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Abstract

This paper studies a dynamic agency problem which includes limited liability, moral
hazard and adverse selection. The paper develops a robust approach to dynamic con-
tracting based on calibrating the incentive properties of simple benchmark contracts
that are attractive but infeasible, due to limited liability constraints. The resulting dy-
namic contracts are detail-free and satisfy robust performance bounds independently
of the underlying process for returns, which need not be i.i.d. or even ergodic.

1 Introduction

This paper considers a dynamic agency problem in which a principal hires an agent to make

investment decisions on her behalf.1 The contracting environment includes limited liability,

moral hazard, adverse selection, and makes few assumptions about the underlying process

for returns and information. The paper develops a robust approach to dynamic contracting
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1Throughout the paper, the principal is referred to as she, while the agent is referred to as he.
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whose main steps are as follows: 1) identify a simple class of high-liability benchmark con-

tracts that satisfy attractive and robust efficiency properties; 2) construct limited-liability

dynamic contracts whose terms are dynamically calibrated to ensure that key properties of

benchmark contracts are approximately satisfied. The resulting dynamic contracts—referred

to as calibrated contracts—perform approximately as well as benchmark contracts indepen-

dently of the underlying process for returns. In particular, the results do not rely on any

ergodicity or stationarity assumptions.

The model considers a risk-neutral principal and a risk-neutral agent. Both the principal

and the agent are patient. The principal is infinitely lived, while the agent has a large but

finite horizon which need not be known to the principal. In every period a fixed amount

of resources can be invested on behalf of the principal by the agent. The agent has private

information about the process for returns and can exert costly effort to obtain additional in-

formation (e.g. collecting or purchasing data, running experiments. . . ). The main constraint

on contracts is limited liability: the agent cannot receive negative transfers, and rewards are

bounded above by per-period resources, which rules out large deferred payments. The paper

makes few assumptions on the underlying probability space and the agent may have arbitrary

private information at the time of contracting. Furthermore, the process for information and

returns need not be i.i.d. or even ergodic: it may be that with non-vanishing probability

there is a large number of periods where returns happen to be negative, or where costly

information turns out to be useless.

This is a difficult environment to contract in. The principal is facing both adverse

selection (the agent may have persistent private information about returns, or about the

cost-effectiveness of information acquisition) and moral hazard (the agent expends effort to

acquire information and makes asset allocation decisions). At this level of generality, char-

acterizing optimal contracts is unlikely to be informative and may not actually be possible if

the principal has poorly specified beliefs over the environment. Instead the paper develops

a robust approach to dynamic contracting emphasizing performance bounds that hold over

large classes of priors.
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The first step of the approach relaxes limited liability constraints and identifies a suitable

class of high-liability benchmark contracts. Benchmark contracts are simple linear contract

which reward the agent a share of his externality on the principal. Such contracts exhibit

high-liability since the agent is expected to provide compensation for the losses he causes.

While this class of contracts is not necessarily optimal, it satisfies three important efficiency

properties: (i) for any underlying environment, the principal is guaranteed positive expected

surplus from the relationship; (ii) benchmark contracts are weakly renegotiation proof; (iii)

benchmark contracts satisfy a robust efficiency bound, which is sufficiently tight to imply the

maxmin optimality of linear contracts over appropriately chosen families of environments.

The second step of the approach is to develop a simple class of limited-liability dynamic

contracts that robustly approximate the efficiency properties of linear high-liability contracts.

The key insight is to calibrate both the rewards to the agent and the share of resources he is

investing so that for all possible strategies of the agent and all realizations of uncertainty, the

rewards obtained by the agent and his externality on the principal remain as tightly linked

as they are under benchmark linear contracts. As the time horizon becomes large, these

calibrated contracts induce performance approximately equal to that achieved by benchmark

linear contracts. This result holds for continuation payoffs from the perspective of any

history, which alleviates renegotiation concerns. Finally, for any positive level of liability

available to the agent, calibrated contracts can be adjusted to ensure that fully uninformed

agents do not participate.

The paper hopes to usefully complement the rich literature on optimal dynamic con-

tracting (see for instance Rogerson (1985), Green (1987), Holmström and Milgrom (1987),

Spear and Srivastava (1987), Laffont and Tirole (1988), and more recently Battaglini (2005),

DeMarzo and Sannikov (2006), Biais et al. (2007, 2010), DeMarzo and Fishman (2007),

Sannikov (2008), Edmans et al. (2012) or Zhu (forthcoming)). Because optimal contracts

depend finely on the details of the underlying environment, this literature has delivered rich

positive predictions on how contract form should vary with the circumstances. However,

a limitation of the optimal contracting approach is that it provides little guidance on how
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well those contracts perform if the environment is misspecified. The current paper gives

up on optimality and develops a class of dynamic limited-liability contracts that satisfy at-

tractive efficiency properties for a very broad class of stochastic environments. Notably, the

performance bounds satisfied by these robust contracts hold in environments where solving

for optimal contracts has proved particularly difficult. This includes non-stationary environ-

ments (as in Battaglini (2005), Tchistyi (2006), He (2009), Pavan et al. (2010) or Garrett and

Pavan (2010)), and settings with both moral hazard and adverse selection (such as Sannikov

(2007) or Fong (2008)). Still, the contracts developed in the current paper are substantially

connected to the optimal contracts derived by DeMarzo and Sannikov (2006), DeMarzo and

Fishman (2007) or Biais et al. (2007, 2010) in specific settings. The similarities as well as

the differences are instructive and will be discussed in detail.

The paper also contributes to the literature on dynamic contracting and mechanism

design with patient players. It is most closely related to the work of Rubinstein (1979),

Rubinstein and Yaari (1983) and Radner (1981, 1985) which proves the existence of approxi-

mately first-best contracts in a dynamic moral hazard problem where the agent’s production

function is ergodic and common knowledge under first-best behavior. More recently Jackson

and Sonnenschein (2007) and Escobar and Toikka (2009) propose simple quota mechanisms

that approximately implement any Pareto efficient allocation rule in a class of dynamic multi-

agent allocation problems where the agents have ergodic preferences. As in these previous

approaches, the main idea of the current paper is to constrain payoffs to satisfy key proper-

ties that would hold under an ideal benchmark. The central difference is that previous work

relies strongly on the assumption that the state of the world follows an ergodic process: the

basic idea is to make sure that the empirical distribution of realized outcomes matches the

expected distribution of outcomes under first-best behavior. This approach is not applicable

in the current paper since the underlying environment need not be ergodic and no law of

large numbers need apply.

The methods used in this paper, as well as the emphasis on general stochastic processes,

connect the paper to the literature on testing experts (see for instance Foster and Vohra
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(1998), Fudenberg and Levine (1999), Lehrer (2001)). However, the main question here is

not whether good tests are available. Rather, this paper takes a principal-agent approach

related to that of Echenique and Shmaya (2007), Olszewski and Peski (2011) or Gradwohl

and Salant (2011). These papers show that in such environments there are satisfactory ways

to identify experts that generate positive surplus. Olszewski and Peski (2011) rely on ex

post high-liability contracts to incentivize truth telling. Gradwohl and Salant (2011) show

it is possible to rely on upfront payments instead. Neither paper tackles incentive provision

when information acquisition is costly.

The paper is structured as follows. Section 2 describes the framework. Section 3 intro-

duces a class of benchmark linear contracts that satisfy attractive efficiency properties but

require high liability. Section 4 is the core of the paper: it develops dynamic limited-liability

contracts whose parameters as calibrated to ensure that key incentives properties of bench-

mark linear contracts are approximately satisfied. Section 5 shows how to adjust calibrated

contracts to induce self-screening by uninformed agents. Section 6 concludes by discussing

the paper’s assumptions and approach in further detail, and relating calibrated contracts to

other contracts of interest. Proofs are given in Appendix A, unless mentioned otherwise.

An Online Appendix provides extensions tackling issues such as time discounting, or how to

calibrate a broader class of benchmark contracts, as well as simulations illustrating the main

properties of calibrated contracts.

2 The Framework

Players, Actions and Payoffs. A principal hires an agent to make investment allocations

on her behalf. The agent is active for a large but finite number of periods N . The principal

has an infinite horizon and need not know the agent’s horizon N . Both the principal and

the agent are patient and do not discount future payoffs.2

In each period t ∈ {1, · · · , N}, the principal invests an amount of resources w at the

2Online Appendix OA 1 shows how to extend the analysis when future payoffs are discounted.
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beginning of the period. The amount of wealth w invested in each period is constant, and

can be thought of as a steady state amount of wealth to be invested. The realized wealth

wt after investment is consumed at the end of the period, which rules out private savings.

Both the principal and the agent are risk neutral. The agent’s outside option is set to zero.

Wealth can be invested in one of K assets whose returns at time t are denoted by

rt = (rk,t)k∈{1,··· ,K}. Let R denote the set of possible returns rt. An asset allocation at time t

is a vector at ∈ A ⊂ RK such that
∑K

k=1 ak,t = 1. Set A is convex and compact. It represents

constraints on possible allocations. These constraints can be thought of as a mandate set by

the principal as in He and Xiong (2010). Let ⟨·, ·⟩ denote the usual dot product. Given an

asset allocation at and returns rt, wealth at the end of period t is

wt = w × (1 + ⟨at, rt⟩).

By assumption, returns are bounded below by −1 so that wt ≥ 0 (there cannot be negative

resources at the end of the period).

For any pair of allocations (a, a′) ∈ A2, the distance between a and a′ is defined by

d(a, a′) ≡ sup
rt∈R

| ⟨a− a′, rt⟩ |. (1)

The following assumption puts joint restrictions on the set of permissible allocations A and

returns R. It is maintained throughout the paper.

Assumption 1. There exists d ∈ R+ such that for all (a, a′) ∈ A2, d(a, a′) ≤ d.

This assumption limits the magnitude of changes that can occur in a single period.

At the beginning of every period t, the agent can expend cost ct ∈ [0,+∞) towards

acquiring information. This cost can be the actual cost of purchasing or collecting data,

an effort cost, or the opportunity cost of time when performing due diligence. The agent

then makes an asset allocation suggestion at ∈ A and receives a payment πt depending on

the realized public history at the end of period t. The agent’s objective is to maximize his
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expected average payoffs

E

(
1

N

N∑
t=1

πt − ct

)
. (2)

Information. Information acquired at time t ∈ {1, · · · , N} is represented as a random

variable It from a measurable state space (Ω, σ) to a measurable signal space (I, σI). Publicly

available information is denoted by I0t . It includes (but need not be limited to) realized past

returns (rs)s<t, and corresponds to the information available to the principal. In each period,

the agent can choose to acquire additional signals It(c) at cost c ∈ [0,+∞) from a set of

possible signals {It(c)|c ∈ [0,+∞)} indexed by their cost. By assumption I0t is measureable

with respect to It(c) for any c ≥ 0, so that the agent is more informed than the principal,

regardless of the information he acquires. At time t = 0, before contracting occurs, the

agent also observes an initial private and exogenous signal IH , summarizing past private

history. As a result the agent may know much more than the principal about the process

for returns at the time of contracting. In addition, the agent’s information and the agent’s

information acquisition strategy are private. As a result the framework exhibits both adverse

selection and moral hazard. Given an information acquisition strategy (ct)t≥1, let (Ft)t≥1

be the agent’s filtration (generated by (IH , It(ct))t≥1), and let (F0
t )t≥1 denote the public

information filtration (generated by (I0t )t≥1).

For simplicity, the paper assumes that at a sufficiently ex ante stage, the principal and

the agent have a common prior P over state space (Ω, σ). The corresponding probability

space P = (Ω, σ, P ) will be referred to as the environment. This common prior assumption

ensures that expected returns under the agent’s beliefs would be evaluated in the same way

by the principal if she had access to the same information. Said in other terms, the principal

is willing to accept the agent’s beliefs as a basis for the valuation of her expected returns.

Note that this common prior assumption imposes little restrictions on beliefs at the time

of contracting, since the agent can observe an arbitrary private initial signal IH prior to

contracting.

The only restriction placed on environment P is Assumption 1. The paper does not
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assume that either information or returns follow an i.i.d. or ergodic process. This results

in a very flexible model. For instance, there may be non-vanishing probability that returns

are below their period t = 1 expectation for an arbitrarily large number of periods; the

value of the information that the agent can collect may be uncertain or vary in arbitrary

ways; the agent may have to learn the informativeness of different signals through costly

experimentation (i.e. by incurring the cost of observing signals and assessing their predictive

power over returns); once valuable sources of information can become obsolete over time.

Strategies. Altogether, an agent’s strategy consists of an information acquisition strategy

c = (ct)t≥1, and an asset allocation strategy a = (at)t≥1, where both ct and at are adapted

to the information available to the agent at the time of decision. Let a0t and a∗t respectively

denote efficient asset allocations under information F0
t and Ft:

a0t ∈ argmax
a∈A

E[⟨a, rt⟩ |F0
t ] and a∗t ∈ argmax

a∈A
E[⟨a, rt⟩ |Ft]. (3)

Allocation a0t is the allocation the principal could pick on her own, given public information

F0
t , while allocation a∗t is the allocation that maximizes expected returns given the agent’s

private information Ft. Let w
0
t = w× (1+ ⟨a0t , rt⟩) and wt = w× (1+ ⟨at, rt⟩) denote realized

wealth under allocation a0t and under the allocation at actually chosen by the agent.

Contracts. Contracts (πt)t≥1 are adapted to public histories observed by the principal,

where public histories consist of past public information (including past returns) as well as

past suggested asset allocations by the agent. The principal has commitment power but

transfers are subject to the following constraints: in every period t,

0 ≤ πt ≤ wt. (4)

The constraint that 0 ≤ πt corresponds to a limited-liability constraint on the agent’s

side: the agent does not have access to side resources that can be pledged in the contract.
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The constraint that πt ≤ wt corresponds to limited liability on the side of the principal: the

principal does not have deep pockets and transfers in each period are limited by the resources

available in each period. These constraints are at the origin of the contracting problem: 1)

the agent does not share on the downside, and 2) large deferred payments are not feasible.

Clearly, these are demanding liability constraints. They can be thought of as a design

objective which ensures that the contracts being constructed apply in broad classes of en-

vironments. While a narrow interpretation of these constraints is that they correspond to

physical limitations (e.g. this is an autarkic economy with perishable resources), Section 6

suggests richer interpretations and identifies economic settings in which similar, although

weaker, constraints arise endogenously.

