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Abstract

We introduce a class of weights for a which a rich theory of real
interpolation can be developed. In particular it led us to extend
the commutator theorems associated to this method.

Interpolation theory is a powerful tool to study operators in function
spaces. In particular it provides methods to obtain new estimates from
initial estimates. The theory originated with the convexity theorem of
Riesz-Thorin (1926, 1939}, which states that if an operator T is bounded
on the complex spaces LP — L%, i =0, 1, then it is also bounded for all
the range of intermediate values of p. Therefore, we may conclude that
T is bounded from L? — L9 whenever there exists & € (0, 1) such that
1 1-8 @ 1 1-0 @
= +—. (*)

P po P g 0

Moreover,

1T lp—a < 1T oo g I T 1, e
(see [R], [T]). The method developed by Thorin to prove this theorem
led A. Calderén (see {C], 1963) to introduce the complex interpolation
method.
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At the foundations of the theory also lies an important theorem
obtained by Marcinkiewicz (1939), which is based on real methods.
Suppose that T is a bounded operator from LPi — L% ¢ = 0,1.
Then, if pg # p; and p < ¢q, T is bounded from LP — L9, when-
ever there exists § € (0,1) such that (*) holds. In this case ||T|lp .4 <
CgﬂT][},;f,qn "T”gl—o}n for some constant Cp. This theorem is the model
for the real method of interpolation for abstract spaces, developed by

Lions and Peetre (see [LP]).

In this paper we shall be concerned with the real method of interpo-
lation. We shall describe, without proofs, a recent extension of the real
method obtained by the authors in {BMR1] and [BMR2].

Throughout the paper we shall follow the notation and terminology
of [BL}.

Let us start by recalling some definitions. Given a compatible cou-
ple of Banach spaces A = (Ag, A1) (i.e. there exists a topological vec-
tor space V such that both Ay, A; are continuously embedded in V),
and an element ¢ € Ag + 4, we define the K-functional of Peetre by
K(t,a; A) = inof ||aglla, + tlailla,, ¢ > 0, where the inf runs over all
possible decompositions a = ag + a1 with a; € A;. If a € Ap N A1 we
define the J-functional by J(t, a; A) = max{||al 4, t{all4,}, t > 0.

Given 8 € (0,1), and p > 1, we let

= 1/p
o (K(t,a;A)\ dt
Agpi = {a € Ao+ Ay; (fo (—(t-;‘—)} T) < oo}

Likewise, we define /Ig,p; J as the class of elements a € Ag + A; for
. t
which there exists a representation a = ’ ﬂd!t with a(t} € AgN A,
0 T

(convergence in the Ag + A4; norm) and satisfying t=%J(t, a(t); A) €
LP(dt/t). For this class we consider the corresponding norms

00 alt): A\ l/p
||a||9,p;J=inf( i (g_(z_%é)) ?)

where the inf runs over all possible representations af a.
The following facts follow readily from the definitions:

i) ApN A1 — Agpx — Ao+ A; and AgN Ay — Ay — Ao+ Ay
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ii) Agpg and Agy k are interpolation spaces, i.e. if T is a linear
operator from Ag + A; — Bg + B such that is bounded from
A — By, i=0,1then T : Agpx — Bopx, T : Apps — Bopys
and [T < (T3 T }§-

Since the duals of spaces obtained by the K-method are naturally
described by the J-method it becomes an important problem in the
theory to study the equivalence of these two methods.

The fundamental lemma of interpolation implies that Agp x C Agp,J-
For the converse, one uses classical Hardy’s inequalities and the follow-
ing well known fact, if a € Ag + A, is an element for which there exists

. t
a representation ¢ = / a( )dt with a(t) € AgN A; then

0

K(t,a‘,lﬂ (J!zlagz!‘zj!)(t)
t - T !

where the operator S is the Calderén operator, defined for measurable
functions by

S£(t)

f * min{1/z, 1/¢} f(z)dz

- ff()d + [T,

= P(N)(t)+ ().

