundary – by testing against oscillatory functions, coefficients at the boundary were retrieved

in [9,72] for continuous connections and L∞ potentials; the manifolds case is considered in the

recent work of [46].

Finally, in [12] we considered the former approach and proved boundary determination in

the higher rank m > 1 case.

1.2.4. Alternative approaches. Another related method for the metric Calderón problem

that does not use CGO solutions, in the analytic category, is the one of Lassas and Uhlmann [49],

who prove the uniqueness with partial data in their work. Together with Taylor [48], the authors

extend their results to non-compact complete Riemannian manifolds with compact boundary.

They prove the required result by embedding the manifold in a suitable Sobolev space, by

using Green’s functions with respect to the metrics and prove the obtained composition is an

isometry, by using boundary determination and analytic continuation. A very close approach

is by Guillarmou and Sá Barretto who prove the uniqueness for Einstein metrics, by using the

unique continuation property with boundary determination for reconstruction near the boundary

in harmonic coordinates and then use the Lassas-Uhlmann method.
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Inspired by these results, in [12] we proved uniqueness of the main conjecture for two Yang-

Mills connections using an entirely new method.

Finally, we should mention there is a relationship between our inverse boundary value prob-

lem and the inverse scattering problem at fixed energy – for compactly supported potentials

these two problems are equivalent [28] and the scattering problem was studied by different

authors in the past [27,62]. However, we will not discuss this approach any further.

1.2.5. The X-ray transform. It is now clear that the injectivity questions of the X-ray

transforms are one of the central problems in the area of geometric inverse problems. Moreover,

it is a fact that many of the mentioned problems and inverse problems in general can be reduced

to instances of the X-ray transform. This has come up in a few places: in the elliptic inverse

boundary value problems in which the CGO solutions are constructed by using the Gaussian

Beams – they concentrate along geodesics in an asymptotic limit, yielding integrals of the quan-

tities as in Step (4) [11,21,23]. Other applications include [66], where the authors determine

a matrix X-ray transform from the scattering relation and thus reduce the problem. There are

many other occasions where a geometric inverse problem is reduced to another one – one such

important example is the proof of boundary rigidity for surfaces by Pestov and Uhlmann [67],

the main part of which determines the DN map data for the metric from the boundary distances.

Let us now state the main results of this thesis, propose motivation and outline ideas of proof

for them: one by constructing the CGO solutions on CTA manifolds for non-zero A and reducing

the problem to the injectivity of a ray transform and the other, valid for general manifolds, but

special Yang-Mills connections.

1.3. The CGO approach

In this section, we describe our approach to Conjecture A in more detail, based on the CGO

solutions. Our work completely covers and proves the conjecture for admissible line bundles,

in the case of CTA manifolds and with a suitable hypothesis of injectivity of the ray transform

on the transversal manifold M0 (see Theorem E) – this result is new in the sense that we have

significantly weakened the simplicity hypothesis on M0, generalising results in [21].

In order to state the Main Theorem, we need to set up some notation, still assuming the

background from the previous section: let F (−∞) = F = {x ∈ ∂M | 〈 ∂
∂x1

, ν(x)〉 = c(x)ν1(x) ≤
0}, which we call the front side and the analogous set B with ≤ replaced with ≥ we call the

back side; here ν(x) is the outer normal. We also use the notation ∂M− = F and ∂M+ = B (see

Figure 1). Moreover, we remark that this setting was used in [22] in order to prove a suitable

partial data result in Euclidean domains; the analogy with our case is that we are considering

rays from the “point at infinity”, rather than from the points near the boundary.

Furthermore, lets us spell out some basic definitions about the X-ray transform. Let SM0 =

{(x, ξ) ∈| x ∈M0 and |ξ| = 1} denote the sphere bundle ofM0 and consider the set of all inward

and outward pointing vectors:

∂±SM0 = {(x, ξ) ∈ SM0 | x ∈ ∂M0 and ± 〈ξ, ν(x)〉 ≤ 0}

Then, let us denote by γx,ξ the unique geodesic in M0 with γx,ξ(0) = x and γ̇x,ξ(0) = ξ for any

(x, ξ) ∈ TM ; we define the exit time τ(x, ξ) as the first time when γx,ξ hits the boundary ∂M0

(possibly infinite). Then we denote the set of trapped geodesics by:

Γ+ = {(x, ξ) ∈ ∂+SM0 | τ(x, ξ) =∞}
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With this in mind, we may define the geodesic X-ray transform of a smooth 1-form α and a

function f on M0, for all (x, ξ) ∈ ∂+SM0 \ Γ+:

I(f, α)(x, ξ) =

∫ τ(x,ξ)

0

(
f(γx,ξ(t)) + α

(
γx,ξ(t), γ̇x,ξ(t)

))
dt

There is an obstruction to injectivity of this transform:

Definition C. We say that the X-ray transform is injective on functions and 1-forms if

I(f, α) = 0 implies that f = 0 and the existence of a smooth function p on M0 with p|∂M0 = 0

and α = dp.

We will need another definition – this time it is about the “admissible” vector bundles over

M , which is a necessary topological condition to construct the CGO solutions.

Definition D. Let M ⋐ R×M0 be a CTA manifold. A vector bundle E over M is called

admissible if it is isomorphic to a pullback bundle π∗E0, where E0 is a vector bundle over M0

and π :M →M0 is the projection along the x1-direction.

Notice the condition of admissibility of the vector bundle E is a necessary and sufficient

condition for the bundle E to have an extension E′ to R × M0 such that E′|M = E (easy

exercise). We prove the following result:

Theorem E (Main Theorem). Let (M, g) be a CTA manifold. Let E be an admissible Her-

mitian line bundle over M , equipped with unitary connections A1 and A2. Assume furthermore

the injectivity of the ray transform on functions and 1-forms on M0. If Γ is a neighbourhood of

the front face of M , then ΛA1(f)|Γ = ΛA2(f)|Γ3 for all f ∈ C∞(∂M ;E|∂M ) implies the existence

of a gauge equivalence that is the identity on Γ and which pulls back A2 to A1.

Figure 1. Solid torus as a CTA manifold, showing front (green) and back (red) faces.

Firstly, as mentioned in the overiew, we remark that the CGO solutions supported in a front

or a back face were constructed by Chung in [13] for Euclidean domains – this probably implies

such solutions could be constructed in our setting. The existence of such CGOs would reduce

3Alternatively, given a connection A and a subset Γ ⊂ ∂M of the boundary, the partial Cauchy data space
are defined as CΓ

A = {(u|∂M , dAu(ν)|Γ)
∣

∣d∗AdAu = 0 and u ∈ H1(M)}, where ν is the outward normal; then by

definition CΓ
A1

= CΓ
A2

if and only if ΛA1
(f)|Γ = ΛA2

(f)|Γ for all f .
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the assumption of the theorem to ΛA1(f)|Γ = ΛA2(f)|Γ for all f ∈ C∞
0 (Γ); however, due to

technical reasons and simplicity we will deal only with the full Dirichlet data.

This particular CTA setting is interesting because of the existence of the “Euclidean direc-

tion” in our manifold, i.e. the direction set out by R; this enables us to define a Carleman

weight ϕ(x) = x1, which in turn allows for the CGO solutions to be constructed (see [21]; for an

alternative construction of the CGOs using the Fourier transform in the x1 variable, see [70]).

Our construction is based on the solutions known as Gaussian beams, which have already shown

to be fertile in the less complicated case of the operator ∆ + q in [23]. We have also adapted

the construction to the case of the connection Laplacian, valid for functions with values in a

vector bundle; the idea is to show existence of approximate solutions which concentrate in a

suitable way around geodesics. This is done locally in charts covering the geodesic and then

glued together to form a global solution. Moreover, it is worth emphasising that our main result

Theorem E generalises the one present in [21], in that it does not ask for M0 to be simple, which

complicates the construction significantly – more concretely, it allows for the geodesics on M0

to self-intersect and allows for the existence of conjugate points (which prevent the exponential

map from being a diffeomorphism).

Furthermore, in Section 6 another approach based on the interplay between the parallel

transport and the unique continuation principle (UCP) for elliptic equations is pursued. Theo-

rem 7.6 proves Conjecture A in the setting of partial data, in the case of two flat connections.

The latter assumption simplifies the problem significantly, because the parallel transport along

homotopic curves is then the same, which enables us to define a suitable gauge. A similar idea

was already used in [36] in the case of line bundles over surfaces. Moreover, there is a nat-

ural way of pushing these results further to the case of Yang-Mills connections, which will be

considered in the next section.

In addition to the above, we also provide a general framework and base for the future work

in the direction of the Calderón problem for connections on vector bundles, by constructing

the CGOs in general (see Theorem 4.4 and Remark 4.9). For simple transversal manifolds and

the trivial vector bundle of any rank, we also get to the fourth step in our previous analysis

– see Section 4. Moreover, in this case, one can reduce the main DN inverse problem to a

new non-abelian X-ray transform – see Question F, which we have not found in the literature.

The reduction process is fully explained and outlined in Section 6.2. One distinct feature of

this transform is that it involves the complex derivative X = ∂
∂x1

+ iX, rather than just the

usual geodesic vector field derivative X – hence, one could expect that methods from complex

analysis and geometry might be useful to deduce certain properties of this transform (as in [26]).

Another characteristic property of this transform is that it is not abelian in general, making it

harder to reduce to an X-ray transform on just M0, which is usually done in such situations

(see [21]). The question is posed here in the form of a transport equation.

Question F (The non-abelian Radon transform). Let (M0, g0) be a compact simple manifold

with boundary, with dimM0 ≥ 2 and let M be an isometrically embedded, compact submanifold

of T = (R×M0, e⊕g0) with non-empty boundary and dimM = dimT . Let E = R×M0×Cm be a

Hermitian vector bundle equipped with two unitary connections A1 and A2, which are compactly

supported and satisfy A1 = A2 on R×M0 \M . Let R′ = {(x1, x, v) ∈ R× SM0 : (x1, x) 6∈M}.
Assume we are given a smooth matrix function G : R × SM0 → GL(m,C) such that, if X =
∂

∂x1
+ iX, where X is the geodesic vector field:

XG(x1, x, v) = −A1(x1, x)
( ∂

∂x1
+ iv

)
G(x1, x, v) +G(x1, x, v)A2(x1, x)

( ∂

∂x1
+ iv

)
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for all (x1, x, v), with the additional condition G|R′ = Id. Prove that G is independent of the

velocity variable v.

In order to support our Theorem E, let us list a number of results that generate a large class

of non-trivial examples for which our theorem is new. Firstly, the results of Stefanov, Uhlmann

and Vasy [74,85] give the injectivity of the ray transform if the manifold is foliated by convex

hypersurfaces up to a small set; secondly, the result of Guillarmou in [33] proves the injectivity in

the case of manifolds with negative curvature and strictly convex boundary (second fundamental

form positive). Finally, the very recent results of Paternain, Salo, Uhlmann and Zhou [66] show

that the geodesic transform is injective in the case of strictly convex manifolds with non-negative

sectional curvature. The second one of these results allows existence of trapping (geodesics of

infinite length), while the third one allows for the existence of conjugate points. As a concrete

example of where our Main Theorem is a new result, we can let the transversal manifold M0 be

a catenoid – a surface with negative curvature and for which the boundary is strictly convex;

it has geodesics that are trapped (e.g. the middle circle) and hence is not simple, but the ray

transform is injective by the results in [33].

These results are proved in the thesis as follows: in the next chapter we provide some

elementary background and also prove an integral identity based on integration by parts, while

Chapters 4 and 5 are the most technical ones – the former one we divide into two parts: in

Section 4.1, we present the lengthy construction of the version of Gaussian beam solutions

that is relevant for us, for general vector bundles. Furthermore, in Section 4.2 we apply this

construction to deduce the existence of CGO solutions and moreover, we prove that we may

recover the differential of the connection dA from the DN map in the case of line bundles. In

the latter one we prove the necessary Carleman estimates for sections of vector bundles using

semiclassical calculus. However, in Chapter 6 we consider the case where the transversal manifold

is simple and for which we may construct the ansatz in a much easier way – in this setting, we

reduce the conjecture to the new ray transform (here m > 1). Finally, in Chapter 7 we finish

the proof of Theorem E: Section 7.1 recovers the magnetic field (curvature) and Section 7.2

concludes the proof by employing an argument involving holonomy and the unique continuation

principle.

1.4. The Yang-Mills case

In this section, we consider Conjecture A for a special type of connections, called the Yang-

Mills connections. As far as we know, the results in our work [12] are the first ones that consider

the connection problem and do not rely on the CGO solutions (see any of [11,21,22,26]), but

on unique continuation principles; in this sense, we generalise the result for flat connections

from the previous section.

The Yang-Mills connections generalise flat connections and are important in physics and

geometry. They are defined by the following equation:

D∗
AFA = 0

where DA = dEndA is the induced connection on the endomorphism bundle EndE and FA is the

curvature of A (see the overview section for notation). With this in mind, we may formulate

the main theorems of this section:

Theorem G. Assume dimM ≥ 2, let E =M ×C be a Hermitian line bundle with standard

metric and ∅ 6= Γ ⊂ ∂M an open, non-empty subset of the boundary. Let A and B be two

unitary Yang-Mills connections on E. If ΛA(f)|Γ = ΛB(f)|Γ for all f ∈ C∞
0 (Γ;E|Γ), then there
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exists a gauge automorphism (unitary) h with h|Γ = Id such that h∗(A) = B on the whole of

M .

Before further proceeding to the organisation of the proofs, let us explain the source of mo-

tivation for considering this problem. The idea came from the analogy between Einstein metrics

in Riemannian geometry and Yang-Mills connections on Hermitian vector bundles and also the

paper by Guillarmou and Sá Barreto [35]. They prove the recovery of two Einstein manifolds

from the DN map for metrics; the method of their proof relies on a reconstruction near the

boundary, where in special harmonic coordinates Einstein equations become quasi-linear elliptic

(the metric is thus also analytic in the interior in such coordiantes, but not all the way up to

the boundary) and hence, by combining the boundary determination result [50] and a unique

continuation result for elliptic systems they prove one can identify the two metrics in a neigh-

bourhood of the boundary. Moreover, by exploiting this analytic structure they observe that

the method of Lassas and Uhlmann [48], who prove the analytic Calderón problem for metrics,

may be used to extend this local isometry to the whole manifold (this works by embedding the

two manifolds in a suitable Sobolev space using the Green functions of the metric Laplacians

and the local isometry and showing the appropriate composition is an isometry).

In our case, the analogous concept to harmonic coordinates is to consider the Coulomb

gauge [83] which transforms the connection to the one for which d∗(A) = 0, so that the Yang-

Mills equations become an elliptic system with principal diagonal part. However, this gauge

does not tie well with the DN map and so we must look for something else – Lemma 8.1 gives an

answer as to which gauge to consider. In this gauge, we may use a similar unique continuation

principle result to yield the equivalence of connections close to the boundary. However, for going

further into the interior we designed a new method.

More concretely, our gauge from Lemma 8.1 satisfies the equation d∗AdAF = 0 and so we

cannot guarantee that it is non-singular globally. We show that the zero set of the determinant of

F is small in the smooth case when m = 1 and in the analytic case for arbitrary m – it is covered

by countably many submanifolds of codimension one, or in the language of geometric analysis

it is (n − 1)-C∞-rectifiable. Since (the complement of) this singular set can be topologically

non-trivial (see Figure 1), we end up with such barriers consisting of singular points of F that

prevent us to use the UCP and go inside the manifold. This is addressed by looking at the

sufficiently nice points of the barriers and locally near these points, using a degenerate form of

UCP (in the smooth case) or a suitable form of analytic continuation (in the analytic case) to

extend an appropriate gauge equivalence between the two given connections beyond the barriers;

we name this procedure as “drilling”. Since we show there is a dense set of such nice points, we

may perform the drilling to extend our gauges globally.

Here is what we prove in the analytic case:

Theorem H. Let (M, g) be an analytic Riemannian manifold4 of dimension dimM ≥ 2

and let Γ be as in Theorem G. If E = M × Cm is a Hermitian vector bundle with the standard

structure and if A and B are two unitary Yang-Mills connections on E, then ΛA(f)|Γ = ΛB(f)Γ

for all f ∈ C∞
0 (Γ;E|Γ) if and only if there exists a gauge automorphism H of E, with H|Γ = Id,

such that H∗(A) = B.

The proof of this theorem also relies on using the Coulomb gauge locally, since the gauge

from Lemma 8.1 does not work near singular points; in this gauge we may get that A is analytic

and hence F also, since they satisfy elliptic equations with analytic coefficients.

4The metric g is only assumed to be analytic in the interior of M .
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Furthermore, the main difficulty for the smooth, higher rank (m > 1) case is to prove the

strong unique continuation property for the determinant detF of a solution to d∗AdAF = 0; for

m = 1, this is obvious by standard results. Another issue is that one needs to prove the UCP for

elliptic systems with diagonal principal part and higher orders of degeneracy at a hyperplane.

More precisely, operators with leading term x2kn ∆ × Id and with first order terms containing

multiples of xkn; in other words, the algebra of operators generated by derivatives of the form

xkn
∂
∂x where xn is the boundary defining coordinate.

In this thesis, an important role is played by the unique continuation results. As a source

for the UCP results we will use Bär [7], who proves the rectifiability statements for the zero

sets of first order semilinear elliptic systems; for convenience, we prove an easy consequence of

his results for second order systems in Lemma 8.4. Furthermore, we apply the degenerate UCP

result of Mazzeo [53], for which we have not found an alternative source in the literature.

We also prove that the DN map ΛA is an elliptic pseudodifferential operator of order 1 on

the restriction of the vector bundle to the boundary and deduce that its full symbol determines

the full Taylor series of the connection, metric and a potential at the boundary. This was first

proved in the case of a Riemannian metric by Lee and Uhlmann [50] and later considered in the

m = 1 case with a connection in [21]; see also the overview section. In Chapter 3, we generalise

this approach to the case of systems and prove the analogous result.

The proofs are organised as follows: in the next chapter, we recall some formulas from dif-

ferential geometry and make a few observations about choosing appropriate gauges. In Chapter

8 we prove Theorems G and H: in Section 8.1 we consider the smooth case and prove the global

result for m = 1. Along the way, we construct the new gauge and deduce the UCP result we

need. In Section 8.2 we consider the m > 1 case for analytic metrics, by adapting the proof

of the line bundle case and exploiting real-analyticity. As mentioned previously, in Chapter 3

we prove the boundary determination result by using the pseudodifferential calculus. Finally,

in Appendix A we prove some elementary results about extending a certain kind of functions

and prove the well-posedness of a pseudodifferential heat equation, relevant for the boundary

determination.





CHAPTER 2

Preliminaries

2.1. Notation and basic definitions

Throughout this section, (M, g) is a compact connected Riemannian manifold of dimension

n with boundary, E is a Hermitian vector bundle of rank m over M , equipped with a unitary

connection ∇. Let ν be the outward normal to ∂M . We also fix a matrix valued potential Q,

that is a section of the endomorphism bundle of E. Moreover, we will denote the sections of E by

C∞(M ;E) or by Γ(E) (both notations are standard). Recall that the connection gives rise to a

covariant derivative ∇ : Γ(E)→ Γ(E⊗T ∗M); moreover, in a trivial vector bundle E =M ×Cm

with the standard Hermitian inner product in the fibers, a connection is given by a m × m

matrix of one-forms A and the covariant derivative by dA = d + A. We will interchangeably

use the following symbols for the covariant derivative: dA, ∇A and ∇; subscript A here denotes

the connection as a formal object, but can also mean the connection 1-form, depending on the

context. Furthermore, we will assume the summation convention, where repeated indices mean

that we sum over the corresponding index. One can extend the action of the covariant derivative

to all E-valued differental forms, i.e. sections of
∧p T ∗M ⊗ E = Ωp(E), by the Lebnitz rule –

we will still denote this operator by dA.

The connection being unitary, means the following compatibility condition:

d〈u, v〉E = 〈∇u, v〉E + 〈u,∇v〉E
We can use the Hermitian inner product to define inner product on sections of E:

(u, v)L2(M ;E) =
∫
M 〈u, v〉EdV

where dV is the volume form on M (sometimes omitted from the integrals for simplicity) and

more generally on E-valued one forms (that is, sections of C∞(M ;E ⊗ T ∗M)), where in local

coordinates α = αidx
i and β = βidx

i:

(α, β)L2(M ;E⊗T ∗M) =
∫
M gij〈αi, βj〉EdV

In general, we use the notation d∗A or ∇∗ to denote the formal adjoint of dA acting on vector

valued p-forms; if A is unitary, then d∗A = (−1)(p−1)n+1 ⋆ dA⋆, where ⋆ is the Hodge star acting

C-linearly on differential forms with values in E as ⋆(ω ⊗ s) = (⋆ω)⊗ s, ω is a differential form

and s is a section of E. Now using Stokes’ theorem one can prove that the following identity

holds (see [44]):

(∇∗u, v)L2 − (u,∇v)L2 = −(ινu, v)L2(∂M ;E|∂M ) (2.1)

where u is an E-valued one form and v is a section of E.

Now we can define the twisted or the connection Laplacian as

L∇ = ∇∗∇

We also denote by L∇,Q = ∇∗∇ + Q (or LA,Q) the corresponding Schrödinger operator and

Lg,∇,Q when we want to emphasise the dependence on the metric. With the assumption that 0

is not a Dirichlet eigenvalue of L∇,Q in M , we have the unique solution u ∈ H1(M ;E) of the

13
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following Dirichlet problem, in the weak sense:
{LA,Qu = 0, in M

u = f, on ∂M
(2.2)

for f ∈ H1(M ;E), by standard elliptic PDE theory. Here, the Sobolev spaces H1(M ;E) and

H1
0 (M ;E) are defined as the completions of C∞(M ;E) and C∞

0 (M ;E) spaces, respectively in

the H1 norms:

‖u‖2H1(M ;E) = ‖u‖2L2(M ;E) + ‖∇u‖2L2(M ;E⊗T ∗M)

If we denote the unique solution of equation (2.2) by uf , we see that we may change f by a

ϕ ∈ H1
0 (M) and have the same solution. So we define the half Sobolev space as the quotient:

H
1
2 (∂M ;E|∂M ) := H1(M ;E)/H1

0 (M ;E) (2.3)

which essentially comes from the trace theorems in Sobolev spaces (we lose “half derivative”

when restricting to the boundary – see Proposition A.4 for the details). The spaces H− 1
2 and

H−1 on ∂M are defined as the duals of H
1
2 and H1 spaces, respectively.

We are aiming to define the DN map as ΛA,Qf = ινdAuf for smooth f and more generally

ΛA,Q : H
1
2 → H− 1

2 . For any f, h ∈ C∞(M ;E), by using (2.1), we can easily see that:

〈〈ΛA,Qf, h〉〉 =
∫

∂M
〈ινdAuf , h〉dS =

∫

M

[
〈dAuf , dAh〉+ 〈Quf , h〉

]
dV (2.4)

where by 〈〈·, ·〉〉 we have denoted the pairing between H− 1
2 and H

1
2 and dS is the surface volume

form on ∂M . Finally, this motivates us to define the DN map via the formula (2.4) (see [70] for

the case of E =M × C and A = 0):

Definition 2.1. The Dirichlet-to-Neumann map or the DN map is defined as the unique

bounded map ΛA,Q : H
1
2 (∂M ;E|∂M )→ H− 1

2 (∂M ;E∂M ), obtained by the following bilinear form:

〈〈ΛA,Qf, h〉〉 =
∫

M

[
〈dAuf , dAeh〉+ 〈Quf , eh〉

]
dV

where f, h ∈ H 1
2 (∂M ;E|∂M ) and eh ∈ H1(M ;E) is any representative of the class of h.

Of course, one is left to check all the details of the previous definition check out: we do this

in Proposition A.1 in the appendix. Moreover, the above definition works for Q and A in L∞,

however we are mostly interested in smooth A and Q.

An alternative (not always equivalent) and a more general way (without assuming the well-

posedness of (2.2)) of interpreting the equality of the DN maps is through the equality of Cauchy

data spaces. The full Cauchy data space is given by:

CA,Q =
{(
f, ινdAu

)∣∣∣there is a u that solves (2.2)
}
⊂ H 1

2 ×H− 1
2

Here ινdAu is interpreted in the weak sense, as explained above. Let us point out that in one of

the cases that are important for us, that is when Q = 0, we automatically have that zero is not

a Dirichlet eigenvalue of the operator LA, so the DN map is well-defined by Definition 2.1 and

the Cauchy data space is given by a graph.

2.1.1. Local expressions for d∗A and inner products. For the record, we will write

down the explicit formula in local coordinates for the inner product on the differential forms

with values in E. If two p-differential forms with values in E are given locally by α =
∑
αIdx

I
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and β =
∑
βJdx

J then:1

〈α, β〉Ωp(E) =
1

p!
gi1j1 · · · gipjp〈αi1...ip , βj1...jp〉E

Here 〈·, ·〉E is the inner product in E and gij denotes the inverse matrix of the metric in local

coordinates gij . Moreover, we state the following formula for the adjoint d∗ = (−1)p ⋆−1 d⋆ =

(−1)(p−1)n+1 ⋆ d⋆, acting on p-forms:2

(d∗α)µ1...µp−1 = −gµ1ν1 · · · gµp−1νp−1

1√
| det g|

∂ν
(√
| det g|gνλgν1λ1 · · · gνp−1λp−1αλλ1...λp−1

)

We can combine this information along with the condition that
∫
〈d∗Aα, β〉E =

∫
〈α, dAβ〉E for

all p-forms β and (p+ 1)-forms α, compactly supported in the interior. Then we get:

d∗Aα = d∗α−
∑

i1<...<ip

gνλAναλi1...ipdxi1 ∧ . . . ∧ dxip (2.5)

and as a shorthand we may use (A,α) = ιA♯α for the sum in the above expression. Here ♯ denotes

the isomorphism between TM and T ∗M given by contracting the metric g with a vector. The

following identity is also very useful:

d∗(fω) = fd∗(ω)− ι∇f (ω)

If the connection is not unitary, then the expression (−1)(p−1)n+1 ⋆ d(−A∗)⋆ gives the formal

adjoint in a local trivialisation on p-forms, where A∗ denotes the Hermitian conjugate. We need

to emphasise here that, slightly illogically, even if A is non-unitary in this thesis we will use the

notation d∗A = (−1)(p−1)n+1 ⋆ dA⋆, unless otherwise stated.3 We will apply the same principle

to all covariant derivatives that appear in the text. Moreover, the above local formula (2.5) still

holds for this d∗A. Then for all E-valued 1-forms u and any A:

d∗AdAu = d∗du+ d∗(Au)− (A, du)− (A,Au) (2.6)

2.1.2. Yang-Mills connections. As mentioned previously, Yang-Mills (YM) connections

are very important in physics and geometry. They satisfy the so called Yang-Mills equations,

which are considered as a generalisation of Maxwell’s equations in electromagnetism and which

provide a framework to write the latter equations in a coordinate-free way (see e.g. [4] or [18]

for a geometric overview and definitions). The Yang-Mills connections are critical points of the

functional:

FYM (A) =

∫

M
|FA|2dωg

Here FA = dA + A ∧ A is the curvature 2-form with values in the endomorphism bundle of E

determined by the map d2As = FA ∧ s on sections s ∈ C∞(M ;E) and ωg is the volume form. It

can then be shown by considering variations of this functional, that the equivalent conditions

for A being its critical point are (the Euler-Lagrange equations):

(DA)
∗FA = 0 and DAFA = 0 (2.7)

1The factor of 1
p!

comes from the fact that we want to have 〈dxi1 ∧ . . . ∧ dxip , dxj1 ∧ . . . ∧ dxjp〉 = det (gikjk ).
2We are assuming that the tensor representing the form is alternating, i.e. we get a minus sign after swapping
any two indices.
3The point is that we would like to have d∗F∗(A) = F−1d∗AF , for all isomorphisms F of the vector bundle E. On

the other hand, F−1d∗AF will be the formal adjoint if we consider the pulled back inner product structure on E

by F ; in general, it will not be a formal adjoint with respect to the standard inner product structure on E.
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where DA = dEndA is the induced connection on the endomorphism bundle, given locally by

DAS = dS + [A,S] or equivalently by DAS = [dA, S], where [·, ·] denotes the commutator. The

second equation in (2.7) is actually redundant, since it is the Bianchi identity.

Yang-Mills connections clearly generalise flat connections, for which the curvature vanishes,

i.e. FA = 0.

Let us motivate the fact we consider Yang-Mills connections in this thesis, by illustrating

their significance in other branches of mathematics. They have been a point of unification

between pure mathematics and theoretical physics, but moreover have brought a few areas of

pure mathematics together, such as e.g. PDE theory and vector bundles over complex projective

spaces, or algebraic geometry.

One such example is the proof of bijective correspondence of instantons (self-dual or anti

self-dual connections, i.e. the ones for which ⋆FA = ±FA, where ⋆ is the Hodge star) over

S4 with certain holomorphic vector bundles over CP3, using the ADHM construction. More

generally, one can establish a bijective correspondence of the Hitchin-Kobayashi type (there are

a few similar results under the same name) and Uhlenbeck and Yau prove that if E is a stable

(in some sense we do not specify) holomorphic vector bundle over a compact Kähler manifold,

then E admits a Hermitian-Yang-Mills connection.

Within topology, YM functional FYM can be regarded as a function on a space with rich

topology, the space of connections modulo gauges, in view of Morse theory (much like the

energy functional on the space of closed loops) – one can then pose the questions whether one

can determine the homotopy group of instantons and other critical points and relate them to the

topology of the ambient space. Finally, moduli spaces of instantons were applied by Donaldson

to solve some long standing conjectures in the four manifold topology.

Let us also emphasise the nature of the topology of the space of connections modulo gauges:

it is infinite dimensional and locally has a unique representative chosen by going to the Coulomb

gauge, but globally it is impossible to find such a gauge; Donaldson argues that one of the most

important influences of gauge theory is to accustom mathematicians to working with infinite

dimensional gauge groups in a comparatively simpler setting, where for example diffeomorphism

groups in Riemannian geometry are considered more difficult [19].

Example 2.2 (Yang-Mills connections over Riemann surfaces). We give an idea of the size of

the set of YM connections in the simplest non-trivial example of Riemann surfaces. First recall

that connections on bundles modulo gauges are classified by their holonomy representation on

the so called loop group modulo conjugation (see Kobayashi and Nomizu [43]). In the setting

of flat connections, this correspondence simplifies significantly for a Riemann surface Σ:
{
ρ : π1(Σ)→ U(m)

}
/conj. ←→ {unitary flat bundles of rank m}

since homotopic loops have the same holonomy. The direct map (going left to right) here is the

one taking a representation ρ and defining an associated flat bundle via Σ̃ ×ρ Cm, where Σ̃ is

the universal cover of Σ and ×ρ means we identified the two by the diagonal action. Somewhat

surprisingly, we may still obtain a correspondence in the case of YM connections, where π1(Σ)

is replaced by a certain central extension π̂1(Σ) (see [4] for more details). This has an analogous

geometric interpretation: the difference to the flat case is that we now identify homotopic only

if they enclose the same area. In particular, for the sphere S2 this simplifies, so that we have

π̂1(S
2) = S1.
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2.1.3. Fixing gauges. In many mathematical problems and physical situations there exist

certain degrees of freedom called gauges. More specifically, in our case a gauge is an automor-

phism of a vector bundle (preserves its structure); then the gauges act on the affine space of

connections on this vector bundle by pullback. Here, we make a few remarks about the possible

gauges one could use.

Example 2.3 (An electromagnetic correspondence). In physics we use the electromagnetic

four-potential to describe the electromagnetic field. This potential can be naturally identified

(via musical isomorphism, the inverse of ♯) with a connection 1-form A on the unitary trivial line

bundle over the space-time R4 in the Minkowski metric, so that the actual electromagnetic field

is given by the curvature F = dA, which is a tensor consisting of six components; the Maxwell’s

equations then reduce to d∗dA = 0 (see (2.7)).

Recall from classical electromagnetism, if we consider the magnetic potential ~A separately,

we would have the field strength ~B = ∇× ~A. Then we could transform the potential ~A 7→ ~A+∇f
and still get the same answer for ~B; similarly, the electric field is invariant under addition of

−∂f
∂t to the electric potential φ and the correspondence is A = A1dx

1+A2dx
2+A3dx

3−φdt. In
the connection setting above, we have the analogous invariant transform A 7→ A+ idf for a real

function f on R4, which corresponds to the gauge given by eif . This leads to the old physical

observation that we do not have a physical meaning of the potential and is a starting point to

the Yang-Mills theory which generalises the Maxwell’s equations (see [18]).

There are several gauges that have proved to work well in practise, i.e. that fit well into

other mathematical formalism in applications. One of them is the Coulomb gauge, which for a

connection matrix on a vector bundle, locally asks that d∗A = 04 The existence of such gauges

is proved by Uhlenbeck [83] for vector bundles over unit balls (see also [18]) under a smallness

condition on the Lp norm of the curvature (for specific values of p), which locally on a manifold

we can always assume if we shrink the neighbourhood sufficiently and then dilate to the unit

ball. Most importantly, in such a gauge the Yang-Mills connections satisfy an elliptic partial

differential equation with the principal, second order term equal to (dd∗ + d∗d) × Id, which is

clearly elliptic (check in local coordinates).

Another slightly related gauge is the temporal gauge, which we will also make use of – in

this gauge, one of the components of the connection vanishes locally (we usually distinguish this

variable as “time”). That is, given a local coordinate system (x1, . . . , xn−1, t) = (x, t) defined

for t = 0 and a connection matrix A = Aidx
i +Atdt, we may solve:

∂F

∂t
(x, t) +At(x, t)F (x, t) = 0 and F (x, 0) = Id

parametrically smoothly depending on x (the parallel transport equation). Then by definition

near t = 0, we have A′ = F ∗(A) = F−1dF + F−1AF satisfying A′
t = 0. In this way we prove

the following lemma, which will be used frequently throughout the thesis:

Lemma 2.4. Let A and B be two unitary connections on a Hermitian vector bundle E over

M . Consider the tubular neighbourhood ∂M×[0, ǫ) of the boundary for some ǫ > 0 and denote the

normal distance coordinate (from ∂M) by t. Then B is gauge equivalent to a unitary connection

B′ via an automorphism F of E such that F |∂M = Id and (B′−A)( ∂
∂t) = 0 in the neighbourhood

∂M × [0, δ) of the boundary, for some δ > 0.

4This is equivalent to ∇ ◦ ~A = 0 in the case of R3 considered in the previous paragraph.
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In particular, if E = M × Cm we have gauges F and G for A and B respectively with

F |∂M = G|∂M = Id, such that A′ = F ∗A and B′ = G∗B satisfy A′( ∂
∂t) = B′( ∂

∂t) = 0 near the

boundary.

Proof. Let us denote B( ∂
∂t) by Bt. Then consider the following first order systems of

differential equations, solving the parallel transport equations:

∂F

∂t
(x′, t) +At(x

′, t)F (x′, t) = 0 with F |∂M = Id

∂G

∂t
(x′, t) +Bt(x

′, t)G(x′, t) = 0 with G|∂M = Id

where F and G are m×m matrices, for (x′, t) ∈ U × [0, ǫ) for some coordinate chart U ⊂ ∂M .