3 A High-Liability Benchmark

The environment described in Section 2 involves both moral hazard and adverse selection:

the agent must acquire information and makes asset allocation decisions that may or may not

benefit the principal; in addition the information that the agent has or may acquire is private.

At this level of generality, informative characterizations of optimal dynamic contracts are

unlikely.

The paper embraces an alternative approach to dynamic contracting which aims to iden-

tify contracts satisfying robust efficiency properties over broad classes of environments. The

first step of the analysis defines a class of benchmark contracts that have attractive effi-

ciency properties, but violate limited liability condition (4). The second step of the analysis

constructs a class of dynamic contracts that satisfy condition (4), and achieve performance

approximately as good as that of the benchmark contracts, regardless of the underlying

environment P .
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3.1 Benchmark contracts

The contracts used as benchmark are linear contracts in which the agent’s reward πt in

period t is a share α of the externality his decisions have on the principal:

∀t ≥ 1, πt = α(wt − w0
t ).

3 (5)

These benchmark contracts are attractive for the following reasons:

(i) they satisfy a demanding “no-loss” condition ensuring that the principal gets

positive expected surplus whenever the agent gets positive expected rewards;

they are the only class of contracts satisfying “no-loss” for all environments;

(ii) they are weakly renegotiation proof in the sense of Bernheim and Ray (1989) and

Farrell and Maskin (1989);

(iii) they satisfy a robust performance bound which is sufficiently tight to imply that

benchmark contracts are maxmin optimal over appropriately chosen families of

environments.

Note that even though both parties are risk-neutral, the fact that the agent has significant

private information means that fixed-price contracts in which all productive assets are sold

to the agent need not be optimal.4

3.2 No-loss and renegotiation proofness

Benchmark contracts satisfy the following no-loss property, and they are the only class of

contracts to do so.
3Recall that wt and w0

t respectively denote realized wealth under the agent’s suggested asset allocation
and under the default, public information, asset allocation. If α = 20% and the default allocation a0t is to
invest all wealth in risk-free bonds, the benchmark contract pays the agent 20% of the excess-returns when
he beats the risk-free rate, and charges him 20% of the foregone returns when he under-performs the risk-free
rate.

4Consider the following stylized example: in each period t the agent can generate expected return νt =
E(wt −w0

t |Ft) at a cost c(νt) = α0νt for νt ∈ [0, νt], where νt is an upper bound to feasible expected returns
that follows a stochastic process privately observed by the agent. A linear contract with reward rate α0 is
an optimal contract since it induces efficient effort and extracts all the surplus. In contrast, any fixed price
contract can cause inefficiencies since the agent will choose not to participate whenever process (νt)t≥1 takes
sufficiently low values in expectation.
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Fact 1 (no loss). Under the benchmark contract, for all environment P and all strategy

profiles (c, a), Ec,a

[∑N
t=1 πt

]
≥ 0 ⇐⇒ Ec,a

[∑N
t=1wt − w0

t − πt

]
≥ 0.

The converse holds. If a contract (πt)t≥1 is such that for all P and all strategy profiles

(c, a), Ec,a

[∑N
t=1 πt

]
≥ 0 ⇐⇒ Ec,a

[∑N
t=1wt − w0

t − πt

]
≥ 0, then there exists α ∈ (0, 1)

such that for all t, πt = α(wt − w0
t ).

In words, benchmark linear contracts are such that for any strategy (c, a) under which

the agent obtains positive expected profit – even suboptimal ones – the principal must also

obtain positive expected surplus.5

Admittedly, the requirement that “no loss” hold for all possible strategies of the agent

(even suboptimal ones) is demanding, but this requirement can also be attractive in envi-

ronments where the agent may not be fully optimizing (e.g. if he is satisficing): provided

that a suboptimal strategy profile does not generate negative profit for the agent, it can

only benefit the principal. The bulk of the paper assumes that agents are rational and fully

optimizing, but the Online Appendix returns to the question of contract performance when

agents can be temporarily irrational.

Another property of benchmark contracts is that since they are independent of history,

the principal and the agent are never tempted to renegotiate to a continuation contract

starting from a different history.

Fact 2. Benchmark contracts are weakly renegotiation proof in the sense of Bernheim and

Ray (1989) and Farrell and Maskin (1989).

3.3 Performance bounds

Recent work by Rogerson (2003), Chu and Sappington (2007) and Bose et al. (2011) has

emphasized that simple contracts can often guarantee large shares of the second-best surplus

in contexts ranging from procurement to principal-agent problems. These approaches have

5As a comparison, note that this does not hold for log-scoring rules although they successfully elicit
truthful information: log-scoring rules reward the agent for any information regardless of whether or not it
is useful for investment purposes. The Online Appendix returns to this point.
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focused on parametric models for which it is possible to compute the second-best explicitly.

Theorem 1, stated below, contributes to this literature by providing a non-parametric bound

for the surplus generated by linear contracts. This bound is sufficiently tight to imply that

linear contracts are maxmin optimal over appropriately chosen families of environments.

Additional notation is needed. Given a contract π = (πt)t≥1, the agent solves optimization

problem

max
c,a

E

(
1

N

N∑
t=1

πt − ct

)
. (P1)

The corresponding per-period excess returns rπ accruing to the principal (net of payments

to the agent) are

rπ ≡ inf

{
Ec,a

(
1

Nw

N∑
t=1

wt − w0
t − πt

)∣∣∣∣∣(c, a) solves (P1)
}
.6

Returns accruing to the principal when the contract is πt = α(wt−w0
t ) are denoted by rα. In

anticipation of technical subtleties to come, it is useful to note that because the underlying

environment is very general, the paper cannot rule out binding global incentive compatibility

constraints, e.g. in problem (P1), the most tempting deviation of an agent exerting high

effort may be to acquire no information at all.

For any ĉ ∈ [0,+∞), let rmax(ĉ) denote the production function for returns, i.e. expected

per-period returns generated when the agent: 1) incurs an expected per-period cost of infor-

mation acquisition equal to ĉ; 2) chooses optimal asset allocation a∗ given information; and

3) requires no rewards.7 Formally we have

rmax(ĉ) ≡ sup
c s.t.

E[ 1
N

∑N
t=1 ct] ≤ ĉ

Ec,a∗

(
1

N

N∑
t=1

⟨
a∗t − a0t , rt

⟩)
.

6By convention, since the agent may be indifferent between multiple strategy profiles, returns rπ focus
on the inf of possible returns. This convention does not matter for the analysis.

7It is worth emphasizing that rmax denotes gross returns, while rα denotes returns net of payments to
the agent.
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Production frontier rmax(·) should be viewed as a summary statistic of the underlying envi-

ronment, and is a much simpler object than the full stochastic process for information and

returns. The following performance bounds hold.

Theorem 1 (efficiency bounds). (i) For any probability space P,

wrα ≥ (1− α) sup
ĉ∈[0,+∞)

(
wrmax(ĉ)−

ĉ

α

)
. (6)

(ii) For any ĉ and ρ ∈ (0, 1) such that ĉ
wrmax(ĉ)

≤ ρ, the linear contract of param-

eter α =
√
ρ satisfies

wrα ≥
(
1− 2

√
ρ

1 +
√
ρ

)
(wrmax(ĉ)− ĉ) . (7)

Given a benchmark contract, point (i) provides a lower bound for the returns to the

principal which holds in any environment P . Given restrictions on aggregate production

frontier rmax(·), optimizing the right hand side of (6) provides a rationale for the choice of

α. For instance, point (ii) shows that if one imposes the restriction that ĉ
wrmax(ĉ)

≤ ρ, then

the linear contract of parameter α =
√
ρ guarantees a fixed share of the maximum surplus

obtainable at a per-period expected effort cost ĉ.

The next lemma builds on (6) to show these bounds are tight: linear contracts guarantee

the highest possible share of first-best returns over appropriately chosen classes of environ-

ments. Note that first best surplus corresponds to solving maxĉ∈[0,+∞) wrmax(ĉ)− ĉ. Denote

by rFB and cFB the first-best expected per-period returns and first-best expected per-period

costs. By definition, it must be that cFB

wrFB
≤ 1. For any ρ ≤ 1, denote by

Pρ =

{
P
∣∣∣ cFB

wrFB

≤ ρ

}

the set of environments such that the ratio of costs to returns at first-best is bounded above

by ρ.
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Corollary 1. For any ρ ∈ (0, 1), the benchmark contract of parameter α =
√
ρ satisfies

max
π=(πt)t≥1

min
P∈Pρ

wrπ
wrFB − cFB

= min
P∈Pρ

wrα
wrFB − cFB

(8)

= 1− 2

√
ρ

1 +
√
ρ
.

In words, the linear contract of parameter α =
√
ρ is the contract that guarantees the

highest possible proportion of first-best surplus over environments P ∈ Pρ. As in Rogerson

(2003), Chu and Sappington (2007), Hartline and Roughgarden (2008) or Bose et al. (2011),

Corollary 1 measures the performance of benchmark contracts as a ratio to a theoretical

upper bound, which gives scale-free estimates of performance.

Corollary 1 can be interpreted as a motivation for the use of linear contracts: they are

maxmin optimal over appropriately chosen classes of environments. Hurwicz and Shapiro

(1978) and more recently Carroll (2012) also derive linear contracts as maxmin optimal in

different contexts. However, because Corollary 1 depends on the class Pρ of environments

over which the maxmin problem is defined, a more cautious interpretation of Corollary 1 is

that it illustrates the tightness of performance bounds (6) and (7).8

Fact 1, Fact 2 and Theorem 1 motivate the use of linear contracts as a benchmark. Unfor-

tunately benchmark linear contracts require high-liability from the agent. The next section

constructs dynamic contracts that perform approximately as well as benchmark contracts,

while also satisfying limited liability constraint (4).

4 Calibrated Contracts

The basic insight underlying calibrated contracts is that by dynamically adjusting contract-

ing variables it is possible to approximate key aggregate incentive properties of the bench-

8Indeed the research agenda going forward is not to argue for a specific class of environments on which
to perform maxmin optimization, but rather to understand how different non-parametric restrictions on
the environment affect contract performance and contract form. Inequalities (7) and (8) establish tight
performance bounds under restrictions on the ratio of costs to returns. Other restrictions may prove fruitful
in future research.
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mark linear contract. In turn this induces performance approximately as good as that of

benchmark contracts: as the time horizon becomes large, calibrated contracts perform ap-

proximately as well as benchmark contracts for every underlying environment, and from the

perspective of every history.

4.1 Approximating Incentive Properties

Calibrated contracts use the following contracting instruments: 1) in every period t, the

agent only invests a share λt ∈ [0, 1] of the principal’s wealth, with the remaining share

1− λt is invested in the default asset allocation a0t ; 2) at the end of each period t, the agent

receives a payment πt ∈ [0, wt].

The contracting strategy used here is to choose process (λt, πt)t≥1 to approximate the

following properties of linear contracts: for all T ≥ 1,

(correct rewards)
T∑
t=1

πt − αλt(wt − w0
t ) = 0 (9)

(no foregone gains) ∀ T ′ ≤ T,
T∑

t=T ′

(1− λt)(wt − w0
t ) ≤ 0. (10)

Condition (9) states that in aggregate the agent is rewarded a share α of his aggregate

externality on the principal (where coefficients (λt)t≥1 scale the externality up or down).

Condition (10) states that over any time interval [T ′, T ] resource allocation policy (λt)t≥1

does not reduce potential gains from following the agent’s allocation. It is trivially satisfied

in benchmark contracts since λt = 1 for all t.9 Note that “no foregone gains” condition (10)

is equivalent to

∀T, max
T ′≤T

T∑
t=T ′

(1− λt)(wt − w0
t ) ≤ 0.

Any contract which satisfies these two properties induces performance at least as good as

9Note that under benchmark high-liability contracts, in equilibrium, it must be that for all t ≥ 1, E(wt −
w0

t ) ≥ 0. Hence, parameter λt is optimally set to 1. The necessity of controlling λt under limited-liability
will be discussed at length.
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that of benchmark contracts. Manipulation shows that by construction, conditions (9) and

(10) must hold starting from any interim period T ′.10 As a result any contract satisfying

(9) and (10) induces performance as good as that of linear contracts from the perspective

of any history. The remainder of this section shows how to approximate properties (9) and

(10) using only limited liability contracts.

Incentives as regrets. Define the following regrets,

R1,T ≡
T∑
t=1

πt − αλt(wt − w0
t ) and R2,T ≡ max

T ′≤T

T∑
t=T ′

(1− λt)(wt − w0
t ).

In addition, let us define aggregate regrets RT and marginal regrets ρT as follows,

RT ≡

 R1,T

αR+
2,T

 and ρT ≡

 R1,T −R1,T−1

α (R2,T −R2,T−1)

 ,

where x+ = max{0, x} for any x ∈ R.11 Regrets R1,T and R2,T respectively correspond

to the amount by which conditions (9) (“correct rewards”) and (10) (“no foregone gains”)

are violated. As a result, conditions (9) and (10) are formally equivalent to RT = 0. The

goal is now to pick a process (πt, λt)t≥1 satisfying limited liability condition (4) and such

that aggregate regret RT is negligible compared to T as T grows large, i.e. of order o(T ).

This regret minimization problem can be solved using the methods of Blackwell (1956) and

Hannan (1957).12 For any value RT , we want to pick (λT+1, πT+1) such that

∀wT+1, w
0
T+1, ⟨RT , ρT+1⟩ ≤ 0. (11)

10Indeed, using condition (9) at T ′ − 1 and T yields that
∑T

t=T ′ πt − λt(wt − w0
t ) = 0, i.e. condition (9)

also holds starting from any period T ′.
11The vector of regrets RT is defined as (R1,T , αR+

2,T ) rather than (R1,T ,R+
2,T ) only because it leads to

a small improvement in performance bounds.
12See Foster and Vohra (1999) or Cesa-Bianchi and Lugosi (2006) for a more recent treatment.
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Inequality (11), known as an approachability condition, ensures that flow regrets ρT+1 point

in the direction opposite to that of aggregate regrets RT . This puts strong bounds on the

speed at which aggregate regrets (RT )T≥1 can grow.

Let us now find parameter values (λT+1, πT+1) such that (11) holds. By construction,

regret R2,T+1—which measures maximum foregone gains—satisfies

R2,T+1 = max
T ′≤T+1

T+1∑
t=T ′

(1− λt)(wt − w0
t )

= (1− λT+1)(wT+1 − w0
T+1) + max

T ′≤T+1

T∑
t=T ′

(1− λt)(wt − w0
t )

= (1− λT+1)(wT+1 − w0
T+1) +R+

2,T .