Several different extensions of these interpolation functors have been
considered before. The most studied classes of interpolation spaces are
associated to the so called “functional parameter” and the “quasipower”
case. The spaces are defined by a slighty more general class of weights
than the powers t~¢ and the study of interpolation for these classes of
“weights” was apparently initiated in [K] and continued in [G] and many
other papers, cf. [BK].

Let w be a weight on (0,00), i.e.,, w > 0 a.e. with respect to the
Lebesgue measure. We recall that a weight is a quasipower weight (see
[BK]) if there exists a positive constant C such that C7lw < Sw < Cuw,
(briefly Sw ~ w). We say that a weight w is a functional parameter or
a Kalugina weight if there exists a positive constant C and a C! positive
function ¢ such that C~! < wy < € and ap(t) < tp'(t) < Be(t), for
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some 0 < o < # < 1 and for all ¢t > 0. An integration by parts shows
that a Kalugina weight is a quasipower weight.

In what follows we shall indicate a more general construction, which
allows us to connect real interpolation with the theory of weighted norm
inequalities initiated by Muckenhoupt and developed by many authors
over the last 25 years.

Given a weight w, (i.e. a measurable function, w > 0 a.e.) we denote
by LP(w), 1 < p £ 00, the classes of Lebesgue measurable functions f
defined on the interval (0, 00) such that

170 zo () = ( Eo‘ f (t)”w(t)dt) 7 < too

For p = oo the corresponding space will be w™1L>, that is, the space
consisting of functions f such that

£l Looqw) = Il fwlloo < o0.

Let w be a weight and let 1 < p < co. We define jp,w' K as the class
of vectors a € Ag + A; for which the function t~1K (t,a; A) € LP(w).
For a € Apw x We denote

oo a: A P 1/p
lalla, . = (J/; ( K—@—-’él) w(t)dt)

| 4

If we consider the J-method of interpolation, we define Ay, s as the

class of elements a € Ag + A, for which there exists a representation
00 t _

a= f Mdt with a(t) € Ao N A; satisfying t71J (¢, a(t); A) € LP(w).

0 t
For this class we consider the corresponding norms

oo alt): A p 1/p
laliz,_ , = inf ( L (i(t(——;_)—il) w(t)dt)

where the inf runs over all possible representations of a.

The classical scales of real interpolation spaces correspond to the
power weights w = t?"P?~1_ Tt is not hard to convince oneself that the
weights we have just introduced are more general than the Kalugina or
quasi-power weights. Indeed, let

w(t)_"{l/\/f, ifo<t<;
O yvE=1, ifl<t
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then we compute

su 1r—2+74;, if0<t<l;
t) =
w(t) %+2@+Zarctan7§f—l—-, fl<t

and we see that w is not a quasipower weight and consequently it is not
a Kalugina weight either (this example is suggested in [HS]). However, it
is easy to verify that Sw < Cw and therefore, w verifies the C; condition
(¢f. Definition 1 below).

In our work we show that the weights that control the Calderén op-
erator can be used to develop a rich theory of interpolation and connects
the subject with the theory of weighted norm inequalities for classical
operators.

At the basis of our development are the classical results by Muck-
enhoupt (see [Mu], [Ma]), extending Hardy’s inequalities. Recall from
[Mu]j that:

i) Pf € LP(w) for all f € LP(w) (1 <€ p < o0) if and only if there exists
a constant C > 0 such that for almost all £ > 0

( : w(sadr,) o ( [) tw(x)‘P'/de) w <c (M,)

P

for 1 < p < 0o, 0r

xr

[ 2 < ou (M1)

for p=1, and ii) Qf € LP(w) for all f € LP(w) (1 < p < o0) if and only
if there exists a constant € > 0 such that for almost all t > 0

(/Otw(::)dz)llp (./t‘oo %f’_/fdx) 1/1" <C. (MP)

for 1 < p < oo, or
1 ft
?/ w(z)dz < Cw(t). (M)
0
forp=1.

Definition 1 We say that a weight w € Cp, if it satisfies the conditions
Mp and M? simultaneously. We say that a weight w € Co if and only
if w™! € €y, or equivaléntly, if § is bounded on w™1L%.
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It is clear from our previous discussion that
Apw i = Apw,J = S : LP(w) — LP(w).

