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Abstract: Surrogate losses underlie numerous state-of-the-art binary clas-
sification algorithms, such as support vector machines and boosting. The
impact of a surrogate loss on the statistical performance of an algorithm
is well-understood in symmetric classification settings, where the misclas-
sification costs are equal and the loss is a margin loss. In particular,
classification-calibrated losses are known to imply desirable properties such
as consistency. While numerous efforts have been made to extend surrogate
loss-based algorithms to asymmetric settings, to deal with unequal misclas-
sification costs or training data imbalance, considerably less attention has
been paid to whether the modified loss is still calibrated in some sense. This
article extends the theory of classification-calibrated losses to asymmetric
problems. As in the symmetric case, it is shown that calibrated asymmetric
surrogate losses give rise to excess risk bounds, which control the expected
misclassification cost in terms of the excess surrogate risk. This theory is
illustrated on the class of uneven margin losses, and the uneven hinge,
squared error, exponential, and sigmoid losses are treated in detail.

Keywords and phrases: Surrogate loss, classification calibrated, cost-
sensitive classification, imbalanced data, uneven margin, excess risk bound.
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1. Introduction

Surrogate losses are key ingredients in many of the most successful modern clas-
sification algorithms, including support vector machines and boosting. These
losses are valued for their computational qualities, such as convexity, and fa-
cilitate the development of efficient algorithms for large-scale data sets. Given
the success of surrogate loss-based algorithms, there has understandably been
considerable interest in extending them from traditional binary classification to
other learning problems.

In this work, we consider surrogate losses in the context of what might be
called asymmetric binary classification problems. By this, we mean at least
one of the following two descriptions applies to the learning problem: (1) the
misclassification costs are asymmetric, meaning the performance measure is a
cost-sensitive classification risk; or (2) the loss is asymmetric, meaning it is not
a margin loss, and therefore the two classes are treated differently.
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Previous work has attempted to adapt conventional surrogate losses to these
asymmetric settings by modifying the losses with various scaling factors. Exam-
ples include boosting algorithms [5, 6, 7, 9, 13, 16, 20, 29, 33, 34, 36, 38, 39, 40],
support vector machines [1, 4, 8, 10, 12, 18, 22, 37, 41, 42], and the perceptron
[11]. Asymmetric losses have been repeatedly demonstrated to offer improved
performance over margin losses in cases of asymmetric misclassification costs or
imbalanced training data.

Unfortunately, in most cases, these additional scaling factors are set in a
heuristic fashion or treated as tuning parameters, without regard for the theoret-
ical statistical properties of the algorithms (some exceptions are noted below).
Given the considerable interest in asymmetric binary classification problems,
and given the proliferation of heuristic asymmetric surrogate losses, there is a
need for a theory to guide practitioners in the design of such losses, and to
enable performance analysis.

To address this need, we present a theory for calibrated asymmetric surrogate
losses. Intuitively, a surrogate loss is calibrated if convergence of the surrogate
excess risk to zero implies convergence of the target excess risk to zero. Calibra-
tion has been used to establish consistency of several classification algorithms in
the traditional cost-insensitive setting [3, 14, 15, 30, 44]. An elegant theory for
calibrated surrogate losses was developed by Bartlett, Jordan and McAuliffe [2]
and extended by Steinwart [31]. However, these works do not consider the asym-
metric classification problem considered here. Nonetheless, we will show that the
techniques of these two works can be extended to the asymmetric setting.

The primary contribution of this work is to extract and synthesize certain
key insights of [2] and [31], generalize and tailor them to the asymmetric classifi-
cation problem, and present them in a sufficiently general way that they can be
adopted in a variety of practical scenarios. The broader purpose of this article is
to offer a more rigorous framework to those researchers who continue to develop
and apply algorithms based on asymmetric surrogate losses.

The rest of the paper is structured as follows. Section 2 discusses background
material and related work on calibrated surrogate losses and excess risk bounds.
Section 3 develops a general framework for calibrated asymmetric surrogate
losses and excess risk bounds. The special case of cost-insensitive classification
with asymmetric losses is considered, and a refined treatment is also given for
the case of convex losses. Section 4 examines a special class of asymmetric
surrogate losses, called uneven margin losses, in detail. A concluding discussion
is offered in Section 5. Appendices A, B, and C, respectively, contain additional
connections to Steinwart [31] and calibration functions, proofs of supporting
lemmas, and uneven margin loss details.

2. Background and related work

Binary classification is concerned with the prediction of a label Y ∈ {−1, 1}
from a feature vector X by means of a classifier. A classifier will be represented
as a mapping x 7→ sign(f(x)) where f is a real-valued function, called a decision
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function in this context. The goal of classification is to learn f from a training
sample (X1, Y1), . . . , (Xn, Yn). When the cost of misclassifying X is not depen-
dent on Y , the performance of f is typically measured by the cost-insensitive risk
R(f) = EX,Y [1{Y 6=f(X)}]. Unfortunately, the minimization of the empirical risk
1
n

∑n
i=1 1{Yi 6=f(Xi)}, over some class of decision functions, is often intractable.

Therefore it is common in practice to instead minimize the empirical version
of the L-risk RL(f) = EX,Y [L(Y, f(X))], where L(y, t) is some surrogate loss,
chosen for its computational qualities such as convexity.

For example, support vector machines are obtained by minimizing the regu-
larized empirical L-risk

1

n

n∑

i=1

L(Yi, f(Xi)) + λ‖f‖2H

over H, where L(y, t) = max{0, 1 − yt} is the hinge loss, H is a reproducing
kernel Hilbert space [32], and λ > 0 is a regularization parameter. As another
example, AdaBoost can be viewed as functional gradient descent of the empirical
L-risk 1

n

∑n
i=1 L(Yi, f(Xi)), where L(y, t) = exp(−yt) is the exponential loss,

and minimization is performed over the set of linear combinations of decision
functions from some base class [19].

Bartlett et al. [2] study conditions under which consistency with respect to
an L-risk implies consistency with respect to the target risk R(f). To be more
specific, let R∗ and R∗

L denote the minimal risk and L-risk, respectively, over
all possible decision functions. The quantities R(f)− R∗ and RL(f) − R∗

L will
be referred to as the target excess risk and surrogate excess risk, respectively.
We will also use the term regret interchangeably with excess risk. Bartlett et al.
examine when there exists an invertible function θ with θ(0) = 0 such that

R(f)−R∗ ≤ θ(RL(f)−R∗
L) (2.1)

for all f and all distributions on (X,Y ). We refer to such a relationship as an
excess risk bound or regret bound.

Bartlett et al. study margin losses, which have the form L(y, t) = φ(yt) for
some φ : R → [0,∞). They show that non-trivial surrogate regret bounds exist
precisely when L is classification-calibrated, which is a technical condition they
develop. Note that margin losses are symmetric in the sense that L(y, t) =
L(−y,−t).

This work extends the work of Bartlett et al. in two ways. First, we consider
risks that account for label-dependent misclassification costs. Second, we study
asymmetric surrogate losses, not just margin losses. Such losses have advantages
for training with imbalanced data, as discussed below.

We develop the notion of α-classification calibrated losses, and show that
non-trivial excess risk bounds exist when L is α-classification calibrated, where
α ∈ (0, 1) represents the misclassification cost asymmetry. This condition is
a natural generalization of classification calibrated. We also give results that
facilitate the calculation of these bounds, and verification of which losses are
α-classification calibrated.
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To illustrate the theory of calibrated asymmetric surrogate losses, we study
in some detail the class of uneven margin losses, which have the form

L(y, t) = 1{y=1}φ(t) + 1{y=−1}βφ(−γt)

for some φ : R → [0,∞) and β, γ > 0. Various instances of such losses have ap-
peared in the literature (see Sec. 4 for specific references), primarily as heuristic
modifications of margin losses to account for cost asymmetry or imbalanced
data sets. They are computationally attractive because they can typically be
optimized by modifications of margin-based algorithms. However, statistical as-
pects of these losses have not been studied. We characterize when they are α-
classification calibrated and compute explicit surrogate regret bounds for four
specific examples of φ.

When applied to uneven margin losses, our work has practical implications
for adapting well-known algorithms, such as Adaboost and support vector ma-
chines, to settings with imbalanced data or label-dependent costs. These are
discussed in the concluding section.

Steinwart [31] extends the work of Bartlett et al. in a very general way that
encompasses several supervised and unsupervised learning problems. He ap-
plies this framework to cost-sensitive classification, but restricts his attention to
margin-based losses. His framework provides for an alternate derivation of an
excess risk bound for the asymmetric binary classification problem. This bound
is equivalent to the bound presented in Theorem 3.1 below, which is obtained
by generalizing the approach of Bartlett et al. For completeness, this alternate
perspective is presented in Appendix A.