Using the identities (R+
2,T −R2,T )R+

2,T = 0 and R1,T = R+
1,T +R1,T1R1,T<0, it follows that

⟨RT , ρT+1⟩ = [πT+1 − αλT+1(wT+1 − w0
T+1)]R1,T + α2

[
(1− λT+1)(wT+1 − w0

T+1)
]
R+

2,T

=
[
πT+1 − αλT+1(wT+1 − w0

T+1)1R1,T≤0

]
R1,T

−α
[
λT+1R+

1,T − α(1− λT+1)R+
2,T

]
(wT+1 − w0

T+1).

Hence approachability condition ⟨RT , ρT+1⟩ ≤ 0 can be satisfied for any realization of wT+1

and w0
T+1 by setting

λT+1 =
αR+

2,T

R+
1,T + αR+

2,T

and πT+1 =

 αλT+1(wT+1 − w0
T+1)

+ if R1,T ≤ 0

0 if R1,T > 0,
(12)

with the convention that 0
0
= 1.13

This defines a dynamic contract satisfying limited liability contsraint (4); this is the

calibrated contract of interest. The following lemma shows that incentive properties (9) and

13Note that because rewards (πt)t≥1 (and hence regret R1,T ) are proportional to α, coefficient α can be
simplified out of the expression for (λt)t≥1.
Initial terms are set so that λ1 ∈ [0, 1] and π1 ∈ [0, λ1α(w1 − w0

1)
+]. Any such specification is consistent

with the bounds given in Lemma 1 (below). A reasonable choice would be λ1 = 1 and π1 = α(w1 − w0
1)

+.
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(10) are indeed approximately satisfied.

Lemma 1 (approximate incentives). For all T , all T ′ ≤ T and all possible histories,

−αwd ≤
T∑
t=1

πt − αλt(wt − w0
t ) ≤ αwd

√
T (13)

T∑
t=T ′

(1− λt)(wt − w0
t ) ≤ wd

√
T . (14)

Lemma 1 implies that incentive properties (9) and (10) hold up to an error term of order
√
T , which is small compared to the number of periods T . Note that this holds sample path

by sample path, rather than in expectation or in equilibrium. The proof is instructive.

Proof. Let dt = supr∈R | ⟨at − a0t , r⟩ | denote the magnitude of positions taken by the agent

in period t. We first show that ||RT ||2 ≤ α2w2
∑T

t=1 d
2
t . The proof is by induction. Let

us first show the property holds at T = 1. Observe that R1,1 = π1 − αλ1(w1 − w0
1) and

R2,1 = (1 − λ1)(w1 − w0
1). Since λ1 ∈ [0, 1] and π1 ∈ [0, αλ1(w1 − w0

1)
+], we obtain that

||R1||2 ≤ α2λ2
1(w1−w0

1)
2+α2(1−λ1)

2(w1−w0
1)

2 ≤ α2w2d21. Assume now that the induction

hypothesis holds at T ≥ 1. Consider the case where R2,T ≥ 0 (i.e. there are some foregone

returns). Since approachability condition (11) holds, we have that

||RT+1||2 ≤ ||RT + ρT+1||2 = ||RT ||2 + 2 ⟨RT , ρT+1⟩+ ||ρT+1||2

≤ ||RT ||2 + ||ρT+1||2.

Since πT+1 ∈ [0, αλT+1(wT+1 − w0
T+1)

+], it must be that ρ21,T+1 ≤ α2λ2
T+1(wT+1 − w0

T+1)
2.

Hence, it follows that ||ρT+1||2 ≤ α2λ2
T+1(wT+1 − w0

T+1)
2 + α2(1− λT+1)

2(wT+1 − w0
T+1)

2 ≤

α2w2d2T+1. Altogether this shows that the induction hypothesis holds when R2,T ≥ 0. A

similar proof holds when R2,T < 0, taking into account that in this case R2,T+1 = (1 −

λT+1)(wT+1 − w0
T+1). Altogether, this implies that the induction hypothesis holds, and for

all T ≥ 1, ||R+
T ||2 ≤ α2w2

∑T
t=1 d

2
t . This proves (14) and the right-hand side of (13).

The left-hand side of (13) is also proven by induction. Recall that R1,T =
∑T

t=1 πt −
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αλt(wt −w0
t ). If R1,T ∈ [−αwd, 0], then λT+1 = 1, and πT+1 = α(wT+1 −w0

T+1)
+. Hence by

construction, R1,T+1 ≥ −αwd. If instead R1,T > 0, then by definition of d, R1,T+1 ≥ −αwd.

This implies the left-hand side of (13).

Necessity of varying investment scale (λt)t≥1. The fact that property (9) holds ap-

proximately, i.e. that
∑T

t=1 πt − αλt(wt − w0
t ) = o(T ), ensures that the agent’s aggregate

reward
∑T

t=1 πt is tightly linked to his externality
∑T

t=1 λt(wt − w0
t ) on the principal. This

property cannot be achieved without varying investment scale (λt)t≥1. A simple way to see

this is by considering a situation in which starting from some period T0 the agent’s potential

externality wt − w0
t on the principal is on average negative for many successive periods.14

If λt is kept constant, say equal to 1, the relationship between rewards to the agent and

his externality on the principal will break: because of limited liability, rewards to the agent∑T
t=1 πt are weakly increasing with time T , whereas aggregate performance

∑T
t=1wt −w0

t is

sharply decreasing. The time-varying investment policy (λt)t≥1 described in (12) manages to

shield the investor from such large downward deviations in the agent’s performance without

generating large foregone performance.15 In this respect, note that policies that fire the agent

altogether—i.e. such that λt = 0 for all t after a sufficiently bad history—cannot satisfy “no

foregone gains” condition (10). Indeed, since histories at which the agent is fired happen

with positive probability on the equilibrium path, firing rules generate losses proportional

to unknown time horizon N . Simulations provided in the Online Appendix illustrate the

incentive alignment properties of calibrated contracts and the patterns of allocation rule

(λt)t≥1 used to guarantee them.

14This may be the result of poor luck, but may also happen for incentive reasons. Imagine that the agent
learns that he can no longer acquire additional valuable information starting from period T0. Because of
limited liability, it will be optimal for him to suggest asset allocations that are different from default allocation
a0t . Since allocation a0t is optimal under public information, the agent will be suggesting allocations with
negative expected returns.

15Because incentive properties (9) and (10) are only approximated up to a term of order
√
T , there are

variants of process (λt, πt)t≥1 that also approximate (9) and (10) at similar but different speeds. For instance

requiring that ⟨RT , ρT+1⟩ ≤ m with m a fixed constant independent of T also yields bounds of order
√
T ,

but with worse coefficients. All such processes must vary resource allocation (λt)t≥1.
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4.2 Approximate Performance

Lemma 1 shows that as time horizon N grows large, the calibrated contract defined by (12)

must approximate incentive properties (9) and (10). Theorem 2 (stated below) shows that

approximatively satisfying incentive properties (9) and (10) ensures performance approxi-

mately as good as that of benchmark contracts.

Some additional notation is needed. Given a contract specification (λ, π) = (λt, πt)t≥1,

let rλ,π denote the net excess returns delivered by the agent under contract (λ, π):

rλ,π = inf

{
Ec,a

(
1

Nw

N∑
t=1

λt(wt − w0
t )− πt

)∣∣∣∣∣(c, a) solves max
c,a

Ec,a

(
N∑
t=1

πt − ct

)}
.

For any history hT observed by the agent, normalized net returns conditional on hT are

rλ,π|hT = inf

{
Ec,a

(
1

Nw

N∑
t=T+1

λt(wt − w0
t )− πt

∣∣∣∣∣hT

)∣∣∣∣∣(c, a) solves max
c,a

Ec,a

(
N∑
t=1

πt − ct

)}
.

When the contract in question is the benchmark linear contract of parameter α, net returns

accruing to the principal continue to be denoted by rα (similarly, let rα|hT denote conditional

returns at history hT ). Note that returns rλ,π and rα0 are computed under the assumption

that the agent’s behavior is an exact best-reply. No approximate best-reply assumption is

made. An extension in the Online Appendix weakens rationality and studies the performance

of calibrated contracts when the agent can behave suboptimally over an arbitrary interval

of time.

Theorem 2 (approximate performance). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let α =

α0+η(1−α0). Consider the calibrated contract (λ, π) defined by (12). There exists a constant

m independent of time horizon N and probability space P such that for all histories hT ,

rλ,π|hT ≥ (1− η)rα0 |hT −m
1√
N
. (15)
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In addition,

rλ,π ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw

)
− 3d√

N
. (16)

It follows from (15) that for N large enough, the calibrated contract described by (12)

generates a share approximately 1− η of the returns the principal obtains under the bench-

mark contract of parameter α0. The result holds from the perspective of any history, which

alleviates renegotiation concerns. Inequality (16) provides a performance bound analogous

to (6) which holds independently of η.16 Note that for performance bounds (15) and (16) to

hold, it is important that the principal actually allocate resources to the agent according to

(λt)t≥1. Reward scheme (πt)t≥1 does not to induce perfectly good behavior from the agent.

Rather, payment scheme (πt)t≥1 reduces misbehavior to the point where it can be resolved

by using the cautious investment rule specified by (λt)t≥1.

Theorem 2 does not follow immediately from Lemma 1 since approximation errors with

respect to incentives may cause the agent to change his behavior significantly. Indeed, in

this general environment global incentive constraints may be binding or almost binding

under the benchmark contract. Hence getting incentives slightly wrong may result in large

shifts in behavior and poor performance. For instance, this would be the case if under

the benchmark contract, the agent were indifferent between working hard and not working

at all. For this reason incentives must be reinforced: by sharing an additional fraction η

of her returns, the principal ensures that potential changes in the agent’s behavior do not

compromise performance. Madarász and Prat (2010) make the same point in a screening

context. Simulations presented in the Online Appendix highlight that when global incentive

constraints are binding, η may need to be significant to guarantee meaningful efficiency

bounds for realistic time horizons.

16Note that the current analysis does not attempt to optimize constant coefficients in error terms. For
instance the constant 3 in (16) can be replaced by 2 + 1/

√
N .
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5 Inducing self-screening by uninformed agents

The framework of Section 2 allows for arbitrary adverse selection. In particular, the agent

may be fully uninformed and know ex ante that he has no ability to generate valuable

information: maxc,a Ec,a

(∑N
t=1wt − w0

t

∣∣∣IH) = 0. An issue with the calibrated contract

defined by (12) is that by construction, rewards are positive and a sufficiently long-lived

uninformed agent can obtain significant expected payoffs from luck and volatility alone.17 In

order to induce entirely uninformed agents to self-screen, i.e. to not participate in the first

place, some amount of liability is required. The question is how much? It turns out that

for any liability level b available in the first period, the calibrated contract described in (12)

can be adjusted to induce any uninformed agent to self-screen at a minimal efficiency cost,

regardless of environment P , or of the agent’s time horizon.

Specifically, screening is induced by first imposing an initial participation cost −b on the

agent, and then only paying the agent when his performance is above a dynamic hurdle

ΘT which depends on a measure of how different from the default allocation the agent’s

allocation has been. Given a free parameter M > 0, define

ΘT ≡ 2w

1 +

√√√√d
2
+

T∑
t=1

λ2
td

2
t


√√√√M + ln

(
d
2
+

T∑
t=1

λ2
td

2
t

)
, (17)

where dt = suprt∈R | ⟨at − a0t , rt⟩ | and λtdt measures the size of the agent’s effective bet

λt(at − a0t ) away from the default allocation a0t (note that by Assumption 1, dt ≤ d). Hurdle

ΘT is an aggregate measure of how active the agent has been. If the agent makes significant

bets away from a0t in every period then ΘT will be of order
√
T lnT . If the agent makes few

bets, hurdle ΘT will remain small. Denote by ST ≡
∑T

t=1 λt(wt−w0
t ) the surplus generated by

the agent under resource allocation policy (λt)t≥1. The quantity d
2
+
∑T

t=1 λ
2
td

2
t is a measure

of time under which (ST )T≥1 will have at most the variation of a standard Brownian motion.

17Even if the agent has no information and all assets have the same expected returns, systematically
picking assets different from the benchmark allocation will allow the agent to obtain rewards of order

√
N

with non-vanishing probability.
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Hurdled calibrated contracts are defined by an initial fee πΘ
0 = −b and a sequence

(λt, πt, π
Θ
t )t≥1. The sequence (λt, πt)t≥1 is still defined according to (12), and λt is still

the share of wealth actually invested by the agent. However, for T ≥ 1, reward πT is no

longer paid to the agent for sure. Rather, the agent is paid a hurdled reward πΘ
T such that

for T ≥ 1,

πΘ
T =

 πT if ST ≥ ΘT

0 otherwise,

i.e. potential reward πT is paid to the agent if and only if the surplus ST he has generated

is greater than hurdle ΘT .

An intuitive rationale for the form of hurdle ΘT is as follows. Imagine the agent is

uninformed, so that the process (ST )T≥1 is at best a martingale, and imagine that the agent

is frequently active, i.e.
∑T

t=1 λ
2
td

2
t is of order T . Then hurdle ΘT is of order

√
T lnT , whereas,

by the law of the iterated logarithm, with probability 1 as T gets large, maxT ′≤T ST ′ is of

order
√
T ln lnT .18 Because

√
T ln lnT√
T lnT

goes to 0 as T grows large, hurdle ΘT insures that

uniformed agents have very little hope to obtain unjustified returns. Indeed, the following

result holds.

Lemma 2 (hurdle effectiveness). If the agent is uninformed, then for any allocation strategy

a, any environment P and any horizon N ,

Ea

(
N∑
t=1

1St≥Θt

)
≤ π2

2
exp(−2M),

where π is the constant 3.1415 . . .

Because hurdles also reduce the payoffs accruing to informed agents, they carry an in-

centive cost. Still as the next theorem shows, this incentive cost is asymptotically moderate.

Denote by rλ,πΘ the net expected per-period returns generated by the agent under the hurdled

calibrated contract. The following result holds.

18See Billingsley (1995), Theorem 9.5.
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Theorem 3 (performance with screening). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let

α = α0+η(1−α0). There exists a constant m independent of time horizon N and probability

space P such that for all hT ,

rλ,πΘ |hT ≥ (1− η)rα0 |hT −m

√
lnN

N
(18)

Furthermore, whenever −b+ αwd× π2

2
exp(−2M) < 0, it is strictly optimal for uninformed

agents not to participate.19

The combination of initial fee −b and hurdles (ΘT )T≥1 induces self-screening by unin-

formed agents. Hurdles (ΘT )T≥1 are large enough that uninformed agents have little hope to

be rewarded by luck but small enough that they do not significantly affect the incentives of

informed agents. The penalty which was of order 1√
N
in Theorem 2 is now of order

√
lnN
N

. An

extension in the Online Appendix shows that when expected returns are grainy, i.e. either

zero or bounded away from 0, performance losses are still of order 1√
N
.