The classes C, enjoy nice properties which we collect in the following

Proposition 2 The following assertions are true:
i) S is self-adjoint linear and positive
i) weCp e w?Pec,

iii) The class C; is exactly the class of weights w > 0 such that Sw <
Cw for some positive constant C'.

This properties lead us to apply the strong machinery developed by
Rubio de Francia (see {GR]), and in particular to use Rubio de Francia’s
algorithm:

Proposition 3 (see [GR]). Let 1 < p < co. Given f > 0, f € LP(w)
there exist a measurable function g > 0 and a positive constant C, such
that

i) f<g
i) llgllzew) < 205 L7 (w)
ii) S’g < Cg (C =2|S|| is enough).

As a consequence we show that the Cp classes of weights satisfy the
following properties: factorization, a reverse Holder’s type inequalities
and extrapolation.

Proposition 4 Let 1 < p < co. A weight w € C, if and only if there
exist two weights wg, wy € C; such that w = wow%‘p.

One implication is merely an application of Rubio de Francia’s fac-
torization of weights theorem. For the converse we only need to adjust

a simple computation.

Proposition 5 If w € Cp then there exists € > 0 such that z™*Pw(z) €
M? and zPw(z) € My.
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Due to factorization, the ohly thing we have to prove is the case
p = 1 and in this case the corresponding result is that there exists ¢ > 0
such that, for some constant C > 0, w satisfies

fot (i)ew(m)dm + ftm (%)l_ew(z)dz < Ctu(t)

for all ¢ > 0. This is easily proved by using the trivial facts
S=P+Q=PoQ@=QoP

and reiteration. Proposition 5 implies that the weights w support stronger
integrability conditions in 0 and in oc.

Proposition 6 Let T be a sublinear operator acting on functions defined
on (0, too). Let 1 < r < 400, 1 < p < co. Suppose that T is bounded
on L"(w) (respectively, T is of weak type (r,r)), for every weight w € C»
with norm that depends only upon the C,-constant for w, then T is
bounded on LP(w) (respectively, T is of weak type (p,p)), for all weights
w € Cp with a norm that depends only upon the Cp-constant for w.

It is also possible to extrapolate in the case r = 0o, using the follow-
ing extrapolation theorem by Garcia-Cuerva ([GC]):

Proposition 7 (see [GC]). Let S be a positive sublinear operator and
let T be a mapping satisfying the following condition: Every time that
S is bounded in vL°, for some v > 0, T is also bounded in v1°°, with
norm depending only on that of §. Let 1 < p < 00 and w > 0. Suppose
that S is bounded in LP(w). Then T is also bounded in LP(w) with
norm depending only on that of S.

Applying the last result to the Calderén operator we obtain:

Corollary 8 If T is bounded in v~ 1L%®, for any weight v € Coo, then T
is bounded in LP{w), for all w € C, and for all 1 < p < o0.

Next we translate the corresponding properties to interpolation the-
ory.
Proposition 9 The following assertions are true:

i} The spaces fip,w, K and J‘Ip,w’J are intermediate spaces, i.e., we have

ApNAy — Apwi — Ao+ A; and AgN 4 — jp'w’JH Ag+ Ay,
1<p<Loo
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i) Agn Aj is always dense in pr J 1 <p<oo.

iv

i) A
iii) The spaces pr & and Ap,w 7 are interpolation spaces, 1 < p < oo.
) p,wK""prJ,1<p<oo

)

v) Let 1 < p <-00, then pr J = prK for all compatible pairs of
Banach spaces if and only if the weight w is in Cp.

