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Abstract

We show that the Dirichlet to Neumann map for the equation
∇ · σ∇u = 0 in a two dimensional domain uniquely determines the
bounded measurable conductivity σ. This gives a positive answer to
a question of A. P. Calderón from 1980. Earlier the result has been
shown only for conductivities that are sufficiently smooth. In higher
dimensions the problem remains open.
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1 Introduction and outline of the method

Suppose that Ω ⊂ Rn is a bounded domain with connected complement and
σ : Ω → (0,∞) is measurable and bounded away from zero and infinity.
Given the boundary values φ ∈ H1/2(∂Ω) let u ∈ H1(Ω) be the unique
solution to

∇ · σ∇u = 0 in Ω,(1.1)

u
∣∣
∂Ω

= φ ∈ H1/2(∂Ω).(1.2)

This so-called conductivity equation describes the behavior of the electric
potential in a conductive body.

In 1980 A. P. Calderón [11] posed the problem whether one can recover
the conductivity σ from the boundary measurements, i.e. from the Dirichlet
to Neumann map

Λσ : φ 7→ σ
∂u

∂ν

∣∣∣
∂Ω
.

Here ν is the unit outer normal to the boundary and the derivative σ∂u/∂ν
exists as an element of H−1/2(∂Ω), defined by

(1.3) 〈σ∂u
∂ν
, ψ〉 =

∫
Ω

σ∇u · ∇ψ dm,

where ψ ∈ H1(Ω) and dm denotes the Lebesgue measure.
The aim of this paper is to give a positive answer to Calderón’s question

in dimension two. More precisely, we prove

Theorem 1 Let Ω ⊂ R2 be a bounded simply connected domain and σi ∈
L∞(Ω), i = 1, 2. Suppose that there is a constant c > 0 such that c−1 ≤ σi ≤
c. If

Λσ1 = Λσ2

then σ1 = σ2.

Note, in particular, that no regularity is required for the boundary. Our
approach to Theorem 1 yields, in principle, also a method to construct σ
from the Dirichlet to Neumann operator Λσ. For this see Section 8. The case
of an anisotropic conductivity has been fully analyzed in the follow up paper
with Lassas [6].

Calderón faced the above problem while working as an engineer in Ar-
gentina in 1950’s. He was able to show that the linearized problem at con-
stant conductivities has a unique solution. Decades later Alberto Grünbaum
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convinced Calderón to publish his result [11] . The problem rises naturally
in geophysical prospecting. Indeed, the Slumberger – Doll company was
founded to find oil by using electromagnetic methods.

In medical imaging Calderón’s problem is known as Electrical Impedance
Tomography. It has been proposed as a valuable diagnostic tool especially
for detecting pulmonary emboli [12]. One may find a review for medical ap-
plications in [13]; for statistical methods in electrical impedance tomography
see [17].

That Λσ uniquely determines σ was established in dimension three and
higher for smooth conductivities by J. Sylvester and G. Uhlmann [30] in
1987. In dimension two A. Nachman [22] produced in 1995 a uniqueness
result for conductivities with two derivatives. Earlier, the problem was solved
for piecewise analytic conductivities by Kohn and Vogelius [19], [20] and the
generic uniqueness was established by Sun and Uhlmann [29].

The regularity assumptions have since been relaxed by several authors (cf.
[23], [24]) but the original problem of Calderón has still remained unsolved.
In dimensions three and higher the uniqueness is known for conductivities
in W 3/2,∞(Ω), see [26], and in two dimensions the best result so far was
σ ∈ W 1,p(Ω), p > 2, [10].

The original approach in [30] and [22] was to reduce the conductivity
equation (1.1) to the Schrödinger equation by substituting v = σ1/2u. Indeed,
after such a substitution v satisfies

∆v − qv = 0

where q = σ−1/2∆σ1/2. This explains why in this method one needs two
derivatives. For the numerical implementation of [22] see [27].

Following the ideas of Beals and Coifman [8], Brown and Uhlmann [10]
found a first order elliptic system equivalent to (1.1). Indeed, by denoting(

v
w

)
= σ1/2

(
∂u
∂̄u

)
one obtains the system

D

(
v
w

)
= Q

(
v
w

)
,

where

D =

(
∂̄ 0
0 ∂

)
, Q =

(
0 q
q̄ 0

)
and q = −1

2
∂ log σ. This allowed Brown and Uhlmann to work with con-

ductivities with only one derivative. Note however, that the assumption
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σ ∈ W 1,p(Ω), p > 2, necessary in [10] implies that σ is Hölder continuous.
From the viewpoint of applications this is still not satisfactory. Our starting
point is to replace (1.1) with an elliptic equation that does not require any
differentiability of σ.

We will base our argument to the fact that if u ∈ H1(Ω) is a real solution
of (1.1) then there exists a real function v ∈ H1(Ω), called the σ-harmonic
conjugate of u, such that f = u+ iv satisfies the R-linear Beltrami equation

(1.4) ∂f = µ∂f,

where µ = (1− σ)/(1 + σ). In particular, note that µ is real valued. The
assumptions for σ imply that ‖µ‖L∞ ≤ κ < 1, and the symbol κ will retain
this role throughout the paper.

The structure of the paper is the following:
Since the σ-harmonic conjugate is unique up to a constant we can define

the µ-Hilbert transform Hµ : H1/2(∂Ω) → H1/2(∂Ω) by

Hµ : u
∣∣
∂Ω
7→ v

∣∣
∂Ω
.

We show in Section 2 that the Dirichlet to Neumann map Λσ uniquely de-
termines Hµ and vice versa. Theorem 1 now implies the surprising fact that
Hµ uniquely determines µ in equation (1.4) in the whole domain Ω.

Recall that a function f ∈ H1
loc(Ω) satisfying (1.4) is called a quasireqular

mapping; if it is also a homeomorphism then it is called quasiconformal.
These have a well established theory, cf. [2], [5], [14], [21], that we will
employ at several points in the paper. The H1

loc -solutions f to (1.4) are
automatically continuous and admit a factorization f = ψ ◦ H, where ψ
is C-analytic and H is a quasiconformal homeomorphism. Solutions with
less regularity may not share these properties [14]. The basic tools to deal
with the Beltrami equation are two linear operators, the Cauchy transform

P = ∂
−1

and the Beurling transform S = ∂∂−1. In Section 3 we recall the
basic properties of these operators with some useful preliminary results.

It is not difficult to see, c.f. Section 2, that we can assume Ω = D, the
unit disk of C, and that outside Ω we can set σ ≡ 1, i.e., µ ≡ 0.

In Section 4 we establish the existence of the geometric optics solutions
f = fµ of (1.4) that have the form

(1.5) fµ(z, k) = eikzMµ(z, k),

where

(1.6) Mµ(z, k) = 1 +O
(

1

z

)
as |z| → ∞.
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As in the smooth case these solutions obey a ∂-equation also in the k variable.
However, their asymptotics as |k| → ∞ are now more subtle and considerably
more difficult to handle.

It turns out that it is instructive to consider the conductivities σ and
σ−1, or equivalently the Beltrami coefficients µ and −µ, simultaneously. By
defining

(1.7) h+ =
1

2
(fµ + f−µ), h− =

i

2
(fµ − f−µ)

we show in Section 5 that with respect to the variable k, h+ and h− satisfy
the equations

(1.8) ∂kh+ = τµ h−, ∂kh− = τµ h+

where the scattering coefficient τµ = τµ(k) is defined by

(1.9) τµ(k) =
i

4π

∫
∂z

(
Mµ −M−µ

)
dz ∧ dz̄.

The remarkable fact in the equations (1.8) is that the coefficient τµ(k) does
not depend on the space variable z; the idea to use such a phenomenon is due
to Beals and Coifman [8] and in connection with the Dirichlet to Neumann
operator to Nachman [22]. In Section 6 we show that Λσ uniquely determines
the scattering coefficient τµ(k) as well as the geometric optics solutions fµ

and f−µ outside D.
The crucial problem in the proof of Theorem 1 is the behavior of the

function Mµ(z, k) − 1 = e−ikzfµ(z, k) − 1 with respect to the k-variable. In
the case of [22] and [10] the behaviour is roughly like |k|−1. In the L∞-case
we cannot expect such a good behavior. Instead, we can show that Mµ(z, k)
grows at most subexponentially in k. This is the key tool to our argument
and it takes a considerable effort to prove this. Precisely, we show in Section
7 that

fµ(z, k) = exp(ikϕ(z, k))

where ϕ is a quasiconformal homeomorphism in the z-variable and satisfies
the nonlinear Beltrami equation

(1.10) ∂zϕ = −k
k
µ(z)e−k(ϕ(z)) ∂zϕ

with the boundary condition

(1.11) ϕ(z) = z +O
(

1

z

)
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at infinity. Here the unimodular function ek is given by

(1.12) ek(z) = ei(kz+kz).