6 Discussion

This section revisits limited liability constraint (4), discusses in further detail how calibrated

contracts relate to other contracts of interest, and delineates possible avenues for future

research.

6.1 Alternative limited liability constraints

Limited liability constraint (4) imposes that for all t ≥ 1, transfers πt to the agent satisfy 0 ≤

πt ≤ wt. One implication is that large deferred payments are not feasible. Clearly, greater

19This result contrasts with work by Lo (2001) and Foster and Young (2010) which emphasizes the difficulty
of both rewarding and screening agents. In particular Foster and Young (2010) describe environments in
which rewarding and screening is impossible. This occurs because their environment allows for a strong form
of private savings such that informed agents value income in early periods much more than in later periods
(consumption can be arbitrarily delayed and agents can save on their own at the same rate of returns they
generate for the principal). As a result, talented agents are unwilling to pay the monetary cost needed to
induce screening.
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liability may be available to either the principal or the agent in many realistic settings but

for the purpose of this paper, condition (4) remains a useful reduced-form design constraint:

it ensures that the contracts being designed apply across a broad variety of environments.

Indeed, limited liability constraints weaker than, but similar to (4), arise endogenously in

more sophisticated settings.

As an example, consider the contracting problem under which there is no limited liability

on the side of the principal, i.e. πt ∈ [0,+∞), but the agent has the following stylized

concave preferences over consumption x ∈ R:

u(x) =


x if x ∈ [0, x]

x if x ≥ x

−∞ if x < 0.

where x ≥ wd is a constant independent of time horizon N . In words, the agent cannot

have a negative consumption, and has only bounded consumption needs within one period

(e.g. consumption opportunities are limited by time constraints). In addition, the agent can

save at zero interest rate, but cannot borrow against future labor income.

This contracting problem, with no limited-liability constraint on the principal and a

risk-averse agent, is in fact equivalent to the contracting problem in which the agent is risk

neutral but transfers are constrained to satisfy

0 ≤ πt ≤ x. (4′)

Fact 3. If a contract π = (πt)t≥1 satisfies (4′) it induces the same performance from a risk

neutral agent and from an agent with preferences u.

Consider a contract π = (πt)t≥1 such that πt ∈ [0,+∞) for all t. There exists a con-

tract π′ satisfying (4′) such that for every underlying environment P: π′ and π induce the

same behavior and the same payoffs for the agent—whether the agent is risk-neutral or has

preferences u; the principal obtains weakly greater payoffs under π′.

Note that calibrated contracts satisfy (4′) since they satisfy πt ≤ α(wt−w0
t )

+ ≤ wd. Here
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limited liability on the side of the principal arises as a reduced form implication of limited

consumption opportunities for the agent.

Similar limited liability constraints on the side of the principals may also arise for more

direct reasons: for instance the principal may be able to renege on promised payments at a

finite cost. Precluding deferred payments above reneging costs ensures that the principal is

never tempted to interrupt the relationship early, regardless of her beliefs over continuation

values.

6.2 Relation to other contracts

High-water mark contracts. The calibrated contracts described in Section 4 are closely

related to the high-water mark contracts frequently used in the financial industry. High-

water mark contracts are structured as follows: at time T , the investment share λT is always

1, and the agent gets paid

πhwmk
T = α

([
T∑
t=1

wt − w0
t

]
−max

T ′<T

[
T ′∑
t=1

wt − w0
t

])+

. (19)

Quantity maxT ′<T

[∑T ′

t=1wt − w0
t

]
is referred to as the high-water mark and represents the

maximum historical cumulated returns at time T . The agent only gets paid when he improves

on his own historical performance.20 Note that like calibrated contracts, high-water mark

contracts are dynamic and satisfy limited liability constraint (4). In fact, high-water mark

contracts approximately coincide with a calibrated contract in which for all T , the share λT

of resources managed by the agent is kept constant and equal to 1.21

As was previously argued, because high-water mark contracts keep fixed the investment

20For more on high-water mark contracts, see for instance Goetzmann et al. (2003) who develop an option-
pricing approach to high-water mark contracts, or Panageas and Westerfield (2009) who show in a specific
context that high-water mark contracts need not lead to excessive risk-taking.

21More precisely, consider the contract (λ̂, π̂) defined by ∀T ≥ 1, λ̂T = 1 and π̂T = α(wt −w0
t )

+1R̂1,T−1≤0

with R̂1,T−1 ≡
∑T−1

t=1 π̂t − α(wt − w0
t ). For any time T , aggregate rewards

∑T
t=1 π

hwmk
t and

∑T
t=1 π̂t to the

agent differ by at most αwd.
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scale (λt)t≥1 the relationship between rewards to the agent and his externality on the principal

will break down following large drops in performance.22 This has two implications. First,

an agent who has lost the ability to generate positive return (e.g. his information has

become unreliable) will cause large losses by choosing suboptimal allocations (choosing the

default allocation, which is optimal under public information, guarantees him zero rewards).

Second, if a talented agent has been unlucky and experienced a drop in returns, the difficulty

of catching up with a high-water mark may discourage investment altogether. As a result

high-water mark contracts exhibit large gains to renegotiation. If an agent performs well

for an extended amount of time, following which he experiences sharp losses, the principal

and the agent may both benefit strongly from forgiving the losses and pretending that the

current high-water mark is lower than it really is.

By choosing appropriate investment shares (λt)t≥1, calibrated contracts are able to keep

tight the relationship between rewards and externality starting from every history. As a

result, extended drops in performance have a limited impact on payoffs to the principal,

and a limited impact on continuation incentives for the agent (see Online Appendix OA

2 for illustrative simulations). The fact that calibrated contracts do not generate large

foregone performance (Lemma 1) implies that along parts of the path of play where the

agent is generating positive returns, investment shares (λt)t≥1 will be close to one. Inversely,

investment shares may be significantly below one along portions of the path where the agent

is not generating positive returns.23

22For instance, imagine the agent delivers performance (wt−w0
t )t≥1 equal to (1, 1,−1, 1, 1,−1 · · · , 1, 1,−1)

so that total surplus is N/3. Cumulated value-added
∑T

t=1 wt − w0
t is on average increasing and under the

high-water mark contract the agent obtains a reward αN/3 + o(N). If instead the agent delivers returns
(1, 1, · · · , 1) for the first 2N/3 periods, followed by (−1,−1, · · · ,−1) for the lastN/3 periods, then the surplus
generated by the agent is still N/3, but the high-water mark contract now gives him a payoff 2αN/3+ o(N).

23Note that for Lemma 1 to hold sample path by sample path, investment shares λt must move smoothly
with performance instead of taking only values 0 or 1. Rather than a stop-loss provision, it is more accurate
to think of the calibrated investment shares (λt)t≥1 as continuously implementing a robust option on the

agent’s potential performance
∑T

t=1 wt − w0
t . See DeMarzo et al. (2009) for work on the relation between

approachability and robust option pricing.
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Connection with optimal contracting. It is instructive to note that DeMarzo and

Sannikov (2006), DeMarzo and Fishman (2007) as well as Biais et al. (2007, 2010) derive

high-water mark contracts as optimal contracts in their environments. The link is not

entirely obvious because their optimal contracts are described in the standard (forward

looking) language of continuation values. Because calibrated contracts and high-water mark

contracts are detail-free, they can only be described in reference to (backward looking)

realized observables. This difference however is superficial and the connection between the

two approaches is significant.24 To a first order, DeMarzo and Sannikov (2006), DeMarzo and

Fishman (2007) and Biais et al. (2007, 2010) find that in their environment, under optimal

contracts, the agent’s continuation value follows a random walk, proportional to the agent’s

performance, and reflected at some upper bound W . Whenever the agent’s continuation

value hits this upper bound, he is paid a fixed proportion of the surplus he generates.

This in fact encodes for a high-water mark contract. Imagine that at time t, the agent is

promised value W , and that he starts losing money. Then, his continuation value moves

in a way proportional to his performance, and he is only paid again when his performance

covers his losses so that his continuation value climbs back to W . This coincides with the

reward profile of a high-water mark contract: the agent only gets paid once he has recouped

his losses. This connection should not be entirely surprising: DeMarzo and Sannikov (2006),

DeMarzo and Fishman (2007) as well as Biais et al. (2007, 2010) consider environments with

a linear production technology in which the benchmark high-liability contracts of Section

3 are close to optimal for patient players; calibrated contracts are specifically designed to

approximate the performance of such contracts.

The connection is particularly strong with Biais et al. (2007) and especially Biais et al.

(2010) who emphasize the role of downsizing the project managed by the agent as a function

of his performance. This is related to varying investment shares (λt)t≥1 in the current paper.

The use of downsizing in Biais et al. (2007, 2010) however is slightly different. In their work,

24Indeed, the optimal contracts derived by DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007)
and Biais et al. (2007, 2010) can be given a backward looking description since there is a one-to-one mapping
between realized payoffs and continuation values.
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downsizing occurs when continuation values are so low that at the current size of the project,

optimal behavior can no longer be enforced. Downsizing allows to deliver the promised low

values while maintaining appropriate incentive compatibility conditions in the continuation

game. As a result, downsizing occurs only after sufficiently long strings of poor performance.

In the current paper, scaling rule (λt)t≥1 can be seen as a preventive downsizing scheme,

which rules out continuation values so low that incentive provision becomes problematic.

6.3 Future Work

The relative simplicity of the analysis presented in the paper gives reasonable hope that

parts of the approach may be used in other settings. Three directions for further research

seem promising.

A first direction for research is to reintroduce prior restrictions on the environment. The

current analysis puts few such restrictions and is meant to stand in sharp contrast to the

usual optimal contracting approach which fully specifies an underlying environment P . One

challenge going forward is to bridge the two approaches and explore how additional non-

parametric restrictions on the environment map into richer contractual designs.25

A second challenge is to allow for risk-aversion. Some suggestions are offered in Chassang

(2011), but more work remains to be done. One difficulty is to characterize the amount of

co-insurance between principal and agent that can be sustained using prior-free approaches,

and specify what constitutes an appropriate performance benchmark.

Finally, a third avenue for research is to extend the incentive calibration approach of this

paper to study dynamic mechanism design under limited liability constraints. For instance,

Vickrey-Clarke-Groves mechanisms require agents to make significant payments and are

therefore ill-suited to environments where agents are severely cash constrained. The incentive

calibration approach developed in this paper can help relax such limited liability constraints.

25For instance, further restrictions could be imposed on aggregate production function rmax(·) without
specifying the detailed stochastic process giving rise to this aggregate production function.
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Appendix

A Proofs

A.1 Proofs for Section 3

Proof of Fact 1: The fact that benchmark contracts satisfy no-loss is immediate: rewards

to the agent and payoffs to the principal are proportional under the benchmark contract.

Let us turn to the converse.

A contract (πt)t≥1 induces indirect vNM preferences for the agent and the principal over

lotteries with outcomes (wt, w
0
t )t≥1. Given such a lottery L, the principal and the agent

respectively have expected utilities

EL

(
N∑
t=1

wt − w0
t − πt

)
and EL

(
N∑
t=1

πt

)
.

Because no-loss must hold for every underlying environment P and every strategy of the

agent, it implies that for every probability distribution L over outcomes (wt, w
0
t )t≥1,

EL

(
N∑
t=1

wt − w0
t − πt

)
≥ 0 ⇐⇒ EL

(
N∑
t=1

πt

)
≥ 0.

If EL(
∑N

t=1wt − w0
t ) = 0, then EL(

∑N
t=1 πt) and -EL(

∑N
t=1 πt) must have the same sign,

which implies that

EL

(
N∑
t=1

wt − w0
t

)
= 0 ⇒ EL

(
N∑
t=1

πt

)
= 0.

Consider the deterministic sequence such that: for all t > 1, wt = w0
t = 0; w1 = 0; w0

1 = 1.

Let us define α ≡ −
∑N

t=1 πt for this deterministic sequence of outcomes. Let L−1 denote the

lottery putting unit mass on this sequence. For any lottery L such that EL(
∑N

t=1wt−w0
t ) ≥ 0,

consider the compound lottery L̂ = pL−1 + (1 − p)L, with p/(1 − p) = EL(
∑N

t=1wt − w0
t ).
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By construction, EL̂(
∑N

t=1wt − w0
t ) = 0 so that necessarily,

EL̂

(
N∑
t=1

πt

)
= 0 ⇐⇒ −pα+ (1− p)EL

(
N∑
t=1

πt

)
= 0

⇐⇒ EL

(
N∑
t=1

πt

)
= αEL

(
N∑
t=1

wt − w0
t

)
.

Since this must hold for all lotteries L, it must be that for all t, πt = α(wt − w0
t ). Finally it

is immediate that in order to satisfy no-loss, it must be that α ∈ (0, 1).

Proof of Theorem 1: Let us begin with point (i). Let (cα, a
∗) denote the agent’s policy

under the benchmark contract with reward rate α. Recall that a∗ denotes the strategy that

maximizes expected returns conditional on information. Recall also that rmax(ĉ) denotes

potential gross returns, i.e. the production function for returns, whereas rα denotes returns

net of payments to the agent under the benchmark contract. Pick ĉ ∈ [0,+∞) and denote by

(c, a∗) a policy that maximizes surplus Ec,a∗

(∑N
t=1wt − w0

t

)
conditional on average expected

cost constraint 1
N
Ec

(∑N
t=1 ct

)
≤ ĉ. Since policy (c, a∗) guarantees the agent an expected

per-period payoff of αwrmax(ĉ) − ĉ, it must be that α
1−α

wrα − Ecα ≥ αwrmax(ĉ) − ĉ. This

implies that α
1−α

wrα ≥ αwrmax(ĉ)− ĉ, which yields point (i).

Let us now turn to point (ii) and assume that ĉ
wrmax(ĉ)

≤ ρ. Applying point (i), we get

that

wrα ≥ (1− α)

(
wrmax(ĉ)−

ĉ

α

)
≥ (1− α)

(
1− ρ

α

)
wrmax(ĉ). (20)

Setting α =
√
ρ maximizes the right-hand side of inequality (20) and yields that

wrα ≥ wrmax(ĉ)(1−
√
ρ)2 = wrmax(ĉ)(1− ρ)

(1−√
ρ)2

1− ρ

≥ (wrmax(ĉ)− ĉ)
1−√

ρ

1 +
√
ρ
=

(
1− 2

√
ρ

1 +
√
ρ

)
(wrmax(ĉ)− ĉ).