Remark 10 In [BK] the authors showed the necessity of the Cp, condition
by means of considering the couple (L!(dt), L}(dt/t)) plus the technical
conditions

LP(w) — L' 4 L(dt/t), LP(w) N L¥°%(dt/¢) # {0}

(see [BK], condition (3.4.2) and Lemma 3.4.4). Tt is instructive to see
that one could use essentially any pair of rearrangement invariant spaces
without any other assumptions. More precisely, let w > 0 ae. and
let A = (Ag, A1) be a compatible pair of r.i. spaces such that the
corresponding fundamental functions satisfy

im ¢A0(3) — 0’ l.im ¢A0(3) —
320 ¢a, (3) oo ¢A1(3)

Suppose that for some 1 < p < o0, AgN A; — ﬁp,w,J — flp,w,x, then
the weight w € C,,.
As a consequence we obtain

Corollary 11 Suppose that w € Cp, and 4gM A, is dense in Ag and A;,
then,

(AO: Al)pw K= (A’ ) AO)p f PP K l<p<oo,

(AO'I 1)1wK (A ) w1l K p=o00

Next we shall consider reiteration results. We shall begin by remark-
ing that if 1 < pg,p; < oo and wq € Cpy, wy € Cp,, then, the couples

pr = (Apo,woa X1::1.w1) and Lg(w) = (Lpo(wo), Lp, (w1))

are almost “bl-pseudoretracts” of each other (in the sense indicated in
[Cw], p.125]}. (We recall that in case of py = oo and/or py = 0o the
spaces to be considered are wo_lL‘x’ and/or wflL"").
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As a consecuence we obtain that
K(t,a, Apm) ~ K(t, K(t,0)/t, Ls(®)), e €I(Apm). (L)

and hence

Proposition 12 A5y is a Calderdén pair. That is, for any a, b € T(Apm)
with
K(t, b, Asw) < K (t,a, Apm)

for all t > 0, there exists an operator U bounded in I,—,,a,- with Uae =b.
As an application of the factorization of C, weights we prove the
following,.

Proposition 13 Let 1 < p < 00 and w € Cp. Then, there exist wp, w1 €
C1 such that

(I]_,wo, zm,wl—l ) lfpl’p == Ip,w.

Moreover, (A) can be also used to prove reiteration results. An easy
consequence of (A) is the following extension of the classical reiteration
theorem:

(Ipo,wovzm w1 )p,w,K = I(Lpo(wo)rbpdwl))p..w,x (o)

where the space on the right hand side consists of the elements a € £(A4)
for which K € (Lpg(wo), Ly, (w1))pw k- Note that in order for (o) to be
satisfied it is necessary that the weights wg and w1 be in the Cp, and Cp,
. classes respectively, but it is not relevant whether the weight w belongs
or not to the Cp class.

We also note that a corollary of (¢) is the reiteration formula

(_A—po AWo? Zm,uu )9,p = Zp,w

_ 1 1—8 g
g(l 9)/"°w’fe/”‘, S A
- P0 Pl

formula:

where 1 < pg,p1 < oc, w = w

. P
In particular we obtain the classical reiteration

(Aoﬂypﬂi Aolypl )orq = (A07 A 1)'7:?

where n = (1 — 8)8y + 66,. Note that the second index is not impor-
tant for reiteration. Thus, for power weights, that is, in the classical
Lions-Peetre theory, “extrapolation” in the sense of Rubio de Francia
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is not interesting. In the setting of C,-weights, however, the following
extrapolation result holds.

Proposition 14 Let A, B be two compatible couples of Banach spaces,
and let T be a linear operator hounded from fip‘w,x into Bp,‘w,K for some
p, 1 <p < o0, and for all w € €, with norm that depends only upon the
Cp-constant for w. Then T is also bounded from Ag, g into Bgy x for
any g, 1 < ¢ < 00, and for all v € C; with norm that depends only upon
the Cq-constant for w.

We should mention here that in order to prove this preposition we
have to extrapolate from the validity of the inequalities

0 a: B P O a: A r
/0 (-I-(-(—t—?—-’-i)) w(t)dtﬁC-L (@t—”ﬂ) wt)dt

for any weight w € C, that the same estimates hold for any ¢ and any
v € Cq.

On the other hand, using the extrapolation theory develeped in [JM],
we show, under mild extra restrictions, a sharper version of the preceding
proposition. In order to describe the results we introduce the following
class of weights.