The main result in Section 7 is that the unique solution of (1.10) and (1.11)
satisfies

(1.13) ϕ(z, k)− z → 0 as |k| → ∞,

uniformly in z.
Section 8 is devoted to the proof of Theorem 1. Since

µ = ∂fµ

/
∂fµ

and ∂f for a non-constant quasiregular map f can vanish only in a set of
Lebesgue measure zero, we are reduced to determine the function fµ in the
interior of D. As said before, we already know these functions outside of
D. To solve this problem we introduce the so-called transport matrix that
transforms the solutions outside D to solutions inside. We show that this
matrix is uniquely determined by Λσ. At this point one may work either with
equation (1.1) or equation (1.4). We chose to go back to the conductivity
equation since it slightly simplifies the formulas. More precisely, we set

(1.14) u1 = h+ − ih− and u2 = i(h+ + ih−).

Then u1 and u2 are complex solutions of the conductivity equations

(1.15) ∇ · σ∇u1 = 0 and ∇ · 1

σ
∇u2 = 0,

respectively, and of the ∂k -equation

(1.16)
∂

∂k
uj = −i τµ(k)uj, j = 1, 2,

with the asymptotics u1 = eikz(1 + O(1/z)) and u2 = eikz(i + O(1/z)) in
the z-variable. Uniqueness of (1.15) with these asymptotics gives that in the
smooth case u1 is exactly the exponentially growing solution of [22].

We then choose a point z0 ∈ C, |z0| > 1. It is possible to write for each
z, k ∈ C

u1(z, k) = a1u1(z0, k) + a2u2(z0, k)

u2(z, k) = b1u1(z0, k) + b2u2(z0, k)
(1.17)
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where aj = aj(z, z0; k) and bj = bj(z, z0; k) are real valued. The transport
matrix T σ

z,z0
(k) is now defined by

(1.18) T σ
z,z0

(k) =

(
a1 a2

b1 b2

)
.

It is an invertible 2 × 2 real matrix depending on z, z0 and k. The proof of
Theorem 1 is thus reduced to

Theorem 2 Assume that Λσ = Λσ̃ for two L∞-conductivities σ and σ̃. Then
for all z, k ∈ C and |z0| > 1 the corresponding transport matrices T σ

z,z0
(k)

and T σ̃
z,z0

(k) are equal.

The idea behind the proof is to use the Beals-Coifman method in an
efficient manner and to show that the functions

(1.19) α(k) = a1(k) + ia2(k) and β(k) = b1(k) + ib2(k)

both satisfy with respect to the parameter k the Beltrami equation

(1.20) ∂kα = νz0(k)∂kα.

Here the coefficient

(1.21) νz0(k) = i
h−(z0, k)

h+(z0, k)

is determined by the data as proved in Section 6. Moreover it satisfies

|νz0(k)| ≤ q < 1,

where the number q is independent of k (or z). These facts and the subex-
ponential growth of the solutions serve as the key elements for the proof of
Theorem 2.

2 Beltrami equation and Hilbert transform

In a general domain Ω we identify H1/2(∂Ω) = H1(Ω)/H1
0 (Ω). When ∂Ω has

enough regularity, trace theorems and extension theorems [31] readily yield
the standard interpretation of H1/2(∂Ω). The Dirichlet condition (1.2) is
consequently defined in the Sobolev sense, requiring that u− φ ∈ H1

0 (Ω) for
the element φ ∈ H1/2(∂Ω). Furthermore, H−1/2(∂Ω) = H1/2(∂Ω)∗ and via
(1.3) it is then clear that Λσ becomes a well-defined and bounded operator
from H1/2(∂Ω) to H−1/2(∂Ω).
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In this setup Theorem 1 quickly reduces to the case where the domain Ω
is the unit disk. In fact, let Ω be a simply connected domain with Ω ⊂ D and
let σ and σ̃ be two L∞-conductivities on Ω with Λσ = Λeσ. Continue both
conductivities as the constant 1 outside Ω to obtain new L∞-conductivities σ0

and σ̃0. Given φ ∈ H1/2(∂D), let u0 ∈ H1(D) be the solution to the Dirichlet
problem ∇ · σ0∇u0 = 0 in D, u0|∂D = φ. Assume also that ũ ∈ H1(Ω) is the
solution to

∇ · σ̃∇ũ = 0 in Ω, ũ− u0 ∈ H1
0 (Ω).

Then ũ0 = ũχΩ + u0χD\Ω ∈ H1(D) since zero extensions of H1
0 (Ω) functions

remain in H1. Moreover, an application of the definition (1.3) with the
condition Λσ = Λeσ yields that ũ0 satisfies

∇ · σ̃0∇ũ0 = 0

in the weak sense. Since in D \ Ω we have u0 ≡ ũ0 and σ0 ≡ σ̃0, we obtain
Λeσ0φ = Λσ0φ, and this holds for all φ ∈ H1/2(∂D). Thus if Theorem 1 holds
for D we get σ̃0 = σ0 and especially that σ̃ = σ.

From this on we assume that Ω = D, the unit disc in C.
Let us then consider the complex analytic interpretation of (1.1). We will

use the notations ∂ = 1
2
(∂x − i∂y) and ∂ = 1

2
(∂x + i∂y); when clarity requires

we may write ∂ = ∂z or ∂ = ∂z. For derivatives with respect to the parameter
k we always use the notations ∂k and ∂k.

We start with a simple lemma

Lemma 2.1 Assume u ∈ H1(D) is real valued and satisfies the conductivity
equation (1.1). Then there exists a function v ∈ H1(D), unique up to a
constant, such that f = u+ iv satisfies the R-linear Beltrami equation

(2.1) ∂f = µ∂f,

where µ = (1− σ)/(1 + σ).
Conversely, if f ∈ H1(D) satisfies (2.1) with a R-valued µ, then u = Re f

and v = Im f satisfy

(2.2) ∇ · σ∇u = 0 and ∇ · 1

σ
∇v = 0,

respectively, where σ = (1− µ)/(1 + µ).

Proof: Denote by w the vectorfield

w = (−σ∂2u, σ∂1u)
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where ∂1 = ∂/∂x and ∂2 = ∂/∂y for z = x + iy ∈ C. Then by (1.1) the
integrability condition ∂2w1 = ∂1w2 holds for the distributional derivatives.
Therefore there exists v ∈ H1(D), unique up to a constant, such that

∂1v = −σ∂2u(2.3)

∂2v = σ∂1u.(2.4)

It is a simple calculation to see that this is equivalent to (2.1). �

We want to stress that every solution of (2.1) is also a solution of the
standard C-linear Beltrami equation

(2.5) ∂f = µ̃∂f

but with a different, C-valued µ̃ having though the same modulus as the old
one. However, the uniqueness properties of (2.1) and (2.5) are quite different
(cf. [32], [5]). Note also that the conditions for σ given in Theorem 1 imply
the existence of a constant 0 ≤ κ < 1 such that

|µ(z)| ≤ κ

holds for almost every z ∈ C.
Since the function v in Lemma 2.1 is defined only up to a constant we

will normalize it by assuming

(2.6)

∫
∂D

v ds = 0.

This way we obtain a unique map Hµ : H1/2(∂D) → H1/2(∂D) by setting

(2.7) Hµ : u
∣∣
∂D 7→ v

∣∣
∂D.

The function v satisfying (2.3), (2.4) and (2.6) is called the σ-harmonic con-
jugate of u and Hµ the Hilbert transform corresponding to equation (2.1).

Since v is the real part of the function g = −if satisfying ∂g = −µ∂g, we
have

(2.8) Hµ ◦ H−µu = H−µ ◦ Hµu = −u+ �
∫
∂D

u ds = −u+ L(u)

where

L(u) = �
∫
∂D

u ds =
1

2π

∫
∂D

u ds.
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is the average operator. In particular, H−µ = L− (Hµ + L)−1.
So far we have only defined Hµ(u) for real-valued u. By setting

Hµ(iu) = iH−µ(u)

we have extended the definition of Hµ(g) R-linearly to all C-valued g ∈
H1/2(∂D). We also define Qµ : H1/2(∂D) → H1/2(∂D) by

(2.9) Qµ =
1

2
(I − iHµ) .

Then g 7→ Qµ(g)− 1
2
�
∫

∂D g ds is a projection in H1/2(∂D). In fact

(2.10) Q2
µ(g) = Qµ(g)− 1

4
�
∫
∂D

g ds.

The proof of the following lemma is straight forward.

Lemma 2.2 If g ∈ H1/2(∂D), the following conditions are equivalent,

a) g = f
∣∣
∂D, where f ∈ H1(D) and satisfies (2.1).

b) Qµ(g) is a constant.

We close this section by

Proposition 2.3 The Dirichlet to Neumann map Λσ uniquely determines
Hµ, H−µ and Λσ−1 .

Proof: Choose the counter clock-wise orientation for ∂D and denote by ∂T

the tangential (distributional) derivative on ∂D corresponding to this orien-
tation. We will show for real valued u that

(2.11) ∂THµ(u) = Λσ(u)

holds in the weak sense. This will be enough as Hµ uniquely determines H−µ

by (2.8). Since −µ = (1−σ−1)/(1+σ−1) we also have Λσ−1(u) = ∂TH−µ(u).
Note that the right hand side of (2.11) is complex linear but the left hand
side is not.