This has a unique smooth solution in U × [0, δ′), for some positive δ′ with ǫ > δ′. Moreover, F

and G are unitary, since Bt is skew-Hermitian and if we define H = GF−1 we have B′ := H∗B

with B′
t = At by the equations above:

∂H

∂t
=
∂G

∂t
F−1 +G

∂F−1

∂t
= −BtGF

−1 +GF−1At = HAt −BHt

Moreover we see that H : Ex → Ex is defined independently of the chart for x with distance

less than δ′ to the boundary and (B′ −A)t = 0.

Furthermore, there exists a δ > 0 such that H is close to identity in ∂M × [0, δ), with δ < δ′.

Then we may take a compactly supported function ϕ on [0, δ′), with ϕ = 1 on [0, δ), and define

ρ on M by setting ρ(x, t) = ϕ(t) in ∂M × [0, δ′) and zero elsewhere. Then we may define the

unitary extension H̃ = eρ logF ; clearly H̃|∂M×[0,δ) = H and the globally defined B′ := H̃∗B

satisfies the requirements. �

Moreover, if we perform the above procedure in geodesic polars near a point, with t corre-

sponding to the radial variable r now, we obtain what is called the radial gauge. More generally,

given a local vector field X, we can always construct a gauge as in Lemma 2.4 by defining F to

be parallel transport along the flowlines ϕt of X, by setting F to be identity (initial condition)

on a codimension one local submanifold transversal to the flow – we can then always extend F

to a local gauge.

In the situation of this Yang-Mills problem, we would like to use the gauge given by Lemma

2.4 in combination with Lemma 8.1, because the latter one is intimately tied with the DN map

(1.1) and allows us to make use of the information packed in the equality ΛA = ΛB for two

connections A and B.

2.2. The integral identity

Recall the identity (2.5) with A unitary on E = U × Cm with U ⊂ Rn; we have ∇∗ = d∗A =

d∗−(A, ·) on one forms, with (A, β) = gijAiβj for β an E-valued one-form. For clarity, we remark

that we take the Laplacian with a negative sign, i.e. ∆u = d∗du = −|g|−1/2 ∂
∂xj (|g|1/2gjk ∂u

∂xk ),

so our operator is positive definite. Therefore, we can clearly identify the second, the first and

the zero order terms in the connection Laplacian. If we let (A,Q) be a pair of a connection and

a potential, we will sometimes use the notation of the pair (X, q) to denote the matrix vector

field X and the matrix potential q such that:

d∗AdA +Q = ∆+X + q (2.8)
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in local coordinates, or globally if the corresponding bundle is trivial. The relationship between

(A,Q) and (X, q) is given by:

X = −2gijAi
∂

∂xj
and q(u) = d∗A− (A,Au) +Q(u)

The next lemma computes the adjoint of the DN map, where Q is in Γ(End E):

Lemma 2.5. The following identity holds for smooth f and g (Q∗ is the Hermitian conjugate):

(Λ∇,Qf, g)L2(∂M ;E|∂M ) = (f,Λ∇,Q∗g)L2(∂M ;E|∂M )

Proof. We drop the full notation of L2(M ;E). By using (2.1) we have:

(Qu, v)M + (∇u,∇v)M = (Λ∇,Qf, g)∂M (2.9)

where L∇,Qu = 0 and u|∂M = f and any v such that v|∂M = g. If we swap the order of f

and g and use the fact that the inner product is Hermitian, along with v being the solution to

L∇,Q∗v = 0 and v|∂M = g, we get:

(Q∗v, u)M + (∇v,∇u)M = (Λ∇,Q∗g, f)∂M

which after conjugation finishes the proof. �

Now we restrict our attention to the trivial vector bundle E =M ×Cm with the connection

matrix A. We will use the notation |A|2 = gijAiAj – please note this is not a norm, but

rather comes from the complex bilinear extension of the metric inner product and that it is

endomorphism valued. Also, (Aj)kl will denote the klth entry of the matrix Aj given by the

expansion A = Ajdx
j .

Theorem 2.6 (Main identity). The following identity holds for two pairs of smooth unitary

connections and potentials (A,QA) and (B,QB), and f and g smooth sections of E|∂M :

(
(ΛA,QA

− ΛB,QB
)f, g

)
∂M

=
((
QA −QB + |B|2 − |A|2

)
u, v
)
M

+

∫

M
gij
(
(A−B)j

)
kl

(
ul
∂v̄k
∂xi
− ∂ul
∂xi

v̄k

)
(2.10)

where u, v ∈ C∞(M ;E) solve LA,QA
u = 0 with u|∂M = f and LB,Q∗

B
v = 0 with v|∂M = g.

Equivalently, for m = 1 one can write this as:

(
(ΛA,qA − ΛB,QB

)f, g
)
∂M

=
((
QA −QB + |B|2 − |A|2

)
u, v
)
M

+

∫

M
〈udv̄ − v̄du,B −A〉g

Proof. As above, we have:

(ΛA,QA
f, g)∂M = (QAu, v)M + (dAu, dAv)M

and similarly, where u and v as in the statement:

(ΛB,QB
f, g)∂M = (f,ΛAB ,Q∗

B
g)∂M

= (QBu, v)M + (dBu, dBv)M

So we get by subtracting:
(
(ΛA,QA

− ΛB,QB
)f, g

)
∂M

=
(
(QA −QB)u, v

)
M

+ (dAu, dAv)M − (dBu, dBv)M
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We have (Au,Av)M = −
(
|A|2u, v

)
M

and (Bu,Bv)M = −
(
|B|2u, v

)
M

and moreover:

(
du, (A−B)v

)
M

+
(
(A−B)u, dv

)
M

=

∫

M
gij
(
(A−B)i

)
kl

(
ul
∂v̄k
∂xj
− ∂ul
∂xj

v̄k

)

by the skew-Hermitian property of A and B, where ul and vk denote the components of the

vectors u and v. By putting the pieces together, this finishes the proof. �

Let us now denote by E′ =M ×Cm×m the endomorphism bundle of E, carying the natural

trace Hermitian inner product 〈X,Y 〉 = tr(XY ∗). Then we can naturally let the LA,Q operator

act on matrix sections by matrix multiplication5; furthermore, one easily shows the similarly

extended DN maps for A1 and A2 on E′ obtained in this way agree if and only if the usual DN

maps for A1 and A2 agree on E – one just notices that the first claim is the same as the second

one applied to all of n column vectors. Therefore, we have a version of the previous identity

for matrices, where by capital letter we denote a matrix instead of a vector (we will need it in

Section 6.2):

Theorem 2.7 (The identity for matrices). In the notation as in Theorem 2.6, for two smooth

sections F and G of E′|∂M , we have:

((
ΛA,QA

− ΛB,QB

)
F,G

)
∂M

=
((
QA −QB + |B|2 − |A|2

)
U, V

)
M

+
(
U(dV ∗)− (dU)V ∗, B −A

)
M

(2.11)

where U, V ∈ C∞(M ;E′) solve LA,QA
U = 0 with U |∂M = F and LB,Q∗

B
V = 0 with V |∂M = G.

Proof. By re-running the proof of the previous theorem, we easily obtain the result; we

use the convenient matrix identities such as (AU, dV )M = −
(
U(dV ∗), A

)
M

and (dU,AV )M =(
(dU)V ∗, A

)
M
. �

2.3. Semiclassical pseudodifferential operators on manifolds

In this section we briefly review the basics of semiclassical pseudodifferential operators and

the associated symbol calculus. The classical theory will be used for the purposes of Chapter

3, where we prove ΛA is pseudodifferential operator on the boundary; in Chapter 5, some

semiclassical theory (Bessel potentials) is used to prove suitable estimates.

We start by outlining the underlying function spaces, then progress to describing the classical

theory and in the end we build up on that by inserting everywhere a small parameter h to define

the semiclassical theory.

2.3.1. Distribution spaces, kernels and the semiclassical case. See [6,31,54,69] for

more details. Let X ⊂ Rn be an open set. First recall the usual function spaces C∞(X) and

C∞
0 (X) and the locally convex space (LCS) topologies on them: the first one is a Fréchet space

with the topology of uniform convergence of all derivatives on compact subsets and the second

one is an inductive limit of LCS (not a Fréchet space itself and not metrisable). We also use

the notation E(X) = C∞(X), D(X) = C∞
0 (X); EK(X) will denote the space of smooth function

compactly supported in K.

The spaces of distributions D′(X) and E ′(X) are defined as the duals of D(X) and E(X)

respectively, and equipped with the weak*-topologies. We have E ′(X) ⊂ D′(X) as the subset of

compactly supported distributions.

5Note LA,Q is not the same as the connection Laplacian obtained from the standard induced connection dAU =
dU + [A,U ] on the endomorphism bundle.
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Given an open Y ⊂ Rm, an important class of operators C∞
0 (Y ) → D′(X) are given by an

integral kernel K such that formally we have:

v 7→
∫

Y
K(·, y)v(y)dy

More precisely, if K ∈ D′(X × Y ), we define the map K : C∞
0 (Y ) → D′(X) by 〈Kv, u〉 :=

〈K,u⊗ v〉, where 〈·, ·〉 is the distributional pairing. Moreover, by the Schwartz kernel theorem,

there is a bijective correspondence between continuous maps C∞
0 (Y )→ D′(X) and distributions

in D′(X × Y ).

Given a manifold M of dimension n and a vector bundle E of rank m, above notions clearly

generalise, with a few subtleties. The space of smooth sections E(M,E) is topologised by taking

the seminorms induced by pushing forward to Rn locally and considering seminorms for any

compact K ⊂ Rn; for the compactly supported smooth sections D(M,E), we notice we can

write them as ∪KEK(M,E) for all K ⊂M compact and take the locally convex inductive limit

topology, as before.

Now the space of generalised sections is defined by first introducing the “functional dual”

EV := E∗ ⊗ DM , where DM is the density bundle6 on M and E∗ is the dual bundle; then

we define D′(M,E) as the dual of D(M,EV ) with the weak*-topology. When E = M × C,
then we get just the space of generalised functions D′(M). Notice that in this way we get

E(M,E) ⊂ D′(M,E) by applying the generalised section and integrating the density:

s 7→
∫

M
〈·, s〉

where on the right hand side we have the natural pairing.

The Schwartz kernel theorem generalises to the manifold and vector bundle setting, by using

the function spaces defined in the previous paragraph.

Finally, for the semiclassical case, we introduce the parameter h ∈ (0, h0] for some h0 > 0

fixed. The semiclassical Fourier transform, which is just a rescaling of the usual one, is given

by:

(Fhφ)(ξ) = φ̂(ξ) =

∫

Rn

e−
i
h
ξxφ(x)dx

for φ ∈ C∞
0 (Rn); for h = 1 we recover the usual transform. Its inverse is given by:

(F−1
h φ)(x) =

1

(2πh)n

∫

Rn

e
i
h
ξxφ(ξ)dξ

We will sometimes drop the subscript h depending on context; moreover, φ will usually be an

h-dependent function.

For a LCS V, we will denote by Vh the space of functions φ : (0, h0] → V which are poly-

nomially bounded, i.e. for each φ ∈ Vh and every neighbourhood U of 0 in V, there exists an

N > 0 and s > 0, such that {hNφ(h) | h ∈ (0, h0]} ⊂ sU . By doing this, we define the spaces

Eh(X) = C∞
h (X) and Dh(X) = C∞

0h(X).

Furthermore, to define h-dependant distributions, we change this definition slightly – for

example, we define D′
h(X) as the set of all maps u : (0, h0] → D′(X), such that 〈uh, φh〉 :

6In order to be able to integrate on a non-orientable M , we define the density bundle DM as the complex line
bundle with the transition functions equal to absolute value of coordinate change Jacobian. Then we integrate

sections of DM ; note that DM is trivial, e.g. by taking a metric g and the section locally given by | det g|
1

2 dx –
this quantity also defines a measure on M and as a consequence the space L2(M) is defined. This enables us to
identify D′(M) with functionals on compactly supported functions.
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(0, h0]→ C is in Ch. Here by uh and φh we stress the h-dependence; the same principle applies

to define E ′h(X). Note that X can be a manifold.

2.3.2. Pseudodifferential operators. See [55,73,80] for more details. Let us first in-

troduce the usual symbol classes in the pseudodifferential calculus. Let U ⊂ Rn be open and N

an integer – we say that a ∈ C∞(U × RN ) is a symbol of order m ∈ R, if for every multiindices

α, β and any compact K ⊂ U , we have constant Cα,β,K > 0 such that

|∂αθ ∂βxa(x, θ)| ≤ Cα,β,K〈θ〉m−|α| (2.12)

where 〈θ〉 = (1 + |θ|2) 1
2 , for all x ∈ K and θ ∈ RN . We denote the space of all symbols of order

m by Sm(X × RN ) – it is a Fréchet space with seminorms given by the infimum over all such

Cα,β,K . We will use the notation S−∞(U × RN ) := ∩mSm(U × RN ).

For U = X × X, where X ⊂ Rn open, N = n and with the phase function Φ(x, y, ξ) =

(x − y) · ξ, given a symbol a ∈ Sm(U × Rn), we may define the associated pseudodifferential

operator of order m (PDO) A : C∞
0 (X)→ C∞(X):

Au(x) =
1

(2π)n

∫ ∫
ei(x−y)ξa(x, y, ξ)u(y)dydξ (2.13)

for a function u ∈ C∞
0 (X). Here the integral is considered as an oscillatory integral, i.e. by

taking a suitable first order differential operator (there are a few choices) L =
1+ξ·Dy

1+|ξ|2
on U ×Rn

for which we have tLeiΦ = eiΦ, where tL =
1−ξ·Dy

1+|ξ|2
is the formal adjoint of L; L reduces the order

of a symbol by one. Formally integrating by parts enough times, we get a convergent integral

with smooth dependance on x.

We denote the set of PDOs of orderm by Ψm(X); the set of operators of order −∞ is defined

by Ψ−∞(X) := ∩mΨm(X).

Given a PDO A : C∞
0 (X) → C∞(X), we may apply the Schwartz kernel theorem to get a

kernel KA ∈ D′(X ×X). Now we state a few basic properties of PDOs:

1. KA ∈ C∞(X ×X \∆), where ∆ = {(x, x) | x ∈ X} is the diagonal.

2. The adjoint tA, defined by swapping x and y in a, is a PDO; so A extends to A :

E ′(X)→ D′(X) by duality.

3. For u ∈ E ′(X), singsupp(Au) ⊂ singsupp(u) (this is called pseudolocality).

To define the composition of PDOs, we need the notion of properly supported PDOs. If A

is a PDO, we say it is properly supported if the projections Π1,Π2 : supp(KA)→ X are proper

maps (inverse image of a compact set is compact). Such a PDO extends by duality to maps on

C∞
0 (X), C∞(X) and E ′(X).

Furthermore, we will say a PDO A is smoothing, if it extends to a map A : E ′(X)→ C∞(X).

By a standard lemma, this is equivalent to saying thatKA ∈ C∞(X×X), which is also equivalent

to A ∈ Ψ−∞(X), by the property (2.14) below.

Now given a PDO A, we may write it as A = A0 + A1 where A0 properly supported

and A1 smoothing, by cutting off near the diagonal; then the composition of two properly

supported PDOs is a properly supported PDO, which can be seen by choosing appropriate

symbols. Furthermore, composition of any two PDOs is defined by taking any two properly

supported representatives – one can show this operation is well-defined modulo smoothing.

If we are given a PDO A ∈ Ψm(X), then one can show that it defines continuous maps

(similar to differential operators):

A : Hs
comp(X)→ Hs−m

loc (X) (2.14)
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Here Hs
loc(X) denotes the Sobolev space of distributions in X that are locally in Hs, equipped

with the topology given by seminorms u 7→ ‖φu‖s for φ ∈ C∞
0 (X), while Hs

comp(X) = E ′(X) ∩
Hs(X) as a set, equipped with the (locally convex) inductive limit topology induced from Hs(K)

(distributions in Hs with support in a compact K ⊂ X).

Finally, given a diffeomorphism ϕ : X → X1, it can be proved that setting A1u = A(u◦ϕ)◦ϕ1

defines a pseudodifferential operator of the same order as A on X1, where A a PDO on X and

ϕ1 = ϕ−1. This enables us to define a PDO on a manifold:

Definition 2.8. An operator A : C∞
0 (M)→ C∞(M) is a PDO of order m if for any chart

ϕ : X ⊂ M → X1 ⊂ Rn, the operator A1 induced on X1 is a PDO of order m. We denote the

space of such operators by Ψm(M).

Moreover, since the classes of symbols are preserved under differemorphisms (changes of

variables), we may talk about the space of symbols Sm(T ∗M) in the cotangent bundle; however,

given a PDOA ∈ Ψm(M), we only have a well-defined principal symbol σm(A) ∈ Sm(T ∗M)/Sm−1

(T ∗M) – the full symbol is not well-defined in general. Similarly, the spaces of classical sym-

bols CSm(T ∗M), classical pseudodifferential operators CΨm(M) and their principal symbols

(now proper functions on T ∗M) are well-defined by analogous statements (see the definition of

a classical symbol below).

2.3.3. Symbol calculus. Assume that we have a strictly decreasing sequencemj of integers

for j ≥ 0 and assume aj ∈ Smj (X,X). Then it is an important fact that there exists a symbol

a ∈ Sm0(X,X) such that (sometimes referred to as the Borel’s construction):

a(x, y, ξ) ∼
∞∑

j=0

aj(x, y, ξ)

in the sense that a−∑r−1
j=0 aj ∈ Smr(X,X) for every r ≥ 1; if we had a′ with the same expansion

then clearly a− a′ ∈ S−∞(X,X).

Given a properly supported PDO A, we may define its standard (left) symbol σA(x, ξ) by:

σA(x, ξ) = e−ξ(x)Aeξ(x)

where eξ(x) = eixξ; let us denote the space of symbols of order m that are independent of y by

Sm(X). This clearly generalises the standard formula for a differential operator A. It can be

proved that σA(x, ξ) defines a symbol for A in the appropriate class – more precisely, given a

symbol a(x, y, ξ), there is an asymptotic expansion formula for the standard symbol:

σA(x, ξ) ∼
∑

α

1

α!
∂αξ D

α
y a(x, y, ξ)|x=y (2.15)

This can be proved by writing down the defining equation and Taylor expanding (carefully) in

(y − x) and (θ − ξ), where we integrate over θ ∈ Rn and y ∈ X. Finally, this proves there is a

bijection between the quotients Ψm(X)/Ψ−∞(X) and Sm(X)/S−∞(X).

Sometimes it is useful to consider a special class of symbols – we will call aj ∈ Sj(U ×Rn) a

classical symbol if it is positively homogeneous in θ of order j (i.e. a(x, y, rθ) = rja(x, y, θ) for

r > 0). Denote the subspace of such symbols by CSj(U ×Rn) and the corresponding operators

by CΨj(X). By cutting off the singularity at θ = 0 (by a suitable bump function), we recover the

asymptotic expansions in a meaningful way, and the composition of properly supported classical

operators can be shown to be classical.

2.3.4. The semiclassical world. See [24, 52, 87] for more details. Physically, pseudo-

differential operators model the correspondence between the classical observables, which are
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just functions on the phase space (standard symbols), and the quantum observables, which are

self-adjoint operators on L2(R3). For example, the momentum operator corresponds to the clas-

sical momentum via conjugating by Fourier transform: hDx = F−1
h ξFh; the energy function

E = ξ2

2m + V (x) corresponds to the Schrödinger operator H = −h2

2m ∆ + V (x) (we can add the

magnetic part, too).

The h parameter (the Planck constant) comes into play when we want to consider the

“classical limit” h→ 0, i.e. this limit corresponds to the limit of quantum mechanics to classical

mechanics (Bohr correspondence principle). The mathematical branch that studies this limit is

called the semiclassical analysis; in particular it studies the spectrum of the Schrödinger operator

as h→ 0.

Sometimes, h is not the Planck constant, but rather a different quantity – e.g. the inverse of

the square root of energy in the high-energy spectral problems and can be many other things.

Moreover, semiclassical analysis plays a role in the WKB (Wentzel, Kramers, and Brillouin)

approximation, which originally constructs approximate (up to order O(h∞)) solutions to the

Schrödinger equation, by setting the amplitude ansatz to be an asymptotic sum of the form

a =
∑
hjaj and the phase function to be a multiple of h−1. By gathering powers of h in the

Schrödinger equation, we may then inductively solve for ai and obtain the approximate solution.

More generally, this method can be applied to differential equations with top order coefficient

a multiple of h – this type of construction we also apply in Chapter 4, where we construct the

Gaussian Beams.

We will consider the following special class of semiclassical symbols, defined for openX ⊂ Rn,

m, k ∈ R. Let us say that a ∈ Sm,k(X ×X) is polyhomogeneous if a ∈ Sk
h(X ×X) and:

a(x, y, ξ;h) ∼
∞∑

j=−m

a−j(x, y, ξ)h
j , a−j ∈ Sk−m−j(X ×X)

in the usual sense that a −∑N−1
j=−m a−jh

j = OSk−m−N (X×X)(h
N ).7 Given such a symbol a ∈

Sm,k(X ×X), we may define an operator:

Ahu(x) = (2πh)−n

∫ ∫
e

i
h
(x−y)ξa(x, y, ξ;h)u(y)dydξ (2.16)

that we call a semiclassical pseudodifferential operator of order (m, k) and denote the set of

such operators by Ψm,k(X). We will use the abbreviations Ss(X ×X) := S0,s(X ×X) with the

corresponding operator class Ψs(X) and call them operators of order s. Note that as defined,

Ah is map:

Ah : C∞
0h(X)→ C∞

h (X)

where the asymptotical properties of Ahuh(x) as h→ 0 are determined by the so called “station-

ary phase lemma”, which computes the exact asymptotic behaviour of the expression (2.16) – if

a ∈ h−mSk(X ×X), then Ahuh ∈ h
n
2
+kC∞

h (X). We emphasise at this point that the definition

of Vh is important (V is a LCS), in the sense that for each φ ∈ Vh, we really want for every

seminorm pα on V to have an appropriate Nα > 0 with pα(h
Nαφ) bounded.

As before, we have an asymptotic summation lemma, i.e. given a sequence amj ∈ Smj (X×X)

with mj strictly decreasing to −∞, there is a ∈ S0,m0(X ×X) such that:

a(x, y, ξ;h) ∼
∞∑

j=0

amj (x, y, ξ)h
j

7Meaning that for every seminorm pα defining the LCS topology on Sk−m−N , pα
(

a −
∑N−1

j=−m a−jh
j
)

= O(hN )
as h → 0.
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Such a semiclassical symbol a is unique modulo smoothing symbols in S−∞,−∞(X × X) =

∩m,kS
m,k(X ×X), which is the set of all b ∈ C∞

h (X ×X ×Rn) for which we have b = OSM (hN )

for all M,N .

Furthermore, we still have the appropriate Schwartz kernel (h dependent) of a semiclassical

PDO, given by the oscillatory integral KA ∈ D′
h(X ×X):

KA(x, y;h) = (2πh)−n

∫
a(x, y, ξ;h)e

i
h
(x−y)ξdξ

We will call the operator A properly supported in this case, if the projection maps Π1,Π2 :

supp(KA)→ X×X are proper, where supp(KA) is defined as the unions of the appropriate sets

for each fixed h; we may always split A = A0+A1 as a sum of a properly supported operator and

a smoothing term. Then A extends by duality to maps on the sets E ′h(X),D′
h(X) and C∞

h (X),

and the compositions of such operators are well-defined.

Given a properly supported operator A, we define its left (standard) symbol by the formula

aL(x, ξ;h) = e−ξ(x)(Aeξ)(x), where now eξ(x) = e
i
h
ξx; we may always compute the standard

symbol via the formula (c.f. (2.15)):

σA(x, ξ;h) ∼
∑

α

h|α|

α!
∂αξ D

α
y a(x, y, ξ;h)|y=x

Building on this formula, one can easily obtain the composition calculus of two semiclassical

PDOs. More precisely, given a(x, ξ) ∈ Sm,k and b(x, ξ) ∈ Sm′,k′ properly supported, defining

A ∈ Ψm,k and B ∈ Ψm′,k′ , we have the following expression for the standard symbol c of

C := A ◦B ∈ Ψm+m′,k+k′ :

c(x, ξ) ∼
∑

α

h|α|

α!
∂αξ a(x, ξ)D

α
x b(x, ξ)

As in the ordinary PDO case, it can also be shown that difeomorphisms preserve the symbol

classes. Moreover, we may extend the theory to manifolds – this means that for a manifold M ,

we have the notion of Ψm,k(M), the space of pseudodifferential operators of order (m, k) (c.f.

Definition 2.8). Also, we may define Sm,k(T ∗M) to be the space of left (standard) symbols;

then the principal symbol σm,k(A) of an operator A ∈ Ψm,k(M) is well-defined as an element of

the quotient Sm,k(T ∗M)/Sm−1,k−1(T ∗M). We denote the space of operator of order (0, s) by

Ψs(M) and call them operators of order s.

We record the following fact for future purposes: given smooth cut-off functions φ, ψ ∈
C∞
0 (M) with disjoint supports and A ∈ Ψm,k(M), then we have the following consequence of

pseudolocality and the non-stationary phase lemma (c.f. item 3. in Subsection 2.3.2):

φAψ ∈ Ψ−∞,−∞(M) (2.17)





CHAPTER 3

Boundary determination for a connection and a matrix potential

In this chapter, we prove that if we put the connection in a suitable gauge and “normalise”

the metric appropriately, we may determine the full Taylor series of a connection, metric and

matrix potential from the DN map on a vector bundle with m > 1. The case of m = 1 was

already considered in [21] (Section 8) and this section generalises the result proved there. The

approach is based on constructing a factorisation of the operator d∗AdA +Q modulo smoothing,

from which we deduce that Λg,A,Q is a pseudodifferential operator of order one whose full symbol

determines the mentioned Taylor series.

3.1. PDOs on vector bundles

Before going into proofs, let us briefly lay out some of the notation that goes into pseudodif-

ferential operators on vector bundles over manifolds (see [55] and [54] for more details). Firstly,

the local symbol calculus and the semiclassical symbol calculus that we developed in Subsec-

tion 2.3.3 and Subsection 2.3.4 carries over to matrix valued symbols (starting from (2.12)); in

particular, the asymptotic summation properties clearly generalise to this case.

So given X ⊂ Rn open, k, l ∈ N and m, k ∈ R, we have the left symbol classes (and

more generally, (x, y)-dependant symbols) Sm,k(X;Clk) of l by k matrices, whose entries are

symbols in Sm,k(X) – this symbol class yields a map A : C∞
0h(X, Ck) → C∞

h (X,Cl) via the

formula (2.16), which we define to belong to the class Ψm,k(X;Clk). We will also say that A is

Clk-valued semiclassical PDO on X.

Then given a Riemannian manifold M and vector bundles E and F over M , we say that a

linear map A : C∞
0h(M ;E)→ C∞

h (M ;F ) is a semiclassical PDO of order (m, k) if for every chart

and some trivialisations of E and F over this chart, the induced map in the local chart is in Ψm,k

(c.f. Definition 2.8). We write A ∈ Ψm,k(M ;E,F ) for the space of semiclassical PDOs of order

(m, k) and define the space of smoothing operators Ψ−∞,−∞(M ;E,F ) = ∩m,kΨ
m,k(M ;E,F );

we will abbreviate Ψm,k(X;E) := Ψm,k(X;E,E). Such an operator extends by duality to a map

A : E ′h(X,E)→ D′
h(X,F ) (the transpose tA is defined by taking the transpose of the symbol a

and swapping x and y).

For the ordinary (not h-dependent) PDO theory over vector bundles, we may just formally

“erase” the h-dependence – it is clear enough how this theory can be developed. In fact, for this

chapter we will specialise in the ordinary PDO theory.

Care should be taken when considering the composition calculus, since commutation prop-

erties of matrices jumps into play. More precisely, we have the following composition formula

(see the proof of Theorem 4.3 in [80]), which computes the symbol c modulo S−∞,−∞ of the

composition C = A ◦ B of two matrix valued pseudodifferential operators A (k by l) and B (l

by r) with symbols a and b, respectively:

c(x, ξ) ∼
∑

α

h|α|

α!
∂αξ a(x, ξ)D

α
x b(x, ξ) (3.1)

27
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Finally, we remark that the globally defined principal symbol of a semiclassical PDO A ∈
Ψm,k(M ;E,F ) is a well-defined element of the quotient

σm,k(A) ∈ Sm,k
(
M ; Hom

(
π∗(E), π∗(F )

))
/Sm−1,k−1

(
M ; Hom

(
π∗(E), π∗(F )

))

where π : T ∗M →M denotes the projection, π∗ is the pullback and Hom is the homomorphism

bundle.

Remark 3.1. One of the things that fails to hold for matrix pseudodifferential operators and

holds for scalar ones, is that commutation decreases degree of the operator by one. However,

the following formula still holds if c denotes the symbol of C = [A,B] (commutator bracket)

and a ∈ Sm,k(X;Cl2), b ∈ Sm′,k′(X;Cl2) are the symbols of A, B, respectively:

c(x, ξ) = [a, b](x, ξ) +
h

i
{a, b}(x, ξ) modulo Sm+m′−2,k+k′−2

where {a, b}(x, ξ) =∑n
j=1

(
∂a
∂ξj

∂b
∂xj − ∂b

∂ξj
∂a
∂xj

)
denotes the matrix valued Poisson bracket.

3.2. Boundary determination

We are now ready for the main proofs – we assume that (M, g) is a compact n-dimensional

manifold with non-empty boundary N = ∂M and E =M ×Cm a Hermitian vector bundle with

a unitary connection A and Q an m×m matrix whose entries are smooth functions. We will be

working in semigeodesic coordinates near ∂M and we denote by xn the normal coordinate and by

x′ = (x1, x2, . . . xn−1) the local coordinates in ∂M . Furthermore, we have in these coordinates

that g =
∑

α,β gαβ(x)dx
αdxβ + (dxn)2; also, in what follows the summation convention will

be used to sum over repeated indices and when using Greek indices α and β, the summation

will always be assumed to go over 1, . . . , n − 1. We use the notation Dxj = −i∂xj = −i ∂
∂xj

and |g| = det (gij) = det (gαβ). We start by proving an analogue of Lemma 8.6 in [21] and

Proposition 1.1 in [50].

Lemma 3.2. Let us assume A satisfies condition (3.12). There exists a Cm×m-valued pseu-

dodifferential operator B(x,Dx′) of order one on ∂M , depending smoothly on xn ∈ [0, T ] for

some T > 0, such that the following factorisation holds:

d∗AdA +Q = (Dxn × Id+ iE(x)× Id− iB(x,Dx′))(Dxn × Id+ iB(x,Dx′)) (3.2)

modulo smoothing, where E(x) = −1
2g

αβ(x)∂xngαβ(x).

Proof. First of all, we have that:

(d∗AdA +Q)u = ∆g(u)− 2gjkAj
∂u

∂xk
+ (d∗A)u− gjkAjAku+Qu (3.3)

where A = Aidx
i. Furthermore, we have

∆g = D2
xn + iEDxn +Q1 +Q2

where

Q1(x,Dx′) = −i
(1
2
gαβ(x)∂xα log |g|(x) + ∂xαgαβ(x)

)
Dxβ and Q2(x,Dx′)

= gαβDxαDxβ

We denote the symbols ofQ1 andQ2 by q1 and q2 respectively and defineG = (d∗A)−gαβAαAβ+

Q. Thus by using (3.3), we can rewrite (3.2) as

B2 − EB + i[Dxn × Id,B] = Q1 × Id+Q2 × Id− 2gαβAα∂xβ +G
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modulo smoothing. Moreover, by taking symbols we obtain:

∑

α≥0

1

α!
∂αξ′bD

α
x′b− Eb+ ∂xnb− q1 × Id− q2 × Id+ 2igαβAαξβ −G = 0 (3.4)

modulo S−∞, where b is the symbol of B and we have used (3.1) and Remark 3.1. Let us put

b(x, ξ′) =
∑

j≤1 bj(x, ξ
′), where bj is homogeneous of order j in ξ′. We may then determine bj

inductively, starting from degree two in (3.4):

(b1)
2 = q2 (3.5)

so we may set b1 = −√q2 × Id (this sign will be important later) and q2 = gαβξαξβ . Next, we

have:

b0 =
1

2
√
q2

(
∂xnb1 − Eb1 − q1 × Id+ 2igαβAαξβ +∇ξ′b1 · ∇x′b1

)
(3.6)

b−1 =
1

2
√
q2

(
∂xnb0 − Eb0 −G+

∑

0≤j,k≤1, j+k=|K|

∂Kξ′ bjD
K
x′ b|K|−j

K!

)
(3.7)

bm−1 =
1

2
√
q2

(
∂xnbm − Ebm +

∑

m≤j,k≤1, j+k=|K|+m

∂Kξ′ bjD
K
x′ bk

K!

)
(3.8)

where the last equation holds for all m ≤ −1. Therefore we obtain b ∈ S1 and hence B ∈ Ψ1 as

well, such that (3.2) holds. �

We have established the existence of the factorisation (3.2) and now it is time to use it to

prove facts about the DN map. The following claim is analogous to Proposition 1.2 in [50] –

the main difference is that now we are using matrix valued pseudodifferential operators, so we

need to make sure that appropriate generalisations hold.

Proposition 3.3. The DN map Λg,A,Q is a Cm×m-valued pseudodifferential operator of

order one on ∂M and satisfies Λg,A,Q ≡ −B|∂M modulo smoothing.

Proof. Assume without loss of generality that A satisfies condition (3.12) (see the para-

graph after this Proposition). Let us take f ∈ H
1
2 (∂M ;Cm) and u ∈ D′(M ;Cm) that solves

the Dirichlet problem LA,Qu = 0 with u|∂M = f . Then by Lemma 3.2 we obtain the following

equivalent local system:

(Dxn × Id+ iB)u = v with u|xn=0 = f (3.9)

(Dxn × Id+ iE × Id− iB)v = h ∈ C∞([0, T ]× Rn−1;Cm) (3.10)

for some T > 0 and a local coordinate system x′ = (x1, . . . , xn−1) at ∂M . By (3.10) and Remark

1.2 from Treves [80], we may furthermore assume that u ∈ C∞([0, T ];D′(Rn−1;Cm)).

Then writing t = T − xn, we may view the equation (3.10) as backwards generalised heat

equation:

∂tv − (B − E × Id)v = −ih

and by standard elliptic interior regularity we obtain that u is smooth and hence, so is v|xn=T .