Reid and Williamson [23, 25] also study α-classification calibrated losses and
derive surrogate regret bounds for cost-sensitive classification. Their focus is
on proper losses and class probability estimation, and unlike the present work,
they impose certain conditions on the surrogate loss, such as differentiability
everywhere. Therefore they do not address important losses such as the hinge
loss. In addition, their bounds are not in the form of (2.1), but rather are
stated implicitly. We also note that their examples of surrogate regret bounds
[23] consider only margin losses. Santos-Rodŕıguez et al. [27] apply Bregman
divergences to multiclass cost-sensitive classification, also with an emphasis on
proper losses and posterior probability estimation. A relationship between the
present work and proper losses is discussed at the end of Section 4.

Zhang [43] studies classification-calibrated losses for multiclass classification
and establishes consistency of various algorithms. While he does consider a
cost-sensitive risk, excess risk bounds are only developed for the cost-insensitive
case. Furthermore, the specific losses considered are multi-class margin losses,
and therefore do not accommodate asymmetric losses such as uneven margin
losses. Tewari and Bartlett [35] also study classification calibrated losses for
multiclass classification. They also consider the case of equal misclassification
costs, and their examples are symmetric in nature.

Scott [28] develops excess risk bounds for cost-sensitive classification with
example-dependent costs. The setting considered there encompasses the setting
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here as a special case. However, when specialized to the present setting, those
results are less precise and extensive than what we are able to obtain by a more
direct analysis. For example, those results require distributional assumptions,
and the excess risk bounds involve unknown constants, whereas here the results
are distribution-free and bounds can be calculated explicitly.

Among the numerous approaches cited in the introduction, some authors
have employed calibrated loss functions in the design of cost-sensitive classi-
fication algorithms [12, 16, 18]. The losses of Lin, Lee and Wahba [12] and
Masnadi-Shirazi and Vasconcelos [16] are special cases of the losses considered
here, while Masnadi-Shirazi and Vasconcelos [18] present a general procedure
for constructing losses that are calibrated and give rise to proper losses for class
probability estimation. In these papers, excess risk bounds are not derived, and
consistency of these algorithms is not established. With the results presented in
this paper, it is now possible to prove cost-sensitive consistency for a wide class
of algorithms based on surrogate losses. See Section 3.1.

We further note that the two recent papers by Masnadi-Shirazi and Vascon-
celos [16, 18], on cost-sensitive boosting and support vector machines, demon-
strate excellent performance relative to competing algorithms. This is evidence
for the practical advantage of uneven margin losses and of requiring asymmetric
surrogate losses to be calibrated.

Additional comparisons to related work are given throughout the paper. Fi-
nally, we remark that in the literature, the terms Fisher consistent and admis-
sible have also been used for the term classification-calibrated.

3. Surrogate losses and regret bounds

Let (X,Y ) have distribution P on X × {−1, 1}. Let F denote the set of all
measurable functions f : X → R. Every f ∈ F defines a classifier by the rule
x 7→ sign(f(x)), and in this context f is called a decision function. We adopt
the convention sign(0) = −1.

A loss for binary classification is a measurable function L : {−1, 1} × R →
[0,∞). Any loss can be written

L(y, t) = 1{y=1}L1(t) + 1{y=−1}L−1(t).

We refer to L1 and L−1 as the partial losses of L. The L-risk of f is RL(f) :=
EX,Y [L(Y, f(X))]. The optimal L-risk is R∗

L := inff∈F RL(f). The cost-sensitive
classification loss with cost parameter α ∈ (0, 1) is

Uα(y, t) := (1− α)1{y=1}1{t≤0} + α1{y=−1}1{t>0}.

When L = Uα, we write Rα(f) and R
∗
α instead of RUα

(f) and R∗
Uα

. Although
other parametrizations of cost-sensitive classification losses are possible, this one
is convenient because an optimal classifier is sign(η(x)−α) where η(x) := P (Y =
1|X = x). See Lemma 3.1 below.

We are motivated by applications where it is desirable to minimize the Uα-
risk, but the empirical Uα-risk cannot be optimized efficiently. In such situations
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it is common to minimize the (empirical) L-risk for some surrogate loss L that
has a computationally desirable property such as differentiability or convexity
in the second argument.

Define the conditional L-risk

CL(η, t) := ηL1(t) + (1− η)L−1(t)

for η ∈ [0, 1], t ∈ R, and the optimal conditional L-risk C∗
L(η) = inft∈R CL(η, t)

for η ∈ [0, 1]. These are so-named because RL(f) = EX [CL(η(X), f(X))] and
R∗

L(η) = EX [C∗
L(η(X))]. Note that we use η to denote both the function

η(x) = P (Y = 1|X = x) and a scalar η ∈ [0, 1]. The meaning should be
clear from context. When L = Uα, we write Cα(η, t) and C∗

α(η) for CUα
(η, t)

and C∗
Uα

(η). Measurability issues with these and other quantities are addressed
by Steinwart [31].

The following lemma collects some important properties of the risk associated
to the cost-sensitive classification loss Uα.

Lemma 3.1. Let α ∈ (0, 1). For any η ∈ [0, 1], t ∈ R,

Cα(η, t)− C∗
α(η) = 1{sign(t) 6=sign(η−α)}|η − α|.

For any f ∈ F ,

Rα(f)−R∗
α = EX [1{sign(f(X)) 6=sign(η(X)−α)}|η(X)− α|].

The proof appears in Appendix B.
This section has three parts. In 3.1 the work of Bartlett, Jordan and McAuliffe

[2], on surrogate regret bounds for margin losses and cost-insensitive classifica-
tion, is extended to general losses and cost-sensitive classification. In 3.2, the
important special case of cost-insensitive classification with general losses is
treated, and in 3.3, some results for the case of convex partial losses are pre-
sented.

3.1. α-classification calibration and surrogate regret bounds

For α ∈ (0, 1) and any loss L, define

HL,α(η) := C−
L,α(η)− C∗

L(η)

for η ∈ [0, 1], where

C−
L,α(η) := inf

t∈R:t(η−α)≤0
CL(η, t).

Note that HL,α(η) ≥ 0 for all η ∈ [0, 1].

Definition 3.1. We say L is α-classification calibrated, and write L is α-CC, if
HL,α(η) > 0 for all η ∈ [0, 1], η 6= α.
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Intuitively, L is α-CC if, for all x such that η(x) 6= α, the value of t = f(x)
minimizing the conditional L-risk has the same sign as the optimal predictor
η(x) − α.

We will argue that an excess risk bound exists if and only if L is α-CC, and
give an explicit construction of the bound in terms of L. The construction of the
bound is, intuitively, based on two ideas. First, conditioned onX , the conditional
target regret ǫ = Cα(η, t) − C∗

α(η) is related to the worst possible conditional
surrogate regret, given η = η(X). This is captured by the variable νL,α(ǫ) below.
Second, a bound in terms of the excess risks is obtained by integrating over X .
To preserve the inequality in the second step, it is necessary to replace νL,α by
a tight convex lower bound, so that Jensen’s inequality may be applied. The
details now follow.

Denote Bα := max(α, 1 − α). By Lemma 3.1, the regret, Rα(f) − R∗
α, and

conditional regret, Cα(η, t)− C∗
α(η), both take values in [0, Bα]. Next, define

νL,α(ǫ) = min
η∈[0,1]:|η−α|=ǫ

HL,α(η)

for ǫ ∈ [0, Bα]. Notice that there are either 1 or 2 η such that |η − α| = ǫ. Thus
for α ≤ 1

2 ,

νL,α(ǫ) =

{
min(HL,α(α+ ǫ), HL,α(α− ǫ)), 0 ≤ ǫ ≤ α
HL,α(α+ ǫ), α < ǫ ≤ 1− α

(3.1)

and for α ≥ 1
2 ,

νL,α(ǫ) =

{
min(HL,α(α+ ǫ), HL,α(α− ǫ)), 0 ≤ ǫ ≤ 1− α
HL,α(α− ǫ), 1− α < ǫ ≤ α.

(3.2)

Finally, define ψL,α(ǫ) = ν∗∗L,α(ǫ) for ǫ ∈ [0, Bα], where g
∗∗ denotes the Fenchel-

Legendre biconjugate of g. The biconjugate of g is the largest convex lower
semi-continuous function that is ≤ g, and is defined by

Epi g∗∗ = coEpi g,

where Epi g = {(r, s) : g(r) ≤ s} is the epigraph of g, co denotes the convex
hull, and the bar indicates set closure.

The next lemma gives some important properties of the above quantities.

Lemma 3.2. Let L be a loss, α ∈ (0, 1), and recall Bα = max(α, 1 − α).

1. (a) C∗
L(η) is concave on [0, 1]. (b) C−

L,α(η) is concave on [0, α) and on (α, 1].