By the definition of Λσ we have∫
∂D

ϕΛσu ds =

∫
D

∇ϕ · σ∇u dm, ϕ ∈ C∞(D).
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Thus, by (2.3), (2.4) and integration by parts, we get∫
∂D

ϕΛσu =

∫
D

(∂1ϕ∂2v − ∂2ϕ∂1v) dm

= −
∫
∂D

v∂Tϕ ds

and (2.11) follows. �

3 Beltrami operators

The Beltrami differential equation (1.4) and its solutions are effectively gov-
erned and controlled by two basic linear operators, the Cauchy transform and
the Beurling transform. Any analysis of (1.4) requires basic facts of these
operators. We briefly recall those in this section.

The Cauchy transform

(3.1) Pg(z) = − 1

π

∫
C

g(ω)

ω − z
dm(ω)

acts as the inverse operator to ∂; P∂g = ∂Pg = g for g ∈ C∞
0 (C). We

recall some mapping properties of P in appropriate Lebesgue, Sobolev and
Lipschitz spaces. Below we denote

Lp(Ω) =
{
g ∈ Lp(C)

∣∣∣ g∣∣C\Ω ≡ 0
}
.

Proposition 3.1 Let Ω ⊂ C be a bounded domain and let 1 < q < 2 and
2 < p <∞. Then

(i) P : Lp(C) → Lipα(C), where α = 1− 2/p;

(ii) P : Lp(Ω) → W 1,p(C) is bounded;

(iii) P : Lp(Ω) → Lp(C) is compact;

(iv) P : Lp(C) ∩ Lq(C) → C0(C) is bounded, where C0 is the closure of C∞
0

in L∞.

For proof of Proposition 3.1 we refer to [32], but see also [22].
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The Beurling transform is formally determined by Sg = ∂Pg and more
precisely as a principal value integral

(3.2) Sg(z) = − 1

π

∫
C

g(ω)

(ω − z)2
dm(ω).

It is a Calderón-Zygmund operator with a holomorphic kernel. Since S is a
Fourier multiplier operator with symbol

(3.3) m(ξ) =
ξ

ξ̄
, ξ = ξ1 + iξ2

we see, in particular, that S transforms the ∂-derivatives to ∂-derivatives,

(3.4) S(∂ϕ) = ∂ϕ for ϕ ∈ C∞
0 (C).

Moreover, we have
S = R2

1 + 2iR1R2 −R2
2,

where Ri’s denote the Riesz-transforms. Also, it follows (cf. [28]) that

(3.5) S : Lp(C) → Lp(C), 1 < p <∞,

and limp→2 ‖S‖Lp→Lp = ‖S‖L2→L2 = 1.
It is because of (3.4) that the mapping properties of the Beurling trans-

form control the solutions to the Beltrami equation (1.4). For instance, if
supp(µ) is compact as it is in our case, finding a solution to (1.4) with asymp-
totics

(3.6) f(z) = λz +O
(

1

z

)
, |z| → ∞

is equivalent to solving
g = µSg + λµ

and setting
f(z) = λz + Pg(z),

where P is the Cauchy transform. Therefore, if we denote by S the R-linear
operator S(g) = S(g), we need to understand the mapping properties of P
and the invertibility of the operator I−µS in appropriate Lp-spaces in order
to determine to which Lp-class the gradient of the solution to (1.4) belongs.

Recently, Astala, Iwaniec and Saksman established through the funda-
mental theory of quasiconformal mappings the precise Lp-invertibility range
of these operators.
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Theorem 3.2 Let µ1 and µ2 be two C-valued measurable functions such
that

(3.7) |µ1(z)|+ |µ2(z)| ≤ κ

holds for almost every z ∈ C with a constant 0 ≤ κ < 1. Suppose that
1 + κ < p < 1 + 1/κ. Then the Beltrami operator

(3.8) B = I − µ1S − µ2S

is bounded and invertible in Lp(C), with norms of B and B−1 bounded by
constants depending only on κ and p.

Moreover, the bound in p is sharp; for each p ≤ 1 + κ and for each
p ≥ 1 + 1/κ there are µ1 and µ2 as above such that B is not invertible in
Lp(C).

For the proof see [4]. Since ‖S‖L2→L2 = 1, all operators in (3.8) are
invertible in L2(C) as long as κ < 1. Thus Theorem 3.2 determines the
interval around the exponent p = 2 where the invertibility remains true.
Note that it is a famous open problem [16] whether it holds

‖S‖Lp→Lp = max

{
p− 1,

1

p− 1

}
.

If this turns out to be the case, then

‖µS‖Lp→Lp ≤ ‖µ‖L∞‖S‖Lp→Lp < 1

whenever p < 1 + 1/‖µ‖L∞ . This would then give an alternative proof to
Theorem 3.2.

Theorem 3.2 has also nonlinear counterparts [4] yielding solutions to non-
linear uniformly elliptic PDE’s; here see also [15], [5]. On the other hand,
in two dimensions the uniqueness of solutions to general nonlinear elliptic
systems is typically reduced to the study of the pseudoanalytic functions of
Bers (cf [9], [32]). In the sequel we will need the following version of this
principle.

Proposition 3.3 Let F ∈ W 1,p
loc (C) and γ ∈ Lp

loc(C) for some p > 2. Suppose
that for some constant 0 ≤ κ < 1,

(3.9)
∣∣∂F (z)

∣∣ ≤ κ |∂F (z)|+ γ(z) |F (z)|

holds for almost every z ∈ C. Then we have
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a) If F (z) → 0 as |z| → ∞ and γ has a compact support then

F (z) ≡ 0.

b) If for large z, F (z) = λz + ε(z)z where the constant λ 6= 0 and ε(z) → 0
as |z| → ∞, then F (z) = 0 exactly in one point z = z0 ∈ C.

Proof: The result a) is essentially from [32]. For the convenience of the
reader we will outline a proof for it after first proving b):

The continuity of F (z) = λz + ε(z)z and an application of the degree
theory [33] or an appropriate homotopy argument show that F is surjective
and consequently there exists at least one point z0 ∈ C such that F (z0) = 0.

To show that F can not have more zeros, let z1 ∈ C and choose a large
disk B = B(0, R) containing both z1 and z0. If R is so large that ε(z) < λ/2
for |z| = R, then F

∣∣
{|z|=R} is homotopic to identity relative to C \ {0}. Next

we express (3.9) in the form

(3.10) ∂F = ν(z)∂F + A(z)F

where |ν(z)| ≤ κ < 1 and |A(z)| ≤ γ(z) for almost every z ∈ C. Now
AχB ∈ Lr(C) for all 1 ≤ r ≤ p′ = min{p, 1 + 1/κ} and we obtain from
Theorem 3.2 that (I − νS)−1(AχB) ∈ Lr for all 1 + κ < r < p′.

Next we define, cf. [32], η = P
(
(I − νS)−1(AχB)

)
. By Proposition 3.1,

η ∈ C0(C) and clearly we have

(3.11) ∂η − ν∂η = A(z), z ∈ B.

By a differentation we see that the function

(3.12) g = e−ηF

satisfies

(3.13) ∂g − ν∂g = 0, z ∈ B.

Since η ∈ W 1,r(C) by Proposition 3.1, also g ∈ W 1,r
loc (C) and thus g is

quasiregular in B. As such, see e.g. [14] Theorem 1.1.1, g = h ◦ ψ, where
ψ : B → B is a quasiconformal homeomorphism and h holomorphic, both
continuous up to a boundary.

Since η is continuous, (3.12) shows that g
∣∣
|z|=R

is homotopic to identity

relative to C \ {0}, and so is the holomorphic function h
∣∣
{|z|=R}. Therefore,

h has by the principle of the argument ([25], Theorems V.7.1 and VIII.3.5)
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precisely one zero in B = B(0, R). As already h(ψ(z0)) = e−η(z0)F (z0) = 0,
there can be no further zeros for F either. This finishes the proof of b).

For the claim a) the condition F (z) = ε(z)z is too weak to guarantee F ≡
0 in general. But if γ has a compact support we may choose supp γ ⊂ B(0, R)
and thus the function η solves (3.11) for all z ∈ C. Consequently (3.13) holds
in the whole plane and g in (3.11) is quasiregular in C. But since F and η are
bounded, also g is bounded and thus constant by Liouville’s theorem. Now
(3.12) gives

(3.14) F = C1e
η, η ∈ C0(C).

With the assumption F (z) → 0 as |z| → ∞ we then obtain C1 = 0. �

Proposition 3.3 generalizes two classical theorems from complex analysis,
Liouvilles theorem and principle of the argument. Indeed, part b) implies that
F is a homeomorphism. With the condition F (z) = λz + ε(z)z the winding
number of F around origin is one. It is not difficult to find generalizations
for arbitrary winding numbers.

We also have the following useful

Corollary 3.4 Suppose F ∈ W 1,p
loc (C) ∩ L∞(C), p > 2, 0 ≤ κ < 1 and that

γ ∈ Lp(C) has compact support. If∣∣∂F (z)
∣∣ ≤ κ |∂F (z)|+ γ(z) |F (z)| , z ∈ C,

then
F (z) = C1e

η

where C1 is constant and η ∈ C0(C).

