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Abstract

We propose a semiparametric method for estimating a precision matrix of high-dimensional 
elliptical distributions. Unlike most existing methods, our method naturally handles heavy tailness 
and conducts parameter estimation under a calibration framework, thus achieves improved 
theoretical rates of convergence and finite sample performance on heavy-tail applications. We 
further demonstrate the performance of the proposed method using thorough numerical 
experiments.
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I. Introduction

We Consider the problem of precision matrix estimation. Let X = (X1, …, Xd)T be a d-
dimensional random vector with mean µ ∈ ℝd and covariance matrix Σ ∈ ℝd×d, where 

. We want to estimate the precision matrix Ω = Σ−1 based on n 

independent observations. In this paper we focus on high dimensional settings where d/n → 

∞. To handle the curse of dimensionality, we assume that Ω is sparse (i.e., many off-
diagonal entries of Ω are zero).

A popular statistical model for precision matrix estimation is multivariate Gaussian, i.e., X ~ 
N(µ, Σ). Under Gaussian models, sparse precision matrix encodes the conditional 
independence relationship of the random variables [8], [21], which has motivates numerous 
applications in different research areas [3], [15], [36]. In the past decade, many precision 
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matrix estimation methods have been proposed for Gaussian distributions. For more details, 
let x1, …, xn ∈ ℝd be n independent observations of X, we define the sample covariance 
matrix as

(1)

where . [1], [11], [38] propose the penalized Gaussian log-likelihood method 
named graphical lasso (GLASSO), which solves

(2)

where λ > 0 is a regularization parameter for controlling the bias-variance tradeoff. In 
another line of research, [5], [37] propose pseudo-likelihood methods to estimate the 
precision matrix. Their methods adopt a column-by column estimation scheme and are more 
amenable to theoretical analysis. More specifically, given a matrix A ∈ ℝd×d, let A*j = (A1j,

…,Adj)T denote the jth column of A, we define  and . 
[5] propose CLIME estimator, which solves

(3)

to estimate the jth column of the precision matrix. Moreover, let ||A||1 = maxj ||A*j||1 be the 

matrix ℓ1 norm of A, and ||A||2 be the largest singular value of A, (i.e., the spectral norm of 
A), [5] show that if we choose

(4)

the CLIME estimator in (3) attains the rates of convergence

(5)

where , and p = 1, 2. Scalable software packages for GLASSO and 
CLIME=have been developed which scale to thousands of dimensions [16], [22], [40].

Though significant progress has been for estimating Gaussian graphical models, most 
existing methods have two drawbacks: (i) They generally require the underlying distribution 
to be light-tailed [5], [7]. When this assumption is violated, these sample covariance matrix-
based methods may have poor performance. (ii) They generally use the same tuning 
parameter to regularize the estimation, which is not adaptive to the individual sparseness of 
each column (More details will be provided in §III.B) and may lead to inferior finite sample 
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performance. In another word, the regularization for estimating different columns of the 
precision matrix is not calibrated.

To overcome the above drawbacks, we propose a new sparse precision matrix estimation 
method, named EPIC (Estimating Precision matrIx with Calibration), which simultaneously 
handles data heavy-tailness and conducts calibrated estimation. To relax the tail conditions, 
we adopt a combination of the rank-based transformed Kendall’s tau estimator and Catoni’s 
M-estimator [7], [18]. Such a semiparametric combination has shown better statistical 
properties than those of the sample covariance matrix for the heavy-tailed elliptical 
distributions [6], [7], [10], [17]. We will explain more details in § II and § IV. To calibrate 
the parameter estimation, we exploit a new framework proposed by [12]. Under this 
framework, the optimal tuning parameter does not depend on any unknown quantity of the 
data distribution, thus the EPIC estimator is tuning insensitive [25]. Computationally, the 
EPIC estimator is formulated as a convex program, which can be efficiently solved by the 
parametric simplex method [34]. Theoretically, we show that the EPIC estimator attains 
improved rates of convergence than the one in (5) under mild conditions. Numerical 
experiments on both simulated and real datasets show that the EPIC method outperforms 
existing precision matrix estimation methods.