2. (a) C∗
L(η) is continuous on [0, 1]. (b) C−

L,α(η) and HL,α(η) are continuous

on [0, 1]\{α}. (c) If L is α-CC, then C−
L,α and HL,α are continuous on

[0, 1].
3. HL,α(α) = νL,α(0) = ψL,α(0) = 0.
4. νL,α is lower semi-continuous on [0, Bα]. ψL,α is continuous on [0, Bα].
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The proof appears in Appendix B.
Since νL,α(0) = 0 (Lemma 3.2, part 3), νL,α is nonnegative, and ψL,α is

convex, we deduce ψL,α(0) = 0 and ψL,α is nondecreasing. We can now state:

Theorem 3.1. Let L be a loss and α ∈ (0, 1).

1. For all f ∈ F and all distributions P ,

ψL,α(Rα(f)−R∗
α) ≤ RL(f)−R∗

L.

2. ψL,α is invertible if and only if L is α-CC.

Notice that the first part of the theorem holds for all losses. However, it is
possible that ψL,α is not invertible. Since ψL,α(0) = 0 and ψL,α is convex, this
would mean ψL,α(ǫ) = 0, 0 ≤ ǫ ≤ ǫ0, for some ǫ0, and it could happen that
RL(f) − R∗

L tends to zero while Rα(f) − R∗
α does not. The second part of the

theorem says precisely when an excess risk bound exists.

Proof. For the first part, by Lemma 3.1 we know

Rα(f)−R∗
α = EX [1{sign f(X) 6=sign(η(X)−α)}|η(X)− α|]

≤ EX [1{f(X)(η(X)−α)≤0}|η(X)− α|].

Then

ν∗∗L,α(Rα(f)−R∗
α)

≤ EX [ν∗∗L,α(1{f(X)(η(X)−α)≤0}|η(X)− α|)]
[by Jensen’s inequality]

≤ EX [νL,α(1{f(X)(η(X)−α)≤0}|η(X)− α|)]
= EX [1{f(X)(η(X)−α)≤0}νL,α(|η(X)− α|)]

[because νL,α(0) = 0 (Lemma 3.2, part 3)]

= EX

[
1{f(X)(η(X)−α)≤0} min

η′∈[0,1]:|η′−α|=|η(X)−α|
HL,α(η

′)

]

≤ EX [1{f(X)(η(X)−α)≤0}HL,α(η(X))]

= EX

[
1{f(X)(η(X)−α)≤0}

(
inf

t:t(η(X)−α)≤0
CL(η(X), t)− C∗

L(η(X))

)]

≤ EX [CL(η(X), f(X))− C∗
L(η(X))]

= RL(f)−R∗
L.

Now consider the second part. If ψL,α is invertible, then ψL,α(ǫ) > 0 for all
ǫ ∈ [0, Bα], because ψL,α(0) = 0 (Lemma 3.2, part 3) and ψL,α is nonnegative.
Since ψL,α ≤ νL,α, we know νL,α(ǫ) > 0 for all ǫ ∈ (0, Bα], which by definition
of νL,α implies HL,α(η) > 0 for all η 6= α. Thus L is α-CC.

Conversely, now suppose L is α-CC. We claim that ψL,α(ǫ) > 0 for all ǫ ∈
(0, Bα]. To see this, suppose ψL,α(ǫ) = 0. Since νL,α is lower semi-continuous
(Lemma 3.2, part 4), Epi νL,α and coEpi νL,α are closed sets. Therefore, (ǫ, 0) is
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a convex combination of points in Epi νL,α. Since L is α-CC, we know νL,α(ǫ) > 0
for all ǫ ∈ (0, Bα]. Therefore ǫ = 0. This proves the claim.

Since ψL,α(0) = 0 and ψL,α is convex and nondecreasing, it follows that ψL,α

is strictly increasing. Since ψL,α is continuous (Lemma 3.2, part 3), we conclude
that ψL,α is invertible.

If L is α-CC, then Rα(f) − R∗
α ≤ ψ−1

L,α(RL(f) − R∗
L). Since ψL,α(0) = 0

and ψL,α is nondecreasing, the same is true of ψ−1
L,α. As a result, we can show

that an algorithm that is consistent for the L-risk is also consistent for the α
cost-sensitive classification risk.

Corollary 3.1. Suppose L is α-CC.

1. If RL(fi)−R∗
L → 0 for some sequence of decision functions fi, then Rα(fi)−

R∗
α → 0.

2. Let f̂n be a classifier based on the random sample (X1, Y1), . . . , (Xn, Yn). If

RL(f̂n) − R∗
L → 0 in probability, then Rα(f̂n) − R∗

α → 0 in probability.

If RL(f̂n) − R∗
L → 0 with probability one, then Rα(f̂n) − R∗

α → 0 with
probability one.

Proof. Since L is α-CC, ψL,α is invertible. For any ǫ ∈ (0, Bα], if RL(f)−R∗
L <

ψL,α(ǫ), then Rα(f)−R∗
α ≤ ψ−1

L,α(RL(f)−R∗
L) < ǫ. Now 1 follows.

Assume RL(f̂n)−R∗
L → 0 in probability. By the above reasoning, if Rα(f)−

R∗
α ≥ ǫ, then RL(f)−R∗

L ≥ ψL,α(ǫ). Therefore, for any ǫ ∈ (0, Bα],

P (Rα(f̂n)−R∗
α ≥ ǫ) ≤ P (RL(f̂n)−R∗

L ≥ ψL,α(ǫ)) → 0

as n→ ∞ by assumption.
Assume RL(f̂n)−R∗

L → 0 with probability one. By part 1,

P
(
lim
n→∞

Rα(f̂n)− R∗
α = 0

)
≥ P

(
lim
n→∞

RL(f̂n)−R∗
L = 0

)
= 1.

Hence Rα(f̂n)−R∗
α → 0 with probability one.

At this point in the exposition, it would be desirable to give an example
of an excess risk bound for a specific loss. However, there are some additional
results needed to enable the calculation of HL,α. These are developed in the
next two subsections. Then in Section 4, we will calculate some explicit bounds
for uneven margin losses.

3.2. Cost-insensitive classification

We turn our attention to the cost-insensitive or 0/1 loss,

U(y, t) := 1{y=1}1{t≤0} + 1{y=−1}1{t>0} = 2U1/2(y, t).

This loss is not only important in its own right, but the associated quantity HL,
defined below, is useful for calculating HL,α when α 6= 1

2 , as explained below.
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The results in this section generalize those of Bartlett, Jordan and McAuliffe
[2], who focus on margin losses. Here no restrictions are placed on the partial
losses L1 and L−1.

For an arbitrary loss L, define

HL(η) := C−
L (η)− C∗

L(η)

for η ∈ [0, 1], where

C−
L (η) := inf

t:t(2η−1)≤0
CL(η, t).

Also define for ǫ ∈ [0, 1]

νL(ǫ) := min
η∈[0,1]:|2η−1|=ǫ

HL(η)

= min{HL(
1+ǫ
2 ), HL(

1−ǫ
2 )}.

Finally, define ψL(ǫ) = ν∗∗L (ǫ) for ǫ ∈ [0, 1].

The following definition was introduced by Bartlett, Jordan and McAuliffe
[2] in the context of margin losses.

Definition 3.2. If HL(η) > 0 for all η ∈ [0, 1], η 6= 1
2 , L is said to be classifica-

tion calibrated, and we write L is CC.

For margin losses, this coincides with the definition of [2], and our HL

equals their ψ̃. Also note that HL(η) = HL,1/2(η), and therefore L is CC iff

L is 1
2 -CC. When L = U , we write R(f), R∗, C(η, t), and C∗(η) instead of

RU (f), R
∗
U , CU (η, t), and C

∗
U (η), respectively.

Theorem 3.2. Let L be a loss.

1. For any f ∈ F and any distribution P ,

ψL(R(f)−R∗) ≤ RL(f)−R∗
L.

2. ψL is invertible if and only if L is CC.

Proof. The proof follows from Theorem 3.1 and the relationships C(η, t) =
2C1/2(η, t), C

∗(η) = 2C∗
1/2(η), HL(η) = HL,1/2(η), νL(ǫ) = νL,1/2(

ǫ
2 ), and

ψL(ǫ) = ψL,1/2(
ǫ
2 ). Thus, to prove 1, note

ψL(R(f)−R∗) = ψL,1/2(
1
2EX [C(η(X), f(X))− C∗(η(X))])

= ψL,1/2(EX [C1/2(η(X), f(X))− C∗
1/2(η(X))])

= ψL,1/2(R1/2(f)−R∗
1/2)

≤ RL(f)−R∗
L.

To prove 2, note ψL is invertible ⇐⇒ ψL,1/2 is invertible ⇐⇒ L is 1
2 -CC

⇐⇒ L is CC.
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When L is a margin loss, HL is symmetric with respect to η = 1
2 , and

the above result reduces to the surrogate regret bound established by Bartlett,
Jordan and McAuliffe [2].

The following extends a result for margin losses noted by Steinwart [31]. For
any loss L, we can express HL,α in terms of HL. This facilitates the calculation
of HL,α and therefore νL,α and ψL,α.