This proves point (ii).

Proof of Corollary 1: Using the bound given in point (ii) of Theorem 1 for ĉ = cFB and
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α =
√
cFB/wrFB yields that

wrα
wrFB − cFB

≥ 1− 2

√
ρ

1 +
√
ρ
.

We now show that this bound is tight: no contract can improve on this bound over the

class of environments Pρ. For this it is sufficient to show that no contract can improve on

this bound for some subclass of environments included in Pρ. We consider the following

family of settings.

There are two assets, 1 and 2. Asset 1 is riskless with returns r1,t = 0 every period. Asset

2 is risky and i.i.d. with negative expected value. Specifically, r2,t = 1 with probability 1/3

and r2,t = −1 with probability 2/3. The agent can only acquire information in period t = 1,

but that information is valuable over the entire course of the relationship. Expending cost

Nc in the first period implies that with probability p(c) the agent learns the entire profile of

realizations (r2,t)t≥1. With probability 1− p(c) the agent does not observe any information

and there are no more information acquisition opportunities.

Environments P in this subclass of interest differ by the probability p(c) with which the

agent can learn the profile of returns (r2,t)t≥1. This is equivalent to per-period expected

returns rmax(c) = p(c)/3. Attention is restricted to expected returns that are step functions

of the form rmax(c) = rmax(0) ≥ 0 for c ∈ [0, cFB) and rmax(c) = rFB > 0 for c ∈ [cFB,+∞).

Furthermore we impose the restriction that cFB

wrFB
= ρ. In this environment, since we are

not imposing limited liability condition (4), one can restrict attention to contracts in which

aggregate payments ΠN ≡
∑N

t=1 πt are decided and transferred in the last period. Define

π = ΠN/N the corresponding per-period reward. In this environment, reward π need only

be conditioned on the following events:

� the agent only invests in asset 1 (event 0)

� the agent invests in asset 2 and only obtains returns equal to 1 when he does (event 1)

� the agent invests in asset 2 and obtains returns equal to -1 at one history (event -1).

Indeed, the agent can be discouraged to choose asset 2 when uninformed by setting π(−1)

arbitrarily low. In equilibrium event -1 will not occur and these off-path incentives have

no efficiency cost. Given these incentives, if event 1 occurs, it must be that the agent has

invested in information acquisition, and incentives to do so depend only on expected payoffs

conditional on events 0 and 1. Hence it is sufficient to condition π only on events 0, 1 and

−1.

32



Define ∆ = π(1)−π(0) the difference in per-period rewards between events 1 and 0. The

agent’s per-period expected payoff from putting effort c is

p(c)
[
(1− (2/3)N)π(1) + (2/3)Nπ(0)

]
+ (1− p(c))π(0)− c

= π(0) + 3rmax(c)
[
1− (2/3)N

]
∆− c,

while the principal’s per-period payoff is

−π(0) + rmax(c)
(
w − 3

[
1− (2/3)N

]
∆
)
.

Let us first show that any contract such that π(0) ̸= 0 cannot guarantee the principal a

positive share of first-best surplus. Indeed, if π(0) < 0, then for values of rFB low enough,

the agent’s payoff is strictly negative for all values of c ∈ [0,+∞), which implies that the

agent doesn’t participate in the first place and the principal gets profits equal to 0. If instead

π(0) > 0, then for values of rFB low enough, the principal will get negative profits.

Now consider the case where π(0) = 0. If ∆ < cFB

3rFB [1−(2/3)N ]
, then the agent chooses cost

level c = 0, which leads to zero profits in environments where rmax(0) = 0. Assume now

that ∆ ≥ cFB

3rFB [1−(2/3)N ]
. For any ϵ > 0, in environments such that 3r(0)∆

[
1− (2/3)N

]
=

3rFB∆
[
1− (2/3)N

]
− cFB + ϵ, the agent chooses to expend cost c = 0, and the principal

obtains payoff (
rFB − cFB − ϵ

3 [1− (2/3)N ] ∆

)(
w − 3

[
1− (2/3)N

]
∆
)
.

Maximizing over ∆ and letting ϵ go to 0 (which yields ∆ = w
3[1−(2/3)N ]

√
ρ) implies an upper

bound to the principal’s guaranteed payoff: the principal can guarantee himself a payoff of

at most (
wrFB − cFB√

ρ

)
(1−√

ρ) = wrFB(1−
√
ρ)2 = (wrFB − cFB)

(1−√
ρ)2

1− ρ

= (wrFB − cFB)

(
1−

2
√
ρ

1 +
√
ρ

)
.

We know from point (i) of Theorem 1 that the linear contract of parameter α =
√
ρ guar-

antees this performance, which is therefore the maxmin efficiency ratio over the class of

environments Pρ. This concludes the proof.
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A.2 Proofs for Section 4

The proof of Lemma 1, which shows that incentive properties (9) and (10) hold approximately

under calibrated contracts, was given in the text.

Let us turn to the proof of Theorem 2. The following lemma—which will be used again—

provides the missing step. It shows that approximately satisfying (9) and (10) implies

approximate performance bounds.

Lemma A.1. Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let α = α0 + η(1 − α0). Consider a

contract (λ, π) and numbers A,B and C such that for all final histories hN ,

N∑
t=1

(1− λt)(wt − w0
t ) ≤ A and −B ≤

N∑
t=1

πt − αλt(wt − w0
t ) ≤ C. (21)

Then

rλ,π ≥ (1− η)rα0 −
1

Nw

[
C +

1− η

η
(αA+B + C)

]
(22)

rλ,π ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw

)
− 1

Nw

[
C − 1− α

α
(αA+B + C)

]
. (23)

Proof of Lemma A.1: Let us first prove (22). Recall that a∗ denotes the allocation

strategy that maximizes expected returns conditional on acquired information. Under any

benchmark linear contract, the agent uses conditionally optimal allocation policy a∗. Let

(c, a∗) denote the agent’s policy under the benchmark contract of parameter α, (c̃, ã) his

policy under contract (λ, π), and (c0, a
∗) the agent’s policy in the benchmark contract of

parameter α0.

It is convenient to introduce the following notation:

ΠN =
N∑
t=1

πt , ΣN =
N∑
t=1

wt − w0
t and SN =

N∑
t=1

λt(wt − w0
t ).

ΠN denotes aggregate rewards, ΣN potential surplus created by the agent, and SN actual

surplus created given cautious investment rule (λt)t≥1.

By optimality of (c̃, ã) under contract (λ, π), we have that

Ec̃,ã

[
ΠN −

N∑
t=1

c̃t

]
≥ Ec,a∗

[
ΠN −

N∑
t=1

ct

]
.
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Using (21), we obtain that

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+C ≥ Ec,a∗

[
αSN −

N∑
t=1

ct

]
−B ≥ Ec,a∗

[
αΣN −

N∑
t=1

ct

]
−B−αA. (24)

By optimality of (c, a∗) under the benchmark contract of parameter α, we have that

Ec,a∗

[
αΣN −

N∑
t=1

ct

]
≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]
. (25)

By optimality of (c0, a
∗) under the benchmark contract of parameter α0 we obtain

Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,a∗

[
α0ΣN −

N∑
t=1

c̃t

]
.

Note that by definition of a∗ and SN , Ec̃,a∗ΣN ≥ Ec̃,ãSN . Indeed, under a
∗, potential returns

wt−w0
t have positive expectation every period, and λt(wt−w0

t ) (under any allocation policy)

provides at best a fraction of these returns. This implies that

Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
. (26)

Combining (24), (25) and (26) yields

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+ αA+B + C ≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec0,a∗

[
α0ΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
.

Regrouping terms appropriately, this implies that (α−α0) [Ec0,a∗ΣN − Ec̃,ãSN ] ≤ αA+B+C.

This inequality implies a lower bound for Ec̃,ãSN . Using this lower bound and the fact that

by (21), ΠN ≤ αSN + C, we obtain that

Ec̃,ã[SN − ΠN ] ≥ (1− α)Ec0,a∗(ΣN)− (1− α)
αA+B + C

α− α0

− C. (27)
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Recall that α = α0 + η(1− α0) so that 1− α = (1− α0)(1− η) and α− α0 = η(1− α0). By

dividing (27) with Nw we obtain that rλ,π ≥ (1− η)rα0 − 1
Nw

[
C + 1−η

η
(αA+B + C)

]
. This

proves inequality (22).

We now turn to performance bound (23). Recall that rmax(ĉ) denotes potential gross

returns, i.e. the production function for returns, whereas rλ,π denotes returns net of payments

to the agent under contract (λ, π). Continue to denote by (c̃, ã) the policy chosen by the

agent under calibrated contract (λ, π). For any ĉ ∈ [0,+∞), let (c, a∗) denote a policy that

maximizes expected returns Ec,a∗

(∑N
t=1wt − w0

t

)
conditional on 1

N
Ec

(∑N
t=1 ct

)
≤ ĉ.

By optimality of (c̃, ã) under contract (λ, π) it follows that

Ec̃,ã

(
N∑
t=1

πt − c̃t

)
≥ Ec,a∗

(
N∑
t=1

πt − ct

)
.

Using (21), we obtain that

Ec̃,ã

(
N∑
t=1

αλt(wt − w0
t )− c̃t

)
+ C ≥ Ec,a∗

(
N∑
t=1

αλt(wt − w0
t )− ct

)
−B

≥ Ec,a∗

(
N∑
t=1

α(wt − w0
t )− ct

)
−B − αA,

where we first used that by (21), −B+
∑N

t=1 αλt(wt−w0
t ) ≤

∑N
t=1 πt ≤ C+

∑N
t=1 αλt(wt−w0

t ),

and then used that by (21),
∑N

t=1(1−λt)(wt−w0
t ) ≤ A. Dividing by α and using the definition

of rmax(ĉ), this implies that

Ec̃,ã

(
N∑
t=1

λt(wt − w0
t )

)
≥ N

(
wrmax(ĉ)−

ĉ

α

)
− αA+B + C

α
.

Hence it follows that

rλ,π =
1

Nw
Ec̃,ã

(
N∑
t=1

λt(wt − w0
t )− πt

)

≥ 1

Nw

[
(1− α)Ec̃,ã

(
N∑
t=1

λt(wt − w0
t )

)
− C

]

≥ (1− α)

(
rmax(ĉ)−

ĉ

αw

)
− 1

Nw

[
C +

1− α

α
(αA+B + C)

]
.
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Proof of Theorem 2: Theorem 2 follows directly from applying Lemma A.1 to the family

of incentive bounds of Lemma 1, noting that incentive bounds continue to hold starting from

any history.

A.3 Proofs for Section 5

The proof of Lemma 2 requires the following extension of the Azuma-Hoeffding inequality.

Lemma A.2 (an extension of Azuma-Hoeffding). Consider a martingale with increments

∆t such that |∆t| ≤ γ. Filtration (Ft)t≥1 corresponds to the information available at the

beginning of period t. Let γt ≡ sup |∆t|
∣∣∣Ft and Tm ≡ inf

{
T
∣∣∣ γ2 +

∑T
t=1 γ

2
t ≥ m

}
. The

following hold:

(i) ∀κ > 0, Prob
(∑Tm

t=1∆t ≥ κ
)
≤ exp

(
−2κ2

m

)
(ii) ∀κ > 0, Prob

(
maxT≤Tm

∑T
t=1∆t ≥ κ

)
≤ 2 exp

(
−2κ2

m

)
.

Proof of Lemma A.2: Let us begin with point (i). By Hoeffding’s Lemma (see Hoeffding

(1963) or Cesa-Bianchi and Lugosi (2006), Lemma 2.2), we have that

E(exp(λ∆t)|Ft) ≤ exp

(
λ2γ2

t

8

)
.

By construction
∑Tm

t=1 γ
2
t ≤ m. Hence, using Chernoff’s method, we have that for any λ > 0

Prob

(
Tm∑
t=1

∆t ≥ κ

)
≤ exp(−λκ)E

(
Tm∏
t=1

exp(λ∆t)

)
≤ exp(−λκ)E (exp(λ∆1)E (exp(λ∆2) · · ·E (exp(λ∆Tm)|FTm) | · · · |F2))

≤ exp(−λκ)E

(
exp

(
λ2

8

Tm∑
t=1

γ2
t

))
≤ exp(−λκ) exp

(
λ2

8
m

)
.

Minimizing over λ (i.e. setting λ = 4κ/m) yields point (i).

Point (ii) follows from point (i) by adapting the standard reflection techniques used for

Brownian motions. LetBT =
∑T

t=1 ∆t. Pick κ > 0. We want to evaluate Prob(maxT≤Tm BT ≥
κ). Consider the process B̃T =

∑T
t=1 ϵt∆t, where ϵt = 1[maxs<t Bs]<κ − 1[maxs<t Bs]≥κ. Process
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B̃T is a martingale, corresponding to reflecting BT the first time it crosses level κ. Note also

that |ϵt∆t| = |∆t|. We have that

Prob

(
max
T≤Tm

BT ≥ κ

)
= Prob(BTm ≥ κ) + Prob(BTm < κ and max

T≤Tm

BT ≥ κ)

≤ Prob(BTm ≥ κ) + Prob(B̃Tm ≥ κ). (28)

Note that (28) is an inequality, rather than an equality as in the case of a Brownian

motion, because of the discreteness of martingale increments. Still this suffices for our

purpose. Indeed, by applying point (i) to both BTm and B̃Tm , we obtain that indeed,

Prob
(
maxT≤Tm

∑T
t=1∆t ≥ κ

)
≤ 2 exp

(
−2κ2

m

)
. This concludes the proof.

Proof of Lemma 2: Recall that ST is defined by ST ≡
∑T

t=1 λt(wt − w0
t ). We have that

ST =
T∑
t=1

λtEa[wt − w0
t |F0

t ] +
T∑
t=1

λt(wt − w0
t − Ea[wt − w0

t |F0
t ]).

Since the agent is uninformed, by definition of w0
t , we have that for all allocation strategies

a, Ea[wt − w0
t |F0

t ] ≤ 0. Define ∆t ≡ λt(wt − w0
t − Ea[wt − w0

t |F0
t ])/w. ∆t is a martingale

increment such that |∆t| ≤ 2λtdt.