The rest of this paper is organized as follows: In §II, we briefly review the elliptical family; 
In §III, we describe the proposed method and derive the computational algorithm; In §IV, 
we analyze the statistical properties of the EPIC estimator; In §V and §VI, we conduct 
numerical experiments on both simulated and real datasets to illustrate the effectiveness of 
the proposed method; In §VII, we discuss other related precision matrix estimation methods 
and compare them with our method [23]-[25].

II. Background

We start with some notations. Let v = (v1, …, vd)T ∈ ℝd be a vector, we define vector 

norms: , , . Let  be a subspace of ℝd, 

we use  to denote the projection of v onto . We also define 

orthogonal complement of  as . Given a matrix 
A ∈ ℝd×d, let A*j = (A1j,…,Adj)T and Ak* = (Ak1, …, Akd)T denote the jth column and kth 

row of A in vector forms, we define matrix norms: ||A||1 = maxj||A*j||1, ||A||2 = ψmax(A), ||

A||∞ = maxk||Ak*||1, , ||A||max = maxj||A*j||∞, where ψmax(A) is the largest 
singular value of A. We use Λmax(A) and Λmin(A) to denote the largest and smallest 

eigenvalues of A. Moreover, we define the projection of A*j onto  as 

.

We then briefly review the elliptical family, which has the following definition.

Definition 2.1 ([10]): Given µ ∈ ℝd and a symmetric positive semidefinite matrix Σ with 

rank (Σ) = r ≤ d, we say that a d-dimensional random vector X = (X1, …,Xd)T follows an 
elliptical distribution with parameter µ, ξ, and Σ denoted by

Zhao and Liu Page 3

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(6)

if X has a stochastic representation

(7)

where ξ ≥ 0 is a continuous random variable independent of U. Here  is uniformly 

distributed on the unit sphere in ℝr, and Σ = AAT.

Note that A and ξ in (7) can be properly rescaled without changing the distribution. Thus 
existing literature usually imposes an additional constraint ||Σ||max 1 to make the distribution 
identifiable [10]. However, such=a constraint does not necessarily make Σ the covariance 
matrix of X. Since we are interested in estimating the precision matrix in this paper, we 

require  and rank (Σ) = d such that the precision matrix of the elliptical 

distribution exists. Under this assumption, we use an alternative constraint , which 
not only makes the distribution identifiable but also has Σ defined as the conventional 
covariance matrix (e.g., as in the Gaussian distribution).

Remark 1: Σ can be factorized as Σ = ΘZΘ, where Z is the Pearson correlation matrix, and 

Θ = diag(θ1, …, θd) with θj as the standard deviation of Xj. Since Θ is a diagonal matrix, we 

can rewrite the precision matrix Ω as Ω = Θ−1ΓΒ−1, where Γ = Z−1 is the inverse correlation 
matrix.

Remark 2: As a generalization of the Gaussian family, the elliptical family has been widely 
applied to many research areas such as dimensionality reduction [19], portfolio theory [14], 
and data visualization [33]. Many of these applications rely on an effective estimator of the 
precision matrix for elliptical distributions.

III. Method

Motivated by the above discussion, the EPIC method has three steps: We first use the 

transformed Kendall’s tau estimator and Catoni’s M-estimator to obtain  and 

respectively; We then plug  into a calibrated inverse correlation matrix estimation 

procedure to obtain ; At last we assemble  and  to obtain . We explain more details 
about these three steps in the following subsections.