Given the loss L(y, t) = 1{y=1}L1(t) + 1{y=−1}L−1(t) and α ∈ (0, 1) define

Lα(y, t) := (1− α)1{y=1}L1(t) + α1{y=−1}L−1(t).

Introduce wα(η) = (1− α)η + α(1 − η) and

ϑα(η) =
(1− α)η

(1− α)η + α(1 − η)
.

Using these expressions, we can relate CLα
to CL as

CLα
(η, t) = (1− α)ηL1(t) + α(1 − η)L−1(t)

= wα(η)[ϑα(η)L1(t) + (1 − ϑα(η))L−1(t)]

= wα(η)CL(ϑα(η), t).

This observation gives rise to the following result.

Theorem 3.3. For any loss L and any α ∈ (0, 1),

1. For all η ∈ [0, 1],
HLα,α(η) = wα(η)HL(ϑα(η)). (3.3)

2. L is CC ⇐⇒ Lα is α-CC.
3. L is α-CC ⇐⇒ L1−α is CC.

The second and third parts allow us to convert from an α-CC loss to an
α′-CC loss through simple scaling. If L is α-CC, then by part 3, L1−α is CC,
and so (L1−α)α′ = (1− α′)α1{y=1}L1(t) + (1− α)α′1{y=−1}L−1(t) is α

′-CC by
part 2.

Proof. Notice that wα(η) > 0 for all η ∈ [0, 1], and 2ϑα(η)− 1 = (η−α)/wα(η).
Thus sign(2ϑα(η)−1) = sign(η−α). In addition, ϑα : [0, 1] → [0, 1] is a bijection.
To prove 1, we use the identity CLα

(η, t) = wα(η)CL(ϑα(η), t) established above.
Then C∗

Lα
(η) = wα(η)C

∗
L(ϑα(η)) and

C−
L,α(η) = inf

t∈R:t(η−α)≤0
CLα

(η, t)

= wα(η) inf
t:t(2ϑα(η)−1)≤0

CL(ϑα(η), t)

= wα(η)C
−
L (ϑα(η)).

Hence

HLα,α(η) = C−
L,α(η)− C∗

Lα
(η)

= wα(η)[C
−
L (ϑα(η))− C∗

L(ϑα(η))]

= wα(η)HL(ϑα(η)).
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The second statement follows from 1, the positivity of wα, and the fact that ϑα
is a bijection with ϑα(α) =

1
2 .

To prove the third statement, notice (L1−α)α = α(1 − α)L. Therefore, L is
α-CC ⇐⇒ α(1−α)L is α-CC ⇐⇒ (L1−α)α is α-CC ⇐⇒ L1−α is CC, where
the last equivalence follows from 2.

3.3. Convex partial losses

When the partial losses L1 and L−1 are convex, we can deduce some convenient
characterizations of α-CC losses.

Theorem 3.4. Let L be a loss and α ∈ (0, 1). Assume L1 and L−1 are convex
and differentiable at 0. Then L is α-CC if and only if

L′
1(0) < 0, L′

−1(0) > 0, and αL′
1(0) + (1− α)L′

−1(0) = 0 (3.4)

A similar result appears in Reid and Williamson [24], and when the loss is a
composite proper loss the results are equivalent. Their result is expressed in the
context of class probability estimation, while our result is tailored directly to
classification. Although the proofs are essentially the same, our setting allows
us to state the result without assuming the loss is differentiable everywhere.
Thus, it encompasses losses that are not suitable for class probability estimation,
such as the uneven hinge loss described below. We also make an observation
in the special case where α = 1

2 and L is a margin loss, also noted by Reid
and Williamson [24]. Then L′

1(0) = φ′(0) and L′
−1(0) = −φ′(0), and (3.4)

is equivalent to φ′(0) < 0, the condition identified by Bartlett, Jordan and
McAuliffe [2].

Proof. Note that ∂
∂tCL(η, 0) = ηL′

1(0) + (1 − η)L′
−1(0). Now L is α-CC if and

only if C−
L,α(η) > C∗

L(η) for all η ∈ [0, 1], η 6= α, and by convexity of L1 and
L−1, the latter condition holds if and only if

ηL′
1(0) + (1− η)L′

−1(0)

{
< 0 if η > α
> 0 if η < α

. (3.5)

Thus, we must show (3.4) ⇐⇒ (3.5). Assume (3.5) holds. Since η 7→ ηL′
1(0)+

(1−η)L′
−1(0) is continuous, we must have αL′

1(0)+(1−α)L′
−1(0) = 0. L′

1(0) < 0
follows from (3.5) with η = 1, and L′

−1(0) > 0 follows from (3.5) with η = 0.
Now suppose (3.4) holds. Then η 7→ ηL′

1(0) + (1 − η)L′
−1(0) is an affine

function with negative slope that outputs 0 when η = α. Thus (3.5) holds.

The following result facilitates calculation of regret bounds.

Theorem 3.5. Assume L1 and L−1 are convex.

1. If L is α-CC, then C−
L,α(η) = ηL1(0) + (1 − η)L−1(0) and HL,α is convex.

2. If L is CC, then C−
L (η) = ηL1(0) + (1− η)L−1(0), and HL is convex.
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Proof. The formulas for C−
L,α and C−

L follow from definitions and convexity of

L1 and L−1. HL,α(η) = C−
L,α(η) − C∗

L(η) is convex because C−
L,α is affine and

C∗
L is concave (Lemma 3.2, part 1). Therefore HL = HL,1/2 is also convex.

4. Uneven margin losses

We now apply the preceding theory to a special class of asymmetric losses.

Definition 4.1. Let φ : R → [0,∞) and β, γ > 0. We refer to the losses

L(y, t) = 1{y=1}φ(t) + 1{y=−1}βφ(−γt)

and
Lα(y, t) = (1− α)1{y=1}φ(t) + α1{y=−1}βφ(−γt)

as uneven margin losses.

When β = γ = 1, L in Definition 4.1 is a conventional margin loss, and Lα

can be called an α-weighted margin loss. Since they differ from margin losses
by a couple of scalar parameters, empirical risks based on uneven margin losses
can typically be optimized by modified versions of margin-based algorithms.

Before proceeding, we offer a couple of comments on Definition 4.1. First,
although β may appear redundant in Lα, it is not. α is fixed at a desired cost
parameter, and thus is not tunable. Second, there would be no added benefit
from a loss of the form 1{y=1}φ(γ

′t) + 1{y=−1}βφ(−γt). We may assume γ′ = 1
without loss of generality since scaling a decision function f by a positive con-
stant does not alter the induced classifier. However, alternate parametrizations
such as 1{y=1}φ((1 − ρ)t) + 1{y=−1}βφ(−ρt), ρ ∈ (0, 1), might be desirable in
some situations.

A common motivation for uneven margin losses is classification with an imbal-
anced training data set. In imbalanced data, one class has (often substantially)
more representation than the other, and margin losses have been observed to
perform poorly in such situations. Weighted margin losses, which have the form
α′1{y=1}φ(t)+(1−α′)1{y=−1}φ(−t), are often used as a heuristic for imbalanced
data, with α′ serving as a tunable parameter. However, there is no reason why
the α′ that yields good performance on imbalanced data will be the desired cost
parameter α. In other words, this heuristic typically results in losses that are
not α-CC.

The parameter γ offers another means to accommodate imbalanced data.
Such losses have previously been explored in the context of specific algorithms,
including the perceptron [11], boosting [16], and support vector machines [10,
18, 42]. Uneven margins (γ 6= 1) have been found to yield improved empirical
performance in classification problems involving label-dependent costs and/or
imbalanced data.

Prior work has not addressed whether uneven margin losses, in the general
form presented here, are CC or α-CC. The following result clarifies the issue for
convex φ.
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Corollary 4.1. Let φ be convex and differentiable at 0, let β, γ > 0 and let L,
Lα be the associated uneven margin losses as in Definition 4.1. The following
are equivalent:

(a) L is CC
(b) Lα is α-CC
(c) β = 1

γ and φ′(0) < 0.

Proof. The equivalence of (a) and (b) follows from Theorem 3.3, and the equiv-
alence of (b) and (c) follows from Theorem 3.4.

This result implies that for any α ∈ (0, 1) and γ > 0,

Lα(y, t) = (1− α)1{y=1}φ(t) +
α

γ
1{y=−1}φ(−γt)

is α-CC provided φ is convex and φ′(0) < 0. For such φ we have therefore
reached the following conclusion: γ is a parameter that can be tuned as needed,
such as for imbalanced data, while the loss remains α-CC.

Figure 1 displays the partial losses for three common φ and for three values
of γ. If φ is not convex, then uneven margin losses can still be α-CC, but the
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Fig 1. Partial losses of an uneven margin loss, for three common φ (hinge, squared error,
and exponential) and three values of γ.
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necessary relationship between β and γ may be different from that given by
Corollary 4.1. An example is given below where φ is a sigmoid.