Proof: This is a reformulation of (3.14) from above. �

4 Complex geometric optics solutions

In this section we establish the existence of the solution to (1.4) of the form

(4.1) fµ(z, k) = eikzMµ(z, k)

where

(4.2) Mµ(z, k)− 1 = O
(

1

z

)
as |z| → ∞.
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Moreover, we show that

(4.3) Re

(
Mµ(z, k)

M−µ(z, k)

)
> 0, for all z, k ∈ C.

The importance of (4.3) lies e.g. in the fact that

(4.4) νz(k) = −e−k(z)
Mµ(z, k)−M−µ(z, k)

Mµ(z, k) +M−µ(z, k)

appears in Section 8 as the coefficient in a Beltrami equation in the k-variable.
The result (4.3) clearly implies

(4.5) |νz(k)| < 1 for all z, k ∈ C.

We start with

Proposition 4.1 Assume that 2 < p < 1 + 1/κ, that α ∈ L∞(C) with
supp(α) ⊂ D and that |ν(z)| ≤ κχD(z) for almost every z ∈ D. Define the
operator K : Lp(C) → Lp(C) by

Kg = P
(
I − νS

)−1
(αg).

Then K : Lp(C) → W 1,p(C) and I −K is invertible in Lp(C).

Proof: First we note that by Theorem 3.2, I − νS is invertible in Lp and
by Proposition 3.1 (iii) the operator K : Lp(C) → Lp(C) is well defined
and compact. We also have supp

(
I − νS)−1αg

)
⊂ D. Thus, by Fredholm’s

alternative, we need to show that I − K is injective. So suppose that g ∈
Lp(C) satisfies

(4.6) g = P
((
I − νS

)−1
(αg)

)
.

By Proposition 3.1 (ii) g ∈ W 1,p and thus by (4.6)

∂g =
(
I − νS

)−1
(αg)

or equivalently

(4.7) ∂g − ν∂g = αg.

Finally, from (4.7) it follows that g is analytic outside the unit disk. This
together with g ∈ Lp(C) implies

g(z) = O
(

1

z

)
for z →∞.

16



Thus the assumptions of Proposition 3.3 a) are fulfilled and we must have
g ≡ 0. �

It is not difficult to find examples showing that Proposition 4.1 fails for p ≤ 2
and for p ≥ 1 + 1/κ.

We are now ready to establish the existence of the complex geometric
optics solutions to (1.4).

Theorem 4.2 For each k ∈ C and for each 2 < p < 1 + 1/κ the equation
(1.4) admits a unique solution f ∈ W 1,p

loc (C) of the form (1.5) such that the
asymptotic formula (1.6) holds true.

In particular, f(z, 0) ≡ 1.

Proof: If we write

fµ(z, k) = eikzMµ(z, k) = eikz(1 + η(z))

and plug this to (1.4) we obtain

(4.8) ∂η − e−k µ ∂η = α η + α

where e−k is defined in (1.12) and

(4.9) α(z) = −ik e−k(z)µ(z).

Hence

(4.10) ∂η =
(
I − e−kµS

)−1
(αη + α).

If now K is defined as in Proposition 4.1 with ν = e−kµ we get

(4.11) η −Kη = K(χD) ∈ Lp(C).

Since by Proposition 4.1 the operator I − K is invertible in Lp(C), and by
(4.8) η is analytic in C \ D the claims follow by (4.10) and (4.11). �

Next, let fµ(z, k) = eikzMµ(z, k) and f−µ(z, k) = eikzM−µ(z, k) be the
solutions given by Theorem 4.2 corresponding to conductivities σ and σ−1,
respectively.

Proposition 4.3 For all k, z ∈ C we have

(4.12) Re

(
Mµ(z, k)

M−µ(z, k)

)
> 0.

17



Proof: Firstly, note that (1.4) implies for M±µ

(4.13) ∂M±µ ∓ µe−k∂M±µ = ∓ikµe−kM±µ.

Thus we may apply Corollary 3.4 to get

(4.14) M±µ(z) = exp(η±(z)) 6= 0

and consequently Mµ/M−µ is well defined. Secondly, if (4.12) is not true the
continuity of M±µ and the fact limz→∞M±µ(z, k) = 1 imply the existence of
z0 ∈ C such that

Mµ(z0, k) = itM−µ(z0, k)

for some t ∈ R \ {0}. But then g = Mµ − itM−µ satisfies

∂g = µ∂(ekg),

g(z) = 1− it+O
(

1

z

)
, as z →∞.

According to Corollary 3.4 this implies

g(z) = (1− it) exp(η(z)) 6= 0,

contradicting the assumption g(z0) = 0. �

5 ∂k-equations

We will prove in this section the ∂k-equation (1.8) for the complex geometric
optics solutions. We begin by writing (1.4)-(1.6) in the form

(5.1) ∂Mµ = µ∂(ekMµ), Mµ − 1 ∈ W 1,p(C).

By introducing a R-linear operator Lµ,

Lµg = P
(
µ∂(e−kg)

)
we see that (5.1) is equivalent to

(5.2) (I − Lµ)Mµ = 1.

The following refinement of Proposition 4.1 will serve as the main tool in
proving (1.8). Below we will study functions of the form f = constant +
f0, where f0 ∈ W 1,p(C). The corresponding Banach space is denoted by
W 1,p(C)⊕ C.

18



Theorem 5.1 Assume that k ∈ C and µ ∈ L∞comp(C) with ‖µ‖∞ ≤ κ < 1.
Then for 2 < p < 1 + 1/κ the operator

I − Lµ : W 1,p(C)⊕ C → W 1,p(C)⊕ C

is bounded and invertible.

Proof: We write Lµ(g) as

(5.3) Lµ(g) = P
(
µe−k∂g − ikµe−kg

)
Proposition 3.1 (ii) now yields that

(5.4) Lµ : W 1,p(C)⊕ C → W 1,p(C)

is bounded. Thus we need to show that I − Lµ is bijective on W 1,p(C)⊕ C.
To this end assume

(5.5) (I − Lµ)(g + C0) = h+ C1

for g, h ∈ W 1,p(C) and for constants C0, C1. This yields

C1 − C0 = g − h− Lµ(g + C0)

which by (5.4) gives C0 = C1. By differentiating, rearranging and by using
the operator Kµ from Proposition 4.1 with α = −ikµe−k and ν = µe−k we
see that (5.5) is equivalent to

(5.6) g −Kµ(g) = Kµ(C0χD) + P
[
(I − µe−kS)−1∂h

]
.

Since the right hand side belongs to Lp(C) for each h ∈ W 1,p(C), this equation
has a unique solution g ∈ W 1,p(C) by Proposition 4.1. �

As an immediate corollary we get the following important

Corollary 5.2 The operator I − L2
µ is invertible on W 1,p(C)⊕ C.

Proof: Since Lµ = −L−µ we have I − L2
µ = (I − Lµ)(I − L−µ). �

Next, we make use of the differentiability properties of the operator Lµ.
For later purposes it will be better to work with L2

µ which can be written in
the following convenient form

(5.7) L2
µg = P

(
µ∂(∂ + ik)−1µ(∂ + ik)g

)
where the operator (∂ + ik)−1 is defined by

(5.8) (∂ + ik)−1g = e−k∂
−1(ekg), g ∈ Lp(C).

Note that many mapping properties of this operator follow from Proposition
3.1. Moreover, we have
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Lemma 5.3 Let p > 2. Then the operator valued map k 7→ (∂ + ik)−1 is
continuously differentiable in C, in the uniform operator topology: Lp(D) →
W 1,p

loc (C).

Proof: The lemma is a straightforward reformulation of [22], Lemma 2.2,
where slightly different function spaces were used. Note that W 1,p

loc (C) has
the topology given by the seminorms ‖f‖n = ‖f‖W 1,p(B(0,n)), n ∈ N. �

Combining Lemma 5.3 with (5.7) shows that k → L2
µ is a C1- family of

operators L2
µ : W 1,p(C)⊕C → W 1,p(C)⊕C in the uniform operator topology.

If we iterate the equation (5.2) once we get

(5.9) Mµ = 1 + P (µ∂e−k) + L2
µ(Mµ).

Therefore the above lemma shows that k 7→ Mµ(z, k) is a continuously dif-
ferentiable family of functions in W 1,p(C)⊕C, p > 2. In particular, for each
fixed z ∈ C, Mµ(z, k) is continuously differentiable in k. An alternative way
to see this is to note that k 7→ Lµ is smooth in the operator norm topology
of L (W 1,p(C)⊕ C) and then use Theorem 5.1. This gives by (5.2) that for
fixed z the map k 7→Mµ(z, k) is, indeed, C∞-smooth.

Furthermore, by (5.1), with respect to the first variable Mµ(z, k) is com-
plex analytic in C \ D with development

(5.10) Mµ(z, k) = 1 +
∞∑

n=1

bn(k)z−n, for |z| > 1.

We define the scattering amplitude corresponding to Mµ to be

(5.11) tµ(k) = b1(k).

Equation (5.1) implies, as µ is real valued, that

(5.12) tµ(k) =
1

π

∫
D

µ∂(ekMµ) dm.