Let us define χT = d
2
+
∑T

t=1 λ
2
td

2
t . For all m ∈ N, let Tm denote the stopping time

inf {T |χT ≥ m}. Using Lemma A.2, we obtain that for all m

Prob
(
STm ≥ 2w

√
χTm

√
M + lnχTm

)
≤ Prob

(
Tm∑
t=1

∆t ≥ 2
√
χTm

√
M + lnχTm

)
≤ exp (−2(M + lnm)) ≤ exp(−2M)

1

m2
.

In addition, conditional on STm ≤ 2w
√
χTm

√
M + lnχTm , Lemma A.2 implies that the

probability that there exists T ∈ [Tm, Tm+1 − 1] such that ST ≥ ΘT is less than

Prob

(
sup

T∈{Tm,··· ,Tm+1−1}

T∑
t=Tm

∆t ≥ 2
√
M + lnm

)
≤ 2 exp(−2M)

1

m2
.
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Hence it follows that

Ea

(
N∑
t=1

1St≥Θt

)
≤ 3 exp(−2M)

∑
m∈N

1

m2
≤ π2

2
exp(−2M).

This concludes the proof.

Let us now turn to the proof of Theorem 3. Let ΠΘ
T =

∑T
t=1 π

Θ
t denote actual rewards,

up to time T . The following lemma extends Lemma 1.

Lemma A.3 (approximate incentives). For all T , T ′ < T , and all paths of play, we have

that

−αΘT − αwd− b ≤
∑T

t=1 π
Θ
t − αλt(wt − w0

t ) ≤ αw

√√√√ T∑
t=1

d2t (29)

∑T
t=T ′(1− λt)(wt − w0

t ) ≤ w

√√√√ T∑
t=1

d2t . (30)

Proof. A proof identical to that of Lemma 1 yields the right-hand sides of (30) and (29).

Let us turn to the left-hand side of (29). We know from (13) that for all T ≥ 1,

−αwd ≤
∑T

t=1 πt − αλt(wt −w0
t ). We now show by induction that for all T ≥ 1,

∑T
t=1 π

Θ
t ≥(∑T

t=1 πt

)
− ΘT . This holds for T = 1. Assume it holds at time T ≥ 1. If πT+1 = 0, then

πΘ
T+1 = 0 and the induction hypothesis holds. If

∑T+1
t=1 πt ≤ ΘT+1 the induction hypothesis

also holds since πΘ
t ≥ 0. Consider now the case where πT+1 > 0 and

∑T+1
t=1 πt > ΘT+1. Since

πT+1 > 0, it must be that αST+1 ≥
∑T+1

t=1 πt, which implies that ST+1 > ΘT+1 and hence

πΘ
T+1 = πT+1. This implies that the induction hypothesis holds at time T + 1, which implies

the left-hand side of (29).

Proof of Theorem 3: Combining Lemma A.3 and Lemmas A.1 and 2 yields Theorem 3.

Proof of Fact 3: The first result is immediate: whenever contract πt satisfies condition

(4) then u(πt) = πt. Hence, contract πt induces the same behavior and the same surplus

whether the agent is risk-neutral or has preferences u.

Inversely, consider a contract π = (πt)t≥1 such that for all t, πt ≥ 0. Because of bor-

rowing constraints, the agent’s consumption profile (xt)t≥1 must be such that for all T ≥ 1,
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∑T
t=1 xt ≤

∑T
t=1 πt. We now show that given contract (πt)t≥1 one can solve the agent’s opti-

mal saving problem in a prior-free way. This allows to build a contract equivalent to (πt)t≥1

and satisfying (4′) by letting the principal do all savings. Consider the consumption profile

(x∗
t )t≥1 defined recursively by setting

∀T ≥ 1, x∗
T = min

{
x, πT +

T−1∑
t=1

πt − x∗
t

}
.

It is easy to verify that for all T , (x∗
t )t≥1 solves the optimal consumption problem

max
(xt)t≥1

T∑
t=1

xt

∣∣∣∣∣ ∀T ′ ≤ T, xT ′ ∈ [0, x] and
T ′∑
t=1

xt ≤
T ′∑
t=1

πt.

By construction, offering the agent contract (π̃t)t≥1 ≡ (x∗
t )≥1 instead of (πt)t≥1 induces

the same behavior from the agent, and yields greater payoffs to the principal since by con-

straint
∑N

t=1 x
∗
t ≤

∑N
t=1 πt.
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Online Appendix for “Calibrated Incentive Contracts”

Section OA 1 of this Online Appendix extends the analysis of Sections 3 and 4. Section OA

2 provides simulations illustrating key properties of calibrated contracts.

OA 1 Extensions

Appendix OA 1.1 extends the analysis to the case where principal and agent discount future

payoffs. Appendix OA 1.2 shows how to calibrate a broader class of high-liability contracts,

including log-scoring rules. Appendix OA 1.3 shows that the calibrated contracts of Section

4 perform well even if the agent isn’t rational and behaves suboptimally over any arbitrary

interval of time. Appendix OA 1.4 considers the case where the principal can use more

than one agent. Finally, Appendix OA 1.5 proves improved performance bounds for the

screening contracts introduced in Section 5 when expected returns are grainy. Chassang

(2011) contains additional extensions dealing with varying wealth, varying preferences, risk-

aversion and non-convex action spaces.

OA 1.1 Discounting

The analysis of Section 4 can be extended to environments where principal and agent dis-

count the future by a factor δ so that the agent’s payoffs are E
(∑N

t=1 δ
t−1(πt − ct)

)
and the

principal’s surplus is E
(∑N

t=1 δ
t−1(wt − w0

t )
)
. Let Nδ =

∑N
t=1 δ

t. This appendix shows that

under discounting, the performance bound of Theorem 2 extends with a loss of order
√

1/Nδ

instead of
√
1/N .

Benchmark contract. The benchmark contract still gives the agent reward πt = α(wt −
w0

t ) in every period t. This linear contract guarantees the principal a payoff bound similar to

that of Theorem 1(i). For any contract (λ, π), where sequence λ = (λt)t≥1 may be constant

and equal to 1, define

rλ,π = inf

{
Ec,a

(
1

wNδ

N∑
t=1

δt−1
[
λt(wt − w0

t )− πt
]) ∣∣∣∣∣(c, a) solves max

c,a
Ec,a

(
N∑
t=1

δt−1[πt − ct]

)}

the average discounted per-period returns accruing to the principal under contract (λ, π).

Let rα denote returns accruing to the principal under the benchmark contract. In addition
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define

rmax(ĉ) ≡ sup
c s.t.

E
[

1
Nδ

∑N
t=1 δ

t−1ct
]
≤ ĉ

Ec,a∗

(
1

Nδ

N∑
t=1

δt−1
⟨
a∗t − a0t , rt

⟩)

the maximum discounted per-period returns that can be generated at an expected discounted

per-period cost of ĉ.

Lemma OA 1. For all environments P,

rα ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw

)
.

Proof. The proof is identical to that of Theorem 1(i).

Calibration. The calibrated contract is built using the following regrets

R1,T =
T∑
t=1

δt−1(πt − α(wt − w0
t )) and R2,T = max

T≤T ′

T∑
t=T ′

δt−1(1− λt)(wt − w0
t )

+.

Contract parameters (λt, πt)t≥1 are computed recursively according to

λt =
αR+

2,T

R+
1,T + αR+

2,T

and πt =

{
α(wt − w0

t )
+ if R1,T ≤ 0

0 otherwise
.

The following result extends Lemma 1, showing that incentives are approximately correct.

Lemma OA 2 (approximate incentives). For all T , and all possible histories,

1

Nδ

N∑
t=1

δt−1(1− λt)(wt − w0
t ) ≤

wd√
Nδ

(31)

−wd

Nδ

≤ 1

Nδ

N∑
t=1

δt−1[πt − α(wt − w0
t )] ≤

wd√
Nδ

. (32)

Proof. Let RT = (R1,T , αR2,T ) denote the vector of regrets, and ρT+1 = RT+1 −RT . Con-

tract (λ, π) is calibrated so that in every period
⟨
R+

T , ρT+1

⟩
= 0. It follows that

||R+
N ||

2 ≤
N∑
t=1

||ρT ||2.
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Furthermore, we have that ||ρT ||2 ≤ δ2Twd, which implies that

||R+
T ||

2 ≤ wd
N∑
t=1

δ2(t−1) ≤ wd
N∑
t=1

δt−1.

This implies the right-hand sides of (31) and (32). The left-hand side of (32) follows from a

proof identical to that of the left-hand side of (13).

This implies the following bounds for returns rλ,π.

Theorem OA 1. Pick α0 ∈ (0, 1) and for η > 0, let α = α0+η(1−α0). There exists m ≥ 0

such that for all environments P, all δ and all N ,

rλ,π ≥ (1− η)rα0 −
m√
Nδ

(33)

rλ,π ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)−

ĉ

αw
− 3d√

Nδ

)
. (34)

Proof. The proof follows the same steps as that of Theorem 2, with the bounds provided in

Lemma OA 2 replacing those provided in Lemma 1.

OA 1.2 Calibrating a broader class of contracts

This section provides sufficient conditions ensuring that a benchmark high-liability contract

can be calibrated using limited-liability contracts. Fix a family of limited liability constraints

∀t ≥ 1, 0 ≤ πt ≤ πt, (4′′)

such that for all t, wt ≤ πt, and take as given a contract with aggregate final rewards denoted

by Π0
N (where Π0

N is adapted to the principal’s information at time N). It turns out that

contract Π0
N can be calibrated by a dynamic contract satisfying limited liability constraint

(4′′) whenever the following assumption holds.

Assumption OA 1. Benchmark contract Π0
N can be written as Π0

N =
∑N

t=1 π
0
t , with (π0

t )t≥1

such that

(i) π0
t is adapted to the information available to the principal at time t;

(ii) wt = w0
t implies π0

t ≥ 0;
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(iii) π0
t ≤ πt and there exists π > 0 independent of N such that, sup |π0

t | ≤ π.

Note that π0
t may be negative and require liability from the agent. It is immediate that

Assumption OA 1 holds for all contracts of the form Π0
N =

∑N
t=1 α

0
t (wt−w0

t ) where α
0
t ∈ (0, 1)

is adapted to public information (F0
t )t≥1. Assumption OA 1 also holds for contracts of the

form

Π0
N = G

(
N∑
t=1

ϕ(wt − w0
t )

)
where ϕ(0) = G(0) = 0 and G and ϕ are Lipschitz, with constants κG and κϕ such that

κGκϕwt ≤ πt. For instance, if for all t, πt = wt, this includes contracts such that the agent

gets paid a positive reward only when returns are above a threshold, i.e contracts such that

Π0
N =


α
∑N

t=1wt − w0
t if

∑N
t=1wt − w0

t < 0

0 if
∑N

t=1wt − w0
t ∈ [0,W ]

α
([∑N

t=1wt − w0
t

]
−W

)
if
∑N

t=1wt − w0
t > W.

(35)

Another example of alternative benchmark contract is to reward the agent for probability

assessments according to a log-scoring rule. This example will be discussed in further detail

after stating the main calibration result.

Calibration. Theorem OA 2, stated below, shows that the performance of any contract

satisfying Assumption OA 1 can be approximated in a prior-free way using dynamic limited

liability contracts.

As in Section 4 an additional incentive wedge is necessary to take care of potentially

binding global incentive constraints. For any η > 0 define the auxiliary contract

πη
t ≡ π0

t + η(wt − w0
t − πη

t ) =
1

1 + η
π0
t +

η

1 + η
(wt − w0

t ).

If contract (π0
t )t≥1 satisfies Assumption OA 1, then so does contract (πη

t )t≥1. In particular,

|πη
t | ≤ 1

1+η
π + η

1+η
wd ≡ πη.

The approach consists in calibrating the incentives provided by contract (πη
t )t≥1. Once

again, the two instruments used are rewards (πt)t≥1 and the proportion of resources (λt)t≥1

managed by the agent. Define πη
t (λt) = λtπ

η
t . The regrets R1,T and R2,T to be minimized
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are:

R1,T =
T∑
t=1

πt − πη
t (λt) (no excess rewards) (36)

R2,T = max
T ′≤T

T∑
t=T ′

πη
t − πη

t (λt) (no foregone performance). (37)

The usual approachability condition yields contract parameters (λt, πt)t≥1 of the form,

λT+1 =
R+

2,T

R+
1,T +R+

2,T

and πT+1 =

{ [
πη
T+1

]+
if R1,T ≤ 0

0 otherwise.
(38)

As in Section 4 this ensures that the vector of regrets (R1,T ,R2,T ) remains of order
√
T , so

that incentives are approximately correct. The following performance bounds obtain.

Theorem OA 2. There exists a constant m independent of environment P and time horizon

N , such that under contract (λt, πt)t≥1, returns accruing to the principal satisfy

∀hT , rλ,π|hT ≥ 1

1 + η
rπ0 |hT −m

1√
N

(39)

Proof. The proof uses the following extension of Lemma 1.

Lemma OA 3 (incentive approximation). For any realization of uncertainty,

−πη ≤
T∑
t=1

πt − πη
t (λt) ≤ πη

√
T (40)

−πη
√
T ≤ max

T ′≤T

T∑
t=T ′

πη
t − πη

t (λt) ≤ πη
√
T . (41)

Proof. Let RT = (R1,T ,R2,T ) denote the vector of regrets and ρT = RT −RT−1 the vector

of flow regrets. Using the fact that R2,T+1 = R+
2,T + (1 − λT+1)π

η
T+1, and exploiting the

equality R+
2,T (R2,T −R+

2,T ) = 0, we have

⟨
R+

T , ρT+1

⟩
= R+

1,T [πT+1 − λT+1π
η
T+1] +R+

2,T (1− λT+1)π
η
T+1

= R+
1,TπT+1 + [(1− λT+1)R+

2,T − λT+1R+
1,T ]π

η
T+1.

Hence, the contract (λt, πt)t≥1 defined by (38) ensures that for all realizations of rT+1,
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⟨
R+

T , ρT+1

⟩
= 0.

We now prove by induction that ||R+
T ||2 ≤

∑T
t=1 (π

η
t )

2. The property clearly holds for

T = 1. We now assume that it holds at T and show it must hold at T + 1. Consider first

the case where R2,T > 0.

||R+
T+1||

2 ≤ ||R+
T + ρT+1||2 ≤ ||R+

T ||
2 + 2

⟨
R+

T , ρT+1

⟩
+ ||ρT+1||2

≤ ||R+
T ||

2 + ||ρT+1||2

where we used the fact that by construction,
⟨
R+

T , ρT+1

⟩
= 0. Furthermore, we have that

||ρT+1||2 ≤ (πT+1 − πη
T+1(λT+1))

2 +
(
R+

2,T + (1− λT+1)π
η
T+1 −R2,T

)2
≤ λ2

T+1(π
η
T+1)

2 + (1− λT+1)
2(πη

T+1)
2

≤ (πη
T+1)

2.