Since the principal symbol of B is negative, by Lemma A.11 it satisfies Condition A.9 (the

basic hypothesis of a well-posed heat equation – see Section A.2 for more details) and so the

solution operator for this equation is smoothing by Theorem 1.2 in Chapter 3 of [80]. Thus

v ∈ C∞([0, T ]× Rn−1;Cm).
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Let us set Rf := v|∂M – the above argument shows R is a smoothing operator and also

Dxnu|∂M = −iBu|∂M +Rf . Therefore ∂xnu|∂M ≡ Bu|∂M modulo smoothing, which proves the

claim. �

The final step in this procedure is to express the Taylor series of g, A, q in terms of the

symbols {bj | j ≤ 1} that we obtained in Proposition 3.3. However, before proving such a result,

we need to “normalise” the metric and the connection – here we refer to our Lemma 2.4 and

to Lemma 2.1 (b) from [47]: there exists an automorphism F of E such that F |∂M = Id and

a positive function c on M , with c|∂M = 1 and ∂νc|∂M = 0 (ν is the outer normal) such that

Ã = F ∗(A) and g̃ = c−1g satisfy:

∂̃jxn(g̃αβ ∂̃xn g̃αβ)(x′, 0) = 0 for j ≥ 1 (3.11)

Ãn(x
′, x̃n) = 0 (3.12)

where by (x′, x̃n) we have denoted the g̃-boundary normal coordinates and ∂̃xn denotes ∂x̃n ;

(3.12) holds for all sufficiently small x̃n, i.e. in a neighbourhood of the boundary. Also notice

that the condition (3.11) is equivalent to Lj
Ñ
H̃|∂M = 0 for j ≥ 1, as stated in [47]; here Ñ = ∂̃xn ,

L is the Lie derivative and H̃ is the mean curvature of the hypersurfaces given by setting x̃n

equal to constant. Then by the invariance property of the DN map, we have Λg,A,Q = Λg̃,Ã,Q̃

for Qc = c
n−2
4 ∆g(c

−n−2
4 ) × Id and Q̃ = c(F−1QF + Qc) = c(F ∗(Q) + Qc). We will call a

triple {g,A,Q} that satisfies conditions (3.11) and (3.12) normalised. Moreover, we will use the

notation f1 ≃ f2 to denote that f1 and f2 have the same Taylor series (as in [21]).

Theorem 3.4. Assume M satisfies dimM = n ≥ 3 and the triple {g,A,Q} is normalised.

Let W ⊂ ∂M open, with a local coordinate system {x1, . . . , xn−1} and let {bj | j ≤ 1} denote

the full symbol of B (see Lemma 3.2) in these coordinates. At any point p ∈W , the full Taylor

series of g, A and Q can be determined by the symbols {bj} by an explicit formula.

In particular, if Λg1,A1,Q1 = Λg2,A2,Q2 and we assume that {gi, Ai, Qi} are normalised for

i = 1, 2, then g1 ≃ g2, A1 ≃ A2 and Q1 ≃ Q2. Moreover, if Λg1,A1,Q1 = Λg2,A2,Q2 and g1 ≃ g2

on all of ∂M , then we also have Ã1 ≃ Ã2 and Q̃1 ≃ Q̃2, for Ãi = F ∗
i (Ai) and Q̃i = F ∗

i (Qi)

for i = 1, 2; here Fi are automorphisms of E satisfying Fi|∂M = Id and such that Ãi satisfy

condition (3.12) for i = 1, 2.

Proof. Since we have:

∂xngαβ = −(gαρ∂xngργ)gγβ

it suffices to determine the inverse matrix gαβ and its normal derivatives. By the formula (3.5),

we have that b21 = −gαβξαξβ determines gαβ |∂M .

If we write ω = ξ′

|ξ′|g
and use the notation:

kαβ = ∂xngαβ − (gγδ∂xngγδ)gαβ

then we may rewrite (3.6) as follows:

b0 = igαβAαωβ −
1

4
kαβωαωβ × Id+ T0(g

αβ)

where T0 depends only on gαβ |∂M , which is already explicitly determined.

Thus, by plugging in ±ω, we may recover Aα and kαβ ; it is not hard to see that:

kαβgαβ = (2− n)∂xngαβgαβ



3.2. BOUNDARY DETERMINATION 31

and we may therefore write:

∂xngαβ = kαβ +
1

2− n(k
ργgργ)g

αβ (3.13)

In the next step we will use the notation lαβ = 1
4∂xnkαβ +Qgαβ . Then we may rewrite (3.7) as:

b−1 =
1

2
√
q2
(igαβ(∂xnAα)ωβ − lαβωαωβ) + T1(g

αβ , ∂xngαβ , Aα)

where T1 is an expression that depends only on gαβ , ∂xngαβ and Aα which have already been

explicitly determined. Therefore, we may recover lαβ and ∂xnAα. Now, inductively we may

prove the formula:

bm−1 =
( 1

2
√
q2

)m−1
(igαβ∂

|m−1|
xn Aαωβ − ∂|m|

xn lαβωαωβ)

+ Tm−1(g
αβ , . . . , ∂

|m−1|
xn gαβ , Aα, . . . , ∂

|m|
xn Aα, Q, . . . , ∂

|m+1|
xn Q)

for m ≤ −1, where Tm−1 only depends on the quantities in the bracket. Therefore, by induction

we may explicitly determine ∂jxn lαβ and ∂jxnAα for all j ≥ 0.

Finally, we claim that we may inductively recover ∂j+2
xn gαβ and ∂jxnQ for any j ≥ 0; let us

also denote Sj = gαβ∂
j
xngαβ . For the base case j = 0, notice that ∂xn(gαβ∂xngαβ) = 0, which

implies that S2 = −∂xngαβ∂xngαβ , i.e. we know S2.

Therefore, since we know lαβ , we may also explicitly determine 1
4∂

2
xngαβ×Id+Qgαβ =: Pαβ

0 .

This implies:

Pαβ
0 gαβ = (n− 1)Q+

1

4
S2

from which we easily infer the knowledge of Q and hence also of ∂2xngαβ .

For the inductive step, we may do something very similar: we have that for j ≥ 1, the

quantity Pαβ
j = 1

4∂
j+2
xn gαβ + (∂jxnQ)gαβ is determined, since the condition ∂j+1

xn (gαβ∂xngαβ) = 0

determines Sj+2 by previously reconstructed quantities. Then by the formula:

Pαβ
j gαβ = (n− 1)∂jxnQ+

1

4
Sj+2

we may determine ∂jxnQ and thus, ∂j+2
xn gαβ as well. This completes the proof of the induction

and of the theorem, since two formal expansions of the same operator in terms of classical

symbols that agree modulo S−∞, must also be congruent. �

Let us emphasise that a key role in the above generalisations to the vector case is played by

the fact that the operator d∗AdA +Q has a principal symbol that is a scalar multiple of identity;

the necessary algebra then unveils in much the same way as in the scalar case. A couple of

remarks are in place.

Remark 3.5 (Boundary determination for surfaces). There are a few reasons to exclude

the case dimM = 2 in Theorem 3.4. To start with, after the proof of Proposition 1.3 in [50],

the authors (considering the case E = M × C, A = 0 and Q = 0) remark that all the symbols

of B satisfy bj = 0 for j ≤ 0 (easily checked for b0 by direct computation and for the rest

by induction); in other words, if we choose b1 = −ξ1
√
g11, the factorisation (3.2) becomes a

factorisation into honest differential operators where B = −
√
g11Dx1 , which is in compliance

with the additional conformal symmetry of the Calderón problem for surfaces. Secondly, the

equation (3.13) clearly fails to hold when n = 2 – in that case k11 = 0 clearly so there is no extra

information from this expression. However, when we introduce a connection and a potential,
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one can show that (choose b1 = −ξ1
√
g11 again):

b0 = i
√
g11A1

2ξ1b−1 = ∂x2A1 −
(
∂x1

√
g11
)
A1 −

Q√
g11

Thus, the DN map determines the values of g11 and A1 at the boundary (recall that A2 = 0 in

a neighbourhood of the boundary). Therefore, we may also determine ∂x2A1 − Q√
g11

from the

expression for b−1 and so if Q = 0, we determine the normal derivative of order one ∂x2A1 – we

will need this fact for a later application. If we go on to compute b−2, we see that it suffices to

determine ∂x2g11|∂M to compute derivatives ∂j
x2A1|∂M of all orders j ≥ 2; however, again, we

know we cannot possibly determine ∂x2g11|∂M due to the additional conformal symmetry of the

problem in two dimensions.

Remark 3.6 (Local boundary determination). If we assume that Γ ⊂ ∂M is open and

Λg1,A1,Q1(f)|Γ = Λg2,A2,Q2(f)|Γ for all f ∈ C0(Γ) and that the coresponding quantities are

normalised, then by the local nature of the above argument in Theorem 3.4, we have that:

g1|Γ ≃ g2|Γ, A2|Γ ≃ A2|Γ and Q1|Γ ≃ Q2|Γ.

We end this chapter with an observation that what we proved so far may be translated to

the setting of an arbitrary vector bundle E over M , rather than just the trivial one.

Remark 3.7 (The case of E topologically non-trivial). Firstly, observe that the factorisation

(3.2) and so Lemma 3.2 generalises to this case – the construction that is performed there is

independent of the fact that An = 0, by standard arguments of construction of global PDOs.

So we obtain a first order PDO B acting on sections and the local calculations in Lemma 3.2

(equations (3.6), (3.7), (3.8)) carry over in the trivialisation where An = 0. Therefore, by the

proof of Proposition 3.3, we have Λg,A,Q ≡ −B|∂M modulo smoothing.

Our main result of the chapter, Theorem 3.4, remains valid in the following form. By Lemma

2.4 we may assume that (A−B)( ∂
∂xn ) = 0 in a neighbourhood of the boundary. For a coordinate

chart W ⊂ ∂M and some given trivialisation of E|W , we may extend this trivialisation to a

neighbourhood W × [0, ǫ) of W in M . Again, by the proof of Lemma 2.4 we may change the

trivialisation by a gauge transformation such that An = Bn = 0 locally. Then the extraction of

the Taylor series from the full symbol of B works the same as before and we have the full jet of

(A−B) ∈ Ω1(M ; End E) vanishing at the boundary.

Remarks 3.5 and 3.6 clearly generalise to this setting.



CHAPTER 4

Gaussian Beams

In this chapter, we will construct the Gaussian Beam quasimodes (or generalised approxi-

mate eigenfunctions) that concentrate near geodesics, for the purposes of constructing the CGO

solutions in the case where the transversal manifold is not necessarily simple. Moreover, we will

use the method described in [23], where it was used in the case of a scalar potential and no first

order term – here we also consider the vector case and a first order term. More precisely, we

consider CGO solutions of the form e−sx1(vs + rs) for the general operator ∆ + X + q, where

s = τ + iλ, with τ and λ real; we want to guarantee certain behaviour of the solutions in the

limit as τ → ∞. In Section 4.1 we construct the Gaussian Beams and in Section 4.2 we use

them to construct the CGOs. We start by motivating our definition:

• Since vs is the main part of the solutions we would like to have esx1(∆+X+Q)e−sx1vs

small in L2 norm.

• The solutions should concentrate along geodesics in a certain way.

• Simple manifold case: this is covered in Proposition 4.3 below and motivates the general

transversal manifold case.

Throughout the chapter, we are working in the setting ofM ⋐ (R×M0, e⊕g) with dimM0+

1 = dimM = n ≥ 3.

Definition 4.1 (Generalised quasimodes). Given a family of functions vs on M depending

on a parameter s = τ + iλ (τ, λ ∈ R), we say that vs is a generalised approximate eigenfunction

or generalised quasimode if ‖vs‖L2(M) = O(1) as τ →∞ and:

∥∥∥
(
(∆g +X + q) + s(2

∂

∂x1
−X1)− s2

)
vs

∥∥∥
L2(M)

= ‖esx1(∆ +X + q)e−sx1vs‖L2(M)

= o(|τ |)

Remark 4.2. The main difference between this and the definition of a quasimode found

in [23] is that the definition of a quasimode is independent of the x1 direction, i.e. vs there was

a function defined on M0 only and it was only asked that ‖(∆− s2)vs‖L2(M0) = o(|τ |). This

produces certain problems for us in the sense that the twisted Laplacian d∗AdA now splits in a

non-trivial way in an x1 component, x′ component and a mixed component, unlike the ordinary

Laplacian, ∆e⊕g = −|g|−1/2 ∂
∂x1

(
|g|1/2 ∂

∂x1

)
+∆g. As we will shortly see, this amounts to solving

a certain ∂̄-equation, which complicates things.

4.1. Main constructions of Gaussian Beams

We will focus on constructing generalised quasimodes. A complex vector field X on M is a

skew-Hermitian vector field if X∗ = −X in the complexified tangent bundle TCM ; moreover, we

have the notion of a skew-Hermitian matrix of vector fields, which is a clear generalisation of

the previously defined term. As a warm up for the general construction, we will first deal with

the easy case of line bundles and M0 simple, which comes out of our work in Chapter 6 – in this

case we have an ansatz for the eikonal equation.

33
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Recall also that a unit speed geodesic γ : [0, L]→M is called non-tangential if γ(0), γ(L) ∈
∂M and γ̇(0), γ̇(L) are not parallel to ∂M , with γ(t) in the interior of M for 0 < t < L.

Proposition 4.3. Let (M0, g) be a simple manifold and γ : [0, L] → M0 a non-tangential

geodesic and let λ be a real parameter. Let X and Y be two smooth skew-Hermitian vector fields

on M . Then there exists a family of generalised quasimodes satisfying the above conditions, i.e.

if s = τ + iλ, then there exists vs, ωs ∈ C∞(R×M0) such that:
∥∥∥
(
(∆g +X + q) + s(2

∂

∂x1
−X1)− s2

)
vs

∥∥∥
L2(M)

= o(|τ |) and ‖vs‖L2(M) = O(1)

∥∥∥
(
(∆g + Y + q)− s(2 ∂

∂x1
− Y1)− s2

)
ωs

∥∥∥
L2(M)

= o(|τ |) and ‖ωs‖L2(M) = O(1)

as τ →∞ and for each φ ∈ C(M0) and x
′
1 ∈ R we have:

lim
τ→∞

∫

{x′

1}×M0

vsω̄sφdVg =

∫ L

0
e2λteΦ1+Φ̄2φ(γ(t))dt

where Φ1 and Φ2 are smooth on R× [0, L] and satisfy the following equations:1

(
∂

∂x1
+ i

∂

∂r

)
(Φ1) =

1

2
(X1 + iXr) and

(
− ∂

∂x1
+ i

∂

∂r

)
(Φ2) =

1

2
(−Y1 + iYr)

Proof. As in Section 6.1.1, consider a simple manifold D which contains M0 and a point

p ∈ D such that R × {p} is disjoint from M and consider the global polar coordinate system

at this point. Furthermore, we proceed by picking a different conjugating exponent – we let

ρ = x1 + ir. By Lemma 6.1:

esρ
(
∆+X + q

)
e−sρus = (∆+X + q)us − s

(
∆ρ+X(ρ)− 2〈dρ, d·〉

)
us − s2|dρ|2us

One wants to have a handle on the size of the right hand side, so one equates the linear and

the quadratic terms in s to zero; this is done in Chapter 6. The same construction gives us

us = |g|−1/4 · a · bτ (θ), where a and bτ ∈ C∞(Sn−2) are chosen such that:
(

∂

∂x1
+ i

∂

∂r

)
(a) =

1

2
(X1 + iXr)a

‖bτ‖2L2(Sn−2) = 1, ‖bτ‖2W 2,∞(Sn−2) = O(τα) and |bτ |2dS → δθ0

i.e. bτ is a C∞ approximation to the delta function, with α < 1; here dS is the volume element

of Sn−2. We pick a of the form eΦ1 , so that Φ1 satisfies the equation:
(

∂

∂x1
+ i

∂

∂r

)
(Φ1) =

1

2
(X1 + iXr)

Now, given us as above, we set vs = e−isrus:

esx1(∆ +X + q)e−sx1vs = e−isresρ(∆ +X + q)e−sρus

= e−isr(∆ +X + q)
(
|g|−1/4 · a · bτ (θ)

)
=: f

By using the properties of bτ and the boundedness of other factors, we see that f is clearly equal

to O(τα) in L2(M) with α < 1. But this exactly means that vs is a generalised approximate

eigenfunction. Analogously we construct the ωs function with respect to Y , but with one differ-

ence in mind – we take −x1 to be the Carleman weight (this will be important in the integral

1In these equations, we extend the domain of definition of X and Y from M to R ×M0 smoothly to compactly
supported vector fields and with a slight abuse of notation still denote them the same.
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identity). Moreover, we have:
∫

{x′

1}×M0

vsω̄sφdVg →
∫ L

0
e2λreΦ1+Φ̄2φ(γ(r))dr

when τ →∞, for each x′1, by using that the volume element on M0 is dVg0 = |g| 12dx2∧ . . .∧dxn
and the concentration properties of bτ . �

Now we are ready to make the passage to the case of the transversal manifold being non-

simple, with the previous proposition giving us some intuition. Most of the proof we are about

to see is analogous to the proof of Proposition 3.1 in [23]. The main difference is that, when

constructing the amplitude a in vs = eisΘa, we do not get an ordinary differential equation –

we get that a satisfies a certain ∂̄-equation. This complicates the construction of a slightly and

uses the properties of ∂̄-equations we discuss in Subsection 6.1.3. Moreover, the derivation of

the limit integral is also more involved. We will prove the following theorem for line bundles

first and then generalise to all vector bundles in a series of results after.

Theorem 4.4 (Main construction of the Gaussian Beams). Let γ : [0, L] → M0 be a non-

tangential geodesic and let λ be a real parameter, with M0 any compact manifold with boundary.

Let X and Y be two smooth skew-Hermitian vector fields on M , which we extend to compactly

supported vector fields on R × M0 (still denoted X and Y ). Then there exists a family of

generalised quasimodes satisfying the above conditions, i.e. if s = τ + iλ, then there exists

vs, ωs ∈ C∞(J0 ×M0), where J0 = [−N0, N0] for some large positive integer N0, such that:
∥∥∥
(
(∆g +X + q) + s(2

∂

∂x1
−X1)− s2

)
vs

∥∥∥
L2(J0×M0)

= o(|τ |) and ‖vs‖L2(J0×M0) = O(1)

∥∥∥
(
(∆g + Y + q)− s(2 ∂

∂x1
− Y1)− s2

)
ωs

∥∥∥
L2(J0×M0)

= o(|τ |) and ‖ωs‖L2(J0×M0) = O(1)

as τ →∞ and for each φ ∈ C(M0) and x
′
1 ∈ [−N0, N0] we have:

lim
τ→∞

∫

{x′

1}×M0

vsω̄sφdVg =

∫ L

0
e−2λteΦ1+Φ̄2φ(γ(t))dt

where Φ1 and Φ2 are smooth on R× [0, L] and satisfy the following equations:
(

∂

∂x1
− i ∂

∂r

)
(Φ1) =

1

2
(X1 − iXr) and

(
∂

∂x1
− i ∂

∂r

)
(Φ̄2) =

1

2
(−Y1 + iYr) (4.1)

Moreover, the following limit holds for vs and ωs and any one form α on M0:

lim
τ→∞

1

τ

∫

{x′

1}×M0

〈α, dvs〉ω̄sφdVg =

∫ L

0
iα(γ̇(t))eΦ1+Φ̄2e−2λtφ(γ(t))dt

lim
τ→∞

1

τ

∫

{x′

1}×M0

〈α, dω̄s〉vsφdVg = −
∫ L

0
iα(γ̇(t))eΦ1+Φ̄2e−2λtφ(γ(t))dt

Proof. Firstly, let us isometrically embed our manifold (M0, g) into a larger closed manifold

(M̂, g) of the same dimension. This is possible since we can form the manifold M̂ =M0⊔∂M0M0,

which is the disjoint union of two copies of M0, glued along the boundary; g, X and Y are

smoothly extended to R × M̂ . We will extend the geodesic such that for ǫ > 0 we have γ(t) ∈
M̂ \M0 for t ∈ (−2ǫ, 0) ∪ (L,L + 2ǫ); this is possible since γ is non-tangential. Let N0 be a

large positive integer such that (−N0, N0)×M0 contains M and the support of X and Y ; let us

introduce the notation for the interval J1 := [−N0 − 1, N0 + 1].

Let us first introduce a set of local coordinates along the geodesic; a detailed account of

this can be found in [23]. Since our manifold is compact and γ has no loops, we can assume
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F

γ

Γ

I(1) ×B I(2) ×B

U (1) U (2)

ϕ1 ϕ2

p1

t1 t2

Figure 1. An illustration of the local diffeomorphism F obtained from Fermi co-
ordinates: the cover of the geodesic γ is given by charts (U (1), ϕ1) and (U (2), ϕ2),

with ϕi(U
(i)) = I(i)×B for i = 1, 2. Red colour delimits the U (1) piece, the green

one delimits U (2) and γ(t1) = γ(t2) = p1.

γ self-intersects only finitely many times, at 0 < t1 < . . . < tN ′ < L and that there is an open

cover {(U (j), ϕj)}N
′+1

j=0 of γ([−ǫ, L + ǫ]) such that ϕj(U
(j)) = I(j) × B, where I(j)s are open

intervals and B a small n − 2-dimensional ball. Also, ϕj(γ(t)) = (t, 0) and tjs belong only to

I(j)s and Ī(j) ∩ Ī(k) = ∅ unless |j − k| ≤ 1; ϕis agree on overlaps. These are called the Fermi

coordinates and they have the following two properties along the geodesic: the metric is diagonal

and ∂ig
jk = 0 (and so the Christoffel symbols vanish). Also, let us denote by F the map from

U = [−2ǫ, L+2ǫ]×B to M̂ , which restricts to the inverse charts on I(i)×Bs; this is well defined

since the charts agree on overlaps. The map F is locally a diffeomorphism, but is not globally

because of self-intersections of the geodesic (see Figure 1).

Rather than constructing the quasimode locally, near a point p0 = γ(t0) on γ([−ǫ, L + ǫ]),

observe that we may use the map F as a local diffeomorphism and pull back all the data (g,

X and Y ) to R × U – let us still denote the pullbacks with the same letters. Let us also use

the notation Di := Ji × U for i = 0 and 1. We will use the coordinate y on B and denote the

geodesic in these local coordinates as Γ = {(t, 0)} in U . Furthermore, we will construct the

quasimode on D and then provide a method to pushforward this quasimode to J0 ×M0.

Let us seek for solutions of the form vs = eisΘa, where a and Θ will be complex functions

supported in |y| < δ′/2. Then we have:

esx1(∆ +X + q)e−sx1vs = eisΘe−s(−x1+iΘ)(∆ +X + q)es(−x1+iΘ)a

= eisΘ
{
(∆+X+ q)a+s

(
2
∂a

∂x1
−2i〈dΘ, da〉+

(
−X1+ iX(Θ)

)
a+ i∆(Θ)a

)
−s2(1−|dΘ|2)a

}
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by putting ρ = −x1 + iΘ and using Lemma 6.1. Firstly, let us solve |dΘ|2 = 1 up to order |y|N
on Γ. We look for Θ in the form Θ =

∑N
j=0Θj , where:

Θj =
∑

|α|=j

Θj,α(t)

α!
yα

are the homogeneous components and we write gjk =
∑N

l=0 g
jk
l + rjkN+1, where

gjkl (t, y) =
∑

|β|=l

gjkl,β(t)

β!
yβ and rjkN+1 = O(|y|N+1)

is the remainder in Taylor’s theorem. By the properties of the coordinates, we have gjk0 = δjk

and gjk1 = 0. Let us accordingly choose Θ0(t, y) = t and Θ1(t, y) = 0. Most of the next step

follows from the lines of [23], but we give it here for completeness:

〈dΘ, dΘ〉 − 1 = gjk∂jΘ∂kΘ− 1 = (1 + g112 + . . . )(1 + ∂tΘ2 + . . . )(1 + ∂tΘ2 + . . . )

+ 2(g1α2 + . . . )(1 + ∂tΘ2 + . . . )(∂yαΘ2 + . . . )

+ (δαβ + gαβ2 + . . . )(∂yαΘ2 + ∂yαΘ3 + . . . )(∂yβΘ2 + ∂yβΘ3 + . . . )− 1

= [2∂tΘ2 +∇yΘ2 · ∇yΘ2 + g112 ] +
N∑

p=2

(. . . ) +O(|y|N+1)

We want to choose Θi such that the first bracket and the sum above vanish. We pick Θ2(t, y) =
1
2H(t)y · y where H(t) is a smooth complex symmetric matrix. For the first bracket to vanish,

we need to have:

Ḣ(t) +H(t)2 = F (t)

where F (t) is the symmetric matrix determined by g112 (t, y) = −F (t)y · y. Choosing H0 = H(t0)

for t0 := −2ǫ to be any complex symmetric matrix with Im(H) positive definite; following [23]

this Riccati equation has a unique smooth complex symmetric solution H(t) with Im(H(t))

positive definite for all t ∈ [−2ǫ, L + 2ǫ]. Now we find Θ3, . . . ,ΘN by inductively solving the

first order ODEs along Γ with an initial condition at t0, obtained by collecting the homogeneous

terms in y of higher order in the previous expansion. We obtain a smooth Θ such that |dΘ|2 = 1

up to order |y|N .

Now we turn to the more interesting step, how to solve:

s
[
2
∂a

∂x1
− 2i〈dΘ, da〉+ (−X1 + iX(Θ))a+ i∆(Θ)a

]
+
(
∆+X

)
a = 0

up to order |y|N . We look for a in the form

a = τ
n−2
4 (a0 + s−1a−1 + · · ·+ s−Na−N )χ(

y

δ′
)

where χ is a bump function defined such that χ = 1 on |y| ≤ 1/4, χ = 0 for |y| ≥ 1/2. We now

equate each degree of s in the above expression to zero and obtain N + 1 equations for each

degree 1, 0, . . . ,−(N − 1):

2
∂a0
∂x1
− 2i〈dΘ, da0〉+

(
−X1 + iX(Θ) + i∆(Θ)

)
a0 = 0

2
∂aj
∂x1
− 2i〈dΘ, daj〉+

(
−X1 + iX(Θ) + i∆(Θ)

)
aj + (∆+X)aj+1 = 0

for each j = −1, . . . ,−N . Let us introduce η = i∆Θ − X1 + iX(Θ) and write η = η0 + . . . +

ηN + O(|y|N+1) for the Taylor expansion of η. We look for a0 = a00 + a01 + . . . + a0N where
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each a0i is a homogeneous polynomial of degree i. Then the degree one equation becomes:

2
∂

∂x1
(a00 + . . .+ a0N )− 2igjk∂jΘ∂ka+ (η0 + η1 + . . . )(a00 + . . .+ a0N ) = 0

to order |y|N . After rewriting, this becomes:

= 2
∂

∂x1
(a00 + . . . a0N )− 2i(1 + g112 + . . . )(1 + ∂tΘ2 + . . . )(∂ta00 + ∂ta01 + . . . )

− 2i(g1β2 + . . . )(1 + ∂tΘ2 + . . . )(∂yβa01 + . . . )

− 2i(gα12 + . . . )(∂yαΘ2 + . . . )(∂ta00 + ∂ta01 + . . . )

− 2i(δαβ + gαβ2 + . . . )(∂yαΘ2 + . . . )(∂yβa01 + . . . )

+ (η0 + η1 + . . .+ ηN +O(|y|N+1))(a00 + a01 + . . .+ a0N )

=
[
2
∂a00
∂x1

− 2i∂ta00 + η0a00

]
+
[
2
∂a01
∂x1

− 2i∂ta01 − 2i∂yαΘ2∂yαa01 + η1a00 + η0a01

]
+ . . .

where we have written down the first two terms in the y expansion. For us, the equation for

a00 is particularly important (it will give us the value of a0 along Γ). We have that η0 =

(i∆Θ −X1 + iX(Θ))(t, 0), where we know that Θ = t + 1/2H(t)y · y + O(|y|3). Therefore, we

compute:

∆Θ(t, 0) = −|g|− 1
2
∂

∂xj
(|g| 12 gjk ∂Θ

∂xk
) = −|g|− 1

2
∂|g| 12
∂t
− δjkHjk = −trH(t)

So, our equation for a00 becomes:
( ∂

∂x1
− i ∂

∂t

)
a00 =

1

2

(
X1 − iXt + itrH(t)

)
a00 (4.2)

which we have seen in a more general, matrix case. Here, we want a solution of the form

a00 = eΦ1+f1 , so that we obtain, for ∂ = 1/2(∂/∂x1 − i∂/∂t)

∂Φ1 =
1

4

(
X1 − iXt

)
and

∂f1
∂t

= −1

2
trH(t) (4.3)

where Φ1 is a function in both x1 and t, f1 is a function of just t. Now for the rest of the a0i

for i > 0, we obtain a similar vector valued equation of the form:

∂v +Av + f = 0

where v and f are vectors and A is a matrix. The reason for this is that for i > 0, we get more

components in the Taylor expansion, so we get a coefficient for each (think of a0is as vectors).

This is solvable by our previous work on fundamental solutions of such equations, so that we

produce an invertible matrix C such that

∂C = −AC (4.4)

in R × (−2ǫ, L + 2ǫ) (see Section 6.1.3). Then we try v = Cu for some vector function u

and we get the equation: ∂u = −C−1f , which we know how to solve in the bounded domain

J0×[−3
2ǫ, L+

3
2ǫ], by e.g. multiplying f with a cut-off function, equal to one on J0×[−3

2ǫ, L+
3
2ǫ]

and supported in J1 × (−2ǫ, L+ 2ǫ) in order to extend it to the whole (x1, t)-plane and use the

generalised Cauchy integral formula. Hence we determine a0 and proceed to determine ais for

i > 0 inductively. Notice also that X is compactly supported, so we may indeed take the zero

extension of it to the (x1, t)-plane and solve the first equation in (4.3).

At this point we make a remark about constructing the ωs solution, which is the solution

where we use esx1 exponent in the CGO solution (and hence the −s in the formulation of the
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theorem). The point is that everything just gets a minus sign at each spot where we use x1.

Checking through the details, we obtain a version of the equation (4.3) (we use the fact that Y

is skew-Hermitian):

∂Φ̄2 =
1

4

(
− Y1 + iYt

)
and

∂f2
∂t

= −1

2
trH(t)

We are left with the terms of the form:

esx1(∆ +X)e−sx1eisΘa = eisΘτ
n−2
4

[
s2h2a+ sh1 + · · ·+ s−(N−1)h−(N−1)

+ s−N (∆ +X)a−N

]
χ(
y

δ′
) + eisΘτ

n−2
4 sbχ̃(

y

δ′
)

where we have hjs to be equal to zero to order |y|N on Γ; we also introduce b and χ̃ to describe

the leftover terms which appear upon differentiating the function χ in a sum, but which therefore

are zero near and far away of Γ. Concretely, we have b = 0 for |y| ≤ δ′/4 and χ̃ = 0 for |y| ≥ 1/2

and the most important fact about this term is that it is linear in s.

In order to determine some bounds on vs, let us introduce a positive constant c, for which

it holds that ImH(t)y · y ≥ c|y|2. Then we have:

|eisΘ| = e−λReΘe−τ ImΘ = e−λte−λO(|y|2)e−
τ
2
ImH(t)y·ye−τO(|y|3) (4.5)

|vs(x1, t, y)| . τ
n−2
4 e−

1
4
cτ |y|2χ(

y

δ′
) (4.6)

after decreasing δ′ if necessary and using the 1/4 factor in the exponential to dominate the

remaining O(|y|3) factor, for x1 ∈ J0. Thus we have:

‖vs‖L2(J0×U) . ‖τ
n−2
4 e−

1
4
cτ |y|2‖L2(J0×U) = O(1)

∥∥∥esx1(∆ +X)e−sx1vs

∥∥∥
L2(J0×U)

.
∥∥∥τ n−2

4 e−
1
4
cτ |y|2

(
τ2|y|N+1 + τ−N + τbχ̃

)∥∥∥
L2(J0×U)

= O(|τ | 3−N
2 ) (4.7)

where the second line is equal to O(|τ |−K) upon setting N = 2K+3, for any fixed K, a positive

integer.

Let us now record a boundary estimate for future purposes. Namely, since the geodesic

intersects the boundary ∂M0 transversely at t = 0 and t = L, we can introduce the implicit

coordinates {(t(y), y) : |y| < ǫ′} for some smooth function t(y) and small ǫ′ > 0. Then for δ′

small enough:

‖vs(x1, ·)‖2L2(∂M0∩U) =

∫

|y|<ǫ′
|vs(x1, t(y), y)|2dS(y) .

∫

Rn−2

τ
n−2
2 e−

1
2
cτ |y|2dy = O(1)

for x1 in J0 and as |τ | → ∞.

Now we are done with the local construction and bounds on J0 × [−ǫ, L+ ǫ]×B and want

to glue the solutions together with desired concentration properties. Let us denote by v
(j)
s the

pushforward by the coordinate map Id × ϕ−1
j of the so obtained solution on J0 × U (j) (where

Id : R→ R is the identity map). We thus obtain v
(0)
s , v

(1)
s , . . . , v

(r)
s . To glue these, let χj(t) be a

partition of unity subordinate to I(j); the we extend these to U (j) by saying χ̃j(x1, t, y) = χj(t)

and finally let:

vs :=

r∑

j=0

χ̃jv
(j)
s (4.8)
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The previous remark allows us to have v
(j)
s = v

(j+1)
s in the overlaps J0×

(
U (j)∩U (j+1)

)
. Now, pick

small neighbourhoods of the geodesic self-intersection points p1, . . . , pR and call them V1, . . . , VR;

for δ′ sufficiently small, we get that F is injective on the complement of the inverse image by F

of the Vis (see Figure 1). Therefore, we can pick a finite cover by W1, . . . ,WS of the remaining

points on the geodesic such that Wi ⊂ U (li) for some li and supp(vs) ⊂
(
∪ Vi

)
∪
(
∪Wj

)
and

moreover, the restrictions to these satisfy:

vs|Vi =
∑

γ(tl)=pi

v(l)s and vs|Wi = v(li)s (4.9)

It is now clear that the wanted L2 bounds on vs follow from our previous local considerations on

each of v
(i)
s . We are left with the concentration results to prove – by considering the partitions of

unity subordinate to Vis andWjs, we can assume that φ has compact support in one of these sets.

Let us first consider the easier case where supp(φ) ⊂Wk for some k. By a completely analogous

construction, we may assume that we have ωs = eisΘb on J0× [−ǫ, L+ ǫ]×B, constructed with

respect to Y – notice that Θ is solved for independently of the vector fields X and Y (recall

that we only want |dΘ|2 = 1 up to order |y|N ).

InWk, we have vs = eisΘa and ωs = eisΘb, where we dropped the indices to simplify notation.