Beals and Coifman [8] introduced the idea of studying the k-dependence
of operators associated to complex geometric optics solutions. We will use
the Beals-Coifman principle in the following form:

Lemma 5.4 Suppose g ∈ W 1,p(C)⊕ C is fixed. Then

(5.13) ∂k

(
e−k∂

−1µ∂ekg
)

= −itµ(g; k)e−k

where

(5.14) tµ(g; k) =
1

π

∫
C

µ∂(ekg) dm.
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Proof: For f ∈ Lp
comp(C) we have

(e−k∂
−1ekf)(z) = − 1

π

∫
C

ek(ξ − z)

ξ − z
f(ξ) dm(ξ)

Using this representation [22], Lemma 2.2, shows that

(5.15) ∂k(e−k∂
−1ekf)(z) = ∂k

(
(∂ + ik)−1f

)
(z) = −if̂(k)e−k(z)

where

(5.16) f̂(k) =
1

π

∫
C

ek(ξ)f(ξ) dm(ξ).

By rewriting the left hand side of (5.13) in the form ∂k

(
(∂+ ik)−1µ(∂+ ik)g

)
we see that the claim follows from (5.15). �

To get rid of the second term on the right hand side of (5.9) we introduce

F+ =
1

2
(Mµ +M−µ) ,(5.17)

F− =
ie−k

2

(
Mµ −M−µ

)
.(5.18)

In particular, (5.9) gives

(5.19) F+ = 1 + L2
µF+.

From Lemma 5.4 and (5.7) one has ∂kL
2
µ(g) = −itµ(g; k)P (µ∂e−k) for every

g ∈ W 1,p(C)⊕ C. Hence a differentiation of (5.19) yields

(5.20)
(
I − L2

µ

)
(∂kF+) = −iτµ(k)P (µ∂e−k)

where the scattering coefficient τµ(k) is

(5.21) τµ(k) ≡ tµ(F+; k) =
1

2

(
tµ(k)− t−µ(k)

)
.

Note that this is consistent with (1.9).
One way to identify ∂kF+ is by readily observing that the unique solution

to (5.20) has also other realizations. Namely, if one subtracts the equation
(5.9) applied to Mµ from the same equation applied to M−µ, one obtains
after using L2

µ = L2
−µ that

(5.22) (I − L2
µ)(e−kF−) = −iP (µ∂e−k).

Thus by Corollary 5.2, (5.20) and (5.22) we have proven the first part of
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Theorem 5.5 For each fixed z ∈ C, the functions k 7→ F±(z, k) are contin-
uously differentiable with

a) ∂kF+(z, k) = τµ(k)e−k(z)F−(z, k),

b) ∂kF−(z, k) = τµ(k)e−k(z)F+(z, k).

Proof: The differentiability is clear since M±µ(z, k) are continuously dif-
ferentiable in k. Hence we are left proving b). We start by adding and
subtracting (5.1) for Mµ and M−µ to arrive at the equations

F+ = 1− i∂
−1
µ∂F−,(5.23)

F− = ie−k∂
−1µ∂ekF+.(5.24)

By differentiating the second equation with respect to k and by applying
Lemma 5.4 we get

(5.25) ∂kF− = τµ(k)e−k + ie−k∂
−1µ∂(ek∂kF+).

Combining this with part a) we have

(5.26) ∂kF− = τµ(k)e−k(1 + i∂−1µ∂F−).

This together with (5.23) yields b). �

We close this section by returning to the functions

(5.27) h+ =
1

2
(fµ + f−µ) = eikzF+

and

(5.28) h− =
i

2
(fµ − f−µ) = eikzF−.

These expressions with Theorem 5.5 give immediately the identities (1.8).
Note that by Theorem 5.5, k 7→ h±(z, k) is C1 in C, for each fixed z.

6 From Λσ to τ

We next prove that the Dirichlet to Neumann operator Λσ uniquely deter-
mines fµ(z) and f−µ(z) at the points z that lie outside the unit disk D. This
will also show that Λσ determines τµ(k) for all k ∈ C.
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Proposition 6.1 If σ and σ̃ are two conductivities satisfying the assump-
tions of Theorem 1, then if µ and µ̃ are the corresponding Beltrami coeffi-
cients, we have

(6.1) fµ(z) = feµ(z) and f−µ(z) = f−eµ(z)

for all z ∈ C \ D.

Proof: We assume Λσ = Λeσ which by Proposition 2.3 implies that Hµ = Heµ.
Since Λσ by the same proposition determines Λσ−1 it is enough to prove the
first claim of (6.1).

From (2.9) we see firstly that the projectionsQµ = Qeµ and thus by Lemma
2.2

Qµ(f − f̃) = constant

where we have written f = fµ

∣∣
∂D and f̃ = feµ∣∣∂D. By using Lemma 2.2 again

we see that there exists a function G ∈ H1(D) with ∂G = µ∂G in D and

G
∣∣
∂D = f − f̃ .

Define then G outside D by

G(z) = fµ(z)− feµ(z), |z| ≥ 1,

to get a global solution to

(6.2) ∂G(z)− µ(z)∂G(z) = 0, z ∈ C.

Since G is a H1
loc-solution to (6.2), the general smoothness properties of

quasiregular mappings [3] give G ∈ W 1,p
loc (C) for all p < 1 + 1/κ. This

regularity can also readily be seen from Theorem 3.2, since the compactly
supported function h = fµ − feµ −G satisfies

∂h = −(1− µS)−1
(
χD∂feµ − µ∂feµ) .

Finally, from the above we obtain that the function G0, defined by

G0(z) = e−ikzG(z),

belongs to W 1,p(C) and satisfies G0(z) = O(1/z) with

∂G0 − ekµ∂G0 = ikµG0.

By Proposition 3.3 a) the function G0 must hence vanish identically, which
proves (6.1). �
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Corollary 6.2 The operator Λσ uniquely determines tµ, t−µ and τµ.

Proof: The claim follows immediately from Proposition 6.1, (1.5) and from
the definitions (5.11) of the scattering coefficients. �

From the results of Section 5 it follows that the coefficient τµ is continu-
ously differentiable in k and vanishes at the origin. For the global properties
of τµ we apply Schwarz’s lemma.

Proposition 6.3 The complex geometric optics solutions

f±µ(z, k) = eikzM±µ(z, k)

satisfy for |z| > 1 and for all k ∈ C

(6.3)

∣∣∣∣Mµ(z, k)−M−µ(z, k)

Mµ(z, k) +M−µ(z, k)

∣∣∣∣ ≤ 1

|z|
.

Moreover, for the scattering coefficient τµ(k) we have

(6.4) |τµ(k)| ≤ 1 for all k ∈ C.

Proof: Fix the parameter k ∈ C and denote

m(z) =
Mµ(z, k)−M−µ(z, k)

Mµ(z, k) +M−µ(z, k)
.

Then by Proposition 4.3, |m(z)| < 1 for all z ∈ C. Moreover, m is C-analytic
in z ∈ C\D, m(∞) = 0, and thus by Schwarz’s lemma we have |m(z)| ≤ 1/|z|
for all z ∈ C\D. Since (5.11) and (5.21) give limz→∞ zm(z) = τµ, both claims
of the proposition follow. �

7 Subexponential growth

We know from Section 4 and (4.1), (4.14) that the complex geometric optics
solution fµ from (1.4) can be written in the exponential form. Here we begin
by a more detailed analysis of this fact. For later purposes we also need to
generalize the situation a bit by considering complex Beltrami coefficients µλ

of the form µλ = λµ, where the constant λ ∈ ∂D and µ = (1−σ)/(1+σ) is as
before. Precisely as in Section 4 one can show the existence and uniqueness
of fλµ ∈ W 1,p

loc (C) satisfying

(7.1) ∂fλµ = λµ∂fλµ and

(7.2) fλµ(z, k) = eikz

(
1 +O

(
1

z

))
as |z| → ∞.
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Lemma 7.1 The function fλµ admits a representation

(7.3) fλµ(z, k) = eikϕλ(z,k),

where for each fixed k ∈ C \ {0} and λ ∈ ∂D, the function ϕλ(·, k) : C → C
is a quasiconformal homeomorphism that satisfies

(7.4) ϕλ(z, k) = z +O
(

1

z

)
for z →∞

and

(7.5) ∂ϕλ(z, k) = −k
k
µλ(z) (e−k ◦ ϕλ)(z, k) ∂ϕλ(z, k), z ∈ C.

Proof: Since the parameter k is fixed we drop it from the notations and
write simply fλµ(z, k) = fλµ(z), ϕλ(z, k) = ϕλ(z), etc. Denote

µ1(z) = µλ(z)
∂fµ(z)

∂fµ(z)
.

Then (1.4) gives

(7.6) ∂fλµ = µ1∂fλµ.

On the other hand, by the general theory of quasiconformal maps ([2], [14],
[21]) there exists a unique quasiconformal homeomorphism ϕλ ∈ H1

loc(C)
satisfying

(7.7) ∂ϕλ = µ1∂ϕλ

and having the asymptotics

(7.8) ϕλ(z) = z +O
(

1

z

)
as z →∞.