A. Correlation Matrix and Standard Deviation Estimation

To estimate Z, we adopt the transformed Kendall’s tau estimator proposed in [10] and [23]. 
More specifically, we define a population version of the Kendall’s tau statistic between Xj 

and Xk as follows,
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where  and  are independent copies of Xj and Xk respectively. For elliptical 

distributions, [10], [23] show that Zkj’s and τkj’s have the following relationship

(8)

Therefore given x1, …, xn be n independent observations of X, where xi = (xi1,…, xid)T, we 
first calculate a sample version of the Kendall’s tau statistic between Xj and Xk by

for all k ≠ j, and 1 otherwise. We then obtain a correlation matrix estimator by the same 
entrywise transformation as (8),

(9)

To estimate Θ, we exploit the Catoni’s M-estimator proposed in [7]. For heavy-tailed 
distributions, [7] show that the Catoni’s M-estimator has better theoretical and empirical 
performance than the sample moment-based estimator. In particular, let ψ(t) = sign(t) · log(1 

+ |t| + t2/2) be a univariate function where sign(0) = 0. Let  and  be the estimatior of 

 and  respectively which solve the following two equations:

(10)

(11)

Here Kmax is a preset upper bound of maxj Var(Xj) and . [7] shows that the 
solutions to (10) and (11) must exist and can be efficiently solved by the Newton-Raphson 

algorithm [31]. Once we obtain  and , we estimate the marginal standard deviation θj by

(12)

where Kmin is a preset lower bound of .

Remark 3: We choose the combination of the transformed Kendall’s tau estimator and 
Catoni’s M-estimator instead of sample covariance matrix, because we are handling heavy-
tailed elliptical distributions. For light-tailed distributions (e.g. Gaussian distribution), we 
can still use the sample correlation matrix and sample standard deviation to estimate the Z 
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and Θ. The extension of our proposed methodology and theory is straightforward. See more 
details in §IV.

B. Calibrated Inverse Correlation Matrix Estimation

We then plug the transformed Kendall’s tau estimator  into the following convex program,

(13)

for all j = 1, …, d, where c can be any constant between 0 and 1 (e.g., c = 0.5). Here τj 

serves as an auxiliary variable to calibrate the regularization [12], [32]. Both the objective 
function and constraints in (13) contain τj to prevent from choosing τj either too large or too 
small.

To gain more intuition of the formulation of (13), we first consider estimating the jth column 
of the inverse correlation matrix using the CLIME method in a regularization form as 
follows,

(14)

where ν > 0 is the regularization parameter. The next proposition presents an alternative 
formulation of (14).

Proposition III.1: The following optimization problem

(15)

has the same solution as (14).

The proof of Proposition III.1 is provided in Appendix A. If we set ν/c = λ, then the only 
difference between (13) and (15) is that (13) contains a constraint ||Γ*j||1 ≤ τj. Due to the 
complementary slackness, this additional constraint encourages the regularization λτj to be 
proportional to the ℓ1 norm of the jth column (weak sparseness). From the theoretical 
analysis in §IV, we see that the regularization is calibrated in this way.

In the rest of this subsection, we omit the index j in (13) for notational simplicity. We denote 

Γ*j, I*j, and τj by γ, e, and τ respectively. By reparametrizing γ = γ+−γ−, we can rewrite (13) 
as the following linear program,
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(16)

where λ = λ1. Though (16) can be solved by general linear program solvers (e.g. the simplex 
method as suggested in [5]), these general solvers cannot scale to large problems. In 
Appendix B, we provide a more efficient parametric simplex method [34], which naturally 
exploits the underlying sparsity structure, and attains better empirical performance than the 
simplex method.

C. Symmetric Precision Matrix Estimation

Once we get the inverse correlation matrix estimate , we estimate the precision matrix by

Remark 4: A possible alternative is that we first assemble a covariance matrix estimator

(17)

then directly estimate Ω by solving

for all j = 1, …, d. However, such a direct estimation procedure makes the regularization 
parameter selection sensitive to marginal variability. See [20], [26], [29] for more 
discussions of the ensemble rule.