Then we have:
∫

{x′

1}×M0

vsω̄sφdVg =

∫
eisΘe−is̄Θ̄ab̄φdVg

=

∫ L

0

∫

Rn−2

e−2λReΘe−2τ ImΘτ
n−2
2 (a0 +O(τ−1))(b̄0 +O(τ−1))χ(y/δ′)2φ|g|1/2dydt

=

∫ L

0

∫

Rn−2

e− ImH(t)y·ye−2τ−1/2O(|x|3)e−2τ−1O(|x|2)e−2λtτ
n−2
2

·
(
a0(t, τ

−1/2x) +O(τ−1)
)(
b̄0(t, τ

−1/2x) +O(τ−1)
)
χ
(
x/(τ1/2δ′)

)2|g|1/2
(
t, τ−1/2x

)
φdydt

by performing the substitution y = τ−1/2x; we can see what the limit is – namely, by bounding

e−c|x|2e2A|x|3/(τ1/2)e2B|x|2/τ ≤ e|x|2(−c+2Aδ′+2B/τ)

where c is as before the positive constant such that ImH(t)y · y ≥ c|y|2 and using the fact that

we integrate over |y| ≤ τ1/2δ′, by taking sufficiently small δ′ we get exponent negative and hence

we get an integrable function; thus we may use the Dominated convergence theorem to get this

tends to, as τ →∞:

∫ L

0
e−2λteΦ1+f1+Φ̄2+f̄2φ(γ(t))

∫

Rn−2

e− ImH(t)x·xdxdt

=

∫

Rn−2

e−|y|2dy

∫ L

0

e−2λteΦ1+f1+Φ̄2+f̄2φ(γ(t))√
det ImH(t)

dt (4.10)

by using the linear change of variable by the matrix ImH(t). However, from before we know

that:

det(ImH(t)) = det(ImH(t0))e
−2

∫ t
t0

trReH(s)ds
and

∂(f1 + f̄2)

∂t
= − trReH(t)

Hence we obtain cancellation in the above integral and by picking the initial condition for H(t0)

such that det(ImH(t0)) = πn−2, we finally get the desired limit:
∫ L

0
e−2λteΦ1+Φ̄2φ(γ(t))dt
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Moreover, in the case where we have supp(φ) ⊂ Vj for some j, we have vs =
∑

γ(tl)=pj
v
(l)
s and

ωs =
∑

γ(tl)=pj
ω
(l)
s , which means that we have the following expression:

vsω̄s =
∑

γ(tl)=pj

v(l)s ω̄(l)
s +

∑

l 6=l′,γ(tl)=γ(tl′ )=pj

v(l)s ω̄(l′)
s

We want to show that the mixed terms vanish; i.e. want to show
∫
Vj∩M0

v
(l)
s ω̄

(l′)
s φdVg → 0 as

τ →∞ for l 6= l′, so that we are left with the expression from the statement – this would prove

our claim.

Let us use the fact that ∂Θ
∂t (t, 0) = 1; write v

(l)
s = eisΘ

(l)
a(l) and ω

(l)
s = eisΘ

(l)
b(l). This gives

us that for ϕ = Re(Θ(l) − Θ(l′)) we have dϕ 6= 0 at the point pj , as the geodesic intersects

itself transversally. Therefore, by further reducing δ′ if necessary, we may assume that dϕ is

non-vanishing in Vj . From now on, we drop the subscript s to relax the notation.

Let p(l) = e−s ImΘ(l)
e−λReΘ(l)

a(l) and analogously q(l) = e−s ImΘ(l)
e−λReΘ(l)

b(l). Then we can

write v(l) = eiτ Re(Θ(l))p(l) and similarly ω(l) = eiτ Re(Θ(l))q(l). Then one can easily check that:
∫

Vj∩M0

v(l)ω̄(l′)φdVg =

∫

Vj∩M0

eiτϕp(l)q̄(l
′)φdVg

Fix ǫ′′ > 0. In order to be able to do calculus with φ, we split it into a smooth and a sufficiently

small part: let φ = φ1 + φ2, where φ1 ∈ C∞
c (Vj ∩M0) smooth and ‖φ2‖L∞(Vj∩M0) ≤ ǫ′′. For

the φ2 part, we have the bound
∣∣ ∫

Vj∩M0
eiτϕp(l)q̄(l

′)φ2dVg
∣∣ . ‖p(l)‖L2‖q̄(l′)‖L2‖φ2‖L∞ . ǫ′′, since

‖p(l)‖L2 . ‖v(l)‖L2 = O(1) and similarly for q(l
′).

For the main, smooth part we perform integration by parts with the operator Lf = 〈|dϕ|−2dϕ,

df〉, by noting that 1
iτL(e

iτϕ) = eiτϕ:

∫

Vj∩M0

eiτϕp(l)q̄(l
′)φ1dVg =

∫

Vj∩∂M0

∂νϕ

iτ |dϕ|2 e
iτϕp(l)q̄(l

′)φ1dS

+
1

iτ

∫

Vj∩M0

eiτϕLt(p(l)q̄(l
′)φ1)dVg

where Lt is the transpose of the operator L. Now we have the job to estimate the two integrals

on the right hand side; the proof of this is identical to the proof in [23]. By using the fact that∫
τ

n−2
2 e−cτ |y|2 |y|2dy = O(τ−1) and that in the local chart determined by l, |d ImΘ(l)| . |y|, we

have:

‖|d ImΘ(l)|v(l)‖L2‖ω̄(l′)‖‖φ1‖L∞ . τ−1/2

But this is exactly the form of summand that contributes the most to the second integral; it is

the one that is obtained upon acting of Lt on e−s ImΘ(l)
, because after differentiation we get an

extra τ term which happily cancels with 1
iτ ; everything else is bounded.

The boundary integral is bounded by previous local bounds; hence the 1
iτ factor takes care

of it. Therefore, finally, by using the previous case on each of the factors v
(l)
s ω̄

(l)
s , we have that:

lim
τ→∞

∫

{x′

1}×M0

v(l)s ω̄(l)φdVg =

∫

I(l)
e−2λteΦ1+Φ̄2φdt

So by adding these for time intervals I(l) for γ(tl) = pj , we get the desired result.

We are left with the final piece of the proof, which is concerned about the concentration

properties of the solutions when coupled with a 1-form. As before, by using a partition of unity,

we may assume φ has compact support in some of the Wk or Vi (the part of φ which is zero near

the geodesic, can be made to have disjoint support with vs).
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Let us first consider the case supp(φ) ⊂ Wk. Here we have vs|Wk
= v(l) = eisΘ

(l)
a(l) and

ωs|Wk
= ω(l) = eisΘ

(l)
b(l) for some l. We want to compute the following limit, where we use the

x = (t, y) coordinates (we drop some of the indices):

1

τ

∫

{x′

1}×M0

gijαi
∂vs
∂xj

ω̄sφdVg =
is

τ

∫

{x′

1}×M0

gijαi
∂Θ

∂xj
vsω̄sφdVg

+
1

τ

∫

{x′

1}×M0

gijαie
isΘ ∂a

∂xj
ω̄sφdVg →

∫ L

0
iαte

Φ1+Φ̄2e−2λtφdt

as τ → ∞, where αt = α(γ̇(t)); this is because the first integral can be computed by our

previous considerations and using the fact that Θ = t + 1/2 ImH(t)y · y + O(|y|3) to compute

the derivatives along the geodesic. Furthermore, the second term goes to zero by this simple

estimate:

‖ωs‖L2

∫ L

0

∫

Rn−2

|α|2|eisΘ|2|da|2dydt .
∫ L

0

∫

Rn−2

τ
n−2
2 e−

1
2
cτ |y|2dydt = O(1) (4.11)

which finishes the proof in this case.

For the more complicated case supp(φ) ⊂ Vk, we have that vs =
∑

γ(tl)=pk
v
(l)
s and ωs =

∑
γ(tl)=pk

ω
(l)
s . In the coordinates x = (t, y) corresponding to I(l), for each l and l′ with γ(tl) =

γ(tl′) = pk:

∫

{x′

1}×M0

gijαi
∂v(l)

∂xj
ω̄(l′)φdVg =

is

τ

∫

{x′

1}×M0

gijαi
∂Θ

∂xj
v(l)ω̄(l′)φdVg

+
1

τ

∫

{x′

1}×M0

gijαie
isΘ ∂a

∂xj
ω̄(l′)φdVg

where we write v(l) = eisΘa. Now by the previous steps, we easily see that, if l 6= l′, the first term

is zero in the limit and the second term goes to zero by the bound (4.11) above. However, if we

have l = l′, by the previous step we again have the right limit, which is
∫
I(l) iαte

Φ1+Φ̄2e−2λtdt.

Combining the results, we obtain:

lim
τ→∞

∫

{x′

1}×M0

〈dvs, α〉ω̄sφdVg =
∑

γ(tl)=pk

∫

I(l)
iαte

Φ1+Φ̄2e−2λtφdt =

∫ L

0
iαte

Φ1+Φ̄2e−2λtφdt

which finally finishes the proof. Similarly to this last part of the proof we can determine the limit

where the integrand is 〈α, dω̄s〉vsφ – we get the same limit with just a minus sign in front. �

Remark 4.5. The equation (4.3) defining Φ1 is invariant under summing with an anti-

holomorphic function. Therefore, in the previous theorem, we could have inserted an extra anti-

holomorphic part h in the integrand of the limit. Moreover, we can see from the proof (see (4.7)

and the lines nearby) that we could have changed the estimate ‖esx1(∆ +X + q)e−sx1vs‖L2(M) =

o(τ) as |τ | → ∞ with the stronger, O(|τ |−K) estimate, for any K > 0 – this will get used in the

partial boundary data setting.

Remark 4.6. Note that we also have ‖dvs‖L2(M ;T ∗M) = O(|τ |) (or equivalently ‖vs‖H1
scl(M) =

O(1) for h = 1
τ ). This simply follows from the local estimate (4.6) and the fact that dvs =

is(dΘ)eisΘa+eisΘda (locally), so in the end we just get an extra factor of τ in the L2(M) norm.

Remark 4.7. It is also of interest to mention that the above construction works for metrics

on R×M0 that are conformal to the product metric (this is also considered in [23]). However, for

simplicity we have omitted this conformal factor from the statement of this theorem, but more

importantly we can prove Theorem 4.10 without this fact. It is not essential at this point (it will
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be important later, when when we use the integral identity) that X and Y are skew-Hermitian,

but the equation (4.1) is simpler with this assumption.

We are also interested in a vector valued version of the previous theorem. The statement

of this theorem is completely analogous for vectors (matrices), as well as the proof; however,

we give a sketch of the proof at some points of difference (E′ = R ×M0 × Cm×m is the vector

bundle of matrices with the fibrewise Hermitian inner product 〈A,B〉 = tr(AB∗)).

Theorem 4.8 (Construction of the vector valued Gaussian Beams). Let γ : [0, L] → M0

be a non-tangential geodesic and let λ be a real parameter, with M0 any compact manifold

with boundary. Let X and Y be two skew-Hermitian matrices of vector fields on M and q a

matrix potential; we extend X, Y and q to have compact support in R×M0. Let N0 be a large

positive integer and denote J0 = [−N0, N0]. Then there exists a family of generalised quasimodes

satisfying the above conditions, i.e. if s = τ + iλ, then there exists vs, ωs ∈ C∞(J0 ×M0, E
′)

such that:
∥∥∥
(
(∆g +X + q) + s(2

∂

∂x1
−X1)− s2

)
vs

∥∥∥
L2(J0×M0;E′)

= o(|τ |) and ‖vs‖L2(J0×M0;E′) = O(1)

∥∥∥
(
(∆g + Y + q)− s(2 ∂

∂x1
− Y1)− s2

)
ωs

∥∥∥
L2(J0×M0;E′)

= o(|τ |) and ‖ωs‖L2(J0×M0;E′) = O(1)

as τ →∞ and for each φ ∈ C(M0) and x
′
1 ∈ R we have:

lim
τ→∞

∫

{x′

1}×M0

tr (vsω
∗
s)φdVg =

∫ L

0
e−2λt tr (CXC

∗
Y )φ(γ(t))dt

where CX and CY are smooth m×m matrices on R× [0, L] which satisfy the following equations:
(

∂

∂x1
− i ∂

∂r

)
(CX) =

1

2
(X1 − iXr)CX and

(
∂

∂x1
− i ∂

∂r

)
(C∗

Y ) =
1

2
C∗
Y (−Y1 + iYr) (4.12)

Moreover, the following limits holds for vs and ωs and any one form α on R×M0:

lim
τ→∞

1

τ

∫

{x′

1}×M0

tr (〈α, dvs〉ω∗
s)φdVg =

∫ L

0
iα(γ̇(t)) tr (CXC

∗
Y )e

−2λtφ(γ(t))dt

lim
τ→∞

1

τ

∫

{x′

1}×M0

tr (〈α, dω∗
s〉vs)φdVg = −

∫ L

0
iα(γ̇(t)) tr (CXC

∗
Y )e

−2λtφ(γ(t))dt

Proof. Same as the proof of Theorem 4.4, with a few remarks. Firstly, every appearance

of vsω̄s is replaced by the inner product tr (vsω
∗
s) and we are looking for vs = eisΘa, where this

time a is a matrix ; so the action of X and Y is matrix multiplication from the left. However,

formally, the computations stay the same until the appearance of Φ1,2; the CX,Y take their role,

this time as matrices. Namely, when we arrive to the equation for a00, which is (4.2):
( ∂

∂x1
− i ∂

∂t

)
a00 =

1

2

(
X1 − iXt + itrH(t)

)
a00

we ask for matrices CX and C1 such that a00 = CXC1, where:
( ∂

∂x1
− i ∂

∂t

)
CX =

1

2

(
X1 − iXt

)
CX and

∂C1

∂t
= −1

2
tr (H(t))C1(t)

so that C1,2 play the role of f1,2. One checks that such a00 satisfies the conditions and for

C1(t) we just take the diagonal matrix obtained by integration. This is later used to get the

cancellation of
√

det ImH(t) with C1C
∗
2 , which jumps out of the trace as before in the integral

(4.10).

Later, when proving the mixed products vanish, the p’s and q’s introduced translate to

matrices naturally and the estimates which follow stay the same. Finally, let us note that CX
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is invariant under multiplication on the right by an anti-holomorphic (conjugate holomorphic)

matrix in the sense we could replace CX by CXH for such a matrix H. �

Remark 4.9 (Everything works for admissible vector bundles). We can now easily extend

the construction from the case of trivial vector bundles to the case of possibly topologically

non-trivial admissible ones (see Definition D), equipped by a unitary connection. We restrict

our attention just to operators d∗AdA + Q induced by connections and potentials; to this end,

assume the vector bundle E = π∗E0 over R×M0 is equipped with two unitary connections A1

and A2, where E0 is a vector bundle over M0.

Basically, what we need to do is to imitate the above vector proof with small alterations:

to start with, let us recall the Fermi coordinates given by a map F : J0 × U → R×M0, where

U = [−ǫ, ǫ+ L]×Bδ and Bδ is a small ball in dimension (n− 2) – F is a local diffeomorphism,

giving us the tubular neighbourhood of the geodesic (see Figure 1). Therefore, we can pull-back

the bundle E to the trivial bundle F ∗E = U × Cm with the standard metric; we pull back the

connections and the metric, as well. Furthermore, in this case we cannot work on End E as we

previously did in Section 6.2. This means we have to restrict to vector solutions and in particular

our solutions to the transport equation that go into the Gaussian beams will be vectors. Then

we may run the proof again; the only thing we need to replace are the resulting concentration

properties:

lim
τ→∞

∫

{x′

1}×M0

〈vs, ωs〉EφdVg =

∫ L

0
e−2λt〈C1a1, C2a2〉Cmφ(γ(t))dt

where C1 and C2 are constructed on J0×U for connections A1 and A2 as fundamental solutions

to the ∂̄-equation (4.12), respectively; the a1 is anti-holomorphic so that C1a1 solves the vector

∂-equation and a2 is analogously holomorphic, so that C2a2 solves the ∂̄-equation. Then we

may in particular set ai to be constant and vary these constants to deduce various properties.

For the other identity we have to be slightly more careful; namely dvs is not well defined as

for the trivial bundle. However, we may define it as dvs in our construction in U and then push

it forward by the same method of partition of unity and the map F to the neighborhood of the

geodesic (as in (4.8)) and hence to the whole manifold as a 1-form with values in E (and with

support in a neighbourhood of the geodesic). Then the identities become:

lim
τ→∞

1

τ

∫

{x′

1}×M0

〈
〈α, dvs〉T ∗M , ωs

〉
E
φdVg =

∫ L

0
iα(γ̇(t))〈C1a1, C2a2〉Cme−2λtφ(γ(t))dt

lim
τ→∞

1

τ

∫

{x′

1}×M0

〈
〈α, dωs〉T ∗M , vs

〉
E
φdVg =

∫ L

0
iα(γ̇(t))〈C1a1, C2a2〉Cme−2λtφ(γ(t))dt

4.2. Application of Gaussian Beams

We now give a concrete application of the construction of generalised quasimodes – the

construction of the CGO solutions. By using the Carleman estimates from Chapter 5, we can

just put the ingredients together in a simple way. For this section, assume we are working in

the setting of the CTA manifolds, that is g̃ = e⊕ g0 with g = cg̃ for a positive function c, where

as usual we have (M, g) ⋐ (R×M0, g) of the same dimension n.

Proposition 4.10 (CGO construction). Let E be an admissible Hermitian vector bundle,

A a unitary connection and Q be a smooth section of the endomorphism bundle End E. Let

s = τ + iλ, where τ and λ are real numbers. Then there exists τ0, such that for |τ | ≥ τ0 large

enough, there exists a smooth solution u = e−sx1c−
n−2
4 (vs + rs) to the equation Lg,A,Qu = 0,
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with the following conditions fulfilled:

‖rs‖L2(M ;E) = o(1), ‖rs‖H1(M ;E) = o(|τ |) and ‖vs‖L2(M ;E) = O(1)

as |τ | → ∞ and the concentration properties for vs as in Theorem 4.4.

Proof. Let us firstly notice the identity:

c
n+2
4 Lg,A,Q(u) = Lg̃,A,c(Q+Qc)(e

−sx1(vs + rs))

where Qc = c
n−2
4 ∆g(c

−n−2
4 ). Therefore, if we let vs be the function constructed in the proof of

Theorem 4.4, with all its concentration properties, we will have

‖esx1Lg̃,A,c(Q+Qc)e
−sx1vs‖L2(M ;E) = o(|τ |)

Hence, to have the required form of the solution, rs must satisfy

eτx1Lg,A,Qe
−τx1(c−

n−2
4 e−iλx1rs) = −c−

n+2
4 e−iλx1esx1Lg̃,A,c(Q+Qc)e

−sx1vs (4.13)

But fortunately, now the right hand side is o(|τ |) by construction and c is bounded, hence we

may apply the existence theorem – Theorem 5.5. �

Remark 4.11. Note that in Theorem 4.10 we can do better with the estimate on the

H1(M ;E) norm of rs, by invoking Remark 4.5 and the improved estimate on the asymptotics

of ‖esx1LA,Qe
−sx1vs‖L2(M ;E) = O(|τ |−K) for any K ≥ 0. Moreover, this implies that with the

improved estimate on vs we have the L
2 norm of the right hand side of (4.13) equal to O(|τ |−K)

and consequently, by Theorem 5.5, we have:

‖rs‖L2(M ;E) = O
(
|τ |−(K+1)

)
and ‖rs‖H1(M ;E) = O

(
|τ |−K

)

or equivalently, H1
scl(M ;E) = O

(
|τ |−(K+1)

)
.

Remark 4.12. Having been through the lengthy proof of existence of Gaussian Beams in

case of the connection Laplacian, we now give an alternative idea on how to generalise the

notion of quasimodes. Namely, it is natural to attempt to construct the analogous quantity

to the approximate eigenfunction that satisfies ‖(∆− s2)vs‖L2(M0) = o(|τ |) by asking that

‖(−d∗AdA − s2)vs‖L2(M0) = o(|τ |). However, by generalising in this way, we lose the purpose

of it: we cannot build the CGO solutions using such construction. Thus, even though the con-

struction of such solutions should be possible and completely analogous to our main construction,

we cannot find any application for it.





CHAPTER 5

Carleman estimates

The purpose of this chapter is to prove suitable Carleman estimates for vector valued func-

tions. The scalar case was covered in [21] and we generalise that approach, as expected since

the principal part of d∗AdA is diagonal.

Firstly, let us briefly explain what the limiting Carleman weights (LCW) are. These are

certain functions on open Riemannian manifolds that guarantee the positivity of the conjugated

Laplacian operator P0,ϕ = e
ϕ
h∆e−

ϕ
h and hence existence of solutions to equations as below. They

were introduced in [40] for the Euclidean case and generalised to manifolds in [21]. They have

a nice geometric characterisation: in [21] it is proved that the existence of LCW is equivalent to

existence of a unit parallel vector field on the manifold (a vector field V is parallel if ∇V = 0,

where ∇ is the Levi-Civita connection). This vector field yields a Euclidean direction on the

manifold – hence, for simplicity, we will often assume our manifold to be embedded in R×M0,

which admits the Carleman weight ϕ(x) = x1.

Moreover, one way to motivate the definition of LCWs is that its reverse engineered so that

the estimates below in Theorem 5.2 hold for both ±ϕ (the proof of the converse to this statement,

i.e. that the inequality holds for both ±ϕ implies that ϕ is an LCW is outlined in [20]), so that

the two solutions constructed in Proposition 4.10 with the corresponding phases equal to ±x1,
cancel out in the integral identity from Theorem 2.6. We state the definition of an LCW here.

Definition 5.1. Let (U, g) be an open Riemannian manifold. We say (U, g) admits an LCW

if there exists a smooth ϕ : U → R, such that dϕ 6= 0 and if we let pϕ to be the semiclassical

principal symbol of P0,ϕ, then:

{Re pϕ, Im pϕ}(x, ξ) = 0 when pϕ(x, ξ) = 0

where {·, ·} is the Poisson bracket on T ∗U .

In the text below, we denote by H1
scl(M ;E) the semiclassical Sobolev space associated to

the sections of the Hermitian vector bundle E of rank m over M , equipped with a connection

∇, with the norm:

‖u‖H1
scl(M ;E) =

(
‖u‖2L2(M ;E) + h2‖∇u‖2L2(M ;T ∗M⊗E)

) 1
2

and by L2(M ;E) the inner product space associated with the Hermitian structure and the

Riemannian density (see also Appendix A for alternative definitions). We start by proving

a warm-up a priori Carleman estimate which relates the H1
scl and L2 norms of a solution to

P0,ϕu = f , by essentially using only elementary methods; later we will see, in order to obtain a

H1 solution, we have to shift the indices and prove the inequality for every Hs
scl, where s ∈ R.

Let us introduce the setting in which the theorems will be proved. We will work on M , a

compact manifold with boundary which is compactly contained in U , an open manifold admitting

a Carleman weight ϕ; moreover, U is again contained in a closed manifold N , which is useful

since then we do not have to worry about boundary conditions on N (we may let N to be the

double of M). We assume there is an extension of the Hermitian vector bundle E over M to a

47
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bundle over N , denoted by the same letter; we equip E with a connection A and a section Q of

the endomorphism bundle.

Theorem 5.2. Let X be a smooth matrix of vector fields on M and q a smooth matrix

function on M (matrices are m by m). Then there exists a constant C, such that the following

inequality holds for all u ∈ C∞
c (M int;Cm) and all sufficiently small h > 0:

‖eϕ/hu‖H1
scl(M ;Cm) ≤ Ch‖eϕ/h(∆ +X + q)u‖L2(M ;Cm) (5.1)

Moreover, the following inequality holds for all u ∈ C∞
c (M int;E):

‖eϕ/hu‖H1
scl(M ;E) ≤ C ′h‖eϕ/h(d∗AdA +Q)u‖L2(M ;E) (5.2)

Proof. We prove the first inequality; the second one follows by a partition of unity argument

in N and applying the first inequality, since locally d∗AdA + Q is of the form ∆ + X + q (see

(2.8)).

Firstly, notice we have invariance under conformal scaling, i.e. observe that we have the

identity:

c
n+2
4 (∆g +X + q)u = (∆c−1g + cX + qc)(c

n−2
4 u)

where qc = cq− n−2
4 Xc+c

n+2
4 ∆(c

n−2
4 ), by using the conformal properties of the Laplacian. From

this we can easily deduce the invariance of the inequality under conformal scaling, because we

have:

h‖eϕ/h(∆ +X + q)e−ϕ/hu‖L2 = h‖eϕ/hc−n+2
4 (∆c−1g + cX + qc)e

−ϕ/h(c
n−2
4 u)‖L2

& ‖cn−2
4 u‖H1

scl,c−1g
= ‖cn−2

4 u‖L2 + h
(∫

M
〈d(cn−2

4 u), d(c
n−2
4 u)〉

)1/2

≥ min c
n−2
4 ‖u‖L2 + h‖d(cn−2

4 )u+ c
n−2
4 du‖L2,c−1g

≥ min c
n−2
4 ‖u‖L2 + hmin c

n+2
4 ‖du‖L2,g − hmax |d(cn−2

4 )|g‖u‖L2

where by H1
scl,g′ we denote the norm associated to some metric g′. Now, for h small enough, we

must have min c
n−2
4 > hmax c|d(cn−2

4 )|g, which shows the reduction step. We can now freely

assume that ∇ϕ has unit norm, as conformal scalings preserve the property of being a LCW. In

other words we may assume that the function ϕ is a distance function, i.e. we have |∇ϕ| = 1

and D2ϕ = 0, where D is the Levi-Civita covariant derivative (see Lemma 2.5 in [21]).1

Furthermore, if we assume the inequality holds for q = 0:

Ch‖eϕ/h(∆ +X + q)e−ϕ/hu‖L2 ≥ Ch‖eϕ/h(∆ +X)e−ϕ/hu‖L2 − Ch‖qu‖L2

≥ ‖u‖H1
scl(M) − Chmax ‖q‖‖u‖L2

As soon as h is small enough such that Chmax‖q‖ < 1, we may absorb the remaining factor, so

we are reduced to proving the q = 0 case. Here we have denoted by ‖q‖ the operator norm of q

and the maximum is over all of M .

In this step we show the inequality under the additional assumption that X = 0. Recall the

following identity, with the specific expansion we will make use of later:

P0,ϕ = eϕ/hh2∆ge
−ϕ/h = h2∆− |∇ϕ|2︸ ︷︷ ︸

A

+2〈∇ϕ, h∇〉 − h∆ϕ︸ ︷︷ ︸
iB

1In [21] it is also proved that a distance function is also an LCW if and only if ϕ(expx v) = ϕ(x) + 〈∇ϕ(x), v〉; in
particular, this means that we have a lot of LCWs in the Euclidean spaces, by letting ϕ(x) = ρ · x for a vector ρ.
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Hence, we can build the following estimates (we leave out the L2 subscript for convenience):

(P0,ϕv, v) = h2(∆v, v)− (|∇ϕ|2v, v) + 2h(〈∇ϕ,∇v〉, v)− h(∆ϕv, v)

By using the fact that
∫
〈df, dg〉 = (∆f, g) for f and g compactly supported, we get:

‖h∇v‖2 = (P0,ϕv, v) + (|∇ϕ|2v, v)− 2h(〈∇ϕ,∇v〉, v) + h(∆ϕv, v)

Therefore, we finally have, using Cauchy-Schwartz and AM-GM:

‖h∇v‖2 ≤ ‖P0,ϕv‖‖v‖+ ‖v‖2 + 2‖v‖‖h∇v‖+ h| sup∆ϕ|‖v‖2

≤ 1

2
‖P0,ϕ‖2 +

1

2
‖v‖2 + 1

ǫ
‖v‖2 + ǫ‖h∇v‖2

So for some C1 and sufficiently small ǫ:

‖h∇v‖2 ≤ ‖P0,ϕv‖2 + C1‖v‖2

Therefore, it suffices to prove ‖v‖ ≤ C2h
−1‖P0,ϕv‖ for some C2.

Now, we claim that in the above expansion of P0,ϕ, the parts A and B are formally self-

adjoint. The proof is not too hard, but we give one for completeness. The bilinear map 〈·, ·〉
we use is complex bilinear; also, formal self-adjointness means (Pϕ, ψ) = (ϕ, Pψ) for all smooth

compactly supported functions ϕ and ψ. We have, for m = 1:
(
(h2∆− |∇ϕ|2)u, v

)
=
(
u, (h2∆− |∇ϕ|2)v

)

for all u, v ∈ C∞
c (M int) because ϕ is real and ∆ is self-adjoint. Moreover, we have:

(
2〈∇ϕ, h∇u〉, v

)
= 2h

(
〈dϕ, du〉, v

)
= 2h

∫
〈dϕ, v̄du〉

= 2h

∫
〈dϕ, d(uv̄)− udv̄〉 = 2h

∫
∆ϕuv̄ − 2h

(
u, 〈∇ϕ,∇v〉

)

and
(
h∆ϕu, v

)
= h

(
u,∆ϕv

)
. Therefore, by combining the two results:

(
2〈∇ϕ, h∇u〉 − h∆ϕu, v

)
= 2h

(
∆ϕu, v

)
− h
(
∆ϕu, v

)
− 2h

(
u, 〈∇ϕ,∇v〉

)

= −
(
u, (−h∆ϕv + 2h〈∇ϕ,∇v〉)

)
= −

(
u, iBv

)

which finally implies that A and B are formally self-adjoint in the scalar case. For the m > 1

case we just observe that the action of the Laplacian ∆ extends diagonally to vector valued

functions and the inner product 〈u, v〉 = ∑uiv̄i splits nicely with respect to this action, so we

can simply sum over components.

We will now make use of the following identity:

‖P0,ϕv‖2 = (P0,ϕv, P0,ϕv) =
(
(A+ iB)v, (A+ iB)v

)
= ‖Av‖2 + ‖Bv‖2 + (i[A,B]v, v)

The idea is to use the positivity of the principal symbol to deduce the positivity of the last term

in the expression above. We first need to use a convexification argument (see [21]), where we

slightly perturb ϕ by a convex function. Namely, we consider a function f : R → R and the

composition f̃ = f ◦ ϕ. Then we have:

• P0,f̃ = Ã+ iB̃, according to the above decomposition.

• ∇(f ◦ ϕ) = f ′ ◦ ϕ∇ϕ.
• D2(f ◦ϕ) = D(f ′ ◦ϕdϕ) = d(f ′ ◦ϕ)⊗ dϕ+ f ′ ◦ϕD(dϕ) = f ′′ ◦ϕdϕ⊗ dϕ+ f ′ ◦ϕD2ϕ,

where we used the fact that ϕ is a distance function.
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Now we quote Lemma 2.3 from [21], which computes the Poisson bracket of the principal symbols

of A and B, which are respectively denoted as a and b:

{a, b}(x, ξ) = 4D2ϕ(ξ#, ξ#) + 4D2ϕ(∇ϕ,∇ϕ)

where we have the expressions a = |ξ|2 − |dϕ|2 = |ξ#|2 − |∇ϕ|2 and b = 2〈∇ϕ, ξ#〉. By α#

we denote the unique element of TpM such that α(v) = 〈α#, v〉 for all v. With this notation,

a+ ib = pϕ is the principal symbol of P0,ϕ in the standard semiclassical quantisation. Using the

result of this lemma, we have for m = 1:

{ã, b̃}(x, ξ) = 4(f ′′ ◦ ϕ)〈∇ϕ, ξ#〉2 + 4(f ′′ ◦ ϕ)(f ′ ◦ ϕ)2|∇ϕ|4

= 4(f ′′ ◦ ϕ)(f ′ ◦ ϕ)2 + (f ′′ ◦ ϕ)(f ′ ◦ ϕ)−2

︸ ︷︷ ︸
β

b̃2

where b̃ = 2〈d(f ◦ ϕ), ξ〉 = 2(f ′ ◦ ϕ)〈∇ϕ, ξ#〉. So, we must have

i[Ã, B̃] = 4h(f ′′ ◦ ϕ)(f ′ ◦ ϕ)2 + hB̃βB̃ + h2R

where R is first order semiclassical differential operator. Now we pick f such that:

• f(s) = s+ h
2ǫs

2, f ′(s) = 1 + h
ǫ s and f ′′ = h

ǫ .

• Take 1 ≥ ǫ0 ≥ h
ǫ > 0 small enough such that f ′ > 1/2 on ϕ(M) and denote ϕǫ = f ◦ϕ.

One can check that the coefficients of R are uniformly bounded with respect to h and

ǫ, and β = h/ǫ

(1+h
ǫ
s)2

is uniformly bounded.

Namely, one has:

(
i[Ã, B̃]v, v

)
=
(
4
h2

ǫ
(f ′ ◦ ϕ)2v + hB̃

( h/ǫ

(f ′ ◦ ϕ)2 B̃v
)
, v
)
+ h2

(
Rv, v

)

≥ h2

ǫ
‖v‖2 − C0h‖B̃v‖2 − C0h

2‖v‖H1
scl
‖v‖L2

because ‖Rv‖ ≤ C0‖v‖H1
scl
. The previous inequality hold for m > 1, as [Ã, B̃] acts diagonally,

so
(
i[Ã, B̃]v, v

)
L2(Cm)

=
∑(

i[Ã, B̃]vj , vj

)
L2
.

Using the inequality ‖h∇v‖2 ≤ ‖P0,ϕǫ‖2 + C1‖v‖2, we conclude:

(
i[Ã, B̃]v|v

)
≥ h2

ǫ
(1− C4ǫ)‖v‖2 − C3h‖B̃v‖2 − C3‖P0,ϕǫ‖2 (5.3)

by employing ‖v‖H1
scl

= ‖v‖L2 + ‖h∇v‖L2 ≤ C ′
1 · ‖v‖L2 + ‖P0,ϕǫ‖L2 and AM-GM. Hence, we

finally get the inequality:

(1 + C3)‖P0,ϕǫv‖2 ≥ ‖Ãv‖2 + (1− C3h)‖B̃v‖2 +
h2

ǫ
(1− C4ǫ)‖v‖2 (5.4)

Let us now turn to the case X 6= 0 – we want to incorporate it into the inequality (5.4) and

to estimate it in a suitable way. Note that we have h2Xϕǫ = heϕǫ/hXe−ϕǫ/h = h2X−hf ′ ◦ϕXϕ.
Thus we have:

• ‖h2Xv‖L2 = ‖h2〈X,∇v〉‖L2 ≤ h|X|L∞‖h∇v‖L2 ≤ C ′
2 · h‖v‖H1

scl

• ‖h(f ′ ◦ ϕ)X(ϕ)v‖L2 ≤ C ′
3‖v‖L2

By combining the two inequalities above, we conclude, by using (5.3):

‖h2Xϕǫ‖ . h‖v‖H1
scl

. h(‖v‖L2 + ‖P0,ϕv‖L2)
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which in turn implies the following chain of inequalities:

2(1 + C3)‖P0,ϕǫv + h2Xϕǫv‖2 ≥
4

3
(1 + C3)‖P0,ϕǫv‖2 − C5h

(
‖v‖2 + ‖P0,ϕǫ‖2

)

≥ ‖v‖2
(h2
ǫ
(1− C6ǫ)

)

where C6 = C4 + C5. So for ǫ small enough, there exists C7 such that:

C7‖P0,ϕǫv + h2Xϕǫv‖2 ≥
h2

ǫ
‖v‖2 (5.5)

Therefore we have for u = e−ϕǫ/hv:

Cǫh
2‖eϕ2

2ǫ e
ϕ
ǫ (∆ +X)u‖2 ≥ ‖eϕ2

2ǫ e
ϕ
h u‖2

which together with 1 ≤ eϕ2

2ǫ ≤ C ′
ǫ implies the result. �

Remark 5.3. (Carleman estimates with a boundary term). We record a corollary of the

above inequality for functions not necessarily supported in the interior of our manifold; this

extends the inequality (2.13) from [22] to the higher rank case. Let v ∈ C∞(M ;Cm)∩H1
0 (M ;Cm)

– then we claim that the following inequality holds:

‖v‖2H1
scl

. h2‖eϕ
h (∆ +X + q)e−

ϕ
h v‖2 + h(∂νϕ∂νv, ∂νv)∂M (5.6)

This is an exercise in partial integration and using the condition that v|∂M = 0 to get rid of the

extra factors. Namely, what we get in the above notation is:

‖(A+ iB)v‖2 = ‖Av‖2 + ‖Bv‖2 + i(Bv,Av)− i(Av,Bv)
= ‖Av‖2 + ‖Bv‖2 + i([A,B]v, v)− 2h3(∂νϕ∂νv, ∂νv)|∂M

by using (ABv, v)− (Bv,Av) = −2ih3(∂νϕ∂νv, ∂νv)|∂M and (Bu, v) = (u,Bv) since v vanishes

at the boundary. For the proof of the first equality we use the Green’s identity and for the

second, we use the formula (2.1). The proof then proceeds exactly the same way as before, by

bounding the extra X factor in the equation and using the positivity of i([A,B]v, v).