Moreover, any H1
loc-solution to (7.6) is obtained from ϕλ by post-composing

with an analytic function ([14], Theorem 11.1.2). In particular,

fλµ(z) = h ◦ ϕλ(z)

where h : C → C is an entire analytic function. But

h ◦ ϕλ(z)

exp(ikϕλ(z))
=

fλµ(z)

exp(ikϕλ(z))
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has by (1.5), (1.6) and (7.8) the limit 1 as the variable z →∞. Thus

h(z) ≡ eikz.

Finally, (7.5) follows immediately from (1.4) and (7.3). �

Note that the results in Section 4 show that (7.4), (7.5) has a unique so-
lution. The existence of such a solution can also be directly verified by using
Schauder’s fixed point theorem [15], [5]. The result of Lemma 7.1 demon-
strates that after a change of coordinates z 7→ ϕ(z) the complex geometric
optics solution fµ is simply an exponential function.

The main goal of this section is to show

Theorem 7.2 Let ϕλ ∈ H1
loc(C) satisfy (7.4) and (7.5). Then as k →∞,

ϕλ(z, k) → z

uniformly in z ∈ C and λ ∈ ∂D.

We have splitted the proof of Theorem 7.2 to several lemmata.

Lemma 7.3 Suppose ε > 0 is given. Suppose also that for µλ(z) = λµ(z)
we have

(7.9) fn = µλSnµλSn−1µλ · · ·µλS1µλ

where Sj : L2(C) → L2(C) are Fourier multiplier operators, each with a
unimodular symbol. Then there is a number Rn = Rn(κ, ε) depending only
on µ, n and ε such that

(7.10) |f̂n(ξ)| < ε for |ξ| > Rn.

Proof: Clearly it is enough to prove the claim for λ = 1.
Recall that for the Fourier transform φ̂ we use the definition (5.16). By

assumption
Ŝjg(ξ) = mj(ξ)ĝ(ξ)

where |mj(ξ)| = 1 for ξ ∈ C. We have by (7.9)

(7.11) ‖fn‖L2 ≤ ‖µ‖n
L∞‖µ‖L2 ≤

√
πκn+1

since supp(µ) ⊂ D. Choose first ρn so that

(7.12)

∫
|ξ|>ρn

|µ̂(ξ)|2 dm(ξ) < ε2.
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After this choose ρn−1, ρn−2, . . . , ρ1 inductively so that for l = n− 1, . . . , 1

(7.13) π

∫
|ξ|>ρl

|µ̂(ξ)|2 dm(ξ) ≤ ε2

(
n∏

j=l+1

πρj

)−2

.

Finally, choose ρ0 so that

(7.14) |µ̂(ξ)| < επ−n

(
n∏

j=1

ρj

)−1

, when |ξ| > ρ0.

All these choices are possible since µ ∈ L1 ∩ L2.
Now, we set Rn =

∑n
j=0 ρj and claim that (7.10) holds for this choice of

Rn. Hence assume that |ξ| >
∑n

j=0 ρj. We have

|f̂n(ξ)| ≤
∫

|ξ−η|≤ρn

|µ̂(ξ − η)| |f̂n−1(η)| dm(η)(7.15)

+

∫
|ξ−η|≥ρn

|µ̂(ξ − η)| |f̂n−1(η)| dm(η).

But if |ξ − η| ≤ ρn then |η| >
∑n−1

j=0 ρj. Thus, if we denote

∆n = sup

{
|f̂n(ξ)| : |ξ| >

n∑
j=0

ρj

}
it follows from (7.15) and (7.11) that

∆n ≤ ∆n−1(πρ
2
n)1/2‖µ‖L2

+

 ∫
|η|≥ρn

|µ̂(η)|2 dm(η)


1/2

‖f̂n−1‖L2

≤ πρnκ∆n−1 + κn

π ∫
|η|≥ρn

|µ̂(η)|2 dm(η)


1/2

for n ≥ 2. Moreover, the same argument shows that

∆1 ≤ πρ1κ sup{|µ̂(ξ)| : |ξ| > ρ0}

+ κ

π ∫
|η|>ρ1

|µ̂(η)|2 dm(η)


1/2

.
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In conclusion, after an iteration we have

∆n ≤ (κπ)n

(
n∏

j=1

ρj

)
sup{|µ̂(ξ)| : |ξ| > ρ0}

+ κn

n∑
l=1

(
n∏

j=l+1

πρj

)π ∫
|η|>ρl

|µ̂(η)|2 dm(η)


1/2

.

With the choices (7.12)–(7.14) this leads to

∆n ≤ (n+ 1)κnε ≤ ε

1− κ
,

which proves the claim. �

Our next goal is to use Lemma 7.3 to obtain a similar asymptotic result
as in Theorem 7.2 for a solution to a linear equation somewhat similar to
(7.5).

Proposition 7.4 Suppose ψ ∈ H1
loc(C) satisfies

∂ψ = λ
k

k
µ(z)e−k(z)∂ψ, and

ψ(z) = z +O
(

1

z

)
as z →∞.

(7.16)

Then ψ(z, k) → z, uniformly in z ∈ C and λ ∈ ∂D, as k →∞.

For Proposition 7.4 we need some preparations. First, as ‖S‖Lp→Lp → 1
when p → 2, we can choose a δκ > 0 so that κ‖S‖Lp→Lp < 1 for every
2− δκ ≤ p ≤ 2 + δκ. With this notation we then have

Lemma 7.5 Let ψ ∈ H1
loc(C) be the unique solution to (7.16) and let ε > 0.

Then one can decompose ∂ψ in the following way: ∂ψ = g + h where

(i) ‖h(·, k)‖Lp < ε for 2− δκ ≤ p ≤ 2 + δκ, uniformly in k,

(ii) ‖g(·, k)‖Lp ≤ C0 = C0(κ), uniformly in k and

(iii) ĝ(ξ, k) → 0 as k →∞,

where in (iii) the convergence is uniform on compact subsets of the ξ-plane
and also uniform in λ ∈ ∂D. The Fourier transform is with respect to the
first variable only.
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Proof: We may solve (7.16) by Born-series which converge in Lp,

∂ψ =
∞∑

n=0

(
λ
k

k
µ e−k S

)n(
λ
k

k
µ e−k

)
.

Let

h =
∞∑

n=n0

(
λ
k

k
µ e−k S

)n(
λ
k

k
µ e−k

)
.

Then

‖h‖Lp ≤ π1/pκ
n0+1‖S‖n0

Lp→Lp

1− κ‖S‖Lp→Lp

.

We obtain (i) by choosing n0 large enough.
The remaining part clearly satisfies (ii) with a constant C0 that is inde-

pendent of k and λ. To prove (iii) we first note that

S(e−kφ) = e−kSkφ

where (Skφ)̂ (ξ) = m(ξ + k)φ̂(ξ) and m(ξ) = ξ/ξ. Consequently,

(µe−kS)nµe−k = e−(n+1)kµSnkµS(n−1)k · · ·µSkµ

and so

g =

n0∑
j=1

(
k

k
λ

)j

e−jkµS(j−1)kµ · · ·µSkµ.

Therefore

g =

n0∑
j=1

e−jkGj

where by Lemma 7.3, |Ĝj(ξ)| < ε̃ whenever |ξ| > R = maxj≤n0 Rj. As

(e−jkGj)̂ (ξ) = Ĝj(ξ − jk), for any fixed compact set K0 we can take k so
large that K0 − jk ⊂ C \B(0, R) for each 1 ≤ j ≤ n0. Then

sup
ξ∈K0

|ĝ(ξ, k)| ≤ n0ε̃.

This proves (iii). �

Proof of Proposition 7.4: We show first that when k → ∞, ∂ψ → 0
weakly in Lp, 2− δκ ≤ p ≤ 2+ δκ. For this suppose f0 ∈ Lq, q = p/(p− 1), is
fixed and choose ε > 0. Then there exists f ∈ C∞

0 (C) such that ‖f0−f‖Lq < ε
and so by Lemma 7.5

|〈f0, ∂ψ〉| ≤ εC1(f0) +
∣∣ ∫ f̂(ξ)ĝ(ξ, k) dm(ξ)

∣∣.
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Choose first R so large that∫
C\B(0,R)

|f̂(ξ)|2 dm(ξ) ≤ ε2

and then |k| so large that |ĝ(ξ, k)| ≤ ε/(
√
πR) for all ξ ∈ B(0, R). Now∣∣∣∣∫ f̂(ξ)ĝ(ξ, k) dm(ξ)

∣∣∣∣ ≤ ∫
B(0,R)

f̂(ξ)ĝ(ξ, k) dm(ξ) +

∫
C\B(0,R)

f̂(ξ)ĝ(ξ, k) dm(ξ)

≤ ε(‖f‖L2 + ‖g‖L2) ≤ εC2(f0).

The bound is the same for all λ, hence supλ∈∂D |〈f0, ∂ψ〉| → 0 as |k| → ∞.
To prove the uniform convergence of ψ itself we write

(7.17) ψ(z, k) = z − 1

π

∫
D

1

ω − z
∂ψ(ω, k) dm(ω).