The EPIC method does not guarantee the symmetry of . To get a symmetric estimate, we 
take an additional projection procedure to obtain a symmetric estimator

(18)

where ||·||∗ can be the matrix ℓ1, Frobenius, or max norm. More details about how to choose 
a suitable norm will be explained in the next section.

Remark 5: For the Frobenius and max norms, (18) has a closed form solution as follows,
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For the matrix #x2113;1 norm, see our proposed smoothed proximal gradient algorithm in 
Appendix C. More details about how to choose a suitable norm will be explained in the next 
section.

IV. Statistical Properties

To analyze the statistical properties of the EPIC estimator, we define the following class of 
sparse symmetric matrices,

where κu is a constant, and (s, d, M) may scale with the sample size n. We assume that the 
following conditions hold:

(A.1) ,

(A.2) θmin ≤ minj θj ≤ maxj θj ≤ θmax,

(A.3) maxj |μj| ≤ μmax, maxj ,

(A.4) s2 log d/n→0,

where θmax, θmin, µmax, and K are constants.

Remark 6: Condition (A.3) only requires the fourth moment of the distribution to be finite. 
In contrast, sample covariance-based estimation methods can not achieve such theoretical 
results. See more details in [5] and [7].

Remark 7: The bounded mean in Condition (A.3) is actually a mild assumption. Existing 
high dimensional theories (Cai et al. 2011; Yuan, 2010; Rothman et al. 2008) on sparse 
precision matrix estimation all require the distribution to be light-tailed. For example, there 

exists some constant K such that  for some r >> 4. By Jessen’s 

inequality, we have , which implies that 

. In another word, they also require maxj|µj| to be bounded

Before we proceed with main results, we first present the following important lemma.

Lemma 1: We assume that X ~ EC(µ, ξ, Σ) and (A.2)-(A.4) hold. Let  and  be defined in 
(9) and (12). There exist universal constants κ1 and κ2 such that for large enough n,

(19)
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(20)

The proof of Lemma 1 is provided in Appendix D.

Remark 8: Lemma 1 shows that the transformed Kendall’s tau estimator and Catoni’s M-
estimator possess good concentration properties for heavy-tailed elliptical distributions. That 
enables us to obtain a consistent precision matrix estimator in high dimensions.

A. Parameter Estimation Consistency

Theorem IV.1 provides the rates of convergence for precision matrix estimation under the 
matrix #x2113;1, spectral, and Frobenius norms.

Theorem IV.1: Suppose that X ~ EC(µ, ξ, σ) and (A.1)-(A.4) hold, if we take 

 and choose the matrix #x2113;1 norm as ||·||* in (18), then for large enough 
n and p = 1,2, there exists a universal constant C1 such that

(21)

Moreover, if we choose the Forbenius norm as ||·||* in (18), then for large enough n, there 
exists a universal constant C2 such that

(22)

The proof of Theorem IV.1 is provided in Appendix E. Note that the rates of convergence 
obtained in the above theorem are faster than those in [5].

B. Model Selection Consistency

Theorem IV.2 provides the rate of convergence under the elementwise max norm.

Theorem IV.2: Suppose that X ~ EC(µ, ξ, Σ) and (A.1)-(A.4) hold. If we take 

 and choose the max norm for (18), then for large enough n, there exists a 
universal constant C3 such that

(23)

Moreover, let E = {(k, j)|Ωkj ≠ 0}, and , if there exists large enough 
constant C4 such that
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then we have .

The proof of Theorem IV.2 is provided in Appendix G. The obtained rate of convergence in 
Theorem IV.2 is comparable to that of [5].

Remark 9: Our selected regularization parameter  in Theorems IV.1 and IV.
2 does not contain any unknown parameter of the underlying distribution (e.g. ||Γ1||). Note 
that κ1 comes from (19) in Lemma 1. Theoretically we can choose κ1 as a reasonably large 

without any additional tuning (e.g. . See more details in [23]). In practice, we found that 
a fine tuning of κ1 delivers better finite sample performance.