Finally, let us recast the inequality (5.6) in the following form, by letting u = e−
ϕ
h v and

noticing that on ∂M we have ∂νu = e−
ϕ
h ∂νv, since v ∈ H1

0 (M):

‖eϕ
h u‖H1

scl(M ;Cm) +
√
h‖
√
−∂νϕe

ϕ
h ∂νu‖L2(∂M−;Cm)

. h‖eϕ
h (∆ +X + q)u‖L2(M ;Cm) +

√
h‖
√
∂νϕe

ϕ
h ∂νu‖L2(∂M+;Cm) (5.7)

where we use the notation ∂M± = {x ∈ ∂M | ±∂νϕ(x) ≥ 0}. By generalising appropriately, we

have a version of this inequality for an arbitrary vector bundle on M .

Now we turn to the proof of inequalities similar to the ones from Theorem 5.2, but with

shifted indices of the Sobolev spaces, which is actually necessary to obtain the wanted solvability

estimates. This is done using the semiclassical pesudodifferential calculus (see Section 2.3).

Before we start, let us briefly introduce the Sobolev spaces for a real parameter, in a coordi-

nate invariant way. This is described in more detail in [5]. It is a known fact that the connection

Laplacian on a compact Riemannian manifold (without boundary) is essentially self-adjoint on

the dense subspace C∞(N ;E) ⊂ L2(N ;E) (more generally, this holds for any elliptic differential

operator on E), meaning that the closure of LA is equal to the adjoint L∗A.
Then by applying the spectral theorem for unbounded densely defined operators and since

LA is positive, we can define the semiclassical Bessel potentials Js
A = (1−h2∆A)

s
2 for s ∈ R (here

∆A = −LA). The functional calculus from the spectral theorem also gives us that Js
AJ

t
A = Js+t

A
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and Js
A commutes with any function of the connection Laplacian LA. Moreover, it is well-known

that a function of a semiclassical PDO is again a semiclassical PDO (see Chapter 8 in [17]);

thus Js
A is a semiclassical PDO of order s. Finally, we define the semiclassical Sobolev spaces

Hs
scl as the completion of the C∞(N ;E) in the norm given by:

‖u‖Hs
scl(N ;E) = ‖Js

Au‖L2(N ;E)

One can easily check that the dual of Hs
scl(N ;E) may be isometrically identified with the

H−s
scl (N ;E). Similarly, we may define the usual semiclassical Sobolev space, by introducing

the semiclassical Bessel potentials Js = (1− h2∆)
s
2 which define the spaces Hs

scl(N); we extend

Js to act diagonally on C∞(N ;Cm).

Next, observe that we have the following commutator estimates for sections of E. Let ψ,

χ ∈ C∞
c (N) with χ = 1 near supp(ψ) and consider any s, α, β ∈ R, and K ∈ N – then we can

find CK > 0 such that:

‖(1− χ)Js
A(ψu)‖Hα

scl(N ;E) ≤ CKh
K‖u‖

Hβ
scl(N ;E)

(5.8)

This follows from the pseudolocality of the semiclassical PDOs (see (2.17)) and the mapping

properties of semiclassical PDOs on Sobolev spaces (see (2.14)). Moreover, we record another

commutator estimate:

‖[D, Js
A]u‖L2(N ;E) ≤ Ch‖u‖Hs

scl(N ;E) (5.9)

where D is a first order, diagonal semiclassical differential operator in E over N ; this follows

from the formula for the symbol of the commutator of two semiclassical PDOs (see (3.1)).

For what follows, assume that the LCW ϕ is a smooth function in a neighbourhood of U

and extend this function smoothly to N . We are now ready to shift the indices of the Sobolev

estimates from Theorem 5.2:

Theorem 5.4. Under the assumptions of Theorem 5.2 and given s ∈ R, there exist constants
Cs and hs > 0 such that for all 0 < h ≤ hs and u ∈ C∞

c (M int;Cm):

‖eϕ
h u‖Hs+1

scl (N ;Cm) ≤ Csh‖e
ϕ
h (∆ +X + q)u‖Hs

scl(N ;Cm)

Moreover, there are corresponding constants such that for every u ∈ C∞
c (M int;E):

‖eϕ
h u‖Hs+1

scl (N ;E) ≤ C ′
sh‖e

ϕ
hLA,Qu‖Hs

scl(N ;E)

Proof. We closely follow the proof of Lemma 4.3 from [21]. Let us introduce Pϕǫ =

e
ϕǫ
h h2(∆ + X + q)e−

ϕǫ
h and let χ ∈ C∞

0 (U) such that χ = 1 near M ; here ϕǫ comes from the

proof of Theorem 5.2. Then we have by (5.5) and (5.8):

h‖u‖Hs+1
scl
≤ h‖χJsu‖H1

scl
+ h‖(1− χ)Jsu‖H1

scl

.
√
ǫ‖Pϕǫ(χJ

su)‖L2 + h2‖u‖Hs+1
scl

which means that the second term may be absorbed to the left hand side for small h. Further-

more, for some χ′ ∈ C∞
0 (U) with χ′ = 0 near M , by (5.5) again:

‖[Pϕǫ , χ]J
su‖L2 = ‖[Pϕǫ , χ]χ

′Jsu‖L2 . ‖χ′Jsu‖H1
scl

. h2‖u‖Hs+1
scl

so after absorbing the remaining factors, we have:

h‖u‖Hs+1
scl

.
√
ǫ‖JsPϕǫu‖L2 +

√
ǫ‖[Pϕǫ , J

s]u‖L2
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The first term gives the right bound; for the second one, by expanding the operator and putting

Xϕǫ = e
ϕǫ
h Xe−

ϕǫ
h , we have:

Pϕǫ = h2∆− |dϕǫ|2 + 2〈dϕǫ, hd(·)〉 − h∆ϕǫ + h2Xϕǫ + h2q =: h2∆+ P1

Since [h2∆, Js] = 0 and since Js acts diagonally, by the composition formula we have [Js, P1] =

hR1 where R1 a semiclassical PDO of order s. Thus by taking ǫ to be small enough (and such

that h ≤ ǫǫ0), we may absorb this remainder to the left hand side.

For an arbitrary vector bundle, note that all the steps above work the same with Js
A instead

of Js, until the estimate for ‖[Pϕǫ , J
s
A]u‖L2 . In local coordinates, we have the expansion

e
ϕǫ
h h2LA,Qe

−ϕǫ
h = h2LA − (|dϕǫ|2 − 2〈dϕǫ, hd(·)〉+ h∆ϕǫ)︸ ︷︷ ︸

D

+2h〈A, dϕǫ〉︸ ︷︷ ︸
P2

where D is a diagonal first order semiclassical differential operator. Now observe that [LA, Js
A] =

0 and also that locally the symbol of [D, Js
A] is in hSs, and so is the symbol of [P2, J

s
A]. This

implies that [−D + P2, J
s
A] is in hΨs(M), which makes us able to absorb the extra factor for

small enough ǫ and finish the proof. �

Essentially the only case that we will use in the previous theorem is the case s = −1; it
appears that it is necessary in the following result, to establish the existence of an H1 solution

to our equation with a suitable norm estimate (otherwise, with Theorem 5.2 we would only get

solutions in L2 with bounds in H−1 norm). It is left without a proof, since it is well-known and

formally follows from the scalar case in Theorem 4.4 in [21].

Theorem 5.5. Given a connection A and an endomorphism Q of E, there exists a positive

constant h0 such that for any 0 < h ≤ h0 and any section f ∈ L2(M ;E), there exists a solution

u ∈ H1(M ;E) to the equation e
ϕ
hLg,A,Qe

−ϕ
h u = f satisfying:

‖u‖H1
scl(M ;E) ≤ Ch‖f‖L2(M ;E)





CHAPTER 6

The non-abelian ray transform reduction and simple manifolds

In this chapter, we construct the special CGO solutions of the form u = e−
Ψ
h (a + r) (for

suitable Ψ, a and r – see the introduction for more background on this) to the connection

Laplacian equation LA(u) = 0, in the particular case when the transversal manifold is simple.

In this case, we have an easy ansatz to the transport and the eikonal equation, so we get away

without using the construction of Gaussian Beams in Chapter 4. The purpose of this is to reduce

Conjecture A in this case to a new non-abelian ray transform – see Question 6.11 below.

6.1. The CGO construction for simple transversal manifolds

Throughout the chapter, we will be working in the following setting: M is an n-dimensional

compact manifold with boundary, E =M ×Cm is the trivial vector bundle of rank m with the

standard fibrewise Hermitian inner product, A a unitary connection on it and Q an m by m

matrix potential (section of End(E)). Furthermore, our assumption will be that M0 is simple

and that M is isometrically embedded inside the manifold of the same dimension R×M0, with

the product metric g = e⊕ g0.
Recall that the manifold M0 is simple if the exponential map expp : exp−1

p (M0) → M0 is a

diffeomorphism for every point p ∈ M0 and the boundary ∂M is strictly convex. Simplicity of

M0 is a natural assumption and many questions about the X-ray transform are posed in this

setting (see the introduction for more details).

We start with stating an identity which will be useful for identifying different parts of the

CGO solution. The proof is left as an exercise.

Lemma 6.1. The following identity holds, for s ∈ C, ρ a smooth function on M , u a section

of E, X a smooth m × m matrix with entries as vector fields and q a smooth m × m matrix

potential:

e−sρ
(
∆+X + q

)
esρu = (∆+X + q)u+ s

(
(∆ρ)u+X(ρ)u− 2〈∇ρ,∇u〉

)
− s2|dρ|2u

Now plugging in the specific form of the solution as above u = e−
Ψ
h (a + r) to the equation

h2LA,Qu = 0 (a and r are Cm-valued, Ψ a complex function) and using Lemma 6.1, we get three

equations:

|dΨ|2 = 0 (6.1)

−2〈dΨ, da〉+ (∆Ψ)a+X(Ψ)a = 0 (6.2)

e
Ψ
h LA,Qe

−Ψ
h r = −LA,Qa (6.3)

where the first two of the them correspond to the dominating factors (the coefficients next to

h0 and h1, respectively) when h→ 0 and the last one makes sure we get an exact solution and

solves for the residue. The notation 〈dΨ, da〉 means that we consider the vector formed by taking

the inner product of each component of da with dΨ. Recall that X = −2gijAi
∂

∂xj is derived in

(2.8) from the pair (A,Q).

55



56 6. THE NON-ABELIAN RAY TRANSFORM REDUCTION AND SIMPLE MANIFOLDS

6.1.1. Eikonal equation. This is the equation (6.1) above. Recall that in this case the

operation | · | is just a complex bilinear form obtained by extending the Riemannian real inner

product. Thus, if we write Ψ = ϕ+ iψ, the equation can be rewritten as:

|∇ψ|2 = |∇ϕ|2, 〈∇ψ,∇ϕ〉 = 0 (6.4)

Here we let ϕ to be the LCW given by ϕ(x) = x1. With this special choice for ϕ, our equations

become simple:

|∇ψ| = 1,
∂ψ

∂x1
= 0 (6.5)

because of the splitting of the metric in R ×M0. Here we will fix a polar coordinate system:

we pick a point ω ∈ M0 such that (x1, ω) is not in M for any x1. We can always do this if

we enlarge M0 slightly at the beginning, keeping the metric simple (this is always possible –

see [21]), to some manifold D such that:

(M, g) ⋐ (R×M0, g) ⋐ (R×D, g)

We then use the geodesic polar coordinate system to get a coordinate chart (x1, r, θ) for θ ∈ Sn−2,

to cover R×M0, in which the metric has a nice form.

One can then check that ψ = r solves (6.5) and in this case Ψ = x1+ir (note that the solution

depends on ω). Observe that we could have chosen ϕ = −x1, in which case Ψ = −x1 + ir works

equally well. This will be useful when we plug the solutions into our identity in Theorem 2.6,

so that the exponential parts cancel in the product.

6.1.2. Transport equation. This is the equation (6.2). We now proceed to the calculation

of the three terms in this equation, taking Ψ = x1 + ir for the solution of the eikonal equation.

We get the expressions:

〈dΨ, da〉 = ∂Ψ

∂x1

∂a

∂x1
+
∑

j,k≥2

gjk
∂Ψ

∂xj
∂a

∂xk
=
( ∂

∂x1
+ i

∂

∂r

)
a

∆Ψ = −|g|−1/2
( ∑

j,k≥1

∂

∂xj
(
|g|1/2gjk ∂Ψ

∂xk
))

= −|g|−1/2
( ∂

∂x1
+ i

∂

∂r

)
(|g|1/2)

X(Ψ) = −2
( ∑

j,k≥1

gjkAj
∂

∂xk
(x1 + ir)

)
= −2(A1 + iAr)

Here A1 and Ar are the dx1 and dr components of A, respectively and we are taking the

(x2, . . . , xn) coordinates on M0, where x
2 = r. We set z = x1+ ir and so we define the complex

derivatives as ∂
∂z̄ = 1

2

(
∂

∂x1
+ i ∂

∂r

)
and ∂

∂z = 1
2

(
∂

∂x1
− i ∂

∂r

)
. Then the equation (6.2) takes the

form:

4
∂a

∂z̄
+ 2|g|−1/2 ∂

∂z̄

(
|g|1/2

)
a+ 2(A1 + iAr)a = 0 (6.6)

By introducing an integrating factor and using the substitution b = a|g|1/4, we get the following
nicer form:

∂b

∂z̄
= −1

2
(A1 + iAr)b (6.7)

Analogously, using the other solution Ψ = −x1 + ir of the eikonal equation, we get:

∂b

∂z
=

1

2
(−A1 + iAr)b (6.8)

Since (6.8) can be obtained from (6.7) by conjugation, we will focus only on the latter. Actually

we consider a slightly more general equation:

∂C

∂z̄
= BC (6.9)
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where C(θ, x1, r) is a smooth m by m matrix function and we denoted B = −1
2(A1 + iAr).

We impose one additional condition that C should be invertible. Such a matrix C will play an

important role and we will need the solution on an open bounded subset of the plane, depending

smoothly on θ.

If one is interested in solving this equation on the whole domain of C, a natural boundary

condition would be to have C approaching the identity at ∞; however this might be impossible

– see [26] for the proof of existence of a C which has polynomial growth.

For m = 1, we may solve (6.9) by substituting the exponential function C = eΦ and then

using the Cauchy operator to solve ∂̄Φ = B.1 However, for m > 1 the situation complicates, so

we give one proof of existence in the next subsection and a brief overview of other approaches.

Given a matrix C solution of (6.9), one solution of the transport equation (6.7) is given by

a = Ch, where h is holomorphic in each coordinate.

6.1.3. Complex geometric approach to the construction of the solution to trans-

port equation. Using some standard theory of holomorphic vector bundles one can describe a

solution to the transport equation (6.9) in a geometric way. References are books by Kobayashi

[42] (Propositon 3.7) and Foster [32] (Theorem 30.1).

Theorem 6.2. Let E be a C∞ complex vector bundle over a complex manifold M . Then if

D is a connection on E such that D′′ ◦D′′ = 0, then there exists a unique holomorphic vector

bundle structure on E such that D′′ = d′′.

Theorem 6.3. Let X be an open Riemann surface and E a holomorphic vector bundle over

X, of rank m. Then E is trivial, i.e. there exists a set of holomorphic sections si, i = 1, . . . ,m

such that they span Ep for each point p in X.

In the former theorem, by D′′ we mean the (0, 1) component of the connection derivative

and by d′′ = ∂̄ the (0, 1) component of the exterior derivative.

Theorem 6.4. Let Ω ⊂ C be an open subset of the complex plane and let E = Ω × Cm,

equipped with a connection D. Then there exists a smoothly varying invertible matrix F such

that ∂̄F = −FA0,1, where A0,1 is the (0, 1) part of the connection matrix of D. In particular,

for any matrix B, there exists an invertible, smoothly varying matrix C such that ∂C
∂z̄ = BC.

Proof. The proof relies on the previous two theorems; namely, we automatically have

D′′ ◦D′′ = 0 by dimension. Thus, there exists a holomorphic structure on E such that D′′ = d′′.

Although our vector bundle is smoothly trivial, we do not know if it is holomorphically trivial

– this is given by Theorem 6.3. Thus, there exists a set of holomorphic trivialisations si,

i = 1, . . . ,m such that they are linearly independent at each point of Ω; in these new coordinates,

we also have D′′ = d′′. In other words, there exists a smoothly (not necessarily holomorphically)

varying matrix F : Ω→ GL(m,C) such that, si = Fei, where ei is our standard global frame of

E. Then we have the change of basis law for connections:

0 = ∂̄si = D′′si = D′′(Fei) = ∂̄F ei + FD′′ei = ∂̄F ei + FA0,1ei (6.10)

for all i = 1, . . . ,m. Thus we get, in matrix form:

∂̄F = −FA0,1 (6.11)

1Another way to solve ∂̄Φ = B is to recall the fundamental solution 1
πz

of the Cauchy-Riemann operator ∂
∂z̄

that

satisfies ∂
∂z̄

1
πz

= δ, where δ is the Dirac delta; then the convolution Φ = 1
πz

∗B is a solution of ∂
∂z̄

Φ = B (here B

has compact support). This is just a restatement of the generalised Cauchy integral formula that is being referred

to in the text, which gives: Φ(ω) = 1
2πi

∫

C

B(z)
z−ω

dzdz̄.
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By picking the (0, 1) part of the connection matrix to be Bdz̄, and letting C = F−1, we get
∂C
∂z̄ = BC. �

Remark 6.5. We digress slightly to note that there are examples of smoothly trivial holo-

morphic line bundles, but not holomorphically trivial. The long exact sequence associated to the

short exact sequence 0→ 2πiZ→ O → O∗ → 0 (here O and O∗ are the sheaves of holomorphic

and nowhere vanishing holomorphic functions, respectively) that the map c1 : Pic(M)→ Z given

by the first Chern class has a non-trivial kernel over a surface of positive genus M (Pic(M) is

the holomorphic Picard group).

Theorem 6.4 provides us with a geometric interpretation of (6.9) for a fixed θ. In order to

solve this equation smoothly in θ, we need to go through the proof of trivialising a family of

holomorphic vector bundles parametrically. We will not do this here, since there are already a

few proofs of existence of such parametric solutions present in other sources.

Let us give a brief overview of proofs of existence of (invertible) solutions to the above

equation we found in literature. As mentioned, Eskin [26] gives us C depending smoothly on

a parameter, with polynomial growth as |z| → ∞. A more concise proof is given by the same

author and Ralston in Theorem 4, [29] (Y = Sn−2 in our case) – it relies on solving the equation

locally in z using the Cauchy operator to transform it to an integral equation and then gluing

these local solutions together using the Cartan’s lemma. Finally, Nakamura and Uhlmann [57]

also provide us with another method.

6.1.4. The inhomogeneous part. Here we deal with the third equation set out above,

the equation (6.3). With the Carleman estimates established so far, we can easily construct

the residue with the wanted estimates – we just use Theorem 5.5 to solve for the h-dependent

residue rh (note the distinction between the radial variable r and the function rh), such that

‖rh‖L2(M ;E) = O(h) and ‖rh‖H1(M ;E) = O(1); equivalently ‖rh‖H1
scl(M ;E) = O(h).

6.2. Consequences of the CGO construction and recovering the connection

In this section, we use the previously obtained CGO solutions to deduce some new informa-

tion from the equality of the DN maps. Reducing to an X-ray transform or asking for injectivity

of some other transform is often the way to make the final step in solving inverse problems:

see [14,21,23,64] for examples of such results for the X-ray transform or [22] for an example

of the Radon transform on planes; this is the viewpoint we will take.

We equip E =M×Cm with two potentialsQ1,2 and unitary connections A1,2; we assume that

ΛA1,Q1 = ΛA2,Q2 . It is technically easier to consider the endomorphism bundle E′ =M ×Cm×m

and extend the action of LA1,Q1 and LA2,Q2 in the trivial way to sections of E′ (by matrix

multiplication). So we consider matrix solutions U1 and U2 to LA1,Q1U1 = 0 and LA2,Q∗

2
U2 = 0,

constructed by our work in previous subsections, which are of the form:

U1 = e−
x1+ir

h
(
|g|−1/4C1H(x1, r)b(θ) +R1

)

U2 = e−
−x1+ir

h
(
|g|−1/4C2 +R2

)

whereH a holomorphic matrix, b is a smooth function and we have the estimates ‖R1‖H1
scl(M ;E′) =

O(h) and ‖R2‖H1
scl(M ;E′) = O(h). The invertible matrices Ci are given by solving the transport

equations (6.7) and (6.8) in the matrix form:

∂C1

∂z̄
= −1

2

(
(A1)1 + i(A1)r

)
C1 and

∂C2

∂z
=

1

2

(
− (A2)1 + i(A2)r

)
C2 (6.12)
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We wish to plug these in the identity obtained in Theorem 2.7. Note that we have:

dU1 = e−
x1+ir

h

(
− dx1 + idr

h

(
|g|− 1

4C1Hb+R1

)
+ d(|g|− 1

4C1Hb) + d(R1)
)

dU∗
2 = e

x1+ir
h

(dx1 + idr

h

(
|g|− 1

4C∗
2 +R∗

2

)
+ d(|g|− 1

4C∗
2 ) + d(R∗

2)
)

Therefore, in the limit h→ 0, for Ã = A2 −A1:

lim
h→0

h
(
U1(dU

∗
2 )− (dU1)U

∗
2 , Ã

)
M

= −2
∫

M
tr
(
|g|− 1

2 b(θ)C1HC
∗
2 (Ã1 + iÃr)

)
dVg

by using Cauchy-Schwartz and the bounds we have on the ‖R1‖H1
scl

and ‖R2‖H1
scl
, along with

the fact that everything else is uniformly bounded. Moreover, since the Ai and Qi are bounded

for i = 1, 2 and the exponential parts of U1 and U∗
2 cancel, the first integral in the identity is

equal to O(1). Thus we get, by taking the limit h→ 0:
∫

M
|g|− 1

2 b(θ) tr
(
C1HC

∗
2 (Ã1 + iÃr)

)
dVg = 0 (6.13)

where dVg is the volume form. Since dVg = |g|1/2dx1drdθ and since we can vary b so that it

approximates the delta function δη for some fixed angle η, by rearranging the terms in the trace

bracket we obtain: ∫

Mη
0

tr
(
HC∗

2 (Ã1 + iÃr)C1

)
dz ∧ dz̄ = 0 (6.14)

where z = x1 + ir and Mη
0 := [−N,N ] × M0 ∩ {θ = η}, for some large N (we also have

Mη = M ∩ {θ = η} is a 2-dimensional smooth manifold for almost all η by Sard’s theorem;

the previous integral can be made over such Mη, too), such that [−N,N ] × D contains a

neighbourhood of M .

Here, we extended the connections A1 and A2 to the outside of M (whole of R×M0), such

that they are unitary, compactly supported and such that A1 = A2 outside M . This is allowed

by Theorem 3.4, which gives us that the full jets of A1 and A2 are the same in suitable gauges.

Therefore, by applying the gauge from Theorem 3.4 at the start of our analysis, we may assume

that A1 and A2 are extended as stated.

Now, by using the equations (6.12), we get:

∂

∂z̄

(
C∗
2C1

)
=

1

2
C∗
2 (Ã1 + iÃr)C1 (6.15)

where we also used that Ais are skew-Hermitian. By substituting C0H in place of H in the

identity (6.14), where C0 is a constant matrix and H holomorphic, and by varying the entries

of C0 we obtain: ∫

Mη
0

H
∂

∂z̄

(
C∗
2C1

)
dz ∧ dz̄ = 0 (6.16)

and therefore by Stokes’ theorem, we get:
∫

∂Mη
0

HC∗
2C1dz = 0 (6.17)

Note that H is an arbitrary holomorphic matrix, i.e. ∂H
∂z̄ = 0 and that the order in which we

take matrix multiplication inside the integral is important.

We would now like to deduce a suitable transport equation on R×SM0 and try to solve the

problem from there.

Recall from Section 6.1.1 the enlarged simple manifold D, which contains M0. As we go

along ∂D and follow the tangent vectors, we obtain families of geodesics on M0. Let us denote

by C1(p, θ, x1, r) and C2(p, θ, x1, r) the solutions to equations (6.12), where p denotes the point
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Figure 1. The construction of the matrix function G(x1, x, v): we are following
the geodesic γ at (x1, x) in the direction −v up to the point (x1, p)
on ∂D. The angle θ denotes the polar coordinate of the point x with
centre at p; distance between x and p is r.

of the origin of the polar coordinate system. As explained previously in Subsection 6.1.3, we

may construct solutions to (6.12) depending smoothly on a parameter, giving C1 and C2 smooth

as we vary (p, θ, x1, r).

Now given any (x1, x) ∈ R×M0 and v ∈ SxM0 a unit tangent vector, we may trace backwards

the geodesic γ starting at (x1, x) with speed v (or go forwards in time with the geodesic with

speed −v), until we hit ∂D; call this point (x1, p) – see Figure 1. Since D is simple, we have the

smooth dependence p = p(x, v). Define

G(x1, x, v) = C1(p, θ, x1, r)C
∗
2 (p, θ, x1, r)

where r is the length along γ from (x1, p) to (x1, x), θ is the coordinate of (x1, x) in the polar

coordinate system (i.e. γ̇ at the point (x1, p)). Again since D is simple we have the smooth

dependence θ = θ(x, v), which implies that G is smooth. Therefore, we obtain a smooth matrix

function G (section of E′) on R × SM0, where SM0 denotes the unit sphere bundle. By the

previous analysis, we have an equation for G:

2
∂G

∂z̄
= −

(
(A1)1 + i(A1)r

)
G+G

(
(A2)1 + i(A2)r

)

on the planes which are generated by the x1 direction and a geodesic, i.e. by setting θ to be

constant for a given p ∈ ∂D. From the previous equation we easily deduce that we have globally:

( ∂

∂x1
+ iX(x, v)

)
G = −A1

( ∂

∂x1
+ iv

)
G+GA2

( ∂

∂x1
+ iv

)
(6.18)

for all x ∈M0, v unit tangent vectors in SxM0 and x1 ∈ R; X(x, v) is the geodesic vector field on

SM0. Let us make a shorthand notation for the complex vector field X(x1, x, v) = ∂
∂x1

+iX(x, v).

First of all, let us see what information our integral equation (6.17) gives us. We will need

the following standard result:
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Lemma 6.6. Let Ω ⊂ C be a domain with smooth boundary and let f be a smooth function

on ∂Ω. Then f is a restriction of a holomorphic function h on Ω, i.e. f = h|Ω if and only if
∫

∂Ω
g(z)f(z)dz = 0

for all holomorphic functions g on Ω, which have a continuous extension to Ω̄.

The proof of this Lemma uses the Plemelj-Sokhotski-Privalov formula and it follows from

the proof of Lemma 5.1 in [22]. As an application of this result, we have:

Lemma 6.7. There exists a holomorphic, invertible matrix function F on Mη
0 , such that

F−1|∂Mη
0
= C∗

2C1|∂Mη
0
.

Proof. By applying Lemma 6.6 to the equation (6.17), we deduce there exists a holomorphic

matrix function F ′, such that F ′|∂Mη
0
= C∗

2C1|∂Mη
0
. We need to prove F ′ is invertible on Mη

0 .

Firstly, Mη
0 = [−N,N ] × [0, L] in local coordinates (L is the length of the segment of the

unit speed geodesic starting at a point p ∈ ∂D, which lies in M0), which is simply-connected.

Therefore, since det(C1) 6= 0 on Mη
0 , it is a standard fact that det(C1) admits a logarithm:

we have a smooth function Φ1 on Mη
0 such that det(C1) = eΦ1 and similarly we have Φ2 such

that det(C2) = eΦ2 . From this, we infer that the variation of the argument of det(F ′)|∂Mη
0
=

eΦ1+Φ2 |∂Mη
0
is zero, since Φ1 and Φ2 are honest functions. Therefore, by the argument principle

applied to the holomorphic function det(F ′), we conclude F ′ is invertible on the whole of Mη
0 .

By setting F = (F ′)−1, we are done.2 �

More generally, we have such F depending smoothly on the parameters in the influx bound-

ary (p, θ) ∈ ∂+SD so we obtain a smooth matrix function F on [−N,N ] × SM0
3 such that

F |[−N,N ]×∂SM0
= (C∗

2C1)|[−N,N ]×∂SM0
and X(F ) = 0. Then we can redefine the solution C2

to equations (6.12) (parametrised by (p, θ) ∈ ∂+SD), by setting C ′
2 = C2F

∗. The transport

equations will be satisfied again, but more importantly, we must have (6.18) fulfilled with the

new G′(x1, x, v) = C1(p, θ, x1, r)(C
′
2)

∗(p, θ, x1, r) defined analogously as before and:

G′|[−N,N ]×∂SM0
= (C1C

′∗
2 )|[−N,N ]×∂SM0

= (C1FC
∗
2 )|[−N,N ]×∂SM0

= Id|[−N,N ]×∂SM0

by the definition of F . Let us relabel the G′ back to G.

Let us now consider a reduction of the problem to a convex region, i.e. a larger manifold

with certain properties. We take M ′ to be a slightly smaller manifold than [−N,N ]×M0 with

corners smoothed out – for example, we may take a compact simple manifold with boundary

M ′
0 ⊂ M◦

0 , such that the interior of [−N,N ] ×M ′
0 contains M , and take M ′ to be a smoothed

out version of this. HenceM ′ is homeomorphic to a ball, and the exterior ofM ′ in [−N,N ]×M0

is homeomorphic to an n-dimensional annulus. Now we can make the following reduction:

Proposition 6.8 (Reduction to the convex case). Let U and V be two sections of C∞(M ′;

Cm×m) which solve solve LA1,Q1U = 0 and LA2,Q∗

2
V = 0. Then we have

∫

M ′

〈
(Q1 −Q2 + |A2|2 − |A1|2)U, V

〉
+

∫

M ′

〈
(U(dV ∗)− (dU)V ∗, A2 −A1)

〉
= 0

In particular, if Q1 = Q2 = 0, then we also have that ΛA1 = ΛA2 in M ′.

2Moreover, one can show that ∂Φ1

∂z̄
= − 1

2
tr
(

(A1)1 + i(A1)r
)

and ∂Φ2

∂z̄
= 1

2
tr
(

(A2)1 + i(A2)r
)

, but we will not
need this here.
3The Plemelj-Sokhotski-Privalov formula actually gives F−1(z) = 1

2πi

∫

∂M
η
0

C∗

2
(ζ)C1(ζ)

ζ−z
dζ.
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Proof. Recall that we extended A1 and A2 to the whole of R ×M0 such that A1 = A2

outside M ; similarly, we extend Q1 and Q2 to have compact support and such that Q1 = Q2

outside M (allowed by boundary determination).

Then the proof follows immediately after applying Theorem 2.7 to the restrictions U |M and

V |M , which solve the appropriate equations in M , and the fact that A1 = A2 and Q1 = Q2

outside M . The final conclusion follows since U and V were arbitrary. �

Let us denote by L the connected component of [−N,N ]×∂M0 in R×M0\M◦. Furthermore,

in this setting, we have the following:

Lemma 6.9. We have G(x1, x, v) equal to the identity for (x1, x) ∈ L and v ∈ SxM0.

In particular, G is equal to identity on the complement of M ′ in R×M0.

Proof. Let us fix a point p ∈ ∂D and the polar coordinate η ∈ Sn−2 with (p, η) ∈ ∂+SD.

We have that Ã = 0 outsideMη and it would suffice to show G = Id on the connected component

of ∂Mη
0 in Mη

0 \Mη, that we denote by Lη. In Mη
0 \Mη, the equation (6.12) becomes:

2
∂G

∂z̄
= [G, (A1)1 + i(A1)r]

and thus we also have 2∂G′′

∂z̄ = [G′′, (A1)1 + i(A1)r], where G
′′ = G − Id, with G′′|∂Mη

0
= 0.

Since ∂
∂z̄ is an elliptic operator and the previous equation is a linear one, we may apply the

unique continuity theorem for linear elliptic first order systems (see [7] for a precise statement)

and conclude that G′′(p, η, x1, r) = 0 for z ∈ Lη, since G′′ = 0 on a codimension one set, thus

proving the claim.

More precisely, note that G′′|∂Mη
0
= 0 implies that dG′′|∂Mη

0
= 0 and so we may extend G′′

by zero slightly outside Mη
0 to a C∞ function by elliptic regularity. Then by the mentioned

UCP we get G′′ = 0 on Nη. �

In particular, we also have G(x1, x, v) = Id for (x1, x) in the connected component of ∂M

in L (this is non-empty and open in ∂M) and v ∈ SxM0, by the previous lemma. Call this

component Γ.

Often, the crux of the matter in the X-ray injectivity problems is to prove the independence

of the gauge of the velocity variable; the only difference here from the usual problem is that we

have a complex derivative X, instead of the usual geodesic vector field X. Indeed, we have:

Lemma 6.10. If the solution of (6.18) is independent of the velocity variable, then G is a

gauge equivalence between A1 and A2 on E, with G|Γ = Id.

Proof. It is easy to show the following fact about the geodesic vector field: X(x, v)f =

df(v), when f is independent of the velocity variable. Therefore, we can write down two equations

out of (6.18), one for v and the other for −v, respectively:
∂G

∂x1
+ idG(v) = −A1

( ∂

∂x1

)
G− iA1(v)G+GA2

( ∂

∂x1

)
+ iGA2(v)

∂G

∂x1
− idG(v) = −A1

( ∂

∂x1

)
G+ iA1(v)G+GA2

( ∂

∂x1

)
− iGA2(v)

by adding and subtracting the above equations, we easily get that dG = −A1G + GA2 or

equivalently G∗(A1) = G−1dG + G−1A1G = A2, which together with G|Γ = Id finishes the

proof. �

Ideally we would like to reduce this to an ordinary X-ray injectivity problem on M0 (tech-

nically, (6.18) would become an injectivity problem for G − Id, with the inhomogeneous term
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equal to Ã1 + iÃr) in some process of excluding the x1 variable. This is indeed possible for the

line bundle case (similar to what we will see in the next chapter) – it involves the procedure of

taking the logarithm of G and applying the Fourier transform. Moreover, let us emphasise that

all the information we obtained from the DN map through CGO solutions, we managed to pack

into a single boundary condition: G(x1, x, v) = Id for (x1, x) ∈ Γ and v ∈ SxM0. Finally, for

complete clarity, let us state the main problem separately:

Question 6.11 (The non-abelian X-ray transform or Radon transform). Let (M0, g0) be

a compact simple manifold with boundary, with dimM0 ≥ 2 and let M be an isometrically

embedded, compact submanifold of T = (R×M0, e⊕ g0) with non-empty boundary and dimM =

dimT . Let E = R×M0×Cm be a Hermitian vector bundle equipped with two unitary connections

A1 and A2, which are compactly supported and satisfy A1 = A2 on R ×M0 \M . Let R′ =

{(x1, x, v) ∈ R × SM0 : (x1, x) 6∈ M}. Assume we are given a smooth matrix function G :

R× SM0 → GL(m,C) such that, if X = ∂
∂x1

+ iX, where X is the geodesic vector field:

XG(x1, x, v) = −A1(x1, x)
( ∂

∂x1
+ iv

)
G(x1, x, v) +G(x1, x, v)A2(x1, x)

( ∂

∂x1
+ iv

)

for all (x1, x, v), with the additional condition G|R′ = Id. Prove that G is independent of the

velocity variable v.