Here note that supp(∂ψ) ⊂ D and χD(ω)/(ω − z) ∈ Lq for all q < 2. Thus
by the weak convergence we get

(7.18) ψ(z, k) → z as k →∞,

for each fixed z ∈ C, but uniformly in λ ∈ ∂D. On the other hand as
supk ‖∂ψ‖Lp ≤ C0(κ) < ∞, for all z sufficiently large |ψ(z, k) − z| < ε,
uniformly in k ∈ C and λ ∈ ∂D. Thus (7.17) with Proposition 3.1.(i) shows
that the family {ψ(·, k) : k ∈ C, λ ∈ ∂D} is equicontinuous. Combining all
these observations shows that the convergence in (7.18) is uniform in z ∈ C
and λ ∈ ∂D. �

Finally we proceed to the nonlinear case: So assume that ϕλ satisfies (7.4)
and (7.5). Since ϕ is a (quasiconformal) homeomorphism we may consider
its inverse ψλ : C → C,

(7.19) ψλ ◦ ϕλ(z) = z,

which also is quasiconformal. By differentiating (7.19) with respect to z and
z one obtains that ψ satisfies

∂ψλ = −λk
k
(µ ◦ ψλ)e−k ∂ψλ and(7.20)

ψλ(z, k) = z +O
(

1

z

)
as z →∞.(7.21)
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Proof of Theorem 7.2: It is enough to show that

(7.22) ψλ(z, k) → z

uniformly in z and λ as k →∞. To prove this we need to recall some further
facts from quasiconformal mappings. Let us use the notation
(7.23)

Σκ = {g ∈ H1
loc(C) : ∂g = ν∂g, |ν| ≤ κχ4D and g = z +O

(
1

z

)
as z →∞}.

Note that with the above normalization at ∞ all elements g ∈ Σκ are home-
omorphisms [2]. Also, the use of χ4D will become clear soon.

Lemma 7.6 a) The family Σκ is compact in the topology of uniform con-
vergence on C.

b) Suppose that f, g ∈ Σκ, 1+κ < p < 1+1/κ and that ε > 0 is so small
that (1 + ε)p < 1 + 1/κ. Then∫

C

|∂f − ∂g|p dm ≤ C(p, ε)

∫
C

|νf − νg|p
1+ε

ε dm

 ε
1+ε

where

νf =
∂f

∂f
and νg =

∂g

∂g
.

Proof: The claim a) follows from [21], Theorem II.51. Furthermore, since
∂g = 1 + S(∂g) for each g ∈ Σκ, we have

∂f − ∂g = (I − νfS)−1
(
νf − νg + (νf − νg)S(∂g)

)
, f, g ∈ Σκ.

Applying Theorem 3.2 and Hölder’s inequality gives then the claim b). �

The support of µ ◦ ψλ need not anymore be contained in D. However,
by Koebe’s 1/4-theorem, see e.g. [1] Corollary 5.3, ϕλ(D) ⊂ 4D and thus
supp(µ ◦ ψλ) ⊂ 4D. Therefore by Lemma 7.6 a) we have sequences kn →∞
and sequences λn → λ ∈ ∂D such that ψλn(·, kn) → ψ∞ uniformly, with
ψ∞ ∈ Σκ. To prove Theorem 7.2 it is enough to show that for any such
sequence ψ∞(z) ≡ z.

Hence assume that we have such a limit function ψ∞. We then consider
the H1

loc-solution Φ(z) = Φλ(z, k) of

∂Φ =
k

k
λ(µ ◦ ψ∞)e−k∂Φ,

Φ(z) = z +O
(

1

z

)
as z →∞.
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This is now a linear Beltrami equation which [2] has a unique solution Φ ∈ Σκ

for each k ∈ C. According to Proposition 7.4

(7.24) Φλ(z, k) → z as k →∞.

Secondly, when 2 < p < 1 + 1/κ, by Lemma 7.6 b)

|ψλn(z, kn)−Φλ(z, kn)| = 1

π

∣∣∣∣∣∣
∫
4D

1

ω − z
∂
(
ψλn(ω, kn)− Φλ(ω, kn)

)
dm(ω)

∣∣∣∣∣∣
≤ C1

∥∥∂(ψλn(·, kn)− Φλ(·, kn)
)∥∥

Lp

≤ C2|λn−λ|+ C2

∫
4D

∣∣µ(ψλn(ω, kn)
)
− µ

(
ψ∞(ω)

)∣∣ p(1+ε)
ε dm(ω)

 ε
p(1+ε)

.

(7.25)

Lastly, we use the higher integrability of the Jacobian [3]; for all 2 < p <
1 + 1/κ and for all g = ψ−1, ψ ∈ Σκ, we have

(7.26)

∫
D

Jg(z)
p/2 dm(z) ≤

∫
D

|∂g|p dm ≤ C(κ) <∞.

where C(κ) depends only on κ. Again, the bound can also be deduced from
Theorem 3.2 since ∂g = (I − νgS)−1νg and ∂g = 1 + S(∂g). We use this
estimate in the cases ψ(z) = ψλn(z, kn) and ψ = ψ∞. Namely, we have for
each η ∈ C∞

0 (D) that∫
4D

|µ(ψ)− η(ψ)|
p(1+ε)

ε =

∫
D

|µ− η|
p(1+ε)

ε Jg

≤
(∫

D

|µ− η|
p2(1+ε)
ε(p−2)

)(p−2)/p(∫
D

Jp/2
g

)2/p
.

(7.27)

Since µ can be approximated in the mean by smooth η, the last term in (7.27)
can be made arbitrarily small. Since by uniform convergence η(ψλn(z, kn)) →
η(ψ∞(z)) we see that the last bound in (7.25) converges to zero as λn → λ
and kn → k. In view of (7.24) and (7.25) we have established that

ψλn(z, kn) → z

and that ψ∞(z) ≡ z. The theorem is proved. �
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8 Transport matrix

The gradient of a quasiregular map can vanish only on a set of Lebesque
measure zero ([2], p. 34). By the equation (1.4) the derivative ∂fµ can
vanish only on points z where the whole gradient of fµ vanishes. This means
that we can recover µ and hence σ from fµ by the formulae

(8.1) µ = (∂fµ)−1∂fµ and σ =
1− µ

1 + µ
.

Next, let u1 = h+ − ih− and u2 = i(h+ + ih−) be defined as in (1.14).
From Lemma 2.1 and (1.7) we see that u1, u2 satisfy the conductivity equa-
tions (1.15). With respect to the parameter k the uj’s are C1-mappings, c.f.
Theorem 5.5. A straight forward derivation using (1.8) shows also that at
each point z ∈ C, both u1(z, k) and u2(z, k) satisfy the ∂k-equation

(8.2)
∂

∂k
u(z, k) = −i τµ(k)u(z, k).

In addition, u1(z, 0) ≡ 1 and u2(z, 0) ≡ i.
It is clear that the pair {u1(z, k), u2(z, k)} determines the pair {fµ(z, k),

f−µ(z, k)} and vice versa. Thus by Proposition 6.1 the Dirichlet to Neumann
map Λσ uniquely determines the functions u1 and u2 outside D. To prove
Theorem 1 it therefore suffices to transport these solutions from outside to
inside D by using the data Λσ. For this purpose we will employ (8.2) and the
fact from Corollary 6.2 that Λσ uniquely determines the scattering coefficient
τµ.

We have only shown that τµ is bounded and that uj(z, k)e
−ikz behaves

subexponentially as k → ∞, and these facts alone are much too weak to
guarantee the uniqueness of solutions to the pseudoanalytic equation (8.2).
To remedy this we need to understand the transport matrix from (1.18).

We start by arguing that u1 and u2 are R-linearly independent, i.e. that

(8.3) u2(z, k) 6= 0 and u1(z, k)/u2(z, k) 6∈ R

holds for all z, k ∈ C. By Proposition 4.3 we have∣∣∣∣h−(z, k)

h+(z, k)

∣∣∣∣ < 1 and h+(z, k) 6= 0 for all z, k ∈ C.

Since
u1

u2

= −ih+ − ih−
h+ + ih−
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this proves (8.3) and enables us to define the transport matrix T σ
z,z0

(k) as in
(1.18). It also follows that T σ

z,z0
(k) is invertible.

It was discovered by Bers [9] that the coefficients connecting different
solutions to the same pseudoanalytic equation as in (1.17) give rise to a
quasiregular mapping. In [9] these mappings are called pseudoanalytic func-
tions of the second kind. In our case this means that differentiating u1(z, k) =
a1(z, z0; k)u1(z0, k) + a2(z, z0; k)u2(z0, k) with respect to k and using (8.2)
with (1.14) gives for α = a1 + ia2

(8.4) ∂kα(z, z0; k) = νz0(k)∂kα(z, z0; k), νz0(k) = i
h−(z0, k)

h+(z0, k)
.

Note that α(z, z0; k) inherits the continuous differentiability with respect to
k from the uj’s. For an explicit expression for α in terms of u1 and h± see
(8.8) below.

Moreover, the second row of T σ
z,z0

(k) gives similarly a solution β = b1 +ib2
for the same equation (8.4). In fact, if we write the µ dependence explicitely
for ui: ui = ui(µ), i = 1, 2, then

(8.5) u2(µ) = iu1(−µ) and u1(µ) = −iu2(−µ).