To illustrate the general theory developed in Sec. 2, four examples of uneven
margin losses, corresponding to different φ, are now considered in detail. The
first three are convex, while the fourth is not. In each case, the primary effort
goes in to computing HL(η) = C−

L (η)−C∗
L(η). Given HL, HLα,α is determined

by Eqn. (3.3), and νLα,α by Eqns. (3.1) and (3.2). For the convex φ, all of which
satisfy φ(0) = 1, C−

L (η) = η + 1
γ (1 − η) by Theorem 3.5, part 2.

4.1. Uneven hinge loss

Let φ(t) = (1 − t)+, where (s)+ = max(0, s). Then

L(y, t) = 1{y=1}(1 − t)+ + 1{y=−1}
1

γ
(1 + γt)+

and

CL(η, t) = η(1− t)+ +
1− η

γ
(1 + γt)+

=





η(1− t), t ≤ − 1
γ

η(1− t) + 1−η
γ (1 + γt), −1

γ < t < 1
1−η
γ (1 + γt), t ≥ 1.

Since CL is piecewise linear and continuous, we know C∗
L(η) is the value of

CL(η, t) when t is one of the two knot locations. Thus

C∗
L(η) = min(η(1 + 1

γ ),
1−η
γ (1 + γ))

= 1+γ
γ min(η, 1− η)

and

HL(η) = η + 1
γ (1− η)− 1+γ

γ min(η, 1− η)

=

{
2η − 1, η ≥ 1

2
1−2η
γ , η < 1

2 .

Now HLα,α(η) is given by Eqn. (3.3), and νLα,α is given by Eqns. (3.1) and
(3.2). For the hinge case these expressions simplify considerably:

HLα,α(η) =

{
η − α, η ≥ α
α−η
γ , η < α.

Expressions for νLα,α are given below. Figure 2 shows HLα,α and νLα,α for three
values of α and four values of γ.
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Fig 2. Uneven hinge loss. HLα,α (left column) and νLα,α (right column) for three values
of α and four values of γ.

These plots illustrate how νLα,α is sometimes discontinuous at min(α, 1−α).
We can characterize when νLα,α has a discontinuity as follows. From Eqn. (3.1),
for α < 1

2 ,

νLα,α(ǫ) =

{
min(ǫ, ǫ

γ ), 0 ≤ ǫ ≤ α

ǫ, α < ǫ ≤ 1− α.
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This is discontinuous at α iff γ > 1. By Eqn. (3.2), for α > 1
2 ,

νLα,α(ǫ) =

{
min(ǫ, ǫ

γ ), 0 ≤ ǫ ≤ 1− α
ǫ
γ , 1− α < ǫ ≤ α.

This is discontinuous at 1− α iff γ < 1. If α = 1
2 , νLα,α is never discontinuous.

In summary, νLα,α is discontinuous at min(α, 1− α) iff (α− 1
2 )(γ − 1) < 0.

4.2. Uneven squared error loss

Now let φ(t) = (1− t)2. Then

L(y, t) = 1{y=1}(1− t)2 + 1{y=−1}
1

γ
(1 + γt)2

and

CL(η, t) = η(1 − t)2 +
1− η

γ
(1 + γt)2.

The minimizer of CL(η, t) is

t∗ =
2η − 1

η + γ(1− η)
.

This yields (after some algebra)

C∗
L(η) = CL(η, t

∗) =
(1 + γ)2

γ
· η(1− η)

η + γ(1− η)
,

and therefore

HL(η) = η +
1

γ
(1− η)− (1 + γ)2

γ
· η(1− η)

η + γ(1− η)
.

Applying Equation (3.3) and after some simplification, we obtain

HLα,α(η) = (1− α)η +
1

γ
α(1 − η)− (1 + γ)2

γ
· α(1 − α)η(1 − η)

(1− α)η + γα(1− η)
.

Figure 3 show plots of HLα,α and νLα,α for various values of α and γ. We see
again evidence that νLα,α can be discontinuous at min(α, 1 − α).

As in the other example, we have not indicated ψLα,α. Yet it can easily
be visualized as the largest convex minorant of νLα,α. In many cases, νLα,α is
actually convex and hence equals ψLα,α. The same comment applies to the hinge
and exponential examples.
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Fig 3. Uneven squared error loss. HLα,α (left column) and νLα,α (right column) for
three values of α and four values of γ.

4.3. Uneven exponential loss

Now let φ(t) = e−t and consider

L(y, t) = 1{y=1}e
−t + 1{y=−1}

1

γ
eγt.
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Then

CL(η, t) = ηe−t +
1− η

γ
eγt

is minimized by

t∗ =
1

1 + γ
ln

(
η

1− η

)
,

yielding

C∗
L(η) = CL(η, t

∗) = η

(
1− η

η

) 1
1+γ

+ (1− η)

(
η

1− η

) γ
1+γ

.

From this we obtain

HL(η) = η +
1

γ
(1− η)− η

(
1− η

η

) 1
1+γ

+ (1− η)

(
η

1− η

) γ
1+γ

.

Applying Equation (3.3) and after some simplification, we have

HLα,α(η) = (1− α)η

[
1−

(
α(1 − η)

(1− α)η

) 1
1+γ

]
+ α(1− η)

[
1

γ
−
(
(1− α)η

α(1− η)

) γ

1+γ

]
.

Figure 4 shows plots of HLα,α and νLα,α for various α and γ.

4.4. Uneven sigmoid loss

Finally we consider a nonconvex φ, namely the sigmoid function φ(t) = 1/(1 +
et). For concreteness, we fix γ = 2 and study

L(y, t) = 1{y=1}
1

1 + et
+ 1{y=−1}

1

2

1

1 + e−2t
.

General γ will be discussed later.
Since φ is not convex, we cannot conclude L is CC. In fact, we will show that

L is α-CC for α = (3 + 4
√
2)/23 ≈ 0.37639.

Figure 5 shows

CL(η, t) = η
1

1 + et
+

1− η

2

1

1 + e−2t

as a function of t, for six different η. These graphs are useful in understanding
C−

L,α(η) and C∗
L(η). When η < 1

2 , it can be shown that CL(η, t) has a single

local minimum and a single local maximum. When η ≥ 1
2 , on the other hand,

CL(η, t) is strictly decreasing. Let t−(η) denote the local minimizer when η < 1
2 .

This function can be expressed in closed form. See Appendix C for these and
other details.

First, we determine C∗
L. The infimum of CL(η, t) over t ∈ R is either CL(η, t−(η))

or CL(η,∞) = (1 − η)/2. As indicated by Figure 5, CL(η, t−(η)) = CL(η,∞)
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Fig 4. Uneven exponential loss. HLα,α (left column) and νLα,α (right column) for three
values of α and four values of γ.

when η = α = (3 + 4
√
2)/23 ≈ 0.37639. See Appendix C for proof of this fact.

When η < α, C∗
L(η) = CL(η, t−(η)), and when η ≥ α, C∗

L(η) = CL(η,∞) =
(1− η)/2. Thus,

C∗
L(η) =

{
CL(η, t−(η)), η < α
1−η
2 , η ≥ α.
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Fig 5. Uneven sigmoid loss with γ = 2. CL(η, t) is graphed as a function of t for six
values of η. The circles indicate (t−(η), CL(η, t−(η))).

Next, consider C−
L,α. When η < α, C−

L,α(η) is either CL(η, 0) = (1 + η)/4

or CL(η,∞) = (1 − η)/2. Since 1+η
4 < 1−η

2 ⇐⇒ η < 1
3 , we have C−

L,α(η) =

(1 + η)/4 for 0 ≤ η ≤ 1
3 and C−

L,α(η) = (1 − η)/2 if 1
3 < η < α. When η ≥ α,
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C−
L,α(η) = CL(η, t−(η)) when α ≤ η ≤ 1

2 , and C
−
L,α(η) = CL(η, 0) = (1 + η)/4

for η ≥ 1
2 . In summary,

C−
L,α(η) =





1+η
4 , 0 ≤ η ≤ 1

3 or η ≥ 1
2

1−η
2 , 1

3 < η < α
CL(η, t−(η)), α < η < 1

2 .

Now HL,α(η) = C−
L,α(η)−C∗

L(η). See Figure 6 for plots of these quantities. This
is our first example where HL,α is not convex.

Finally, the preceding discussion can be extended to arbitrary γ > 0. For
every γ > 0 there is a unique α = α(γ) ∈ (0, 1) such that

L(y, t) = 1{y=1}
1

1 + et
+ 1{y=−1}

1

γ

1

1 + e−γt
(4.1)

is α-CC. The relationship between α and γ is shown in Figure 7. Calculation of
this curve is discussed in Appendix C. In the appendix we show that α( 1γ ) =

1− α(γ), which explains the sigmoidal shape of α as a function1 of ln γ.