V. Numerical Results

In this section, we compare the EPIC estimator with several competing estimators including:

1. CLIME.RC: We obtain the sparse precision matrix estimator by plugging the 

covariance matrix estimator  defined in (17) into (3).

2. CLIME.SC: We obtain the sparse precision matrix estimator by plugging the 
sample covariance matrix estimator S defined in (1) into (3).

3. GLASSO.RC: We obtain the sparse precision matrix estimator by plugging the 

covariance matrix estimator  defined in (17) into (2).

Moreover, (3) is also solved by the parametric simplex method as our proposed EPIC 
method, and (2) is solved by the block coordinate descent algorithm. All experiments are 
conducted on a PC with Core i5 3.3GHz CPU and 16GB memory. All programs are coded 
using C using double precision, and further called from R.

A. Data Generation

We consider three different settings for comparison: (1) d = 101; (2) d = 201; (3) d = 401. 
We adopt the following three graph generation schemes, as illustrated in Figure 1, to obtain 
precision matrices:

• Band. Each node is assigned an index j with j = 1, …, d. Two nodes are connected 
by an edge if the difference between their indices is no larger than 2.

• Erdös-Rényi. We set an edge between each pair of nodes with probability 4/d, 
independently of the other edges.

• Scale-free. The degree distribution of the graph follows a power law. The graph is 
generated by the preferential attachment mechanism.
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The graph begins with an initial chain graph of 10 nodes. New nodes are added to the graph 
one at a time. Each new node is connected to an existing node with a probability that is 
proportional to the number of degrees that the existing nodes already have. Formally, the 

probability pi that the new node is connected to the ith existing node is  where ki is 
the degree of node i.

Let G be the adjacency matrix of the generated graph, we calculate  as

where all Ukj’s are independently sampled from the uniform distribution Uniform (−1, +1). 
Let  be the rescaling operator that converts a symmetric positive definite matrix to the 
corresponding correlation matrix, we further calculate

where Θ is the diagonal standard deviation matrix with  for j = 1,…, d.

We then generate  independent samples from the t-distribution with 6 degrees of 
freedom, mean 0, and covariance Σ. For the EPIC estimator, we set c = 0.5 in (13). For the 
Catoni’s M-estimator, we set Kmax = 10 and Kmin = 0.1.

B. Timing Performance

We first evaluate the computational performance of the parametric simplex method. For 
each model, we choose a regularization parameter, which yields approximate 0.05 · d(d − 1) 
nonzero off-diagonal entries. The EPIC and CLIME methods are solved by the parametric 
simplex method, which is described in Appendix B. The GLASSO is solved by the dual 
block coordinate descent algorithm, which is described in [11]. Table I summarizes the 
timing performance averaged over 100 replications. To obtain the baseline performance, we 
solve the CLIME.SC method using the simplex method1 as suggested in [5]. We see that all 
four methods greatly outperform the baseline. The EPIC, CLIME.RC, and CLIME.SC 
methods attain similar timing performance for all settings, and the GLASSO.RC method is 
more efficient than the others for d = 201 and d = 401.

C. Parameter Estimation

To select the regularization parameter, we independently generate a validation set of n 

samples from the same distribution. We tune λ over a refined grid, then the selected optimal 

regularization parameter is , where  denotes the estimated 

1The implementation of the simplex method is based on the R packages linprog and lpSolve.
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precision matrix of the training set using the regularization parameter λ, and  denotes the 
estimated covariance matrix of the validation set using either (1) or (17). Tables II and III 
summarize the numerical results averaged over 100 replications. We see that the EPIC 
estimator outperforms the GLASSO.RC and CLIME.RC estimators in all settings.

D. Model Selection

To evaluate the model selection performance, we calculate the ROC curve of each obtained 
regularization path using the false positive rate (FPR) and true positive rate (FNR) defined 
as follows,

Figure 1 summarizes ROC curves of all methods averaged over 100 replications.2 We see 
that the EPIC estimator outperforms the competing estimators throughout all settings. 
Similarly, our method outperforms the sample covariance matrix-based CLIME estimator.