Thus βµ = iα−µ.
We have now shown that the rows of the transport matrix produce quasi-

regular mappings, with respect to k, satisfying (8.4). Our next task is to
determine their asymptotic behaviour at ∞.

Proposition 8.1 Suppose z0 ∈ C, |z0| > 1. Then:

a) For each fixed k 6= 0 and z0 we have with respect to z

α(z, z0; k) = exp(ikz + v(z))

where v ∈ L∞.

b) For each fixed z and z0 we have with respect to k that

(8.6) α(z, z0; k) = exp(ik(z − z0) + kε(k))

where ε(k) → 0 as k →∞.

Up to the factor i, βµ = iα−µ has the same asymptotics.
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Proof: For a) we write

u1 =
1

2

(
fµ + f−µ + fµ − f−µ

)
= fµ

(
1 +

fµ − f−µ

fµ + f−µ

)−1(
1 +

fµ − f−µ

fµ + f−µ

)
.

(8.7)

All factors in the product are nonvanishing. Taking the logarithm and ap-
plying (1.5), (1.6) leads to

u1(z, k) = exp

(
ikz +Ok

(
1

|z|

))
.

On the other hand, dropping temporarily the fixed k from the notations, we
have

u1(z) = αh+(z0)− iαh−(z0)

or
u1(z)

h+(z0)
= α− iα

h−(z0)

h+(z0)
.

This gives

(8.8) α =

(
1−

∣∣∣∣h−(z0)

h+(z0)

∣∣∣∣2
)−1(

1 + i
h−(z0)

h+(z0)

u1(z)

u1(z)

)
u1(z)

h+(z0)
.

According to Proposition 6.3, |h−(z0)/h+(z0)| ≤ 1/|z0| < 1 while h+(z0) is
constant for fixed k and z0 . This proves a).

To prove b) note that

u1 = h+

(
1− i

h−
h+

)
and h+ = fµ

(
1 + i

h−
h+

)−1

.

Again, the factors are continuous and point wise non-vanishing. Therefore
the identity (8.8) and Theorem 7.2 reduce the proof of b) to

Lemma 8.2 For each fixed z ∈ C,∣∣∣∣h−(z, k)

h+(z, k)

∣∣∣∣ ≤ 1− e−|k|ε(k).
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Proof: By the definition of h+ and h− it suffices to show

(8.9) inf
t

∣∣∣∣fµ − f−µ

fµ + f−µ

+ eit

∣∣∣∣ ≥ e−|k|ε(k).

For this, define
Φt = e−it/2(fµ cos t/2 + if−µ sin t/2).

Then for each fixed k,

Φt(z, k) = eikz

(
1 +Ok

(
1

z

))
as z →∞

and
∂Φt = µe−it∂Φt.

Thus Φt = fλµ, λ = e−it, the exponentially growing solution of (7.1) and
(7.2) from Section 7. But

(8.10)
fµ − f−µ

fµ + f−µ

+ eit =
2eit Φt

fµ + f−µ

=
fλµ

fµ

2eit

1 +M−µ/Mµ

.

By Theorem 7.2

(8.11) e−|k|ε1(k) ≤ |M±µ(z, k)| ≤ e|k|ε1(k)

and

(8.12) e−|k|ε2(k) ≤ inf
λ∈∂D

∣∣∣∣fλµ(z, k)

fµ(z, k)

∣∣∣∣ ≤ sup
λ∈∂D

∣∣∣∣fλµ(z, k)

fµ(z, k)

∣∣∣∣ ≤ e|k|ε2(k)

where εj(k) → 0 as k → ∞. Since Re(M−µ/Mµ) > 0 the inequality (8.9)
follows from (8.10), (8.11) and (8.12). This finishes the proof of Lemma 8.2
and thus also the proof of Proposition 8.1. �

Now the last remaining obstacle is Theorem 2; that is, we need to prove
that the data determines the transport matrices T σ

z,z0
(k). We know that in

the k-variable the rows α and β of T σ
z,z0

are quasiregular mappings satisfying
(8.4) and having the asymptotics given by Proposition 8.1 b).

It is not clear if the asymptotics (8.6) are strong enough to determine the
individual solution. However, if we consider the entire family {T σ

z,z0
: z ∈ C},

then the uniqueness does hold:

Proof of Theorem 2: Choose |z0| > 1 and write µ = (1 − σ)/(1 + σ),
µ̃ = (1 − σ̃)/(1 + σ̃). Let αµ(z, z0, k) and αeµ(z, z0, k) be defined by (1.17)
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and (1.19). Since neither of αµ, αeµ vanishes at any point we can define the
corresponding logarithms δµ and δeµ by

δµ(z, z0; k) = logαµ(z, z0, k) = ik(z − z0) + kε1(k)

δeµ(z, z0; k) = logαeµ(z, z0, k) = ik(z − z0) + kε2(k)
(8.13)

where for |k| → ∞, εj(k) → 0 by Proposition 8.1 b). Moreover, by Theorem
4.2,

δµ(z, z0; 0) ≡ δeµ(z, z0; 0) ≡ 0

for all z ∈ C, |z0| > 1.
In addition, z 7→ δµ(z, z0; k) is continuous, δµ(z0, z0; k) = 0 and we have

(8.14) δµ(z, z0; k) = ikz

(
1 +

vk(z)

ikz

)
, k 6= 0,

where by Proposition 8.1 a), vk ∈ L∞(C) for each fixed k ∈ C. The use
of degree theory or homotopy argument [33] gives that z 7→ δµ(z, z0; k) is
surjective C → C.

To prove the theorem it suffices to show that if Λσ = Λeσ, then we have

(8.15) δeµ(z, z0; k) 6= δµ(w, zo; k), for z 6= w and k 6= 0.

Namely then (8.15) and the surjectivity of z 7→ δµ(z, z0; k) show that neces-
sarily we have δeµ(z, z0, k) = δµ(z, z0, k) for all k, z ∈ C and |z0| > 1. Hence
αµ ≡ αeµ. By (8.5) we have βµ = βeµ as well and hence that T σ

z,z0
(k) ≡ T eσ

z,z0
(k).

To show (8.15) fix z 6= w and note that by (8.4) δµ and δeµ satisfy

(8.16) ∂kδ = νz0(k)e
δ−δ∂kδ, k ∈ C,

where by Proposition 6.1 and the assumption Λσ = Λeσ, the coefficient νz0 is
the same for both δµ and δeµ. The difference

g(k) = δµ(w, zo; k)− δeµ(z, z0; k)

satisfies the equation

∂kg − νz0e
(δµ−δµ)∂kg = νz0∂kδeµ

(
e(δµ−δµ) − e(δeµ−δeµ)

)
.

In other words, there exist functions η and γ such that

(8.17) ∂kg − η∂kg = γg

with |η| ≤ |νz0| ≤ 1/|z0| < 1 and |γ| ≤ 2|νz0 ||∂kδeµ| ≤ 2|∂kδeµ|. From (8.13) we
have g(k) = i(w− z)k+ kε(k). Since αµ, αeµ are C1 with respect to k, we see
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that γ is locally bounded with respect to k and we may apply Proposition
3.3 b) (with respect to k) to obtain that g vanishes only at k = 0. This shows
(8.15) . �

The proof of Theorem 1 is now immediate. If Λσ = Λeσ, then by Propo-
sition 6.1 we have uσ

j (z) = ueσ
j (z) for |z| > 1 and j = 1, 2. Theorem 2 with

(1.17) gives then uσ
j ≡ ueσ

j and (8.1) that σ ≡ σ̃.

Lastly, we describe how our uniqueness proof leads to a constructive pro-
cedure for recovering σ. A somewhat similar algorithm is given in [18] for
C1+ε -conductivities. First we need to construct the geometric optics solu-
tions M±µ(z, k) on ∂D. There is a Fredholm equation of the second kind
on ∂D described in terms of the operators Q±µ and having M±µ

∣∣
∂D as its

unique solution; for details see [7]. Since by (2.9) and (2.11) these projection
operators can be calculated from Λσ we obtain the boundary values of M±µ.
Another way to obtain these is to notice that by Lemma 2.2 and equation
(5.1) the solutionMµ(·, k) belongs to the space Range(P k

µ )∩Range(Q0) where
the operators P k

µ and Q0 are defined by

Q0(g)(z) =
1

2
(I − iH0)(g)(z)

P k
µ (g)(z) = e−ikz(I −Qµ)(eik·g)(z).

(8.18)

By Theorem 4.2 the space Range(P k
µ )∩Range(Q0) is one dimensional. Since

it is defined by the data, we may use the asymptotics (1.6) to construct Mµ

on ∂D from the equations

(8.19) (Q0 − P k
µ )g = 0, Q0g = cMµ.

By (2.8) this procedure also gives M−µ on ∂D.
The following step is to use the Fourier coefficients of M±µ on ∂D to con-

struct M±µ in the exterior of D. This gives by (1.7) and (1.21) the Beltrami
coefficient νz0(k) in (1.20). Finally by Theorem 2 we can uniquely solve equa-
tion (1.20) with the asymptotics (8.6) to obtain the transport matrix T σ

z,z0
(k)

and hence fµ(z, k) for z ∈ D. Formula (8.1) yields then the conductivity σ.
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