1We investigated whether α(γ) = 1/(1 + ec ln γ) for some c > 0, but evidently it does not.
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Fig 7. Uneven sigmoid loss. Plot of the unique value of α = α(γ) such that the uneven
sigmoid loss with parameter γ > 0 (Eqn. (4.1)) is α-CC.

Now suppose α′ ∈ (0, 1) is the desired cost asymmetry. By Theorem 3.3, for
L in Eqn. (4.1), L1−α(γ) is CC, and therefore (L1−α(γ))α′ is α′-CC. This is a
family of losses, indexed by γ > 0, all of which are α′-CC.

4.5. Relation to proper losses

We briefly mention a relationship between uneven margin losses and proper
losses for class probability estimation. Proper losses, and their relationship to
calibrated losses, have recently been studied by Reid and Williamson [24] and
Masnadi-Shirazi and Vasconcelos [17]. We begin by introducing these concepts.

A class probability estimator is a function η̂ : X → [0, 1] that predicts the
posterior probability of Y = 1 given X = x. A loss for class probability es-
timation is a function ℓ(y, η̂), and the goal in designing η̂ is to minimize the
expected loss, or risk, Rℓ(η̂) := EX,Y [ℓ(Y, η̂(X))]. This risk may be written
Rℓ(η̂) = EX [Cℓ(η(X), η̂(X))], where Cℓ(η, η̂) := ηℓ(1, η̂) + (1 − η)ℓ(−1, η̂). The
loss ℓ is said to be a proper loss if and only if, for each η ∈ [0, 1], Cℓ(η, η̂) is mini-
mized by η̂ = η. Such losses are desirable as they ensure that the risk-minimizing
predictor is optimal.

A loss function for binary classification can be converted to a loss function
for class probability estimation through a link function, which is an invertible
function ψ : [0, 1] → R. If L is a loss for binary classification, then

ℓ(y, η̂) := L(y, ψ(η̂)), (4.2)

is a loss for class probability estimation. Reid and Williamson [24] refer to such
losses as composite binary losses, and give a necessary condition on the link
function for ℓ in (4.2) to be proper. Specifically, their Corollary 12 states that if
the partial losses L1 and L−1 of L are differentiable, then the link must satisfy

ψ−1(t) =
L′
−1(t)

L′
−1(t)− L′

1(t)
(4.3)
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for ℓ to be proper. The significance of this result is that it justifies the following
approach to class probability estimation: Use a loss L to learn a classifier (which
is a well studied problem with many efficient algorithms), and then map the
resulting decision function f to a class probability estimator via the relation

η̂(x) = ψ−1(f(x)).

This result can be applied to uneven margin losses provided φ is differentiable
(thus the uneven hinge loss is excluded). For example, for the uneven exponential
loss with cost parameter α ∈ (0, 1) and uneven margin parameter γ > 0, we find
that

ψ−1(t) =
αeγt

αeγt + (1− α)e−t

resulting in the proper loss

ℓ(y, η̂) = 1{y=1}(1 − α)

[
(1− η̂)α

η̂(1− α)

] 1
1+γ

+ 1{y=−1}
α

γ

[
η̂(1− α)

(1− η̂)α

] γ

1+γ

.

For the uneven sigmoid loss, the right-hand side of (4.3) is not invertible, and
therefore the uneven sigmoid loss cannot give rise to a proper loss. It would be
interesting to investigate whether uneven margin losses offer any advantages for
the estimation of class probabilities.

5. Discussion

The results of Bartlett, Jordan and McAuliffe [2] concerning surrogate regret
bounds and classification calibration are generalized to label-dependent misclas-
sification costs and arbitrary losses. Some differences that emerge in this more
general framework are that HL,α(η) is in general not symmetric about η = 1

2 ,
and νL,α(ǫ) is potentially discontinuous at ǫ = min(α, 1 − α).

The class of uneven margin losses are examined in some detail. We hope
these results provide guidance to future work with such losses, as our theory
explains how to ensure α-classification calibration for any margin asymmetry
parameter γ > 0. For example, Adaboost is often applied to heavily imbalanced
data sets where misclassification costs are label-dependent, such as in cascades
for face detection [38]. It should be possible to generalize Adaboost to have an
uneven margin (to accommodate imbalanced data) while being α-classification
calibrated for any α ∈ (0, 1). In particular, the uneven exponential loss from
Sec. 4.3 can be optimized by the functional gradient descent approach. In fact,
Masnadi-Shirazi and Vasconcelos [16] developed such an algorithm for the spe-
cial case γ = α/(1− α), but did not identify the generalization to arbitrary γ.

Our theory also sheds light on the support vector machine with uneven mar-
gin. Yang, Yang andWang [42] describe an implementation of this algorithm, but
they allow for both β and γ to be free parameters. Our Corollary 4.1 constrains
β = 1/γ for classification calibration, which eliminates a tuning parameter.
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In closing, we mention two additional directions for future work. First, an
interesting problem related to uneven margin losses is that of surrogate tuning,
which in this case is the problem of tuning the parameter γ to a particular data
set. Nock and Nielsen [21] have recently described a data-driven approach to
surrogate tuning of classification-calibrated (α = 1

2 ) losses. Second, our regret
bounds should be applicable to proving cost-sensitive consistency and rates of
convergence for specific algorithms based on surrogate losses.
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Appendix A: The calibration function perspective

In this appendix we present an alternative, though ultimately equivalent, ap-
proach to excess risk bounds for asymmetric binary classification problems. Ad-
ditional properties of α-CC losses are derived, and connections to Steinwart
[31] are established. We begin with an alternate definition of α-classification
calibrated.

Definition A.1. We say L is α-CC’ if, for all ǫ > 0, η ∈ [0, 1], there exists
δ > 0 such that

CL(η, t)− C∗
L(η) < δ =⇒ Cα(η, t)− C∗

α(η) < ǫ. (A.1)

We say L is uniformly α-CC’ if, for all ǫ > 0, there exists δ > 0 such that

∀η ∈ [0, 1], CL(η, t)− C∗
L(η) < δ =⇒ Cα(η, t)− C∗

α(η) < ǫ. (A.2)

Recall Bα = max(α, 1 − α). For ǫ ∈ [0, Bα] also define

µL,α(ǫ) := inf
η∈[0,1]:|η−α|≥ǫ

HL,α(ǫ) = inf
ǫ≤ǫ′≤Bα

νL,α(ǫ
′).

Clearly µL,α is nondecreasing. Since 0 ≤ µL,α(0) ≤ νL,α(0) = 0, we also know
µL,α(0) = 0.

Lemma A.1. Let α ∈ (0, 1). For any loss L,

1. For all ǫ > 0, η ∈ [0, 1]

CL(η, t)− C∗
L(η) < HL,α(η) =⇒ Cα(η, t)− C∗

α(η) < ǫ.

2. For all ǫ > 0, η ∈ [0, 1],

CL(η, t)− C∗
L(η) < µL,α(ǫ) =⇒ Cα(η, t)− C∗

α(η) < ǫ.

If L is α-CC, then

3. L is α-CC’
4. L is uniformly α-CC’.
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Proof. To prove 1, let ǫ > 0, η ∈ [0, 1]. In Lemma 3.1 it is shown that Cα(η, t)−
C∗

α(η) = 1{sign(t) 6=sign(η−α)}|η − α|. Thus, if ǫ > |η − α|, the result follows.
Suppose ǫ ≤ |η−α|. Then Cα(η, t)−C∗

α(η) ≥ ǫ ⇐⇒ sign(t) 6= sign(η−α), and

HL,α(η) = inf
t∈R:t(η−α)≤0

CL(η, t)− C∗
L(η)

≤ inf
t:sign(t) 6=sign(η−α)

CL(η, t) − C∗
L(η)

= inf
t:Cα(η,t)−C∗

α(η)≥ǫ
CL(η, t)− C∗

L(η).

Therefore, if CL(η, t)− C∗
L(η) < HL,α(η), then Cα(η, t)− C∗

α(η) < ǫ.

To prove 2, let ǫ > 0, η ∈ [0, 1]. If ǫ > |η − α|, then as in part 1 the result
follows immediately. If ǫ ≤ |η−α|, then µL,α(ǫ) ≤ HL,α(η) and the result follows
from part 1.

Since uniformly α-CC’ implies α-CC’, 3 follows from 4. To show 4, let ǫ > 0.
By Lemma 3.2, part 2, HL,α is continuous on {η ∈ [0, 1] : |η−α| ≥ ǫ}. Thus for
ǫ ≤ Bα, µL,α(ǫ) is the infimum of a continuous, positive function on a compact
set and therefore positive. Taking δ = µL,α(ǫ), the result follows by part 2. If
ǫ > Bα, the result holds because Cα(η, t)−C∗

α(η) = 1{sign(t) 6=sign(η−α)}|η−α| ∈
[0, Bα].