It turns out that, under additional assumptions, we have G equal to the identity on the

whole of ∂M :

Proposition 6.12. If the answer to Question 6.11 is positive, and G∗(Q1) = Q2
4, then

G|∂M = Id.

Proof. By Lemma 6.9, we have that G is equal to the identity on the outside of M ′; thus,

by the hypothesis and Lemma 6.10 we have G∗(A1) = A2. Moreover, we have G|Γ = Id and we

want to prove that G|∂M = Id.

Let F ∈ C∞(∂M ;Cm×m) and assume smooth U and V solve LA1,Q1U = 0 and LA2,Q2V = 0

with the boundary condition U |∂M = V |∂M = F . By the DN map equality and the assumption

on the gauges of A1 and A2 (normal components equal to zero near ∂M), we have ∂νU |∂M =

∂νV |∂M . The hypothesis on G implies that U ′ := GV satisfies LA1,Q1U
′ = 0 and U ′|Γ = F |Γ.

Moreover, we have on Γ:

∂ν(U
′) = ιν

(
(dG)V +G(dV )

)
= ιν

(
GA2V −A1GV +G(dV )

)
= ∂ν(V ) = ∂ν(U)

So by the UCP for elliptic systems (see Remark 7.8), we have U ≡ U ′ and so G|∂M ≡ Id, as F

was arbitrary. �

Remark 6.13. Notice that if Q1 = Q2 = 0, Proposition 6.8 implies that ΛA1 = ΛA2 on

M ′, so the problem is reduced to proving uniqueness (up to gauges) on M ′. More precisely, a

gauge G between A1 and A2 on M ′, equal to the identity on ∂M ′, would by uniqueness of first

order equations and G∗(A1) = A2 imply G = Id on Γ, so we may apply Proposition 6.12 to get

G = Id on ∂M .

Remark 6.14. There is a way of formulating Question 6.11 in a more compact way. Namely,

one could define the unitary connection Â(R) = A1R−RA2 on the endomorphism bundle of E

to get the form of the equation to XG+ Â
(

∂
∂x1

+ iv
)
G = 0. Then we may formulate the problem

in terms of just a single connection.

4In particular, note that the condition on potentials holds if Q1 = Q2 = 0.
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Remark 6.15. If A1 and A2 are independent of the x1 variable (on M) in the setting of

Question 6.11, then we would have A1 ≡ A2 by the boundary condition and therefore G ≡ Id.

Therefore, the problem is reduced to a new kind of a non-abelian X-ray transform. We

leave it as one of the future projects to either further reduce the problem to an attenuated

X-ray transform on M0 or apply some other method to prove independence of the velocity

variable directly. However, one thing is expected: methods from complex analysis and geometry

could be useful to prove Question 6.11. This is supported by the work of Eskin (see Section 5

in [26]), where he proves Conjecture A in the Euclidean metric case, by “moving around” the

x1 direction, which can be interpreted as having the equations (6.12) for essentially all planes

going through points in M . In short, by generating a holomorphic family of such planes, Eskin

obtains that G is holomorphic with respect to this variable and hence constant by Liouville’s

theorem; such families are dense enough to guarantee G is constant in the vertical directions

and hence independent of v. Unlike the Euclidean metric case, in our situation we have a fixed

x1 direction, so we may also expect a different approach to be used.



CHAPTER 7

Proof of the Main Theorem I

In this chapter, we prove prove our main application of the construction of Gaussian Beams

in Chapter 5 – Theorem E. By taking the CGO solutions into the integral identity and reducing

the problem to an X-ray transform, we are able to prove that dA1 = dA2 if ΛA1 = ΛA2 . For

the case of partial data, one should take extra care to deal with the leftover terms. The chapter

is concluded with a discussion of how holonomy determines the gauge class of the connection

and proving that dA1 = dA2 is actually enough to gauge identify two connections, by using the

unique continuation principle.

7.1. The main recovery

We assume that we are in the CTA setting with (M, g) ⋐ (R×M0) and we write g̃ = e⊕ g0
for the product metric; we ask that g = cg̃ for some positive function c. We start with the full

data case and then move on to partial data.

Theorem 7.1 (Main recovery for full data). Suppose A1 and A2 are two unitary connections

on E = M × C and that the DN maps ΛA1 = ΛA2 are the same. If the geodesic ray transform

on M0 is injective on 1-forms and functions, then we must have dA1 = dA2.

Proof. Let Ã = A2 −A1. By Theorem 4.10, we have the solutions

u = e−(τ+iλ)x1c−
n−2
4 (v1 + r1) and v = e(τ+iλ)x1c−

n−2
4 (v2 + r2) (7.1)

to the equations LA1u = 0 and LA2v = 0, with the desired concentration and decay properties.

It is worth noting that vis are defined on the whole J0×M0, where J0 = [−N,N ] for some large

N and ris on M . By applying Theorem 2.6, we obtain the following equality (dVg is the volume

form):
∫

M
(|A2|2g − |A1|2g)uv̄dVg +

∫

M

〈
udv̄ − v̄du,A2 −A1

〉
g
dVg = 0 (7.2)

Observe that in the first factor we have qis and Ais bounded, which together with L2 bounds

on vis and ris from the construction theorem gives us that the first term is equal to O(1). Now,

we will divide by τ and take the τ →∞ limit. First note that:

v̄du = e−2iλx1c−
n−2
2

((
c
n−2
4 d(c−

n−2
4 )− (τ + iλ)

)
dx1(v̄2 + r̄2)(v1 + r1)

+ (v̄2 + r̄2)(dv1 + dr1)
)

and a similar formula holds for udv̄. The factor containing the derivative of c will be zero in the

limit, when divided by τ . Therefore, when plugging in these expressions in (7.2), we can neglect

the ri factors and hence obtain the limit:

lim
τ→∞

1

τ

∫

M
〈Ã, v̄du〉gdVg = lim

τ→∞

1

τ

∫

M
e−2iλx1c−

n−2
2

1

c

〈
Ã, (−τ + iλ)v1v̄2dx1

+ v̄2dv1

〉
g̃
c
n
2 dVg̃ =

∫ L

0

∫ ∞

−∞
e−2iλx1(−Ã1 + iÃt)e

Φ1+Φ̄2e−2λtdx1dt (7.3)

65
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where, in the second line we have gone from the integral over M to an integral over R ×M0;

this is allowed since, by the boundary determination result Theorem 3.4, we can assume that

Ã|∂M = 0 to infinite order. Moreover, we may pick N such that the interior of J0×M0 contains

the supports of extensions of A1 and A2.

Also, we used that the inner product on forms is given by the inverse of the metric g; hence

the 1
c factor cancels with the other c factors. The Φi functions satisfy the equations (4.1),

where X = −2gij(A1)i
∂

∂xj and Y = −2gij(A2)i
∂

∂xj are the first order terms of the connection

Laplacian:

∂Φ1

∂z
=

1

2
(−(A1)1 + i(A1)t) and

∂Φ2

∂z
=

1

2
((A2)1 − i(A2)t) (7.4)

where z = x1 + it is the complex variable and z̄ = x1 − it is its conjugate. By summing the two

equations, we get:

∂(Φ1 +Φ2)

∂z
=

1

2
(Ã1 − iÃt) (7.5)

Now we obtain a similar expression for the udv̄ part, namely:

lim
τ→∞

1

τ

∫

M
〈Ã, udv̄〉 =

∫ L

0

∫ ∞

−∞
e−2iλx1(Ã1 − iÃt)e

Φ1+Φ2e−2λtdx1dt

and finally obtain the limit for (7.2):

0 =

∫ L

0

∫ ∞

−∞
e−2iλx1(Ã1 − iÃt)e

Φ1+Φ2e−2λtdx1dt (7.6)

By using Stokes’ theorem and noting that dz∧dz̄ = 2idx1∧dt, together with (7.5), on a smooth

subdomain Ω ⊂ R× [0, L] which contains the support of Ã:

0 =

∫

Ω
d
(
e−2iλx1e−2λteΦ1+Φ2dz̄

)
=

∫

∂Ω
e−2iλx1e−2λteΦ1+Φ2dz̄

Now by exploiting the fact that we could put an arbitrary anti-holomorphic h as a multiplier of

eΦ1 , we obtain the integral identity:

0 =

∫

∂Ω
e−2iλx1e−2λtheΦ1+Φ2dz̄ (7.7)

for all such h. Let us take Ω simply-connected, e.g. Ω = J0 × [0, L] (smoothed out at the

corners). This means that upon conjugating, by Lemma 6.7, the restriction of the function

eΦ1+Φ2 at the boundary is a restriction of a non-vanishing holomorphic function F , defined on

Ω, i.e. F |∂Ω = eΦ1+Φ2 |∂Ω. Moreover, since Ω is simply-connected, we can find a logarithm, so

that F = eG, where G is holomorphic and we may assume G|∂Ω = Φ1 +Φ2. After using Stokes’

theorem again with h̄ = Ge−G, we obtain:

0 =

∫

Ω
e2λi(x1+it)(Ã1 + iÃt)dz ∧ dz̄ (7.8)

and so finally:

0 =

∫ L

0

∫ ∞

−∞
e2λi(x1+it)(Ã1 + iÃt)dx1dt

Let us define:

f(λ, x′) =

∫ ∞

−∞
eiλx1Ã1(x1, x

′)dx1 = F(Ã1)(λ, x
′) (7.9)

α(λ, x′) =
n∑

j=2

(∫ ∞

−∞
eiλx1Ãj(x1, x

′)dx1

)
dxj =

n∑

j=2

F(Ãj)(λ, x
′)dxj (7.10)
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where F denotes the Fourier transform; we will write F(α) for the Fourier transform of a

compactly supported 1-form α on R × M0. With this notation, the identity above becomes

(replace 2λ with λ without loss of generality and relabel t by r):

0 =

∫ L

0
e−λr(f + iα(γ̇(r)))dr

along any unit speed, non-tangential geodesic in M0. We would like to use the fact that the

geodesic transform is injective as much as we can, even though we obtained an attenuated

transform. Thus we set λ = 0 and use the injectivity of the ray transforms to get α(0, x′) = −idp0
and f(0, x′) = 0 for some smooth p0 such that p0|∂M0 = 0. Furthermore, we can take the ∂

∂λ

derivative of the integral to get:
∫ L

0
e−λr

(
− r(f + iα) +

∂

∂λ
(f + iα)

)
dr = 0

Again we plug in λ = 0 and use injectivity, together with the following calculation:
∫ L

0
riαdr =

∫ L

0
r
∂p0
∂r

dr = −
∫ L

0
p0dr

where we used the fact that p0 vanishes at the boundary. Now using that f = 0, we obtain at

(0, x′) for all x′ ∈M0:

p0 +
∂f

∂λ
= 0 and

∂α

∂λ
= −idp1

for some smooth p1 which vanishes at the boundary. It is now clear how we are going to proceed

with this inductively, but let us go one step further for clarity. Taking another derivative with

respect to λ, we have:
∫ L

0
e−λr

(
r2(f + iα)− 2r

∂(f + iα)

∂λ
+
∂2(f + iα)

∂λ2

)
= 0

Now by partial integration and using the properties of p0, p1, we have:
∫ L

0
r2iαdr = −

∫ L

0
2rp0dr and

∫ L

0
ri
∂α

∂λ
= −

∫ L

0
p1dr

Therefore, by plugging in λ = 0 and substituting:
∫ L

0

((
2p1 +

∂2f

∂λ2
)
+ i

∂2α

∂λ2

)
dr = 0

Again, we get some smooth p2 vanishing at the boundary such that ∂2α
∂λ2 = −idp2 and 2p1+

∂2f
∂λ2 =

0.

Now, let us assume inductively that ∂jα
∂λj = −idpj and jpj−1+

∂jf
∂λj = 0, for j = 0, 1, . . . , n− 1

and pj are smooth functions on M0 vanishing at the boundary (with p−1 = 0 predefined). We

will prove the existence of pn by induction. Let us define:

S =
∂n

∂λn

∫ L

0
e−λr(f + iα)dr =

∫ L

0
e−λr

n∑

j=0

((
n

j

)
(−1)jrj ∂

n−j(f + iα)

∂λn−j

)
dr = 0

Now, using the following formulas for λ = 0:
∫ L

0
ri
∂n−if

∂λn−i
dr =

∫ L

0
ri
(
− (n− i)pn−i−1

)
dr = −(n− i)

∫ L

0
ripn−i−1dr

valid for i > 0 and:
∫ L

0
rk
∂n−k(iα)

∂λn−k
dr =

∫ L

0
rk
∂pn−k

∂r
dr = −k

∫ L

0
rk−1pn−kdr



68 7. PROOF OF THE MAIN THEOREM I

for k > 0, and inserting them in the expression for S, we get:

S =

∫ L

0

∂n(f + iα)

∂λn
dr +

n∑

j=1

(
n

j

)
(−1)j

∫ L

0

(
(−(n− j)rjpn−j−1 − jrj−1pn−j)

)
dr

=

∫ L

0
r0
(∂n(f + iα)

∂λn
+ npn−1

)
dr +

∫ L

0
r1
(
n(n− 1)pn−2 − 2pn−2 ·

n(n− 1)

2

)
dr+

+ · · ·+
∫ L

0
rj
((n

j

)
(−1)j+1(n− j)pn−j−1 − (j + 1)pn−j−1

(
n

j + 1

)
(−1)j+1

)
dr + · · ·

=

∫ L

0

(∂n(f + iα)

∂λn
+ npn−1

)
dr = 0

where the last line is true by cancelling the expressions in the brackets for rj , where j > 0.

Therefore, by the injectivity of the X-ray transform we have ∂nf
∂λn +npn−1 = 0 and ∂n(α)

∂λn = −idpn,
for some smooth pn vanishing at the boundary. This finishes the proof by induction.

From (7.9) it follows that ∂kf
∂λk

∣∣
λ=0
≤ Ck for some positive C and all k, so we see that

β(λ, x′) := −
∞∑

k=0

pk(x
′)
λk

k!

converges and since the Fourier transform of a compactly supported function is analytic:

f =

∞∑

k=0

∂kf

∂λk

∣∣∣
λ=0

λk

k!
= −

∞∑

k=0

kpk−1
λk

k!
= λβ (7.11)

and similarly, by using the relation ∂jα
∂λj = −idpj (for all j ≥ 0) we get that

α =

∞∑

k=0

∂kα

∂λk

∣∣∣
λ=0

λk

k!
= −i

∞∑

k=0

dpk
λk

k!
= id′β (7.12)

where d′ denotes exterior differentiation in M0. Coming back to the main proof, we see that:
∑

2≤j<k

F
(
∂jÃk − ∂kÃj

)
dxj ∧ dxk = d′α = 0

Again, the Fourier transforms of the quantities on the left hand side are analytic and thus

∂jÃk ≡ ∂kÃj for all j, k ≥ 2. Furthermore, since we have

F
(
∂jÃ1 − ∂1Ãj

)
= ∂jf + iλαj = 0

for all j ≥ 2 by (7.11) and (7.12), in the same manner as before we have that ∂jÃ1 ≡ ∂1Ãj ; gluing

this information together, we finally conclude that dÃ = 0 or equivalently that dA1 = dA2. This

finishes the proof. �

Now we depart to partial data, which is more technical. More precisely, we have to worry

about the leftover terms in the partial integration and how we extend the connections outside

M , since now boundary determination works only on a part of the boundary, so A1−A2 is only

L∞ when extended by zero.

Theorem 7.2 (Partial boundary data case). In the same notation as in Theorem 7.1, we

prove dA1 = dA2 given ΛA1 |Γ = ΛA2 |Γ, where Γ is a neighbourhood of the front side ∂M−.

Proof. We are still able to prove dA1 = dA2 as follows. We think of the point x0 in

Theorem 1.1 from [22] as the point at “infinity” so that the rays are straight lines along the x1

axis.
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Let us use the notation

Fǫ = {x ∈ ∂M |
〈 ∂

∂x1
, ν(x)

〉
= ν1(x) < ǫ}

for any positive ǫ > 0; we also denote Bǫ = ∂M \ Fǫ. We pick ǫ small enough such that Fǫ ⊂ Γ.

Consider the CGO solutions u and v to LA1u = LA2v = 0 such that u|∂M = f and v|∂M = g,

of the form in (7.1). Then the assumption on the DN map gives us a smooth w, such that

LA1w = 0, w|∂M = g and ∂νw|Γ = ∂νv|Γ. Theorem 2.6 gives us (we plug in A1 for B and A2 for

A, so some terms swap places):
∫

∂M\Fǫ

〈∂ν(v − w), f〉 =
∫

M

(
|A1|2 − |A2|2

)
vū+

∫

M
〈vdū− ūdv, A1 −A2〉 (7.13)

Observe (recall) we have the following relations: F (−∞) = F = ∂M−, Bǫ ⊂ ∂M+ and also

〈 ∂
∂x1

, ν〉 = ν1(x) ≥ ǫ on Bǫ.

We claim that the term on the left hand side of (7.13) is equal to O(|τ | 12 ) as |τ | → ∞ – it

is bounded by (using Cauchy-Schwarz)

1√
ǫ
‖
√
∂νx1e

−τx1∂ν(v − w)‖L2(Bǫ) × ‖c−
n−2
4 (v1 + r1)‖L2(Bǫ)

which is in turn bounded (up to constant) by the following expression, by applying the Carleman

estimate with the boundary part (5.7), since (v − w)|∂M = 0:

1√
ǫ

(√
h‖e−τx1LA1(v − w)‖L2(M) + ‖

√
−∂νx1e−τx1∂ν(v − w)‖L2(∂M−)

)

×
(
‖v1‖L2(Bǫ) + ‖r1‖L2(∂M)

)
(7.14)

The second summand in the first line of (7.14) is zero by the assumption; the first one is bounded

by considering the following formula:

LA1(v − w) = LA1v =
(
LA1 − LA2

)
v

= −2(A1 −A2, dv) + d∗(A1 −A2)v −
(
|A1|2 − |A2|2

)
v = O(|τ |)

as ‖e−τx1dv‖ = O(|τ |) – by Remark 4.6 we have ‖dv2‖L2(M) = O(|τ |) and by the construction

in Theorem 4.10 we have ‖rs‖H1(M) = o(|τ |). Therefore, the first line is equal to O(|τ | 12 ). We

are left to prove the second line of (7.14) is equal to O(1).

Firstly, observe that by the trace inequality, Proposition A.4, we have ‖rs‖L2(∂M) . ‖rs‖H1(M);

note that in the previous paragraph we had ‖rs‖H1(M) = o(|τ |) – however, we can do better

than that. By recalling Remark 4.11 (with K = 0), we may assume that the H1 norm of rs is

bounded uniformly as τ →∞ and hence, so is ‖rs‖L2(∂M).

Secondly, we want to prove that ‖v1‖L2(Bǫ) = O(1) as τ → ∞ – this will be a bit more

subtle, since we will crucially use the fact that we are taking the L2 norm over Bǫ (and not over

∂M+). Without loss of generality, we assume that ∂Mǫ = ∂M ∩ π−1(ǫ) is a manifold, where

π : ∂M → R is the projection (follows from Sard’s theorem). Thus Bǫ is compact manifold with

boundary, of dimension (n− 1).

Notice that the second projection π2 : ∂M → M0 is a local diffeomorphism on Bη for any

η > 0. So if we pick an arbitrary point p ∈ Bǫ and an open neighbourhood U of p such that

π2|U a diffeomorphism, we see that π2∗(dV∂M ) = Jπ2dVg0 by the change of variables formula,

where Jπ2 =
∣∣ det dπ−1

2

∣∣ is the Jacobian. So by the properties of the integral we see that
∫

U∩Bǫ

|v1|2dV∂M =

∫

π2(U∩Bǫ)

∣∣v1 ◦ π−1
2

∣∣2Jπ2dVg0
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Note that π−1
2 (x) = (x1(x), x) on π2(U), where x1(x) is a smooth function, which means that

by taking small enough U we have Jπ2 bounded locally. Therefore, by the estimate (4.6) in the

construction of Gaussian Beams and the lines nearby, we locally have
∫

π2(U∩Bǫ)

∣∣v1 ◦ π−1
2

∣∣2Jπ2dVg0 = O(1)

as τ → ∞. Now since Bǫ compact, we immediately obtain that ‖v1‖L2(Bǫ) = O(1) as τ → ∞,

which proves the claim.

Finally, if we quotient out by τ and take the limit τ → ∞ as before, we now have the left

hand side going to zero by the estimate, which takes us back to the second step of the proof of

Theorem 7.1 – what follows addresses the issue that Ã does not have a smooth zero extension.

Firstly, consider smooth extensions Aǫ
1 and Aǫ

2 of A1 and A2 respectively, with supports in

M ǫ, which we define as the manifold obtained by taking the union of M and its exterior ǫ-collar

in R ×M0, for some small ǫ > 0. Let us also write N ǫ = M ǫ \M and Ãǫ = Aǫ
2 − Aǫ

1. We also

denote the corresponding CGO solutions

uǫ = e−(τ+iλ)x1c
n−2
4 (vǫ1 + rǫ1) and vǫ = e(τ+iλ)x1c

n−2
4 (vǫ2 + rǫ2)

to LAǫ
1
uǫ = 0 and LAǫ

2
vǫ = 0 in M ǫ. Corresponding to these solutions, we have Φǫ

1 and Φǫ
2 that

satisfy the following equations:

∂Φǫ
1

∂z
=

1

2
(−(Aǫ

1)1 + i(Aǫ
1)t) =: Zǫ

1 and
∂Φǫ

2

∂z
=

1

2
((Aǫ

2)1 − i(Aǫ
2)t) =: Zǫ

2 (7.15)

on R× [0, L]. More precisely, we have the following expressions given by the Cauchy operator:

Φǫ
1(ω) =

1

2πi

∫

C

Zǫ
1(z)

z̄ − ω̄ dz ∧ dz̄ and Φǫ
2(ω) =

1

2πi

∫

C

Zǫ
2(z)

z − ωdz ∧ dz̄ (7.16)

Moreover, we can still solve the equation (7.4), where we extend A1 and A2 by zero outsideM in

the distributional sense (we denote them by the same letter) and obtain Φ1,Φ2 ∈ H1
loc(R×[0, L]),

satisfying the equations:

∂Φ1

∂z
=

1

2
(−(A1)1 + i(A1)t) =: Z1 and

∂Φ2

∂z
=

1

2
((A2)1 − i(A2)t) =: Z2 (7.17)

Furthermore, Φ1 and Φ2 have continuous representatives, which follows from the Dominated

convergence theorem applied to the Cauchy integral formula in the polar coordinate system at

ω ∈ R× [0, L], as follows (the analogous argument applies to Φ1):

Φ2(ω) =
1

2πi

∫

C

Z2(z)

z − ωdz ∧ dz̄ =
1

π

∫ ∞

0

∫ 2π

0
Z2(ω + reiθ)e−iθdθdr (7.18)

So if ωk → ω, by the DCT we get that Φ2(ωk)→ Φ2(ω) and thus Φ2 is continuous.

Our next aim is to compute the limit in (7.3) as τ →∞ and ǫ→ 0 for the solutions uǫ and

vǫ instead of u and v, respectively and Ãǫ instead of Ã. This integral splits into an integral over

R×M0, the limit of which we know and a remainder integral over N ǫ of the following type, that

we would like to prove is small in the limit as ǫ→ 0:

lim
τ→∞

1

τ

∫

Nǫ

e−2iλx1
〈
Ãǫ, (−τ + iλ)vǫ1v

ǫ
2dx1 + vǫ2dv

ǫ
1

〉
dVg̃

Firstly, observe that if S ⊂M0 is a compact submanifold with boundary and same dimension

and γ intersects the boundary of S transversely, then

lim
τ→∞

∫

{x′

1}×S
v′1v

′
2φdVg0 =

∫

γ−1(S)
eΨ1+Ψ2e−2λtdt
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for x′1 ∈ J0, where v′1 and v′2 are some general Gaussian beams coming from our construction in

Chapter 4, Ψ1 and Ψ2 are complex phases that satisfy the usual transport equations. Moreover,

we have a similar formula involving the integrals of 〈α, dv′2〉v′1 and 〈α, dv′1〉v′2 for a one form α

in the limit τ →∞.

Secondly, recall that for almost all x1 ∈ R we have ∂M ⋔ {x1} ×M0, by applying Sard’s

theorem to the projection π; denote the set of such x1 ∈ J0 by T . This means that π−1(x1)∩∂M
is a manifold of dimension n − 2 for almost all x1 and moreover that N ǫ

x1
:= π−1(x1) ∩ N ǫ is

a manifold of dimension n − 1 with boundary for almost all x1 (and similarly we set Mx1 :=

π−1(x1) ∩M).

Thirdly, we claim that for almost all geodesics γ in M0 and for almost all x1 ∈ R, we have

γ ⋔ ∂N ǫ
x1
, where by γ we mean the image of γ and we identify subsets of {p} ×M0 for some

p ∈ R with subsets in M0 as appropriate (ǫ > 0 is fixed). To prove this, note first that the

geodesics in M0 are parametrised, by the influx boundary manifold Γ := ∂+SM0 which has

dimension (2n− 4). Furthermore, notice that the set of “bad” geodesics, i.e. the ones that are

tangent at some point to ∂N ǫ
x1
, is of dimension (2n− 5) (we choose a point and a unit tangent

direction). Let us now define (for x1 ∈ T ):

Γx1 = {geodesics γ ∈ Γ such that γ ⋔ ∂N ǫ
x1
}

and by the above dimension counting we have Γx1 is of full measure in Γ. Let us consider the

set

A = {(x1, γ) | x1 ∈ T and γ ∈ Γx1} ⊂ J0 × Γ

Since Γx1 is of full measure in Γ and T is of full measure in J0, we have A is of full measure in

J0 × Γ, by Fubini’s theorem. Furthermore, again by Fubini’s theorem applied to the indicator

function χA of A, we conclude that for almost all γ ∈ Γ, the set {x1 | x1 ∈ J0 and γ ∈ Γx1} is
of full measure in J0; let us denote the set of such γ by Γ′. This proves the claim, i.e. Γ′ is of

full measure in Γ.

Moreover, notice that if we take a countable set of ǫ, say ǫk → 0 for k ∈ N, then the set of

geodesics that tranversely intersect ∂N ǫi
x1

for a.a. x1 ∈ J0 and all i is of full measure, by taking

a countable intersection.

We will also need the following claim: if γ ∈ Γ′, then we have Φǫ
i → Φi uniformly in

R× [0, L] for i = 1, 2 as ǫ→ 0. This follows from (7.16) and (7.18) in the polar coordinate form

(the analogous argument works for Φ1 and Φǫ
1):

(Φǫ
2 − Φ2)(ω) =

1

π

∫ ∞

0

∫ 2π

0

(
Zǫ
2 − Z2

)
(ω + reiθ)e−iθdθdr (7.19)

Notice that the support of Zǫ
2 − Z2 lies in the set Sǫ := γ̃−1(N ǫ), where γ̃ : R × [0, L] maps

(x1, t) 7→ (x1, γ(t)). So we may write

supp(Zǫ
2 − Z2) ⊂ Sǫ =

⋃

x1∈J0

{x1} × γ−1(N ǫ
x1
) (7.20)

Therefore, if we define M =
(
suppz,ǫ(|Zǫ

2|) + suppz(|Z2|)
)
, we have the bound

∣∣(Φǫ
2 − Φ2

)
(ω)
∣∣ ≤ M

π

∫ ∞

0

∫ 2π

0
χSǫdθdr ≤ 2r0M +

area(Sǫ)

r0
(7.21)
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for any r0 > 0, where area(Sǫ) is the 2-dimensional Lebesgue measure. But by (7.20), Fubini

and the DCT, we have:

area(Sǫ) =

∫

x1

∫

γ−1(Nǫ
x1

)
dtdx1 → 0

as ǫ → 0, since γ ∈ Γ′. Therefore, by taking r0 small enough and then taking ǫ small enough,

(7.21) gives a small uniform bound, which proves the claim.

Back to the main proof, for γ ∈ Γ′ we have

lim
τ→∞

∫

Nǫ

Ãǫ
1v

ǫ
1v

ǫ
2dVg̃ = lim

τ→∞

∫

x1

∫

Nǫ
x1

Ãǫ
1v

ǫ
1v

ǫ
2dVg0dx1 =

∫

x1

∫

γ−1(Nǫ
x1

)
eΦ

ǫ
1+Φǫ

2e−2λtÃǫ
1dtdx1

by Fubini, the first observation above and the Dominated convergence theorem. We may apply

the DCT as ‖vǫi‖L2({x1}×M0) = O(1) as τ →∞ uniformly in x1 ∈ J0, for i = 1, 2. Furthermore,

if we take ǫ = ǫk with ǫk → 0 (e.g. ǫk = 1
k for large enough k), we see that by the DCT (we

drop the k to lighten the notation):

lim
ǫ→0

∫

x1

∫

γ−1(Nǫ
x1

)
eΦ

ǫ
1+Φǫ

2e−2λtÃǫ
1dtdx1 = 0

since the length of γ−1(N ǫ
x1
) = o(1) as ǫ → 0, for a.a. x1 ∈ J0 (as γ ∈ Γ′) and the integrand is

uniformly bounded. Analogously we obtain, by using Fubini, first observation and the DCT

lim
τ→∞

1

τ

∫

Nǫ

e−2iλx1vǫ2〈Ãǫ, dvǫ1〉g̃dVg̃ = lim
τ→∞

1

τ

∫

x1

∫

Nǫ
x1

e−2iλx1vǫ2〈Ãǫ, dvǫ1〉g̃dVg̃

= i

∫

x1

∫

γ−1(Nǫ
x1

)
e−2iλx1Ãǫ

te
Φǫ

1+Φǫ
2e−2λtdtdx1

Note again that we may use the DCT as ‖dvǫi‖L2({x1}×M0) = O(|τ |) as τ → ∞ uniformly in

x1 ∈ J0, for i = 1, 2. If we now take ǫk → 0, for the same reasons as before, we get

lim
ǫ→0

i

∫

x1

∫

γ−1(Nǫ
x1

)
e−2iλx1Ãǫ

te
Φǫ

1+Φǫ
2e−2λtdtdx1 = 0

Going back to the identity (7.13), taking τ →∞ and combining with the two previous limits,

we get:
∫ ∞

−∞

∫ L

0
eΦ

ǫ
1+Φǫ

2e−2λte−2iλx1(Ãǫ
1 − iÃǫ

t)dtdx1 = oǫ(1)

where oǫ(1) means o(1) as ǫ→ 0. As before, by using Stokes’ theorem and integrating by parts

over a simply connected Ω ⊂ R × [0, L] that contains the supports of Zǫ
i for i = 1, 2, together

with inserting an anti-holomorphic function h (the estimates above go through with heΦ
ǫ
1 instead

of eΦ
ǫ
1 , as h is independent of ǫ), we obtain

∫

∂Ω
e−2iλ(x1−it)heΦ

ǫ
1+Φǫ

2dz̄ = oǫ(1)

and so by taking the limit ǫ→ 0
∫

∂Ω
e−2iλ(x1−it)heΦ1+Φ2dz̄ = 0

Now we repeat the argument of taking the logarithm from the proof of Theorem 7.1 (c.f. (7.7))

to get that
∫

∂Ω
e−2iλ(x1−it)(Φ1 +Φ2)dz̄ = 0
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So by going back to the ǫ limit and integrating by parts, we get (c.f. (7.8))
∫

Ω
e2iλ(x1+it)(Ãǫ

1 + iÃǫ
t)dzdz̄ = oǫ(1)

Finally, by the Dominated convergence theorem we obtain
∫ L

0
e−λr(f + iα(γ̇))dr = 0

with rescaling λ and where f and α are defined by (7.9) and (7.10) as before, for geodesics γ in

Γ′ (which is of full measure).

We claim that f and α are in fact smooth. To show this, recall that the projection π2 : ∂M \
Γ→M0 is a local diffeomorphism by definition of Γ – therefore π−1

2 (x′) is a finite set of points

for each x′ that we denote by b1(x
′) < . . . < bk(x

′) locally. Furthermore we set a1(x
′) = −N , and

ai(x
′) = bi−1(x

′) + ǫ for i ≥ 2 where ǫ′ > 0 small enough so that (bi(x
′), ai+1(x

′)] × {x′} ⊂ M c

for k − 1 ≥ i ≥ 1, where M c is the complement of M . Therefore

f(λ, x′) =
k∑

i=1

∫ bi(x
′)

ai(x′)
eiλx1Ã1(x1, x

′)dx1

shows f is smooth and similarly, so is α. Same as before (formally), we get α = id′β and f = λβ

for some smooth β. By a computation and using d′α = 0, we get

F
(
∂jÃk − ∂kÃj

)
(λ, x′) =

k∑

l=1

eiλbl(x
′)
( ∂bl
∂xk

(x′)Ãj(bl(x
′), x′)− ∂bl

∂xj
(x′)Ãk(bl(x

′), x′)
)

for j, k ≥ 2 and all x′ in a small open set and all λ. Note that the right hand side for fixed x′

is in L2(R) if and only if the coefficients are zero; this implies that ∂jÃk = ∂kÃj for a.a. x1 and

so d′Ã = 0 in M by continuity.

Finally, by another computation and using d′f + iλα = 0, we have

F
(
∂jÃ1 − ∂1Ãj

)
(λ, x′) = −

k∑

l=1

eiλbl(x
′)
( ∂bl
∂xj

(x′)Ã1(bl(x
′), x′) + Ãj(bl(x

′), x′)
)

and we similarly conclude ∂jÃ1 = ∂1Ãj in M . Therefore, we globally have dÃ = 0. �

Remark 7.3. In the case of a topologically non-trivial line bundle E, we can follow the lines

of the proofs of Theorems 4.4, 7.1 and 7.2 to get that d(A1−A2) = 0 (note that End E = E⊗E∗

in this case is a trivial bundle, since we have the identity section, so A1 −A2 is a proper 1-form

on M). Namely, what one can do is to take the partition of unity used in the construction of

the CGOs subordinate to Vis andWjs (see the equations (4.9) and the paragraph below it); now

in each of these charts we may trivialise the bundle and by essentially re-running the last part

of Theorem 4.4 and Remark 4.9 dealing with the concentration properties, we get the limit of

each individual term in the partition of unity; summing over again, we obtain the desired limit

– the equation (7.6). Then the rest of the proof of Theorem 7.1 applies and we have a similar

situation with Theorem 7.2.