Using the induction hypothesis, this implies that ||RT+1||2 ≤
∑T+1

t=1 (π
η
t )

2. A similar proof

holds when R2,T < 0, taking into account that in this case, R2,T+1 = (1−λT+1)π
η
T+1. Hence,

by induction, this implies that for all T ≥ 1, ||R+
T ||2 ≤

∑T
t=1(π

η
t )

2. Since |πη
t | ≤ πη, this

implies inequality (41) and the right-hand side of (40). The left-hand side of (40) follows

from an induction identical to that used to prove the left-hand side of (13).

We can now conclude the proof of Theorem OA 2.

Let us begin by proving (39) starting from initial history h0. Let (ĉ, â) denote an optimal

strategy for the agent under calibrated contract (λ, π), and let (c, a) denote an optimal

strategy for the agent under benchmark contract π0 = (π0
t )t≥1. By optimality of (ĉ, â) under

(λ, π), we obtain that

Eĉ,â

(
N∑
t=1

πt − ĉt

)
≥ Ec,a

(
N∑
t=1

πt − ct

)
.

By (40) this implies that

Eĉ,â

(
N∑
t=1

πη
t (λt)− ĉt

)
+ πη

√
N ≥ Ec,a

(
N∑
t=1

πη
t (λt)− ct

)
− πη.
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By (41) we obtain

Eĉ,â

(
N∑
t=1

λtπ
η
t − ĉt

)
+ πη

√
N ≥ Ec,a

(
N∑
t=1

πη
t − ct

)
− πη(1 +

√
N).

Using the fact that (c, a) is optimal under contract (π0
t )t≥1, and that necessarily, Ec,a(π

0
t ) ≥ 0,

this implies that

Eĉ,â

(
N∑
t=1

λtπ
0
t + λtη(wt − w0

t − πη
t )− ĉt

)
≥ Ec,a

(
N∑
t=1

π0
t + η(wt − w0

t − πη
t )− ct

)
− πη(2

√
N + 1)

≥ Eĉ,â

(
N∑
t=1

λtπ
0
t − ĉt

)
+ Ec,a

(
N∑
t=1

η(wt − w0
t − πη

t )

)
− πη(2

√
N + 1).

Thus, using (40) and the fact that wt − w0
t − πη

t = 1
1+η

(wt − w0
t − π0

t ), we obtain that

Eĉ,â

(
N∑
t=1

λt(wt − w0
t − πη

t )

)
− Ec,a

(
N∑
t=1

wt − w0
t − πη

t

)
≥ −πη

η
(2
√
N + 1)

⇒ Eĉ,â

(
N∑
t=1

λt(wt − w0
t )− πt

)
≥ 1

1 + η
Ec,a

(
N∑
t=1

wt − w0
t − π0

t

)
− πη

η

(
1 + (2 + η)

√
N
)
.

Inequality (39) at h0 follows from normalizing by 1
wN

.

Inequality (39) continues to hold conditional on any history because the incentive bounds

provided by Lemma OA 3 hold starting from any interim period T .

The following example applies this analysis to the calibration of log-scoring rules.

Calibrating log-scoring rules. The benchmark linear contract πt = α(wt − w0
t ) ensures

that the agent has incentives to make allocation decisions that maximize expected returns

conditional on information. A potential alternative is to elicit truthful beliefs over returns

from the agent using a log-scoring rule, and implement the allocation that maximizes surplus

under these beliefs.

Log-scoring rules take the following form. Assume for simplicity that the set R of possible

returns rt is finite. In each period t, the agent gets rewarded according to

πls
t = γ log

(
ft(rt)

f 0
t (rt)

)
with γ > 0,
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where ft is a distribution over realized returns rt stated by the agent in period t, f 0
t = P (·|F0

t )

is the principal’s belief conditional on public information F0
t , and rt are the realized returns.

Given ft, the allocation at is chosen to maximize expected returns Eft(wt −w0
t ) under belief

ft. To insure that rewards πls
t are bounded, the following restriction is imposed.

Assumption OA 2 (bounded likelihood ratio). There exists l > l > 0 such that for every

history,

∀rt ∈ R,
P (rt|Ft)

P (rt|F0
t )

∈ [l, l].

It is well known that log-scoring contracts (πls
t )t≥1 induce truthful revelation of beliefs. In

addition, the agent can expect positive expected rewards if and only if his belief is different

from that of the principal.

Fact 4. Truthtelling, i.e. sending message ft = P (·|Ft), maximizes the agent’s payoff con-

ditional on information. An agent whose belief P (·|Ft) coincides with that of the principal

conditional on public information P (·|F0
t ) gets an expected payoff of zero.

The proof of this fact is standard and omitted. Noting that 0 ≤ πt ≤ π = α log
(
l/l
)
,

Theorem OA 2 applies, and the contract (λ, π) derived from (πls
t )t≥1 according to (38) satisfies

performance bound (39), i.e. it successfully approximates the performance of the benchmark

log-scoring rule while requiring no liability from the agent and only limited liability from the

principal.

Note that this result should be viewed as an illustration of the broader applicability of

the contract calibration approach developed in the paper, rather than an endorsement of log-

scoring rules as an appropriate benchmark contract. Indeed, contrary to benchmark linear

contracts of the form πt = α(wt − w0
t ), log-scoring rules do not guarantee that the principal

must be getting positive surplus out of the relationship, i.e. it does not satisfy the “no loss”

property emphasized in Fact 1.1 The following example illustrates the problem in a stark

manner.

There are two assets: a good asset 0, with i.i.d. returns r0,t uniformly distributed over

{ 1
100

, 2
100

, · · · , 1} in every period t, and a bad asset 1 with i.i.d. returns r1,t uniformly dis-

tributed over{− 99
100

,− 98
100

, · · · , 0}. The principal has no further information about returns,

whereas the agent observes returns (r0,t, r1,t) without noise. Clearly, the agent has a lot of

information, and under the log-scoring rule, he will be rewarded for this information since

1Fact 1 also shows that the only contracts satisfying “no loss” for all possible strategies giving the agent
positive surplus are in fact benchmark linear contracts.
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it considerably reduces uncertainty. However this information is of no value to the principal

since the good asset always dominates the bad asset.

Contrary to benchmark linear contracts, log-scoring rules reward the agent for any in-

formation, regardless of whether it is valuable or not. Note also that while potential losses

could be controlled by letting coefficient γ go to zero, this is not generally helpful since this

also implies that the agent has no incentives to exert effort and acquire information.

OA 1.3 Robustness to Accidents

The analysis presented in the main text of the paper assumes that the agent is rational. It

turns out that calibrated contracts are robust to the possibility of “accidents” during which

the agent behaves in arbitrary, possibly suboptimal, ways over an extended amount of time.

An accident may correspond to a temporary mistake in the agent’s trading strategy or an

error in his data; alternatively, the agent may be temporarily irrational or have unmodeled

incentives to misbehave (e.g. he is bribed to unload bad risks on the principal). Formally, this

is modeled by assuming that during a random time interval [T1, T2]—in the accident state—

the agent is constrained to use an exogenously specified allocation strategy a△ = (a△t )t≥1.
2

The agent takes into account the possibility of such accidents when choosing his strategy

and has an ex ante belief over the interval [T1, T2] and over his prescribed behavior a△ during

the accident. Strategy a△ may be arbitrarily bad (within the bounds imposed by Assumption

1) and need only be measurable with respect to final information FN . For instance, during

the lapse of the accident, the agent could pick the worst ex post asset allocation in every

period. Robustness to accidents of this kind is related to Eliaz (2002) which studies how

well mechanisms perform if some players are faulty, i.e. if they use non-optimal strategies.

Here, robustness to accidents can be thought of as fault tolerance with respect to the agent’s

selves over [T1, T2].

It should be noted that in this environment, the benchmark linear contract is no longer

sufficient to guarantee good performance. Since expected returns Ea△(wt−w0
t ) can be nega-

tive in an accident period, accidents can undo all the profit generated by the well incentivized

agent in his normal state. Strikingly, in spite of accidents, calibrated contracts are such that

the excess returns generated by the agent will be approximately as high as the returns he

could generate when accidents are “lucky”, i.e. when instead of a△, the exogenous allocation

2The analysis given here allows accidents to occur over a single interval of time. The analysis extends
without change to environments with a fixed number of accident intervals independent of horizon N .
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during accident states is

∀T ∈ [T1, T2], a△△T =

{
a0T if

∑T2

t=T1
w△

t − w0
t < 0 (accident is unlucky)

a△T if
∑T2

t=T1
w△

t − w0
t > 0 (accident is lucky)

where w△
t is the realized wealth under allocation a△t at time t. Denote by r△λ,π the net expected

per-period returns to the principal when accidental behavior is (a△t )t≥1 and the calibrated

contract (λ, π) defined in (12) is used. Denote by r△△α the net expected per-period returns to

the principal when accidental behavior is (a△△t )t≥1 and the benchmark contract of parameter

α is used. The following holds.

Theorem OA 3 (accident proofness). Pick α0 and for any η > 0, set α = α0 + η(1− α0).

There exists a constant m independent of N and P such that,

r△λ,π ≥ (1− η)r△△α0
− m√

N
.

Proof. The notation of Section 4 is extended by adding superscripts △ and △△ to denote

relevant objects under the original accidental allocation a△, and under the lucky accidental

allocation a△△. For instance, let (w△△
t )t≥1 and Σ△△

N =
∑N

t=1w
△△
t −w0

t denote potential realized

wealth and aggregate performance when accidents are lucky. For concision this extension

is done for all time periods t ∈ {1, · · · , N}, with the understanding that the allocation is

exogenous over interval [T1, T2], but endogenous in other time periods; i.e. an allocation

policy (a△t )t≥1 corresponds to endogenous allocations at for t /∈ [T1, T2] and coincides with

a△t for t ∈ [T1, T2].

Given these adjustments, the proof of Theorem OA 3 is analogous to that of Theorem 2,

the key step being to provide an adequate extension of Lemma 1. Because inequality (13)

still applies, we have that

−αwd ≤
N∑
t=1

π△
t − αλt(w

△
t − w0

t ) ≤ αwd
√
N. (42)

This corresponds to “correct rewards” condition (9). In addition, let us show that for any

investment strategy of the agent, the following variant of “no foregone gains” condition (10)

must hold (
N∑
t=1

w△△
t − w0

t

)
− 4wd

√
N ≤

N∑
t=1

λt(w
△
t − w0

t ). (43)
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We have that

N∑
t=1

w△△
t − w0

t =

[
T1−1∑
t=1

w△
t − w0

t

]
+

[
T2∑

t=T1

w△
t − w0

t

]+
+

[
N∑

t=T2+1

w△
t − w0

t

]
.

Applying inequality (14), we obtain

N∑
t=1

w△△
t − w0

t ≤


[∑N

t=1 λt(w
△
t − w0

t )
]
+ wd

√
N if

∑T2

t=T1
w△

t − w0
t > 0[∑T1−1

t=1 λt(w
△
t − w0

t )
]
+
[∑N

t=T2+1 λt(w
△
t − w0

t )
]
+ 3wd

√
N otherwise.

By (42), it follows that

−αwd
√

T2 ≤
∑T2

t=1 αλt(w
△
t − w0

t )− π△
t ≤ αwd

−αwd
√
T1 − 1 ≤

∑T1−1
t=1 αλt(w

△
t − w0

t )− π△
t ≤ αwd.

Subtracting these two inequalities yields that,

−αwd(1 +
√

T2) ≤
T2∑

t=T1

αλt(w
△
t − w0

t )− π△
t .

Since flow rewards π△
t are weakly positive, this implies that for any realization of returns,

N∑
t=1

w△△
t − w0

t ≤

(
N∑
t=1

λt(w
△
t − w0

t )

)
+ 4wd

√
N.

This implies (43). Given (42) and (43), Theorem OA 3 follows by applying Lemma A.1.

OA 1.4 Multi-agent contracts

The analysis presented in the paper focused on contracting with a single agent. This appendix

shows how to extend the logic of Sections 3 and 4 to environments with multiple agents. The

framework is identical to that of Section 2 except that there are now J agents denoted by

j ∈ {1, · · · , J}, each of whom makes private information acquisition decisions cj,t ∈ [0,+∞),

inducing a filtration F j
t . In each period t, agent j suggests an asset allocation aj,t inducing

potential wealth wj,t = w(1 + ⟨aj,t, rt⟩).
As in Section 2 the environment is general. Public and private signals (I0t , I

j
c (cj,t))j∈{1,··· ,J}

are arbitrary random variables from an underlying measurable state space (Ω, σ) to a mea-
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surable signal space (I, σI). The environment P = (Ω, σ, P ) is specified by defining a

probability measure P on (Ω, σ). This probability measure is unrestricted: the agents may

have access to different information, their respective ability to generate information may

differ, vary over time, and be correlated in arbitrary ways. Filtration (F0
t )t≥1 still denotes

the public information filtration available to the principal.

The first step of the analysis extends the high-liability benchmark contract of Section 3.

The second step of the analysis shows how to calibrate this high-liability contract.

Multi-agent benchmark contracts. The multi-agent contract described here is a direct

extension of the linear contract described in Section 3. Each agent j ≥ 1 is paid according

to a linear contract in which the allocation of agent j − 1 serves as the default allocation

previously corresponding to a0t , i.e. each agent is paid a share α of his externality on the

principal, taking into account the information provided by previous agents. Resources are

invested according to the allocation aJ,t suggested by the last agent.

More precisely, in each period t, allocations aj,t are submitted by agents in increasing

order of rank j. This ordering is a constraint imposed by the mechanism. The mechanism

informs each agent j of the allocations (aj′,t)j′<j chosen by agents j′ < j. Agent j receives no

information about the allocations chosen by agents j′′ > j. Under the benchmark contract,

payments πj,t to agent j are defined by

∀j ∈ {1, · · · , J}, πj,t = α(wj,t − wj−1,t). (44)

The strategy profile (cj, aj) of agent j must be adapted to the information available to

the agent (by construction this includes allocations by previous agents). The set of such

adapted strategies is denoted by Cj × Aj.
3 Furthermore define (c, a) = (cj, aj)j∈{1,··· ,J} and

C × A =
∏

j∈{1,··· ,J} Cj × Aj the set of adapted strategy profiles. For any ĉ ∈ [0,+∞), the

maximum returns that can be obtained at an expected per-period cost of ĉ are denoted by

rmax(ĉ) = max
(c,a)∈C×A

1
N
E(

∑
j,t cj,t)≤ĉ

1

wN
Ec,a

(
N∑
t=1

wJ
t − w0

t

)
.