Steinwart [31] employs α-CC’ as the definition of classification calibrated
in the case of cost-sensitive classification. Although α-CC implies α-CC’, the
reverse implication is not true as the counterexample L = Uα demonstrates
(perhaps ironically). Under a mild assumption on the partial losses, Steinwart’s
definitions and ours agree. This is part 1 of the following result. Under this
same mild assumption, we can also express what Steinwart calls the calibration
function and uniform calibration function of L. These are the quantities δ(ǫ, η)
and δ(ǫ) in parts 2 and 3, respectively.

Theorem A.1. Assume L1 and L−1 are continuous at 0.

1. The following are equivalent:

(a) L is α-CC

(b) L is α-CC’

(c) L is uniformly α-CC’

2. For any ǫ > 0 and η ∈ [0, 1], the largest δ such that (A.1) holds is

δ(ǫ, η) :=

{
∞, ǫ > |η − α|,
HL,α(η), ǫ ≤ |η − α|. (A.3)

3. For any ǫ > 0, the largest δ such that (A.2) holds is

δ(ǫ) :=

{
∞, ǫ > Bα,
µL,α(ǫ), ǫ ≤ Bα.

(A.4)
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Proof. We have already shown (a) implies (b) and (c), and (c) implies (b) is
obvious, so let us show (b) implies (a).

If ǫ > 0 and η ∈ [0, 1] are such that ǫ ≤ |η − α|, then η 6= α, and under the
continuity assumption we have

inf
t∈R:t(η−α)≤0

CL(η, t) = inf
t:sign(t) 6=sign(η−α)

CL(η, t).

Therefore, from the proof of Lemma A.1, part 1,

HL,α(η) = inf
t:Cα(η,t)−C∗

α(η)≥ǫ
CL(η, t)− C∗

L(η). (A.5)

Now assume (b) holds, and let η ∈ [0, 1], η 6= α. Set ǫ = |η − α|. Since L is
α-CC’, the right hand side of (A.5) is positive. Therefore HL,α(η) > 0 which
establishes (a).

Now consider part 2. If ǫ > |η−α|, then Cα(η, t)−C∗
α(η) = 1{sign(t) 6=sign(η−α)}|η−

α| < ǫ regardless of δ. If ǫ ≤ |η−α|, then (A.5) holds which establishes the result
in this case.

To prove 3, first consider ǫ > Bα. Then Cα(η, t)−C∗
α(η) ≤ Bα < ǫ regardless

of δ. Now suppose ǫ ≤ Bα. Then {η ∈ [0, 1] : |η − α| ≥ ǫ} is nonempty, and this
case now follows from part 2 and the definition of µL,α.

An emphasis of Steinwart [31] is the relationship between surrogate regret
bounds and uniform calibration functions. In our setting, Lemma A.1 part 2
directly implies a surrogate regret bound in terms of µL,α.

Theorem A.2. Let L be a loss, α ∈ (0, 1). Then

µ∗∗
L,α(Rα(f)−Rα(f)) ≤ RL(f)−R∗

L.

This result is similar to Theorem 2.13 of Steinwart [31] and surrounding
discussion. While that result holds in a very general setting that spans many
learning problems, Theorem A.2 specializes the underlying principle to cost-
sensitive classification.

Proof. By Lemma A.1, part 2, we know that CL(η, t) − C∗
L(η) < µL,α(ǫ) =⇒

Cα(η, t)−C∗
α(η) < ǫ. Given f ∈ F and x ∈ X , let ǫ = Cα(η(x), f(x))−C∗

α(η(x)).
Then CL(η(x), f(x)) − C∗

L(η(x)) ≥ µL,α(ǫ), or in other words

µL,α(Cα(η(x), f(x)) − C∗
α(η(x))) ≤ CL(η(x), f(x)) − C∗

L(η(x)).

By Jensen’s inequality,

µ∗∗
L,α(Rα(f)−R∗

α) ≤ EX [µ∗∗
L,α(Cα(η(X), f(X)− C∗

α(η(X)))]

≤ EX [µL,α(Cα(η(X), f(X))− C∗
α(η(X)))]

≤ EX [CL(η(X), f(X))− C∗
L(η(X))]

= RL(f)−R∗
L.
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Thus, for any loss we have two surrogate regret bounds. In fact, the two
bounds are the same.

Theorem A.3. Let α ∈ (0, 1).

1. For any loss L, µ∗∗
L,α = ν∗∗L,α.

2. If L1 and L−1 are convex, then µL,α = νL,α.

Proof. From Lemma 3.2, part 3, we have µL,α(0) = 0 and therefore part 1 of
the theorem follows from Lemma A.2 below. To see the second statement, recall
that HL,α is nonnegative, HL,α(α) = 0 (Lemma 3.2, part 3), and HL,α is convex
(Theorem 3.5). Thus HL,α(η) is nondecreasing as |η − α| grows, and the result
follows.

The following result generalizes Lemma A.7 of Steinwart [31], and completes
the proof of Theorem A.3.

Lemma A.2. Let δ : [0, B] → [0,∞) be a lower semi-continuous function with
δ(0) = 0, and define δ̃(ǫ) = infǫ′≥ǫ δ(ǫ

′). Then δ̃ is lower semi-continuous and

δ̃∗∗ = δ∗∗.

Proof. Suppose δ̃ is not LSC at ǫ ∈ [0, 1]. Then there exists τ > 0 and ǫ1, ǫ2, . . .→
ǫ such that for i sufficiently large, δ̃(ǫi) ≤ δ̃(ǫ)− τ . Since δ̃ is nondecreasing, we
may assume ǫi < ǫ for all i. If δ̃(ǫi) ≤ δ̃(ǫ)− τ , then there exists ǫ′i ∈ [ǫi, ǫ) such
that δ(ǫ′i) ≤ δ̃(ǫ)− τ

2 ≤ δ(ǫ)− τ
2 . But ǫ

′
i → ǫ, which implies δ is not LSC at ǫ, a

contradiction.
To show δ̃∗∗ = δ∗∗, we need to show coEpi δ̃ = coEpi δ. It suffices to show

coEpi δ̃ = coEpi δ. Since δ̃ ≤ δ, clearly Epi δ̃ ⊂ Epi δ and therefore co Epi δ̃ ⊂
coEpi δ. For the reverse inclusion, it suffices to show (ǫ, δ̃(ǫ)) ∈ coEpi δ for all
ǫ ∈ [0, B]. We may assume ǫ ∈ (0, B) since δ(0) = δ̃(0) = 0 and δ(B) = δ̃(B).
Thus let ǫ ∈ (0, B). Since δ is LSC, it achieves its infimum over a compact set,

and hence there exists ǫ′ ∈ [ǫ, B] such that δ̃(ǫ) = δ(ǫ′). Since (0, 0), (ǫ′, ǫ
′

ǫ δ̃(ǫ)) ∈
Epi(δ), it follows that

ǫ

ǫ′
(ǫ′,

ǫ′

ǫ
δ̃(ǫ)) +

ǫ′ − ǫ

ǫ′
(0, 0) = (ǫ, δ̃(ǫ)) ∈ coEpi δ,

as was to be shown.

Appendix B: Proofs of Lemmas 3.1 and 3.2

These lemmas support the development in Section 3.1.

Proof of Lemma 3.1. For η ∈ [0, 1], Cα(η, t) = (1−α)η1{t≤0}+α(1−η)1{t>0} is
minimized by any t such that sign(t) = sign((1−α)η−α(1− η)) = sign(η−α).
Therefore Cα(η, η − α) = C∗

α(η). This implies

Cα(η, t)− C∗
α(η)

= (1− α)η1{t≤0} + α(1 − η)1{t>0} − [(1 − α)η1{η≤α} + α(1 − η)1{η>α}]

= 1{sign(t) 6=sign(η−α)}|η − α|.
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The second part follows from the first:

Rα(f)−R∗
α = EX [Cα(η(X), f(X))− C∗

α(η(X))]

= EX [1{sign(f(X)) 6=sign(η(X)−α)}|η(X)− α|].

In the next proof, LSC and USC abbreviate lower semi-continuous and upper
semi-continuous.

Proof of Lemma 3.2. 1. Since C∗
L(η) = inft∈R ηL1(t) + (1 − η)L−1(t), it is the

infimum of affine functions and therefore concave. For η < α, C−
L,α(η) =

inft≥0 CL(η, t) which is also concave by the same reasoning. A similar argument
applies when η > α.

2. Since C∗
L(η) is concave on [0, 1], it is continuous on (0, 1) by Theorem 10.1

of Rockafellar [26]. By Theorem 10.2 of the same, C∗
L is LSC at 0 and 1. Let us

argue that C∗
L is USC at 1, the case of 0 being similar. Thus, let ǫ > 0 and let

tǫ ∈ R such that L1(tǫ) ≤ C∗
L(1) +

ǫ
2 . If L−1(tǫ) = 0, then for any η ∈ [0, 1),

C∗
L(η) ≤ CL(η, tǫ) = ηL1(tǫ) ≤ L1(tǫ) ≤ C∗

L(1) + ǫ. Suppose L−1(tǫ) > 0. If η is
such that 1− ǫ

2L−1(tǫ)
≤ η < 1, then C∗

L(η) ≤ ηL1(tǫ)+(1−η)L−1(tǫ) ≤ C∗
L(1)+ǫ.