Remark 7.4. We have proved that Cauchy data uniquely determines dA, however ideally

we would like to determine the connection up to gauge equivalence, which is finer than just

determining dA. On simply-connected manifolds, we would have A2 − A1 = dp = e−pd(ep)

for some p that we may arrange to vanish on one component of the boundary – assuming the

potentials are equal (or zero), the argument in Proposition 6.12 would imply that ep ≡ 1 on the

whole of ∂M . If additionally ∂M is connected, we may recover a scalar potential, too (once we
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gauge transform one connection to the other, this would follow from the proof of Theorem 1.2

from [23]). However, we can make the case without the potentials even on non simply-connected

manifolds; the proof is contained in the next section and the idea is to consider A2 − A1 as a

flat connection and to use a unique continuation principle.

7.2. The holonomy argument

Given a manifold M and a Hermitian vector bundle E on it, equipped with a unitary

connection ∇, we can define the parallel transport along piecewise smooth curves inM , which is

an isometry on the fibers. In particular, when this curve is a loop at a point p, we end up with

an isometry of the fibre Ep, i.e. Pγ : Ep → Ep which preserves the Hermitian inner product.

When E = M × Cm with the standard structure, Pγ is a unitary matrix. The holonomy group

at p is defined as:

Hp(∇) = {Pγ : Ep → Ep | γ a closed loop at p}

This naturally defines a group and moreover satisfies Pγ·γ′ = Pγ ·Pγ′ under path concatenation.

We can also define the restricted holonomy group as the group H0
p (∇) consisting of parallel

transports along contractible loops – which yields a surjective homomorphism ρ∇p : π1(M,p)→
Hp(∇)/H0

p (∇) called the holonomy representation. On a fixed connected manifold, these groups

for varying points are all isomorphic upon conjugation by an appropriate element.

There is a close connection between the holonomy and the curvature. Namely, one can say

that “the curvature is an infinitesimal of the deviation of the holonomy”; more concretely, if

we are given a parallelogram in a coordinate chart determined by two coordinate axes, say x1

and x2, then F12u = − ∂2

∂s∂tTs,tu, where F12 is the corresponding component of the curvature

tensor and Ts,t is the parallel transport along parallelogram at vertices (0, 0), (s, 0), (s, t), (0, t).

For our purposes, we will need the fact that homotopic paths have the same holonomy if the

curvature is zero.

Lemma 7.5. If the curvature F∇ of ∇ is zero, then H0
p (M) = 0 for all p ∈M .

Proof. Let σ : I × I →M be a smooth homotopy between a loop γ and the constant loop

at p ∈M , fixing the endpoints. We will make use of the identity:

∇ ∂σ
∂x
∇ ∂σ

∂y
V −∇ ∂σ

∂y
∇ ∂σ

∂x
V = F∇

(∂σ
∂x
,
∂σ

∂y

)
V

where V is any section. Let us put Vx,t = Tx,tv for some v ∈ Ep, where Tx,t is parallel transport

along σ(x, ·); also σ(0, t) = p and σ(1, t) = γ(t). Then we must have 0 = ∇ ∂σ
∂x
∇ ∂σ

∂t
Vx,t =

∇ ∂σ
∂t
∇ ∂σ

∂x
Vx,t, which implies that ∇ ∂σ

∂x
Vx,t is parallel along σ(x, ·) for all x. But Vx,0 = v and

σ(x, 0) = p for all x and so we have ∇ ∂σ
∂x
Vx,0 = 0 for all x. By uniqueness of solution, we

must have ∇ ∂σ
∂x
Vx,t ≡ 0. Therefore, Vx,t is parallel along σ(·, t) for all t. Since we know that

V0,1 = T0,1v = v and σ(x, 1) = p for all x, we must also have V1,1 = T1,1v = v = Pγv and thus

parallel transport along γ is trivial. �

This means that for zero curvature, the holonomy representation is simply a map from π1

to the holonomy group. As a warm up, let us point out some details about the construction of

the parallel transport matrix. Namely, assume E = M × Cm with a unitary connection A has

trivial holonomy and fix a point p ∈M . Consider the matrix obtained by parallel transporting

along curves emanating from p and define F (p′) = Pγ(p,p′) where γ(p, p′) is a path between p

and p′. Since the holonomy is trivial, we have F well defined. Therefore, we have dF +AF = 0

for all (x, v) ∈ TM and also FF ∗ = Id, since A is unitary. Hence F−1AF + F−1dF = 0
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and so A is equivalent to the trivial connection and moreover the covariant derivative satisfies

F−1(d+A)F = d. Moreover, if we fix p ∈ ∂M and assume that ι∗ΓA = 0 for a connected open set

Γ ⊂ ∂M , we will have F |Γ = Id, so A and the trivial connection on E will be gauge equivalent.

It is useful to note that when the vector bundle E is trivial, we may apply Lemma 2.4

to transfer the covariant normal derivative to the usual one, because most results on unique

continuation for elliptic systems work with usual normal derivative at the boundary, as in [39]

or [25] (c.f. Remark 7.8 below). In the next result, we will use the boundary determination

result Theorem 3.4.

Theorem 7.6. Let E be a Hermitian vector bundle, equipped with two flat, unitary connec-

tions A and B, and Γ an open, non-empty subset of the boundary ∂M . Then the restricted DN

maps agree, i.e. ΛA|Γ(f) = ΛB|Γ(f) for all f ∈ C∞
0 (Γ;E|Γ) if and only if ι∗Γ(A − B) = 0, the

holonomy representations satisfy ρA = ρB and the parallel transport matrices along any path

with endpoints in Γ, with respect to A and B are equal1.

Proof. Let us firstly assume ΛA = ΛB on C∞
0 (Γ;E|Γ). We know this implies by boundary

determination that ι∗Γ(B − A) = 0. Consider p1 ∈ Γ and a loop γ starting at p1. By standard

differential topology, we can always homotopically perturb the curve such that we end up with

two pieces of it: γ1 : [0, 1] → M starting at p1 and ending at p2 6= p1 ∈ Γ such that γ(0, 1) ⊂
int M ; and γ2 : [1, 2] → M starting at p2 and ending at p1 and Image(γ2) ⊂ Γ. We moreover

ask that γ1 and γ2 are embedded curves2. In order to show that the holonomies are equal, it

suffices to show the parallel transports along γ1 are equal, as ι∗Γ(B −A) = 0.

We consider a tubular neighbourhood of γ1; every such is of form O = {p ∈M◦ | dist(p, γ1) <
ǫ} ∼= (0, 1) × Bǫ(0), where Bǫ(0) is an (n − 1)-dimensional ball (every vector bundle over a

contractible space is trivial). Therefore, we know O is simply connected and therefore has

trivial holonomy Hp1(O, B|O) = {0}; here we also used that B is flat and similarly for A. We

consider ǫ > 0 such that dist(p1, p2) > 2ǫ, so that we have a cylindrical neighbourhood with

disjoint ends. Denote U1 = {p ∈ Γ : dist(p, p1) < ǫ}.
Now since both connections are flat and O is simply-connected, we get a unitary isomorphism

F between them: F is obtained by taking parallel transport matrices from p of both connections

and composing them in a suitable way. We also have F |U1 = Id, as ι∗Γ(B−A) = 0. Now we apply

the hypothesis on the DN maps – let u1 and u2 solve LAu1 = LBu2 = 0 with same boundary

data u1|Γ = u2|Γ = f , so that ∇A
ν (u1)|Γ = ∇B

ν (u2)|Γ; here LA = ∇∗
A∇A and LB = ∇∗

B∇B.

Define u := Fu1 in O; we want to prove that u = u2 on O.
Since F |U1 = Id, we have u|U1 = u1|U1 = u2|U1 = f |U1 . Also, using the introduction to this

section and the definition of F , we have F ∗∇BF = ∇A in O (F is unitary). Therefore, we must

have:

LA = F ∗∇∗
BFF

∗∇BF = F ∗LBF (7.22)

which implies that LBu = 0 in O. Moreover, we have ∇B
ν u = ∇B

ν u2 on U1:

∇B
ν u = (dFu1 + Fdu1)(ν) +B(ν)u = (FA(ν)−B(ν)F )u1 +B(ν)u+ F∂νu1

= ∂νu1 +A(ν)u1 = ∇A
ν u1 = ∇B

ν u2

1More precisely, given any x, x′ ∈ Γ and any path γ between them, the parallel transport matrices F,G : Ex → Ex′

with respect to A and B (respectively) along γ are equal, i.e. F = G. This is to address the case when Γ is
potentially disconnected.
2We can always do this for curves in dimension n ≥ 3 by using a version of the weak Whitney theorem to
approximate; then we apply a result which says when we are close to a curve uniformly, we are homotopic to it –
for the case n = 2 see Remark 7.9.
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Consequently, we have:

LB(u− u2) = 0, (u− u2)|U1 = 0 and ∇B
ν |U1(u− u2) = 0

so by a result concerning the unique continuation properties of elliptic systems of equations (see

Remark 7.8 below), we must have u ≡ u2 in O; hence we must also have equality at p2 by

letting p ∈ O converge to p2, i.e. F (p2)f(p2) = f(p2). Here f is smooth and free to choose and

therefore, we must have F (p2) = Id. This concludes the proof that the holonomies are equal.

The same proof as above shows that given any p1, p2 ∈ Γ and a path γ between them,

the parallel transport matrices along γ of A and B agree, i.e. in the above notation we have

F (p2) = Id.

Conversely, to show that A and B have the same restricted DN maps under the given

assumptions, just follow the paragraph before the theorem (B = 0 case); however, note that

since we do not know that the holonomy is trivial, parallel transport from a point might not be

well-defined, so we have to do something else. The idea is to provide a global horizontal section

of the endomorphism bundle that is identity at the boundary and relate this with holonomy.

Induce the standard unitary connection on the EndE bundle by ∇Endu = ∇Bu− u∇A; one

can easily check this new connection to be flat, as A and B are. Note that in a local trivialisation

this is just Â(R) = BR − RA, where Â is the new connection matrix and R is a matrix. We

would like to construct a unitary automorphism U of E, such that U |Γ = Id and U∗∇AU = ∇B.

We do this as follows.

Fix p1 ∈ Γ as before and take a loop at p1, homotope it as before and assume we are working

in the tubular neighborhood O. Then A and B are equivalent to a trivial connection over O;
take the parallel transport matrices F and G such that dF + AF = dG + BG = 0 in O. Then

one checks for H = GF−1:

dH = dGF−1 +GdF−1 = −BGF−1 +GF−1A = HA−BH

One also sees that H|U1 = Id as ι∗Γ(A−B) = 0; also, as ρA = ρB and the parallel transport along

paths in Γ is the same for A and B, we have that H|U2 = Id, too. Now as H(γ1(t)) is parallel

transport with respect to Â, we get the parallel transport of Id along γ1 at p2 is Id; therefore

parallel transport of Id along γ is trivial. So we may define U(x) to be parallel transport with

respect to Â of Id from p1 to x, for every x ∈ M ; the fact we get identity when we parallel

transport between any two components at the boundary then gives U |Γ = Id, which concludes

the proof. �

Note that the proof above does not generalise if we add arbitrary potentials, since the local

gauge isomorphism between two connections has no a priori reason to intertwine the potentials

(see (7.22)). However, it generalises in the case m = 1 and QA = QB, since the group action is

abelian in that case.

Remark 7.7. Moreover, in the case of line bundles, it is true that for any two connections

A1 and A2 for which we know d(A1 − A2) = 0: ΛA1 |Γ = ΛA2 |Γ if and only if ι∗Γ(A1 − A2) = 0,

the holonomy representation of A1 − A2 (on M × C) is trivial and the parallel transport maps

with respect to A1 −A2 between boundary components in Γ are equal to the identity. This can

be easily seen from the above proof.

Remark 7.8. The unique continuation result we are using follows from Theorem 2.3 in [44],

which considers the case of the wave equation (covers our setting if we let u independent of t)

with the covariant normal derivative at the boundary and so solves our problem. However, it is
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not ideal since it gives more than we need. More adequate are techniques in Corollary 3.4 and

Theorem 3.2 in [25] (although they do not use the covariant derivative), since for an elliptic

operator, any smooth surface is pseudoconvex. See also Appendix B in [39].

Remark 7.9. In the case of surfaces, we need to be careful when approximating curves by

embeddings – we do not have enough space to get rid of possible self-intersections. However,

there is a way around this by considering just the class of simple curves, by which we can

represent generators of π1 (see [36], Section 6, for details). Furthermore, in [36] the Conjecture

A for Riemann surfaces and line bundles is proved, but with the extra bit of a potential added

to the connection Laplacian (so the claim is more general in that case). There, the authors

prove the identification of a potential before identification of a connection (see the comment

after the proof of Theorem 7.6). In our recovery Theorem 7.1, we first prove the identification

of a connection.

Now we are in a good shape to prove the main theorem: all ingredients are ready. Theorems

7.1 and 7.2 almost finish the proof, however Theorem 7.6 provides us with the necessary gauge.

Proof of Theorem E. Recall that we have d(A1 − A2) = 0 from Theorem 7.1 for full

data and from Theorem 7.2 for partial data. By Remark 7.7, we immediately get our gauge in

both cases. This finishes the proof. �





CHAPTER 8

Proof of the Main Theorem II

In this chapter we consider the main conjecture in the special case of Yang-Mills connec-

tions. Moreover, we prove our two main results in this setting: Theorem G for line bundles in

the smooth category and Theorem H for rank m > 1 bundles in the analytic category. In the

proofs, we introduce a new technique that we call “drilling”, based on the unique continuation

principles for elliptic systems – heuristically, the idea is to gauge transform a pair of connec-

tions using suitable gauges to a pair of connections that are singular over a countable union of

hypersurfaces and apply the degenerate UCP possibly infinitely many times to “drill through”

the hypersurfaces. The analytic assumption in the m > 1 case is technical.

8.1. Recovering a Yang-Mills connection

We fix a Yang-Mills connection A on the Hermitian vector bundle E = M × Cm (with the

standard metric) over a compact Riemannian manifold (M, g) with boundary. Let us extend

the connection A to a “new connection” on the endomorphism bundle End E =M ×Cm×m by

simply asking that dÃF = dF + AF globally, where Ã is the matrix of one forms with values

in End(Cm×m) induced by A by multiplication on the left; it is easy to check this is a unitary

connection. Note that dÃ does not satisfy the usual Leibnitz rule such does the usual connection

DAF = dF + [A,F ] on the endomorphism bundle. Recall that the DN maps associated to the

vector bundle E and operators LA and LB are equal if and only if they agree for the induced

operators LÃ and LB̃ on the endomorphism bundle. Here and throughout the chapter, we will

use the same notation dA = d+A for both covariant derivatives dA and dÃ, which will hopefully

be clear from context. We will also use dA to denote the extension of the covariant derivative

to vector valued forms. The complex bilinear form on matrix valued 1-forms (α, β) = gijαiβj is

obtained by extending the usual inner product on forms. We start by writing down a simple,

but key lemma that will yield the right gauge in our situation:

Lemma 8.1. If U ⊂ Rn open and F : U → Cm×m is an invertible matrix function and

we put A′ = F ∗(A) for A a matrix of one forms on U , then F satisfies d∗AdAF = 0 if and

only if d∗A′ = Q0(x,A
′), where Q0 is smooth of order zero and quadratic in A′, given by

Q0(x,A
′) = (A′, A′). If in addition A is Yang-Mills, then A′ satisfies an elliptic non-linear

equation with diagonal principal part.

Proof. By using that dA′ = F−1dAF and similarly d∗A′ = F−1d∗AF (note this might not be

the true formal adjoint – see preliminaries), note that d∗AdAF = 0 is equivalent to the following:

FF−1d∗AFF
−1dAF = 0 ⇐⇒ Fd∗A′dA′(Id) = 0 ⇐⇒ d∗A′ = (A′, A′) ⇐⇒ d∗A′A′ = 0

by expanding the d∗A′dA′ operator by (2.6). If A is Yang-Mills, then by adding (DA′)∗FA′ = 0

to dd∗A′ = d(Q0(x,A
′)) we get an elliptic system with principal part equal to dd∗ + d∗d. �

By standard elliptic theory and the fact that ker(d∗AdA) = {0}, we know that we may

solve d∗AdAF = 0 in H1(M ;Cm×m) uniquely for any boundary condition in H
1
2 (∂M ;Cm×m).

79
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Therefore, at least near the boundary, we know that A′ exists if F |∂M is smooth non-singular

and that it satisfies the equation d∗A′ = Q0(x,A
′). Thus we may obtain the following result:

Theorem 8.2. Consider two Yang-Mills connections A and B on E = M × Cm with the

same DN map on the whole of ∂M . Then there exists a neighbourhood U of the boundary and

a bundle isomorphism H for the restricted bundle E|U with H|∂M = Id such that H∗B = A on

U . Moreover, if A and B are unitary (with respect to the standard structure), then we have H

to be a unitary automorphism.

Proof. By the construction above, we obtain smooth gauge equivalences F and G, which

satisfy d∗AdAF = 0 and d∗BdBG = 0 respectively, with boundary conditions F |∂M = G|∂M = Id.

This is non-singular near the boundary and the connections A′ = F ∗(A) and B′ = G∗(B) satisfy

the equations

d∗A′ = Q0(x,A
′) and d∗B′ = Q0(x,B

′) (8.1)

Now we can also expand the equations (DA′)∗FA′ = 0 = (DB′)∗FB′ (note that A′ and B′ are

now Yang-Mills with respect to the fibrewise inner product pulled back by F and G respectively,

rather than the standard inner product):

(d∗d+ P )A′ = 0 and (d∗d+ P )B′ = 0

where P is a first order, non-linear operator arising from the equality

(d∗d+ P )A′ = (−1)n+1 ⋆ DA′ ⋆ FA′

where ⋆ is the Hodge star extended to bundle valued forms. Therefore by simply applying the

operator d to (8.1) and adding to the Yang-Mills equations, we obtain an elliptic system of

equations, with diagonal principal part

∆A′ = (dd∗ + d∗d)A′ = Q1(x,A
′,∇A′) (8.2)

where Q1 is a smooth term of first order, polynomial in A′ and ∇A′. In order to use uniqueness

of solutions to such equations, we need some boundary conditions – this is where we use the DN

map hypothesis. Without loss of generality, assume that the normal components of connections

A and B near the boundary vanish (see Lemma 2.4).

Thus from equality of the DN maps, we have ∂(F−G)
∂ν |∂M = 0. By subtracting the initial

equations for F and G, we get:

∆(F −G)− 2(A, dF ) + 2(B, dG) + (d∗A)F − (d∗B)G− (A,AF ) + (B,BG) = 0 (8.3)

and the point is that we have ∆(F − G) equal to lower order terms, where we are fixing the

semi-geodesic boundary coordinates (x, t) with t denoting the direction of the normal – this

is because we already know that (A − B) = O(t∞), if n ≥ 3, by the boundary determination

result Theorem 3.4, and (F −G) = O(t). Thus when expanding the Laplacian, we are left with

only ∂2

∂t2
factor, which then allows us to conclude inductively (F − G) = O(t∞) by repeated

differentiation.

If n = 2, notice that by Remark 3.5 we have (A−B) = O(t); by (8.3) we have (F−G) = O(t2)

and thus we have also that (A′ − B′) = O(t). Therefore by the elliptic equation (8.2), the

analogous counterpart of it for B′ and repeated differentiation we obtain (A′ −B′) = O(t∞).

Therefore, we are left with two connections A′ and B′ which satisfy an elliptic equation

and have the same full Taylor series at the boundary – by the unique continuation property for
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elliptic systems with diagonal principal part (see Remark 7.8), we may conclude A′ ≡ B′ in U

and hence if we put H = GF−1 we have H∗B = A on U .

Finally, if A and B are unitary, we have that (locally, in a unitary trivialisation) H∗(A) = B

implies by definition that dH = HB−AH and d(H∗) = −BH∗+H∗A, by the unitary property

of connection matrices – combining the two, we have:

d(HH∗) = [HH∗, A]

where [·, ·] is the commutator. This first order system has a unique solution, which is given by

HH∗ = Id, as H|∂M = Id and thus H is unitary whenever H∗(A) = B. �

The next step is to go inside the manifold from the boundary. Namely, the main problem lies

in the fact that F can be singular on a large set, stopping our argument of unique continuation.

However, at least in the scalar case, we may get over this, by essentially knowing facts about

zero sets of solutions to elliptic systems of equations. We need to recall the following definition:

Definition 8.3. A subset of a smooth manifold is called countably k-rectifiable if it is con-

tained in a countable union of smooth k-dimensional submanifolds.

The result we will need is essentially proved in [7], Theorem 2, for the scalar case; the vector

case we will need follows in a straightforward manner from its method of proof. We outline it

here for completeness.

Lemma 8.4. Let (M0, g0) be a smooth n-dimensional, connected Riemannian manifold. Let

L : C∞(M0,Rl) → C∞(M0,Rl) be a differential operator on vector functions for l a positive

integer, such that:

Lu(x) = ∆u(x) +R(x, u(x), du(x))

where ∆ is the metric Laplacian, R is a smooth function with values in Rl. Moreover, we assume

that R respects the zero section, i.e. R(x, 0, 0) = 0.

Now assume u 6≡ 0 is a solution to Lu = 0. Let us denote N (u) = u−1(0) the zero set and by

Ncrit(u) = N (u) ∩ {x | du(x) = 0} the critical zero set. Then we claim that N (u) is countably

(n− 1)-rectifiable and moreover, Ncrit(u) is countably (n− 2)-rectifiable.

Proof. Consider the vector bundle E0 =
⊕

j

(
ΛjT ∗M0 ⊗ Rl

)
of vector valued differential

forms. It is a well known fact that the operator d + δ is a Dirac operator on the bundle

of differential forms with respect to the Riemannian inner product (it respects the Clifford

relations), where δ is the codifferential. Moreover, we have that (d + δ)2 = dδ + δd = ∆ on

differential forms. Let us consider the operator:

V
(∑

ωi

)
= R(x, ω0, ω1)− ω1

where ωi is the component of ω in ΛiT ∗M0 ⊗ Rl. Clearly V is smooth and respects the zero

section.

Thus, if Lu = 0, then ω = u+ du ∈ C∞(M ;E0) solves (d+ δ + V )(ω) = 0. The first order

operator D = d + δ + V is a Dirac operator acting on sections of E0, so the Corollary 1 of [7]

applies (the strong unique continuation property holds for a Dirac operator, i.e. we cannot have

a non-zero solution vanishing to an infinite order at a point). Thus we get the result for the

Ncrit(u) = N (ω).

Finally, since D has the SUCP, we know that N (u) consists of points where u vanishes to

finite order and hence the Lemma 3 from [7] applies. �
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We are now ready to prove the main theorem:

Proof of Theorem G. Firstly, gauge transform both A and B such that the normal com-

ponent of the connection near the boundary is zero (apply Lemma 2.4). Consider the gauge

constructed in Theorem 8.2, i.e. d∗AdAf = 0 and d∗BdBg = 0 with the following boundary

conditions: f |∂M = g|∂M , f |V = g|V = 1 and f, g have compact support at the boundary

contained in Γ. Here V ⊂ V ⊂ Γ is some non-empty, connected, open subset of Γ.1 Let us

define h = f
g on the complement of the closed set N (g) = g−1(0). We furthermore split the zero

set into the critical set Ncrit(g) = N (g) ∩ {x ∈ M | dg(x) = 0} and its complement in N (g),

S = N (g) ∩ {x ∈M | dg(x) 6= 0}.
Now we consider the connections A′ = f∗(A) and B′ = g∗(B) near the set V , where we know

f and g are non-zero, so these connections are well-defined. Following the recipe from before,

by boundary determination and unique continuation we know that in a neighbourhood of V in

M , we have A′ ≡ B′ and thus on this set we also have B = h∗(A) or equivalently

dh = (B −A)h (8.4)

Notice that B = h∗(A) holds in the connected component R of V in the setM \N (g)∩M \N (f).

Notice also that d(|h|2) = 0 on this component by using (8.4), since A and B are unitary, so |h|
is constant and hence bounded on this set. This implies that the zero sets of f and g agree as

we approach the boundary of R. The problem now is how to go further inside the interior of the

manifold and go past the zero sets of f and g. We will do this by a procedure we call “drilling

holes”.

Let us describe this procedure. Firstly, we have that the zero set of g lying in the interior of

M is contained in a countable union of codimension 1 submanifolds by Lemma 8.4; denote these

manifolds by M1,M2, . . . . Consider the following situation: we are given a point p such that we

have g(p) = 0 and dg(p) 6= 0 and moreover, we have g−1(0) locally a hypersurface of codimension

one (in this case the rank of dg is equal to one). By going to a tubular neighbourhood of g−1(0)

near p, we may assume we are in the setting where g = 0 in a neighbourhood of zero in the

hyperplane Rn−1 and the metric satisfies gin = δin for i = 1, 2, . . . , n in this coordinate system.

Moreover, assume that we know dh = h(B − A) or equivalently, that f∗(A) = g∗(B), in the

region where {xn > 0}. Our goal is to extend this equality to the lower part of the space.

Let us just remark that, in general, the zero set of g can be of codimension one or two,

depending on the rank of dg; however, if dg 6= 0 we anyway know that at least one of d(Im g) 6= 0

and d(Re g) 6= 0 holds, so the zero set is locally contained in (Im g)−1(0) and (Re g)−1(0), at

least one of which is a codimension one submanifold. It can of course happen that the zero of

g contains an (n − 1)-dimensional submanifold, see Figure 1 below for such an example (more

precisely, u in this example gives the real part of such a solution, with the imaginary part equal

to zero).

By Taylor’s theorem we have that f = xnf1 and g = xng1 locally near 0. Furthermore,

g1 6= 0 in a neighbourhood of 0 by the assumption and hence f1 6= 0 as |h| is a non-zero constant

in the upper space. We want to consider A′ = f∗(A) as before, however f can be zero now and

thus A′ not well-defined (singular), so we will consider something very similar, i.e. A′′ = xnA
′

1We will actually see later that it is enough to have any f and g non-zero and equal at the boundary.
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and B′′ = xnB
′

A′′ = dxn + xn
df1
f1

+ xnA (8.5)

B′′ = dxn + xn
dg1
g1

+ xnB (8.6)

Now both of these are well-defined and the degeneracies have cancelled with xn. Let us rewrite

the gauge equations for A′′ (note that A′ is Yang-Mills with respect to pullback inner product

by f∗ and not the standard inner product structure) as follows:

x2nd
∗d(A′′) + xn

(
ι∇xndA

′′ − d∗(dxn ∧A′′)
)
+ (−2A′′ + 2A′′

ndxn) = 0 (8.7)

xnd
∗(A′′) +A′′

n − |A′′|2 = 0 (8.8)

where A′′
n is the dxn component of the 1-form A′′. After applying d to the second equation and

multiplying with xn, we get the form:

x2ndd
∗(A′′) + xn

(
d∗A′′ ∧ dxn + d(A′′

n)− d(|A′′|2)
)
= 0 (8.9)

Now after adding the equation (8.7) to the equation (8.9) we get a degenerate elliptic second

order non-linear equation, which has a diagonal principal part x2n∆ and every first order term

multiplied with xn. Notice also A′′ = B′′ for xn > 0, so A′′ − B′′ = O(x∞n ) on the hyperplane

xn = 0.

By Corollary (11) in [53], we deduce that there exists a unique continuation principle for such

equations and hence we obtain A′′ ≡ B′′ in the lower space, by continuing from the hyperplane.

More precisely, we may rewrite these non-linear equations for A′′ and B′′ in the form

x2n∆A
′′ = w(x,A′′,∇A′′) and x2n∆B

′′ = w(x,B′′,∇B′′)

where w is a smooth function in its entries. Therefore, after subtracting these two and writing

C ′′ = B′′ −A′′, we may obtain

x2n∆C
′′ = w(x,B′′,∇B′′)− w(x,A′′,∇A′′)

= h1(x,A
′′, B′′,∇A′′,∇B′′)C ′′ + h2(x,A

′′, B′′,∇A′′,∇B′′)∇C ′′ (8.10)

by Taylor expanding the w with respect to C ′′; here h1 and h2 are smooth in their entries and

act linearly on C ′′ and ∇C ′′, respectively. Thus, after fixing h1 and h2 as known functions, we

may think of (8.10) as a linear system of equations (of real dimension 2n) in C ′′ and thus results

from [53] apply.

Moreover, we have that h = f1
g1

carries smoothly over the hyperplane and therefore we have

dh = (B − A)h by subtracting equations (8.5) and (8.6), on the other side of the hyperplane.

Furthermore, using the relation d(|h|2) = 0 obtained from the gauge equation, we immediately

get that |h| is constant and thus, non-zero so we may write B = h∗(A).

Finally, by using Lemma 8.4 we deduce that B = h∗(A) on the whole connected component

(call it R′) in M \ N (g) of the points in the lower space in the previously considered chart and

therefore, that h is non-zero on R′ and that the boundary of R′ are the points where (could be

empty) g = 0. This ends the procedure.

Observe that we may perform this procedure at the boundary for a dense set of points

p ∈ Q = Γ ∩ N (g) to extend h such that h∗(A) = B near these points with h = 1 on the

boundary. In more detail, the set {p ∈ Q | dg(p) = 0 or df(p) = 0} is small, in the sense that

its complement is dense, by Lemma 8.4. On this set, near a point p, we may use semi-geodesic

coordinates and write f = xnf1 and g = xng1 as before; then h = f1
g1

extends h smoothly and
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h = 1 on boundary, since the DN maps agree. The boundary determination result applied to

quantities A′′ and B′′ defined in (8.5) and (8.6) and the degenerate unique continuation result

of Mazzeo now applies to equations (8.7) and (8.9), to uniquely extend from ∂M , as before.

We may now drill the holes and extend h together with the relation h∗(A) = B, starting

from the component of V , where we may use boundary determination. The idea is that drilling

the holes connects path components over the possibly disconnecting set N (g). Let us now give

an argument that what we are left with (after drilling the holes) is path connected.

Let us denote the complement of the zero set T = M \ N (g); obviously M \ (∪Mi) ⊂ T

and T open. Let x0 ∈ M◦ be a point in the open neighbourhood of V where B = h∗(A) and

y be any point in T . Consider any path γ : [0, 1] → M with γ(0) = x0 and γ(1) = y. We will

construct a path γ′ from x0 to y, lying in T , by slightly perturbing the path γ, such that γ and

γ′ are arbitrarily close. Let d be the usual complete metric in the space C∞([0, 1],M) of smooth

paths with fixed endpoints x0 and y (see Remark A.6 in the appendix).

By standard differential topology (see [38]), there exists an arbitrarily close path γ1 to γ

(with the same endpoints), such that γ1 intersects M1 transversally in a finite number of points

P1, . . . , Pk. There are two possibilities for these points, starting e.g. with P = P1:

(1) There exists a sequence of points pi ∈M1, for i = 1, 2, . . . , converging to P , such that

g(pi) 6= 0 for all i.

(2) We have g = 0 in a neighbourhood of P in M1 and a sequence of points qi ∈ M1

converging to P , such that dg(qi) 6= 0.

In the first case, we may slightly perturb γ1, such that it goes through one of the points pi and is

sufficiently close in the metric d. These are complementary conditions, so if the first item does

not hold, then the second one does: in that case, we may still perturb γ1 to go through one of

the points qi, by the above argument of drilling holes. Notice that each of the points pi or qi

has a neighbourhood in M1 through which we can perturb the curve and therefore, there exists

an ǫ > 0, such that if we move our curve by a distance less than ǫ in the d-metric, the resulting

curve will go through this neighbourhood.

Now inductively, we may perform the same procedure for all j = 1, 2, . . . , k and, each time,

taking the perturbations small enough such that it does not interfere with the previously done

work – what we obtain is γ′1, which is sufficiently close to γ1 and which does not hit M1, minus

the deleted holes. Thus we obtain a Cauchy sequence of curves γ′1, γ
′
2, . . . such that γ′i does

not hit M1,M2, . . . ,Mi, minus the deleted holes. Since the space of curves is complete, we

obtain a limiting curve γ′i → γ′, which lies completely in T together with the drilled holes and

furthermore satisfies d(γ, γ′) < δ for some pre-fixed δ > 0. In particular, this implies that the

lengths of the curves are close, i.e. |l(γ)− l(γ′)| < δ′ for some δ′ > 0 (here l denotes the length of

the curve in the underlying Riemannian manifold). Let us denote the union of all of the drilled

holes, i.e. neighbourhoods of some of the points qi in the item (2) above, by Tγ .

Moreover, we may repeat the above argument for all paths γ, now between any two points

in T – denote the set of new drilled holes by Sγ . Then we redefine T as:

T := T
⋃

γ fromx0 to y

Tγ
⋃

γ′ fromany x to any y

Sγ′

where the first union runs over all of the curves γ starting at x0 and ending at y ∈M◦ \ N (g);

the second one is over all paths γ′ between points in M◦ \ N (g). It is easy to see that T ⊂M◦

is open and connected and furthermore, it satisfies the property that for any curve γ between

any two points x, y ∈ T , there exists a sequence of curves γn between x and y, lying wholly in
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T , such that d(γn, γ)→ 0 as n→∞. Also, we have B = h∗(A) on T by the argument of drilling

holes.

Let us denote by d1 the inherited metric of T as a subspace ofM and by d2 the metric in the

Riemannian manifold (T, g|T ). Therefore, as a result of the above construction, we may claim

the following about these metrics:2

d2(x, y) = inf{l(γ) | γ a piecewise smooth path from x to y lying in T} = d1(x, y)

Notice also that we have, by the Fundamental Theorem of Calculus, if γ is a path from x to y

lying in T :

|h(x)− h(y)| =
∣∣∣
∫ 1

0
dhγ(t)(γ̇(t))dt

∣∣∣ ≤
∫ 1

0

∣∣〈∇hγ(t), γ̇(t)〉
∣∣dt

≤
∫ 1

0
|∇hγ(t)|g · |γ̇(t)|gdt ≤ C

∫ 1

0
|γ̇(t)|gdt = C · l(γ)

by Cauchy-Schwarz, where∇h is the gradient of h and C is a uniform bound on dh (which follows

from the global relation dh = (B−A)h in T and uniform bounds on h, A and B). If we take the

infimum over all such curves γ, we obtain the inequality |h(x) − h(y)| ≤ Cd2(x, y) = Cd1(x, y)

and therefore obtain that h is Lipschitz and so uniformly continuous over T .