Denote by rα the average returns accruing to the principal under this benchmark contract.

3 Because of the hierarchical structure of the mechanism, agent j′ < j is indifferent about whether or not
to send information to agent j. For simplicity it is assumed that agent j′ shares his information with agents
j > j′.
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The following bound extends point (i) of Theorem 1.

Lemma OA 4. For any environment P,

wrα ≥ (1− α) max
ĉ∈[0,+∞)

(
wrmax(ĉ)−

ĉ

α

)
.

As in Theorem 1, given restrictions on rmax(·), a rationale for choosing α is to maximize

this lower bound. Note that similarly to the benchmark contract of Section 3, this contract

also satisfies no-loss.

Proof. Optimal strategies for the agents (c∗, a∗) = (c∗j , a
∗
j)j∈{1,··· ,J} are such that for any other

profile of strategies (c, a) = (cj, aj)j∈{1,··· ,J}, and for all j ∈ {1, · · · , J},

Ec∗j ,a
∗
j

[
N∑
t=1

α(wj,t − wj−1,t)− c∗j,t

]
≥ Ecj ,aj

[
N∑
t=1

α(wj,t − wj−1,t)− cj,t

]
.

Summing over j, this implies that

Ec∗,a∗

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

c∗j,t

]
≥ Ec,a

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

cj,t

]
.

Hence, Ec∗,a∗

[
N∑
t=1

(1− α)(wJ,t − w0,t)

]
≥ 1− α

α
Ec,a

[
N∑
t=1

α(wJ,t − w0,t)−
∑
j∈J

cj,t

]
.

Since this holds for any strategy profile (c, a), we obtain that indeed

wrα ≥ (1− α)maxĉ∈[0,+∞)

(
wrmax(ĉ)− ĉ

α

)
.

Calibrated contracts. The high-liability multi-agent contract described in (44) can be

calibrated using the methods of Section 4. The main difference is that there is now a vector

λt = (λj,t)j∈{1,··· ,J} ∈ [0, 1]J of J scaling factors used to define adjusted allocations aλj,t in the

following recursive manner:

aλ1,t = λ1,ta1,t + (1− λ1,t)a
0
t and ∀j > 1, aλj,t = λj,taj,t + (1− λj,t)a

λ
j−1,t.
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Let wλ
j,t denote the corresponding wealth realizations. For all j ≥ 1, define regrets

R1
j,T =

T∑
t=1

πj,t − α(wλ
j,t − wλ

j−1,t) (correct rewards) (45)

R2
j,T = max

T ′≤T

T∑
t=T ′

wj,t − wλ
j,t (no foregone returns). (46)

Keeping these regrets small corresponds to implementing appropriate generalizations of in-

centive properties (13) and (14) for all agents. The usual approachability condition im-

plies that regrets (R1
j,T ,R2

j,T )j∈{1,··· ,J} can be kept small by choosing contract parameters

(λj, πj)j∈{1,··· ,J} according to,

λj,T+1 =
α
[
R2

j,T

]+
α
[
R2

j,T

]+
+
[
R1

j,T

]+ and πj,T+1 =

{
α(wλ

j,T+1 − wλ
j−1,T+1)

+ if R1
j,T ≤ 0

0 otherwise
.

Under this calibrated multi-agent contract the following extension of Theorem 2 obtains.

Theorem OA 4. Pick α0 > 0 and for η ∈ (0, 1), set α = α0 + η(1 − α0). There exists

a constant m independent of environment P, time horizon N such that the multi-agent

calibrated contract (λ, π) = (πj, λj)j∈{1,··· ,J} of parameter α satisfies

∀hT , rλ,π|hT ≥ (1− η)rα0 |hT − m√
N
. (47)

Proof. The result follows from applying Theorem 2 iteratively over agents j ∈ {1, · · · , J}.

OA 1.5 Screening when returns are grainy

This appendix shows that the efficiency bound given in Theorem 3 can be improved when

expected returns are either zero or bounded away from 0: performance losses are of order√
1/N rather than

√
lnN/N .

Assumption OA 3 (grainy returns). Let (c, a∗) denote the agent’s policy under the bench-

mark contract with rate α0. There exists ξ > 0 such that whenever Ec,a∗ [wt − w0
t |Ft] > 0,

then Ec,a∗ [wt − w0
t |Ft] > ξ.
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Theorem OA 5. Pick α0 and for any η > 0, set α = α0 + η(1− α0). If Assumption OA 3

holds, there exists a constant m such that for all N and all probability spaces P,

rλ,πΘ ≥ (1− η)rα0 −m
1√
N
.

Proof. The proof strategy is identical to that of Theorem 3. The missing step is to improve

the left-hand side of bound (29). Let (c, a∗) denote the agent’s optimal strategy under the

benchmark contract of parameter α. Recall that ΠΘ
T =

∑T
t=1 π

Θ
t and ST =

∑T
t=1 λt(wt−w0

t ).

It is sufficient to prove a bound of the form

−B ≤ Ec,a∗
[
ΠΘ

N − αSN

]
, (48)

where B is a number independent of N and P . We show that this is indeed the case. By

construction, we have that

Ec,a∗
(
ΠΘ

N

)
≥ αEc,a∗

(
SN − wd

)
− αwdEc,a∗

(
N∑

T=1

1ST<ΘT

)
.

Hence, it is sufficient to show that under (c, a∗), the expected number of periods where the

hurdle is not met is bounded above by a constant independent of N .

Let ∆t ≡ wt−w0
t −E[wt−w0

t |Ft] and χT = d
2
+
∑T

t=1 d
2
t . Note that under strategy (c, a∗),

Assumption OA 3 implies that if dt > 0, then Ec,a∗(wt −w0
t |Ft) > ξ. Hence

∑T
t=1 Ec,a∗(wt −

w0
t |Ft) ≥ ξ(χT/d

2 − 1). By (30), for any T ,

Probc,a∗(ST < ΘT ) ≤ Probc,a∗

(
T∑
t=1

wt − w0
t < ΘT + w

√
χT

)

≤ Probc,a∗

(
T∑
t=1

E[wt − w0
t |Ft] +

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
ξ

[
χT

d
2 − 1

]
+

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
T∑
t=1

∆t < −ξ

[
χT

d
2 − 1

]
+ΘT + w

√
χT

)
.

An argument similar to that used in the proof of Lemma 2 yields that∑+∞
T=1 Prob

(∑T
t=1∆t < − ξ

d
2χT + ξ +ΘT + w

√
χT

)
is bounded above by a constant.
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OA 2 Simulations

This appendix provides simulations illustrating key properties of calibrated contracts, and

contrasts them with properties of high-water mark contracts that do not adjust the share

of resources (λt)t≥1 invested by the agent as a function of past history. Throughout, time

periods are referred to as days, and the returns processes’ ratio of standard-deviation to drift

(which matters for the speed at which incentives are approximated) is kept large (comparable

to that of stock market returns). This makes the calibration exercise realistically difficult.

Incentive alignment. This first simulation illustrates Lemma 1: calibrated contracts

approximately align performance and rewards to the agent. In this simulation 1000 paths

for returns process (wt − w0
t )t≥1 are sampled from a random walk with per-period standard

deviation σ = 3, and a stochastic drift (νt)t≥1 following Markov chain:

νt+1 =

{
νt with prob. 98%

∼ N (µν = 0.05, σν = .2) with prob. 2%.

Example of sample paths are illustrated in Figure 1. Note that the process generating these

paths need not be the process for returns at equilibrium. Rather, it is meant to generate

enough variety in sample paths to illustrate the incentive alignment properties of calibrated

contracts on a sample path by sample path basis.
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Figure 1: Example of sample paths for returns process.

Figure 2 illustrates the incentive alignment properties of calibrated and high-water mark

Online Appendix, 16



contracts. It plots realized payments to the agent against total surplus generated for 1000

sample path realizations. In each case the dashed line corresponds to the benchmark linear

contract with reward parameter parameter α = 15%. Both calibrated and high-water mark

contracts achieve significant alignment between rewards and performance when performance

is high. This is because realizations for which final performance is high are also realizations

for which aggregate performance is on average increasing. In contrast, this continues to hold

for calibrated contracts even if the path of returns has significant downward deviations, but

not for high-water mark contracts.
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Figure 2: Incentive alignment for (a) calibrated and (b) high-water mark contracts.

Correct performance and correct ex-ante investment. As Theorem 2 shows, the

fact that calibrated contracts approximately align performance and rewards implies that

asymptotically, they also induce performance close to that of benchmark linear contracts.

In particular, the agent should be making similar returns-generating investments. A caveat

to this result is that for finite time horizons incentive alignment is only approximate, and

approximation errors can distort investment behavior. As a result, to guarantee performance

close to that of a benchmark contract with reward rate α0, calibrated contracts must use a

reward rate α > α0, that can approach α0 as the time horizon becomes large.

In this simulation, the agent can make a lumpy initial investment in information at a

fixed cost. If he makes the investment, the surplus maximizing investment strategy under

that information generates a process for returns (wt − w0
t )t≥1 that is a random walk with
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Figure 3: Incentives to invest under calibrated and high-water mark contracts, for investment
horizons of (a) 1000 and (b) 2000 days.

drift .05 and standard deviation 1. If the agent doesn’t make the investment, limited-liability

implies that his optimal strategy is to pick allocations that are different from the optimal

allocation under public information: choosing the default allocation would ensure rewards

equal to 0. This results in a process for returns that is a random walk with drift −.01 and

standard deviation 2.4 The difference in expected rewards under the two returns processes

corresponds to the agent’s incentives to invest. Figure 3 contrasts the need for more highly

powered incentives as the time horizon goes from 1000 periods (and a fixed cost of 7.5) to

2000 periods (and a proportional fixed cost of 15): in both cases a linear benchmark contract

with reward rate α0 = 15% is sufficient to induce investment; for 1000 periods, a calibrated

contract with reward rate α = 30% is needed to induce investment; for 2000 periods a

calibrated contract with reward rate α = 25% will induce investment. Note that in this

example, the agent never loses access to valuable private information and high-watermark

contracts also provide adequate ex ante incentives to invest.

4Under limited-liability, it is always in the interest of an uninformed agent to choose suboptimal asset
allocations in order to get some rewards. The precise equilibrium returns processes used here can be micro-
founded by the following environment: there are three assets numbered 1, 2 and 3. Asset 1 offers a risk free
return equal to 0. Assets 2 and 3 have the following correlation structure: each period one of the two assets
is “good” with probability .5 while the other asset is “bad”, and vice versa. Returns for the good asset have
mean .05 and standard deviation 1. Returns for the bad asset have mean −.07 and standard deviation

√
7.

Investing in information allows the agent to perfectly predict which asset is good and which asset is bad.
Under public information the optimal allocation is to pick asset 1, but an uninformed agent will pick either
asset 2 or asset 3, since picking asset 1 ensures 0 rewards. An informed agent would pick the good asset in
every period.
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Damage control upon large downward deviations. One key difference between cali-

brated and high-water mark contracts is that under high-water mark contracts, the agent’s

reward and the agent’s performance cease to be tightly linked if there is a large downward

deviation in performance. The reason for this is that performance can decrease arbitrarily

while aggregate rewards must be weakly increasing. This can have a large effect on equi-

librium performance since agents that become uninformed after some period will choose

suboptimal strategies in order to get rewarded through luck.

In contrast calibrated contracts limit large downward deviations by controlling the share

of resources (λt)t≥1 that the agent manages in each period. This is a form of damage control

that allows the agent’s aggregate reward to remain linked to his aggregate performance.

Figure 4(a) illustrates an instance of such damage control: although potential performance∑T
t=1wt − w0

t falls by approximately 100 between periods 400 and 1000, the dynamically

scaled performance
∑T

t=1 λt(wt − w0
t ) decreases by only 30.
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Figure 4: Damage control upon large downward deviation (a) and resource allocation (λt)t≥1

(b).

This damage control is achieved by sharply reducing the fraction of resources (λt)t≥1

managed by the agent (Figure 4(b)).

Continuation behavior and performance after a large downward deviation. An

important property of calibrated contracts emphasized in Theorem 2 is that, unlike high-

water mark contracts, their continuation performance does not depend significantly on his-
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tory: from the perspective of any history, they induce performance approximately as good

as the performance of history-independent, weakly renegotiation proof, benchmark linear

contracts. In contrast, under a high-water mark contract, agents that have just experienced

a large downward deviation may not find it worthwhile to continue investing in information

acquisition since they have to compensate for previous large downward deviations before

they get rewarded again.

The simulation takes as given the history of raw returns (wt − w0
t )t≥1 from period 1 to

period 1000—it is the one corresponding to Figure 4(a)—and considers incentives to invest in

further information that is valuable over the next 1000 periods. The contingent investment

problem in period 1000 is similar to that presented in Figure 3: the agent must expend a

fixed cost of 3 to acquire further information; if the agent acquires information, the surplus

maximizing allocation yields a returns process following a random walk with i.i.d. increments

of mean .05 and standard deviation 1; if the agent does not acquire information, the agent no

longer has valuable information, and his optimal strategy is to choose suboptimal allocations

that yield a returns process following a random walk with i.i.d. increments of mean −.01

and standard deviation 2.
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Figure 5: Incentives to invest conditional on large downward deviation.

As Figure 5 highlights, from the perspective of period 1000, calibrated contracts still

provide incentives for contingent investment whereas high-water mark contracts do not.

Indeed, as Figure 6(c) illustrates, under a high-water mark contract, it is very unlikely—

even with additional investment in information—that the agent can compensate for past

losses and get significant continuation rewards. In contrast, as Figures 6(a) and 6(d) show,
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Figure 6: Performance and conditional payments under calibrated and high-watermark con-
tracts.

calibrated contract manage to control resource allocation (λt)t≥1 in a way that limits large

downsides, but still capture large upsides. This requires process (λt)t≥1 to reduce exposure

to the agent’s performance upon large downward deviations, and restore exposure to the

agent’s performance when the agent starts generating positive returns again (Figure 6(b)).

As a result, the agent can get significant continuation rewards even conditional on poor past

performance.
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