We shall say that a weight w belongs to the class CBp, 1 < p < o0,
if there exists € > 0 such that for all t > 0 we have

/too(%)pw(m)d:c < C'fotw(:c)dx.

and. . .
/ Puw(z)ds < C f w(z)ds.
0 1}

It follows from [AM], [N1] and [N2] that a weight w belongs to the
class CBp if and only if Sf € LP(w), 1 < p < oo, for all f € LP(w), with
f decreasing. For such weights we denote by ||w||CBp the infimum of the
constants C satisfying the inequalities above. Then, we have

Proposition 15 Let @ > 0, 1 < p < 0, and let A and B be Ba-
nach pairs. Suppose that T is a bounded linear operator mapping
T : Awp.K ~* Bupk, for every w € CBp, with

ITH Ay, By < € 0035, »
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then, for 1 < ¢ < 00, and for all w € Cq, we have
T: fiw,q-,}( — Bw,q;K-

We give applications of reversed Holder’s type inequalities in the
contex of the abstract theory of commutators. This theory was initiated
by Rochberg and Weiss [RW] for the complex method and Jawerth,
Rochberg and Weiss [JRW] for the real method of interpolation. It has
been intensively developed over the last decade. A survey of the earlier
work is given in {CIMR]. Let us recall that associated to the construction
of intermediate spaces by the K and J methods, there certain mappings
Qk, 2, which are in general non-linear and unbounded and defined by
using almost optimal decompositions. Let us review some of the basic
facts. Suppose that A = (Ao, A;) is a Banach couple, and let a €
Ag+ Ay, and t > 0. We shall say that a decomposition a = ap(t) + a1(t)
is almost optimal (for the X method) if

leo(¢)lio + tllar(t)lr < cK (¢, a; A)

(here ¢ is a constant whose value is fixed during our discussion, for
example ¢ = 2). It is clear that we can always choose a measurable
almost optimal decomposition, i.e., the function from (0,00) to Ag -+
Ay given by t — ap(t) + a1(t) is measurable. We write Dy (t, A)a =
Dk(t)a = ao(t). It is clear that the function Dg(t)a can be choosen to
be homogeneous in a. Suppose that w € Cp, 1 < p < oo, then we can
define the operator Qg for the elements of }ip,w,x as

1 dt o0 dt
Qx,ja=ﬂ;{a=/ DK(t)a—t-—f (I—-DK(t)a)—t- € Ag+ Ay
0 1

Although these operators are unbounded their commutators with
bounded operators in the scale are bounded. Let us develop this point
in more detail. Suppose that T is a bounded linear operator between the
Banach couples A and B. Given a € AP,Q,K, we can apply the operators
Qg 4 and Qg g before and after applying T, respectively. This leads to
the study of the commutator

[T, QKIG = (TQK,A — QK,BT)G'

We then have the following “commutator theorem”.
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Proposition 16 If the welght w € Cp, for 1 < p < o0, then the commu-
tator is bounded from Ap w,K into Bp'w K-

The previous result, applied to the identity operator, shows that
if Qi is defined a.srbefore, but using a different almost optimal de-
composition, then Qg — Qx is also bounded from Ap .,k into Apa, s
If we define as usual Dom Qx4 = {a € Apuwk;fa € Ap,w,x}, with
lallp = llell 4, . + Il Ay then the space Dom Qx4 is well defined
and independent of choice of Qk. In fact Dom Qj 4 defines an inter-
polation method that can be explicitly computed and, in particular, is
a special case of the spaces studied in our work (cf. {CJMR] and the
references quoted therein).

A typical application of the theory is the following well known com-
mutator theorem originally due to Coifman, Rnchberg and Weiss (cf.
[JRW] and the references quoted therein).

Proposition 17 Let p > 1. For b € BMO(R") define Mpf = bf and
let T be a Calderén-Zygmund operator. Then, the commutator [T, My
is bounded in LP(R™).