Therefore, h can be extended continuously3 to the whole of M and by inductively differen-

tiating the relation dh = (B − A)h, we moreover have that all partial derivatives of h can be

continuously extended. That these continuous extensions of derivatives are actual derivatives

of the extension of h is proved in Lemma A.7 in the Appendix; see also Remark A.8 in the

Appendix for the extension to the boundary. This proves h∗(A) = B on the whole of M with h

smooth and that h|Γ = 1; h also unitary. This finishes the proof. �

Remark 8.5 (Topological remarks). One can see that the complement of the disconnecting

set N (g) can indeed have non-trivial topology; this justifies the use of our argument of drilling

holes. For simplicity, we will consider real harmonic functions g with ∆g = 0 in the open unit

disk. Firstly, one may observe that there are two types of points in N (g): the critical and the

non-critical ones. The non-critical ones are simple: they are locally contained in an analytic

curve, whereas the critical ones are isolated (since they are exactly the set of points where f ′ = 0,

where f holomorphic and u = Re (f)) and are locally zero sets of harmonic polynomials, i.e. zero

sets of Re ((z − P )m), where m ≥ 2 an integer. Thus at these critical points, N (g) is a union of

m analytic curves meeting at P at equal angles. Also, there are no loops in N (g), due to the

uniqueness of the Dirichlet problem and analytic continuation. Therefore, if g has an analytic

extension to the closed disk, there are finitely many components in the complement of N (g), but

if no such extension exists and g is zero at infinitely many points at the boundary, then we may

expect infinitely many components. This is because for each such vanishing, non-critical point

of g at the boundary we have an “end” coming inside the disk, which returns to the boundary

at some other point, by the analysis above. See Figure 1 for a concrete example and [16,86] for

further analysis.

Remark 8.6. If given d∗AdAF = 0 we were able to write down an elliptic equation for

det(F ), then all (or almost all) of the above proof would carry over to the case of vector bundles

2We just proved that the inherited subspace metric on T ⊂ M and the path metric as a submanifold of a
Riemannian manifold are Lipschitz equivalent with Lipschitz constant equal to 1.
3Here we are using the elementary fact that a uniformly continuous function can be uniquely continuously extended
to the closure of its domain.
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Figure 1. In blue – the zero set of the harmonic function with boundary value
equal to f(θ) = θ · sin 100

θ on the unit disc, where θ ∈ (−π, π) is the
angular coordinate. In orange – the unit circle. The accumulation
point is (1, 0).

of higher rank, as in Theorem 8.2. Also, notice that the only two implications we were using in

Theorem G from the equality of the DN maps for A and B, were:

(1) By boundary determination, the connections A and B have the same full jets at the

boundary in suitable gauges.

(2) There exist two non-zero solutions f and g to d∗AdAf = d∗BdBg = 0, such that f |∂M =

g|∂M and ∂νf |Γ = ∂νg|Γ for a non-empty open Γ ⊂ ∂M .

Remark 8.7 (Alternative boundary extension). A different approach to extension of the

gauge to the boundary, by using the partial differential equations that it satisfies (that is

H−1dH + H−1AH = B), can be found in Proposition 4.7 from [44]. There, the authors take

A and B to a gauge with no normal component (as in Lemma 2.4), so that the new gauge H ′

is independent of the normal variable from the equation it satisfies and can clearly be extended

smoothly. Note that the same proof works in the non-unitary case.

By a careful analysis of the proof of Theorem G, we have the following result:

Proposition 8.8. Conclusions of Theorem G hold in the non-unitary case.

Proof. We use the same notation as in the original proof. The first issue is that we do

not know that d(|h|2) = 0 any more, so a priori f and g need not have the same zero set. We

address this as follows.

By gauge transforming A and B locally near a zero set hypersurface g−1(0) of g (or f−1(0)

for f), we may assume that the dxn components of A and B vanish and B = h∗(A) in {xn > 0}.
Then by Remark 8.7, we see that h is independent of xn and so extends in a non-singular way

beyond {xn = 0} – thus f
g also extends in a smooth and non-zero way. From that point, we may

apply the earlier argument in the same way.
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By drilling along paths as before, we are left with h : T → C such that h∗(A) = B (h is

nowhere zero) and h|Γ = 1, where T is dense, connected and open and moreover, T satisfies the

property that given a curve γ in M with endpoints in T , there exist arbitrarily close curves to γ

with the same endpoints, lying wholly in T . Notice that dh = (B −A)h on T implies dA = dB

by density, which by Remark 7.7 immediately proves the claim. Alternatively, we will extend h

to a gauge on M◦ by proving uniform bounds on h on compact subsets of M◦.

Take a point p ∈M◦ \ T . Note that we have in T

dh = (B −A)h

So if we take a small ball U around p, we have a logarithm f in U , by solving df = B−A (such

an f exists as dA = dB). Then by uniqueness we have h = c · ef for a constant c, as U ∩ T is

connected. So h extends smoothly on U and by density, we have h∗(A) = B on U . So h extends

to M◦, such that h∗(A) = B. We are left to observe that Remark 8.7 extends h smoothly to

∂M . �

8.2. Recovering a Yang-Mills connection for m > 1

The main obstacle to solving the m > 1 case is the possibility that the zero set of detF

for F satisfying d∗AdAF = 0 could potentially be large; it suffices to prove that the determinant

does not vanish to an infinite order (if non-trivial) at any point, since by some general theory

the zero set is then contained in an (n− 1)-rectifiable set [7]. In other words, we want to prove

detF satisfies the strong unique continuation property. In addition to this, we would like to

point out that it is no longer true that the critical zero set of detF is (n − 2)-rectifiable, as

in the case m = 1; a class of counterexamples is given by F =

(
f 0

0 f

)
, where we have that

Ncrit(detF ) = Ncrit(f
2) contains the set where f vanishes (since d(f2) = 2fdf). Therefore if

f vanishes on an (n− 1)-dimensional set, then the critical set is also (n− 1)-dimensional. One

such example is given by M = R2 and f(x, y) = x which vanishes along the y-axis and solves

∆R2(x) = 0.

Here a function f on a manifoldM vanishes to infinite order at a point x0 ∈M if in any local

coordinates, we have ∂αf

∂x
α1
1 ···∂xαn

n
= 0 for all multindices α = (α1, α2, . . . , αn) (this is invariant of

the choice of coordinates).

However, if we were able to prove that detF has the strong unique continuation property,

then we may try and run through the argument in Theorem 7.7 again. We will therefore consider

the analytic case first – analytic functions satisfy the SUCP by definition and in addition, the

zero set is given by a countable union of analytic submanifolds of codimension one. This can

easily be seen by considering the order of vanishing at a point and by observing that locally,

every point in the zero set is contained in (∂αg)−1(0), where g is the analytic function and α is

a multi-index such that ∇(∂αg) 6= 0.

Note that if A and g are analytic, one has F satisfying d∗AdAF = 0, which is an elliptic system

with analytic coefficients and thus by a classical result of Morrey [56] its entries are analytic.

Therefore, the determinant is analytic also and thus cannot vanish to the infinite order at a

single point, if it is non-trivial. Unless otherwise stated, for the rest of the section (M, g) is a

compact analytic (in the interior) Riemannian manifold of dimension n with boundary. We first

prove a result about the zero set of the determinant of a matrix solution where A is Yang-Mills

and not necessarily analytic:
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Lemma 8.9. Let E = M × Cm a Hermitian vector bundle and A a unitary Yang-Mills

connection on E. Then any solution F : M → Cm×m to d∗AdAF = 0 with detF non-zero

has N (detF ) to be (n− 1)-rectifiable. Moreover, detF satisfies the strong unique continuation

property.

Proof. This is a local result, so assume we have a point p ∈ M◦ in the interior and take

a small coordinate ball Bn(ǫ) around p, such that ‖A‖Ln/2(Bn(ǫ)) is small enough; by a dilation

we may also assume Bn is the unit ball and we also have ‖A‖Ln/2(Bn) stays the same as for the

smaller ball, by a computation. By a result of Uhlenbeck [83], we have a gauge automorphism

X : Bn → U(m) that takes A to A′ = X∗(A) with d∗(A′) = 0. In this particular gauge, the

Yang-Mills equations become elliptic and therefore, A′ is analytic.

Similarly, since d∗AdAF = 0, we have d∗A′dA′F ′ = 0, where F ′ = X−1F – thus F ′ is also

analytic. Moreover, detF ′ detX = detF and so N (detF ) = N (detF ′) on Bn, as X is always

invertible; since detF ′ is analytic, we obtain the first part of the result.

Finally, from the relation detF ′ detX = detF and the fact that detX is non-zero on Bn,

we immediately get that detF vanishes up to order k if and only if detF ′ vanishes up to order

k – thus detF satisfies the SUCP, as detF ′ does. �

This means that on M◦ we have N (detG) ⊂ ∪iMi for Mi a countable family of analytic

submanifolds of codimension one, where G solves d∗BdBG = 0 and represents the gauge we used

in the previous section. Notice that G∗(B) then satisfies an elliptic system (as before), but with

analytic coefficients – therefore G∗(B) is also analytic, but only on the set where G is invertible.

To overcome this, we use the method of proof of the m = 1 case, Theorem G, and the main

difference is that now we will be able to use analyticity to uniquely continue the solution when

drilling hyperplanes, whereas before we relied on the unique continuation property of elliptic

equations.

Proof of Theorem H. Assume we have the gauges F and G that solve d∗AdAF = 0 and

d∗BdBG = 0 with F |∂M = G|∂M , supp(F |∂M ) = supp(G|∂M ) ⊂ Γ and equal to identity on an

open, non-empty subset V of Γ. Then F ∗(A) = G∗(B) in the neighbourhood U of V in the

manifold, as in Theorem 8.2, by unique continuation; equivalently, we have H∗(A) = B where

H = FG−1. We also have that H is unitary.

We may suppose that N (detG) ⊂ ∪iMi for Mi analytic submanifolds of codimension one,

by Lemma 8.9. Let us now prepare the terrain for drilling the holes – consider a point p in Mi

for some i and assume detG = 0 near p in Mi, such that the following property holds:

∂j(detG)

∂xjn
= 0 for j = 0, 1, . . . , k − 1 (8.11)

in a neighbourhood of p in Mi, for some k; we also ask that ∂k(detG)
∂xk

n
(p) 6= 0. Here we are using

the analytic chart given by coordinates on Mi near p and the xn coordinate given by following

the normal geodesics (which is also analytic). We make the standing assumption that F and G

are invertible for xn > 0 in this coordinate system and that F ∗(A) = G∗(B) in the same set.

This means that near p, by Taylor’s theorem we have detG = xkng1 for some g1 that satisfies

g1(p) 6= 0 – therefore locally at p, N (detG) is contained in Mi. Since H is unitary for xn > 0,

we have H = FG−1 = F adjG
xk
ng1

is bounded on this set and therefore F adjG = xknH1 for some

smooth H1 near p – we get H = H1
g1

locally, which means that H extends smoothly to the other

side of Mi in the proximity of p. Moreover, as H unitary we have | detH| = 1 at p and so H is

invertible near p.
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To use the real-analyticity, we must transform A and B such that they are locally analytic –

we do this by constructing the Coulomb gauge automorphisms (unitary) X and Y locally near

p such that A′ = X∗(A) and B′ = Y ∗(B) and moreover, that d∗(A′) = d∗(B′) = 0 (by the proof

of Lemma 8.9). Then A′ and B′ are analytic as in the previous lemma and moreover, we have

F ′ = X−1F and G′ = Y −1G satisfying d∗A′dA′F ′ = 0 and d∗B′dB′G′ = 0 – therefore F ′ and G′

are analytic, as well.

Thus we may write H ′ = X−1FG−1Y and by rewriting H∗(A) = B (by assumption) we

get H ′∗(A′) = B′ for xn > 0 in a neighbourhood of p. Let us now observe that H ′ also

smoothly (analytically) extends over the hyperplane Mi – this is because, by Taylor expanding

det (Y −1G) = detG
detY , we get

H ′ = X−1F · adj
(
Y −1G

)

g′xkn

where g′ = g1
detY is analytic, so g′ 6= 0 near p. However, we know H ′ is bounded near p, since H,

X and Y are. Thus X−1F · adj (Y −1G) = F ′ · adjG′ = xknH
′′ for some analytic H ′′, by looking

at the expansion of F ′ adj (G′) – in conclusion, H ′ = H′′

g′ analytically extends near p and H ′ is

also invertible at p as H, X and Y are.

Finally, it is easy now to see that (H ′)∗(A′) ≡ B′, since both sides are analytic near p and

(H ′)∗(A′) = B′ for xn > 0; equivalently H∗(A) ≡ B near p. This ends the drilling argument

and we may repeat the part of the argument of Theorem G which perturbs the curve by an

arbitrarily small amount so that it goes through the holes.

Let us briefly describe the analogous procedure from Theorem G. Take a base point x0 ∈
U ∩M◦ and consider a path γ lying in the interior, from x0 to some point y ∈M◦. We perturb γ

such that it intersectsM1 transversally at P1, · · ·Pk (k can be zero). At P1, consider the tubular

neighbourhood (analytic) given by following geodesics perpendicular to M1. If there exists a

sequence of points pj ∈ M1 that converges to P1 and detG 6= 0 at every pj , we may perturb

γ slightly and get it to pass through one of the points pj . Otherwise, inductively, since detG

satisfies the SUCP by Lemma 8.9, there exists a positive integer k such that ∂i(detG)
∂xi

n
= 0 for

0 ≤ i ≤ k − 1 in a neighbourhood of P1 and there exists a sequence of points pj ∈ M1 that

converge to P1 and
∂k(detG)

∂xk
n
6= 0 at each pj . This leaves us in the setting (8.11) from the previous

paragraph, suitable for drilling the holes – inductively, we perturb γ such that it intersects the

Mi in the drilled holes.

Thus we obtain a smooth (analytic in the interior) extension of H = FG−1 to the whole of

M , such that H∗(A) = B and H|V = Id.

To get the wanted gauge with H|Γ = Id, we will need a slightly different argument, because

we do not know if detF and detG vanish to infinite order at the boundary, as we did not assume

analyticity up to the boundary. We will construct a sequence of matrix functions Hi such that

H∗
i (A) = B and use a compactness argument to take the limit. Consider nested open sets Vi,

with ∅ 6= V1 $ V 1 $ V2 $ V 2 $ . . . $ Γ with the property ∪iVi = Γ. Construct appropriate

Fi and Gi supported in Γ, such that Fi|Vi = Gi|Vi = Id, solving d∗AdAFi = 0 and d∗BdBGi = 0

and setting Hi = FiG
−1
i – by the argument above H∗

i (A) = B and Hi|Vi = Id. Now the

important property that the gauges satisfy is that they are unitary, hence bounded and they

satisfy dHi = HiB−AHi so that dHi are uniformly bounded. By inductively differentiating this

relation, we get that all derivatives of Hi are uniformly bounded on M . By the Arzelà-Ascoli

theorem (or the Heine-Borel property of C∞(M)) we get a convergent subsequence with a limit

H ∈ C∞(M ;U(m)), H|Γ = Id and H∗(A) = B. This finishes the proof. �
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Remark 8.10. If we were able to prove that the determinant detF satisfies the strong

unique continuation property (where d∗AdAF = 0) and that the unique continuation property

from a hyperplane holds for degenerate elliptic systems, with degeneracies of the form x2kn ∆g ×
Id+ xknF1 +F0, where F0 and F1 are zero and first order matrix operators, respectively and for

all k positive integers – then we would be able to solve the m > 1 case in the smooth category,

by following the proofs of Theorems G and H.

Remark 8.11. As mentioned, while A′ = F ∗(A) above satisfies an elliptic equation with

analytic coefficients and hence is analytic (and so is F ), a problem appears when we approach

the singular set of F . Then we do not know any more that A′ is analytic and cannot apply

analyticity directly to conclude F ∗(A) ≡ G∗(B). However, as we have seen in the above proof

we may use the Coulomb gauge locally to get around this issue.



APPENDIX A

Some less obvious elementary facts

Here we prove some of the less obvious elementary facts that we use in the thesis.

A.1. The DN map

We prove that ΛA,Q : H
1
2 (∂M ;E|∂M )→ H− 1

2 (∂M ;E|∂M ) is a bounded linear map and that

H
1
2 (∂M ;E|∂M ), defined in the standard way, is isomorphic to the quotientH1(M ;E)/H1

0 (M ;E),

so that Definition 2.3 makes sense. For brevity, we drop the manifold and bundle symbols from

the Sobolev spaces notation.

Proposition A.1. Definition 2.1 makes sense, i.e. ΛA,Q is well-defined and bounded.

Proof. We need to check that the definition is independent of the choice of eh: let ϕ ∈
H1

0 (M ;E). We need to show that
∫

M

[
〈dAuf , dAϕ〉+ 〈Quf , ϕ〉

]
dV = 0

but that follows directly from the fact that uf is a weak solution of (2.2). Moreover, uf is clearly

well-defined for f ∈ H 1
2 and the map is linear in both f and h.

Next we check the range lies in H− 1
2 .

∣∣〈〈ΛA,Qf, h〉〉
∣∣ ≤ ‖uf‖H1‖eh‖H1 + ‖Q‖L∞‖uf‖L2‖eh‖L2 ≤ C‖uf‖H1‖eh‖H1

for a constant C. Since eh was arbitrary representative of the class of h, we conclude
∣∣〈〈ΛA,Qf, h〉〉

∣∣ ≤ C‖uf‖H1‖h‖
H

1
2

so ΛA,Qf ∈ H− 1
2 . Furthermore, using the previous inequality, we have that:

‖ΛA,Qf‖
H−

1
2
≤ C‖uf‖H1

Since LA,Q : H1
0 → H−1 is an isomorphism by assumption, we have constants C1 and C2 so that

C1‖v‖H1 ≤ ‖LA,Qv‖H−1 ≤ C2‖v‖H1 for all v ∈ H1
0 and thus, for all ef ∈ H1 that represent the

class of f :

‖uf‖H1 ≤ ‖uf − ef‖H1 + ‖ef‖H1 ≤ 1

C1
‖LA,Qef‖H−1 + ‖ef‖H1 ≤ C ′‖ef‖H1

for some constant C ′, since LA,Q : H1 → H−1 is bounded. Since ef was arbitrary, we conclude

that

‖uf‖H1 ≤ C ′‖f‖
H

1
2

which finishes the proof. �

Now let us recall the definitions of Sobolev spaces on manifolds for a real parameter. Firstly,

the Sobolev spaces Hs(Rn) can be defined by completing the space of smooth compactly sup-

ported functions in the norm:

‖u‖2Hs(Rn) =

∫

Rn

(1 + |ξ|2)s|û(ξ)|2dξ

91
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where û(ξ) =
∫
Rn e

−ix·ξu(x)dx is the Fourier transform of u. Observe that we may also define

the norm of vector valued functions, by just taking the sum of the norms of the components;

we denote the corresponding Hilbert space by Hs(Rn;Cm). Furthermore, for a smooth domain

Ω ⊂ Rn and s ≥ 0, we may define the Sobolev spaces by taking completions:

Hs
0(Ω) := C∞

0 (Ω)
‖·‖Hs(Ω)

with norm ‖·‖Hs(Ω)

Hs(Ω) := Hs(Rn)|Ω with norm ‖u‖Hs(Ω) := inf{‖ũ‖Hs(Rn) | ũ|Ω = u}

It can be shown that the second space is the closure of functions in C∞(Ω) with compact support

in Ω (by just using that C∞
0 (Rn) is dense in Hs(Rn)).

Now fix a smooth compact manifold X without boundary and a vector bundle E of rank

m over it and consider a family of charts {(Ui, ϕi)} covering M , associated with the family

of trivialisations of the bundle {ψi} and with a partition of unity {ρi} subordinate to Ui. By

transferring the norms to the charts, we may define Sobolev spaces on E over X:

Definition A.2 (Sobolev spaces on manifolds). For a smooth section f of E over X, we

may define the Sobolev norm as follows:

‖f‖2Hs(X;E) :=
∑

i

‖ψi(ρif) ◦ ϕ−1
i ‖2Hs

(
ϕi(Ui);Cm

)

The Sobolev space Hs(X;E) for s ∈ R is defined as the following completion:

Hs(X;E) := C∞(X;E)
‖·‖Hs(X;E)

with norm ‖·‖Hs(X;E)

By using the invariance of Sobolev spaces under diffeomorphisms and changes of local frames,

and the continuity of the multiplication map by a smooth compactly supported function, we may

get that the just defined spaces are invariantly defined and that moreover, the norms defined

by a different choice of charts and a partition of unity are isomorphic. Moreover, the intrinsic

definition of H1 from Chapter 2 agrees with the above one.

Let now M be a compact manifold with boundary, with a vector bundle E over M and let

X be its double, i.e. X = M ∪∂M M obtained by gluing the two collars near the boundary.

Moreover, the structures vector bundles, metric, connections over M are naturally extended to

the double X; we will still write E for the extension of the vector bundle to X. We may now

define (see [8,54] for more details):

Definition A.3 (Sobolev spaces on manifolds with boundary). The Sobolev spaces associ-

ated to X and E are defined as, for s ≥ 0, where the restriction is taken in the L2 spaces:

Hs(M ;E) := Hs(X;E)|M with norm ‖u‖Hs(M ;E) := inf{‖ũ‖Hs(X)

∣∣ũ|M = u}

Hs
0(M ;E) := C∞

0 (M ;E)
‖·‖Hs(X;E)

with norm ‖·‖Hs(X;E)

It can be checked that we obtain the same spaces with equivalent norms, if we take any other

extension ofM to a manifold without boundary. Moreover, there exists a continuous right inverse

to the extension map – for every k ∈ N, there exists an operator Ek : Hk(M ;E) → Hk(X;E).

Locally, if we consider the upper half-plane Hn ⊂ Rn with the coordinates (y, t), we may define

E′
k for u ∈ Hk(Hn) to be:

E′
k(u)(y, t) =

k+1∑

j=1

aju(y,−jt) for t < 0
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and E′
k(u)(y, t) = u(y, t) for t > 0, where the aj solve the following linear system of equations

(a Vandermonde’s determinant is non-zero):

k+1∑

j=1

(−j)laj = 1 for l = 0, . . . , k

Observe that if we take k > s ≥ 0, then E′
k : Hs(Hn)→ Hs(Rn) is continuous and that our

discussion generalises to the Cm-valued functions case. Then if we cut off near the boundary

and take a suitable partition of unity subordinate to a cover close to the boundary, we obtain

a continuous extension map Es : Hs(M ;E) → Hs(X;E) by transferring the problem to local

coordinates.

We are now ready to prove the following:

Proposition A.4 (Characterisation of H
1
2 ). There exists a unique, bounded trace map

T : H1(M ;E)→ H
1
2 (∂M ;E|∂M )1 such that Tu = u|∂M for smooth u. Moreover, T is surjective

with kernel equal to H1
0 (M).2

Proof. It suffices to prove that there is a trace map T1, such that T1 : H1(X;E) →
H

1
2 (∂M ;E|∂M ) is continuous and takes a smooth function to its restriction; then T := T1 ◦ Es

does the job.

Take a finite set of charts {(Ui, ϕi)} for i = 1, . . . , N0 with trivialisation {ψi} for E over M

that covers ∂M , such that ϕi(Ui) = Rn and denote the parts of the boundary by Γi = Ui ∩ ∂M .

Take a partition of unity ρi subordinate to Γi and extend it to a partition of unity ρj for j ≥ 0,

where we added an open set U0 to cover the whole of X. Then for u ∈ C∞(X;E):

‖u‖H1(X;E) &

N0∑

i=1

‖ψ−1
i · (ρiu) ◦ ϕ−1

i ‖H1(Rn;Cm)

‖u‖
H

1
2 (∂M ;E|∂M )

.

N0∑

i=1

‖ψ−1
i · (ρiu) ◦ ϕ−1‖

H
1
2 (Rn−1;Cm)

Therefore, to prove T1 well-defined and continuous, it suffices to prove that ‖v|Rn−1‖
H

1
2 (Rn−1)

.

‖v‖H1(Rn) for v ∈ C∞
0 (Rn); we do this as follows.

Let us estimate the H
1
2 norm of v|Rn−1 – if we write the first n− 1 coordinates in Rn−1 as

x′, by the Fourier inversion formula we have:

v(x′, 0) = T1(v)(x
′) =

1

2π

∫

Rn

eix
′·ξ′ v̂(ξ)dξ =

1

2π

∫

Rn−1

(∫

R
v̂(ξ′, ξn)dξn

)
eix

′·ξ′dξ′

Let s = 1. For a function f in L2(Rn−1), define f̃ to be its Fourier transform. By the above and

the inverse Fourier transform, we have:

T̃ v(ξ′) =

∫

R
v̂(ξ′, ξn)dξn =

∫

R
(1 + |ξ|2)− s

2 (1 + |ξ|2) s
2 v̂(ξ′, ξn)dξn

and so by Cauchy-Schwarz:

|T̃ v(ξ′)|2 ≤
∫

R
(1 + |ξ|2)−sdξn

∫

R
(1 + |ξ|2)s|v̂|2dξn (A.1)

Use the substitution ξn = t(1 + |ξ|2) to get:

Ms(ξ
′) =

∫

R
(1 + |ξ|2)−sdξn =

∫

R

dξn
(1 + |ξn|2 + |ξ′|2)s

=
1

(1 + |ξ′|2)s− 1
2

∫

R

dt

(1 + t2)s

1More generally, there is such a map from Hs to Hs− 1

2 for s > 1
2
with all the other properties.

2More precisely, there is a continuous right inverse E : H
1

2 (∂M ;E|∂M ) → H1(M), which is the extension operator.
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and the last integral converges since s > 1
2 . By integrating (A.1), we get:

‖v|Rn−1‖
Hs− 1

2 (Rn−1)
≤ Cs‖v‖Hs(Rn)

for some constant Cs, which is what we wanted to prove. By density of C∞ sections we get the

wanted inequality, i.e. ‖T1u‖
Hs− 1

2 (∂M ;E|∂M )
≤ C‖u‖Hs(M,E) for a constant C not depending on

u and a unique bounded extension.

For surjectivity of T we omit the proof, as it is slightly more involved and refer the reader

to Lemma 7.41 in [1], where it is proved using interpolation theory.

We follow the proof of Theorem 2 on page 273 of [30] to prove that kerT = H1
0 (M ;E),

by taking the usual partition of unity and going to charts we reduce the problem to spaces on

Hn = {xn > 0} and suppose u ∈ H1(Hn) with compact support and Tu = 0. Approximate u in

H1 by a sequence ui of smooth functions with compact support in Hn. Then

|um(x′, xn)| ≤ |um(x′, 0)|+
∫ xn

0

∣∣∂um
∂xn

∣∣dt

for xn ≥ 0 and so by squaring, integrating, using Cauchy-Schwarz and taking m→∞ we get:
∫

Rn−1

|u(x′, xn)|2dx′ ≤ Cxn
∫ xn

0

∫

Rn−1

|Du|2dx′dt (A.2)

Now by introducing a function ζ ∈ C∞
0 (R) with ζ|[0,1] = 1 and ζm(t) = ζ(mt), we define

ωm := u(x)(1 − ζm); by estimating and using (A.2) we may prove that Dωi → Du in L2(Hn)

and so ωi → u in H1(Hn). Therefore u ∈ H1
0 (H

n), as ωi ∈ C∞
0 (Hn). �

Remark A.5. Note that now the Dirichlet problem (2.2) can be invariantly defined using

f in the intrinsic boundary Sobolev space H
1
2 (∂M ;E|∂M ) – however, by Proposition A.4 these

two set-ups are equivalent.

A.2. The space of smooth curves and an extension lemma

We need the metric space of smooth curves in the proof of our main theorem – here are some

properties:

Remark A.6. We are using the standard metric on the space C∞([0, 1];R) induced by the

seminorms ‖f‖k = supt∈[0,1]
∣∣dkf
dtk

∣∣. Then a choice of the metric on this space is:

d(f, g) =
∞∑

k=0

2−k ‖f − g‖k
1 + ‖f − g‖k

and it is a standard fact that this space is a Fréchet space with the same topology as the

weak topology given by the seminorms. Furthermore, this also induces a Fréchet metric to the

space C∞([0, 1];Rm) = ⊕m
i=1C

∞([0, 1];R) for all m ∈ N. Moreover, we may consider the space

C∞([0, 1];M) for any compact Riemannian manifold (M, g) by isometrically embedding M into

a Euclidean space RN for some N , as a closed subspace of C∞([0, 1],RN ).

Now we prove the following lemma for the continuity of h in the interior and on the boundary

of the manifold.

Lemma A.7. Let Ω ⊂ Rn be a domain and E ⊂ Ω a closed subset. Assume also that for

any two points x, y ∈ Ω \ E and any smooth path γ in Ω between x and y, there exist smooth

paths γi from x to y, lying in Ω \ E, for i = 1, 2, . . . , that converge to γ in the metric space

C∞([0, 1];Rn). Let f : Ω \E → C be a smooth function, such that ∂αf extend continuously to Ω

for all multi-indices α. Then there exists a unique smooth extension f̃ : Ω→ C with f̃ |Ω\E = f .
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Proof. This is a local claim, so we will consider an extension near a point x ∈ E. We will

prove that the continuous extension f̃ of f to Ω is differentiable with the derivative given by

the continuous extension h of df to Ω. By inductively repeating the argument for all ∂αf for

multi-indices α, it clearly suffices to prove this.

Consider the point y = x+ δe1, where δ > 0 is small enough so that the straight line path γ

between x and y lies in Ω. Since Ω \ E is dense in Ω, we may choose points x′, y′ ∈ Ω \ E that

are close to x, y, respectively. Consider the path γ′ obtained by smoothing out the straight line

path from x′ to x, γ and the straight line path from y to y′. By the hypothesis, there exists a

sequence of paths γn with endpoints at x′ and y′, lying entirely in Ω \ E that converge to γ′ in

the path metric.

We will consider the integrals along the curves γn: after possibly reparametrising, we may

assume that γn are parametrised by arc-length – we can always do this for n sufficiently large,

as γ has a nowhere zero derivative. Therefore, we may integrate h(γ̇n) to get that, by the

Fundamental Theorem of Calculus

f(y′)− f(x′) =
∫

γn

d(f ◦ γn(t)) =
∫

γn

h(γ̇n)

Here, we think of h as given by the vector of partial derivatives of f . By uniform convergence

of the curves, we immediately get that

f(y′)− f(x′) =
∫

γn

h(γ̇n)→
∫

γ′

h(γ̇′)

and therefore, if we take x′ → x and y′ → y (we can do this as Ω \ E is dense in Ω), we get:

f̃(x+ δe1)− f̃(x)
δ

=
1

δ

∫ δ

0
hx+te1(e1)dt→ hx(e1)

as δ → 0. Therefore, the partial derivative in the e1 direction exists and similarly, all other

partials exist and are equal to the components of h. This finishes the proof. �

Remark A.8. If we are given a smooth function f in the interior of a domain Ω ⊂ Rn with

smooth boundary, such that all derivatives ∂αf extend continuously to the boundary, it is well

known that there exists a smooth extension f̃ to Rn, such that f̃ |Ω = f . This remark, together

with the above lemma, are used in the proof of the smooth extension of h over the singular set

in Theorem G.

Finally, we would like to recall the well-posedness conditions under which the solution opera-

tor to a generalised heat equation is smoothing. One set of such conditions is given by (1.5)-(1.7)

on page 134 in Treves [80] – we state them here for completeness. Let X be a manifold of dimen-

sion n and t a variable in the real line R; we will consider vector functions with values in the finite

dimensional space H = Cm. Let A(t) be a pseudodifferential operator of order k with values in

L(H) = Cm×m depending smoothly on t ∈ [0, T ); this means that in a local chart Ω ⊂ X we

have the symbol of A(t) modulo S−∞ being a smooth function aΩ(x, t, ξ) : [0, T )→ Sk(Ω;L(H)).

We consider the following equation in X × [0, T ), where U valued in H:

dU

dt
−A(t) ◦ U ≡ 0 modulo S−∞

The set of conditions for this equation to be well-posed is the following:

Condition A.9 (Well-posedness of the heat equation). For every local chart Ω ⊂ X, there

is a symbol a(x, t, ξ) depending smoothly on t ∈ [0, T ) and defining a pseudodifferential operator

AΩ(t) congruent to A(t) modulo regularising operators in Ω, such that for every compact K ⊂
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Ω × [0, T ) there is a compact subset K ′ of the open half-plane C− = {z ∈ C | Re(z) < 0} such

that

z × Id− a(x, t, ξ)

(1 + |ξ|2)m
2

: H → H (A.3)

is a bijection for all (x, t) ∈ K, ξ ∈ Rn and z ∈ C \K ′.

One remark is in place after this condition:

Remark A.10. In fact, the symbol of the Laplace operator in the ordinary heat equation does

not immediately satisfy Condition A.9 for a well-posed (generalised) heat equation – if one plugs

−|ξ|2 (m = 1) into (A.3), we have that the zero set spreads such that we have Re(z) ∈ (−1, 0)
and Im(z) = 0, which is certainly not contained in a compact subset of C− = {Re(z) < 0}; the
trick is to add a factor of e−|ξ|2 which does not change the class of the symbol modulo S−∞, as

we will see in the proof of the Lemma below.

Using the idea in the above remark, we prove that the operator we use in Proposition 3.3

satisfies Condition A.9:

Lemma A.11. The Cm×m-valued pseudodifferential operator A = B − E × Id (defined in

Lemma 3.2) satisfies Condition A.9.

Proof. Denote by a1 = −√q2 = −
√∑

α,β g
αβξαξβ the principal symbol of A (E has degree

zero). If K ⊂ [0, T ]× Rn−1 compact, then there exist positive C1, C2 and c such that

c|ξ| ≤ |a1(x, t, ξ)| ≤ C1(1 + |ξ|2)
1
2

|a0(x, t, ξ)| ≤ C2

for all (x, t) ∈ K and ξ ∈ Rn−1, by definition of symbols and the fact that gαβ is positive definite.

Thus we can rewrite:

z × Id− −
√
q2 × Id+ a0

(1 + |ξ|2) 1
2

=
(
z +

√
q2

(1 + |ξ|2) 1
2

)
× Id− a0

(1 + |ξ|2) 1
2

(A.4)

and if this expression is singular, we ought to have

|a0|2
1 + |ξ|2 ≥ m

2
∣∣∣z +

√
q2

(1 + |ξ|2) 1
2

∣∣∣
2
= m2|s|2 +m2

(
r +

√
q2

(1 + |ξ|2) 1
2

)2
(A.5)

where z = r+ is. If we had |ξ| large enough and r ≥ −ǫ for some small ǫ > 0, the left hand side

of (A.5) would be small and the right hand side of it would be bigger than s2 + (r + c
2)

2 (up to

a constant). Therefore for |ξ| ≥ K for some K, (A.4) will be non-singular for r ≥ −ǫ.
Notice that in the condition we have the freedom of adding a smoothing factor – this will take

care of the singular behaviour for |ξ| in a compact set. We will add a factor of Ce−|ξ|2×Id ∈ S−∞

for some C > 0 to remedy this. First of all, notice that the above argument remains the same

with the same |ξ|, if we consider the symbol
√
q2 × Id+ a0 + Ce−|ξ|2 × Id.

Furthermore, we have the left hand side of (A.5) bounded for all ξ uniformly, whereas the

right hand side is bigger (up to a constant) than (Ce−|ξ|2 − ǫ)2 for r ≥ −ǫ, large enough C and

|ξ| ≤ K. Clearly this inequality fails to hold for large C and this finishes the proof. �
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