Thus C∗
L is USC at 1. This establishes (a).

For (b), continuity of C−
L,α on [0, 1]\{α} follows by a similar argument as (a).

Continuity of HL,α then follows immediately.
It remains to show that C−

L,α, and hence HL,α, is continuous at α when L is

α-CC. First note that C−
L,α is LSC at α because C−

L,α(α) = C∗
L(α), C

−
L,α(η) ≥

C∗
L(η) for all η ∈ [0, 1], and from parts (a) and (b).
We now show C−

L,α is USC at α when L is α-CC. Let ǫ > 0. Since C∗
L is

continuous at α, there exists δ′ > 0 such that |C∗
L(η) − C∗

L(α)| < ǫ
3 whenever

|η − α| < δ′. Let δα = 1
2 min(α, 1 − α),M = max(L1(0), L−1(0)), and set δ =

min(δ′, δα,
ǫ
3 · δα

2M ). Now suppose |η − α| < δ, η 6= α. Then

C−
L,α(η) − C−

L,α(α) = C−
L,α(η)− C∗

L(2α− η) + C∗
L(2α− η)− C∗

L(α)

≤ C−
L,α(η)− C∗

L(2α− η) +
ǫ

3
,

since |(2α−η)−α| = |η−α| < δ ≤ δ′. Since L is α-CC, there exists t∗, depending
possibly on η and ǫ, such that t∗((2α − η) − α) ≥ 0 and CL(2α − η, t∗) ≤
C∗

L(2α− η)+ ǫ
3 . We may further stipulate CL(2α− η, t∗) ≤ CL(2α− η, 0) which

will be needed later. Notice t∗((2α − η) − α) ≥ 0 ⇐⇒ t∗(η − α) ≤ 0, which
is also used later. Now C−

L,α(η) − C∗
L(2α − η) ≤ C−

L,α(η) − CL(2α − η, t∗) + ǫ
3 .

Thus far we have shown C−
L,α(η)−C−

L,α(α) ≤ C−
L,α(η)−CL(2α− η, t∗) + 2ǫ

3 for
|η − α| < δ, η 6= α.

Now consider

C−
L,α(η)− CL(2α− η, t∗) = inf

t∈R:t(η−α)≤0
CL(η, t)− CL(2α− η, t∗)

≤ CL(η, t
∗)− CL(2α− η, t∗)
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= ηL1(t
∗) + (1− η)L1(t

∗)− [(2α− η)L1(t
∗) + (1− (2α− η))L−1(t

∗)]

= 2[L1(t
∗)(η − α) + L−1(t

∗)(α − η)]

≤ 2[L1(t
∗) + L−1(t

∗)]|η − α|.

To bound this quantity, observe

M = max(L1(0), L−1(0))

≥ CL(2α− η, 0)

≥ CL(2α− η, t∗)

= (2α− η)L1(t
∗) + (1− (2α− η))L−1(t

∗)

≥ α

2
L1(t

∗) +
1− α

2
L−1(t

∗)

≥ δα(L1(t
∗) + L−1(t

∗)).

To see the next to last inequality, recall |η − α| < δ ≤ δα = 1
2 min(α, 1 − α).

Then 2α− η = α+ (α− η) ≥ α
2 and 1− (2α− η) = 1− α+ (η − a) ≥ 1−α

2 We

now have C−
L,α(η)− CL(2α− η, t∗) ≤ 2M

δα
|η − α| < ǫ

3 .
We have shown that for all ǫ > 0, there exist δ > 0 such that for all η ∈ [0, 1]

with |η − α| < δ and η 6= α,

C−
L,α(η)− C−

L,α(α) < ǫ.

Therefore C−
L,α is USC, and hence continuous, at α.

3. HL,α(α) = 0 because when η = α, the infimum defining C−
L,α(α) is unre-

stricted. From this we have νL,α(0) = HL,α(α) = 0. Finally, ψL,α(0) = 0 because
ψL,α = ν∗∗L,α, νL,α(0) = 0, and νL,α is nonnegative.

4. From 3, HL,α is continuous except possibly at α. Therefore νL,α is con-
tinuous except possibly at 0 and bα := min(α, 1− α). νL,α is LSC at 0 because
νL,α(0) = 0 and νL,α is nonnegative. νL,α is LSC at bα because νL,α(b

−
α ) =

νL,α(bα) ≤ νL,α(b
+
α ), which follows from the definition of νL,α.

By construction, the epigraph of ψL,α is closed, and hence ψL,α is LSC. Since
ψL,α is convex on a simplical domain (the interval [0, Bα]), it is USC by Theorem
10.2 of [26].

Appendix C: Uneven sigmoid loss details

We present a closed form expression for t−(η), and describe how to calculate
α(γ) from Sec. 4.4.
t−(η) is the value of t that satisfies t < 0 and

0 =
∂

∂t
CL(η, t) = ηφ′(t)− (1− η)φ′(−2t).

Using φ′(t) = −et/(1 + et)2 and substituting z = et, z must satisfy z ∈ (0, 1)
and

η
z

(1 + z)2
= (1− η)

z−2

(1 + z−2)2
,
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or equivalently, z ∈ (0, 1) is a solution of the quartic equation

0 = ηz4 − (1− η)z3 + 2(2η − 1)z2 − (1− η)z + η

= z2(ηz2 − (1− η)z + 2(2η − 1)− (1− η)z−1 + ηz−2).

Note z = 0 is not the desired solution, as it corresponds to t = −∞. Let
w = z + z−1, and observe w2 = z2 + 2 + z−2. Then z must satisfy

0 = η(z2 + z−2)− (1− η)(z + z−1) + 2(2η − 1)

= η(w2 − 2)− (1− η)w + 2(2η − 1)

= ηw2 − (1− η)w + 2(η − 1).

Therefore

w =
1− η +

√
(1− η)2 − 8η(η − 1)

2η
.

We take the positive sign because only it gives a positive z. Now z can be
recovered from w. Since z2 − wz + 1 = 0 we get

z =
w −

√
w2 − 4

2
.

We take the negative sign as we are seeking the smaller of the two critical
points. It can be shown (with algebra) that w2 > 4 ⇐⇒ η < 1

2 . Finally, we
have t−(η) = ln z.

We now turn to characterization of α(γ). Assume γ > 1. α(γ) is the value of
η such that

1− η

γ
= CL(η,∞) = CL(η, t) =

η

1 + et
+

1− η

γ

1

1 + e−γt

is satisfied by a unique t with −∞ < t < 0. Since CL(η,−∞) = CL(η,∞) ⇐⇒
η = 1

1+γ , we must have η > 1
1+γ . After substituting z = et and simplifying, we

seek η > 1
1+γ such that

ηγzγ − (1− η)z + (ηγ − 1 + η) = 0

is satisfied for a unique z ∈ (0, 1). That is, we need the curves pη(z) := ηγzγ

and qη(z) := (1 − η)z − (ηγ − 1 + η) to intersect exactly once on (0, 1). Since
pη is a strictly increasing convex function and qη is a line with positive slope,
this can happen in one of three ways: (a) pη(0) > qη(0) and pη(1) < qη(1), (b)
pη(0) < qη(0) and pη(1) > qη(1), or (c) qη is tangent to pη at some z ∈ (0, 1).
(a) requires η > 1/(1 + γ) and η < 1/(1 + γ), which is impossible. Similarly,
(b) is impossible. Thus, we must have p′η(z) = q′η(z) and pη(z) = qη(z) for some
z ∈ (0, 1).

Summarizing up to this point, we seek η > 1
1+γ and z ∈ (0, 1) such that

ηγzγ = (1 − η)z − (ηγ − 1 + η) (C.1)
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and
ηγ2zγ−1 = 1− η. (C.2)

Dividing (C.1) by (C.2) and solving for z gives

z =
ηγ − 1 + η

1− η

γ

γ − 1
. (C.3)

Substituting (C.3) into (C.2) yields

η

[
γ2

(
ηγ − 1 + η

1− η

γ

γ − 1

)γ−1

+ 1

]
= 1. (C.4)

When γ = 2, this simplifies to a quadratic equation, leading to α(2) = (3 +
4
√
2)/23. More generally, notice that for η > 1

1+γ , the left-hand side of (C.4) is

strictly increasing, and thus η = α(γ) can be found with a bisection search. The
case γ = 1 was treated by Bartlett, Jordan and McAuliffe [2], yielding α(1) = 1

2 .
When γ < 1 we may appeal to symmetry. Let us write Cγ

L(η, t) to indicate the

dependence of CL on γ. It is easily shown that C
1/γ
L (η, γt) = γCγ

L(1 − η,−t),
from which it follows that α( 1γ ) = 1− α(γ).
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