In a similar manner we can associate with the J method operators
Qs which commute with bounded operators. We now review the basic
definitions. Let a be an element in Ap w,J, then we select over all possible

admissible decompositions a = t~la(t)dt a choice of a(t) for which

0
the infimum is almost attained in the definition of |[a] 5 ;. Wecall such
decomposition an almost optimal J-decomposition and denote a(t) =

Dj(t,a; A). Thus, a—f t71Ds(t)adt and

( foo (J(t ,a{t); A ).m(t)m)—< cllell4, .,

We define the non-linear operator

Q;30=0Rra= j a(t) Iogt-dt—t.
! 0

Let 1 < p < oo, then the existence of §)ja for the elements of fi,,,m, I
follows from an application of a reverse Holder’s type inequality which
insures that w satisfies

-/(; min{l, t%}w'p’/pllogﬂ"dt < 00



Calderén weights and the real interpolation method 85

It is readily seen that the operator Q; is bounded from Ap,, s into

Ap v 7, where v is the weight v(t) = (14 |logz|) Pw(z). We remark here
that by using a strong form of the fundamental lemma of interpolation

t .
it is not difficult to prove that s7'Dj(s)ads is an almost optimal

decomposition for the K-methed, i.e.,

ap(t) = ./: s 1D j(s)ads
ai(t) = -/:30 s 1D j(s)ads

and consequently, (; za = —Qg za.
Therefore commutator theorems for the J method can be deduced
from the corresponding ones for the K method. For example we have.

Proposition 18 Let 1 < p < oo. If T : A — B and w is a weight in
the class C, then the commutator [7',Q;} is bounded from Ay, s into
Bp)w)']'

Higher order commutators can be also treated in this setting. For
n € N the operators {2y 1., associated with the almost optimal decom-

position Dg(t)a are defined by

i o0
Orcane = gy ) Cor0r~'Da - [T tog0r 10 - D).

Using a reverse Holder type inequality we see that these operators
are well defined on the Ay, k spaces. The following result extends
to weighted interpolation spaces a commutator theorem obtained by
Rochberg and one of us in the unweighted case (¢f. [MiR| and the
references quoted therein).

Proposition 19 Let 1 < p < co. Let wbeinCp. Let T : A — B a
bounded linear operator. For n =0, 1, 2, ... define

T, ifn=20
Cra— [T, Qk1]a, ifm=1

[T, Qxnla + E:;i QxCn-ka, ifn>2

Then the operator Cy, is bounded from Ay x — Bpuw k-
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We can extend the results above to a more general setting, the frame-
work of commutators of fractional order. In the sequel we shall only
consider o > ( (obviously we are in a complex situation for o € N, but
complex interpolation methods are not used at all in our context). We
begin by defining the non linear operator Q,. Let a € Ag + 44

I S 1 o 1
Qus = 5y |, Toe®° ' Drcelagat— [ log()* 1t — Dr(t)agat]

(we mean log(t)*~! = |log(t)|* e’ it loe(t)y,
The existence of Q,a for the elements of 4,,, x as well as the esti-
mates for the commutators are based in the following lemma.

Lemma 20 Let n be a natural number and let 0 < § < 1. There exists
a constant C = C(n, #) such that for any a € Ay k and for all ¢ > 0
we have:

i) P("(|log(z)|?~ K (z,a; A))(t) < CP®(K(z,a; A))(t)
i) Q™ (|log(x){’ 'K (z,4;4))(t) < CQ™(K (x, 05 4))(2)

iit) If a € Ap gk and 0 < a < 1, then Qya is well defined and moreover
if @ = ag(t) + a1(¢) is an almost optimal decomposition of a we

have
log!t]"‘ t Iog]a:)“ 1  Jog(x)® ! dx
Q F( +1 [ GO(I) -[ —P(O‘)—al(a’:)?

iv) f0 < o < 1, then the commutator [T,{,] is bounded
from Ap.wx — Bpw 4, for any bounded linear operator
T: Ap,'wK - Bpw,K

As a consequence we get.

Propaosition 21 Let 1 < p < oo. Let w be a weight in Cp,. Let
T : A — B a bounded linear operator. For a > 0 we define

r T, fa=10
[T, Q4)a, flcax<l
TQa]a-I——’-Ca_la fl<a<?2

€at = § [T, Qyla + @Lca_lwr 2Oy na—if2<a<3

[T Qa]a + 2= 5 )cha ka, ifd3<a
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wheren —1 <o <n. Then the operator C, is bounded from
AP!W!K — B K-
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