VI. Real Data Example

To illustrate the effectiveness of the proposed EPIC method, we adopt the sonar dataset from 
UCI Machine Learning Repository3 [13]. The dataset contains 101 patterns obtained by 
bouncing sonar signals off a metal cylinder at various angles and under various conditions, 
and 97 patterns obtained from rocks under similar conditions. Each pattern is a set of 60 
features. Each feature represents the logarithm of the energy integrated over a certain period 
of time within a particular frequency band. Our goal is to discriminate between sonar signals 
bounced off a metal cylinder and those bounced off a roughly cylindrical rock.

We randomly split the data into two sets. The training set contains 80 metal and 77 rock 
patterns. The testing set contains 21 metal and 20 rock patterns. Let µ(k) be the class 
conditional means of the data where k = 1 represents the metal category and k = 0 represents 
the rock category. [5] assume that two classes share the same covariance matrix, and then 
adopt the sample mean for estimating µk’s and the sample covariance matrix-based CLIME 
estimator for estimating Ω. In contrast, we adopt the Catoni’s M-estimator for estimating 
µk’s and the EPIC estimator for estimating Ω. We classify a sample x to the metal category 
if

2The ROC curves from different replications are first aligned by regularization parameters. The averaged ROC curve shows the false 
positive and true positive rate averaged over all replications w.r.t. each regularization parameter
3Available at http://http://archive.ics.uci.edu/ml/datasets.html.

Zhao and Liu Page 12

IEEE Trans Inf Theory. Author manuscript; available in PMC 2015 January 26.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://http://archive.ics.uci.edu/ml/datasets.html


and to the rock category otherwise. We use the testing set to evaluate the performance of the 
EPIC estimator. For tuning parameter selection, we use a 5-fold cross validation on the 
training set to pick the regularization parameter λ.

To evaluate the classification performance, we use the criteria of misclassification rate, 
specificity, sensitivity, and Mathews Correlation Coefficient (MCC). More specifically, let 

yi’s and ’s be true labels and predicted labels of the testing samples, we define

where

Table IV summarizes the performance of both methods averaged over 100 replications (with 
standard errors in parentheses). We see that the EPIC estimator significantly outperforms the 
competitor on the sensitivity and misclassification rate, but slightly worse on the specificity. 
The overall classification performance measured by MCC shows that the EPIC estimator has 
about 8% improvement over the competitor.

VII. Discussion and Conclusion

In this paper, we propose a new sparse precision matrix estimation method for the elliptical 
family. Our method handles heavy-tailness, and conducts parameter estimation under a 
calibration framework. We show that the proposed method achieves improved rates of 
convergence and better finite sample performance than existing methods. The effectiveness 
of the proposed method is further illustrated by numerical experiments on both simulated 
and real datasets.

[25] proposed another calibrated graph estimation method named TIGER for Gaussian 
family. However, unlike the EPIC estimator, the TIGER method can not handle the elliptical 
family due to two reasons: (1) The transformed Kendall’s tau estimator cannot guarantee the 
positive semidefiniteness. If we directly plug it into the TIGER method, it makes the TIGER 
formulation nonconvex. Existing algorithms may not obtain a global solution in polynomial 
time. (2) The theoretical analysis in [25] is only applicable to the Gaussian family. 
Theoretical properties of the TIGER method for the elliptical family is unclear.

Another closely related method is the rank-based CLIME method for estimating inverse 
correlation matrix estimation for the elliptical family [24]. The rank-based CLIME method 
is based on the formulation in (3) and cannot calibrate the regularization. Furthermore, the 
rank-based CLIME method can only estimate the inverse correlation matrix. Thus for 
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applications such as the linear discriminant analysis (as is demonstrated in §6) which 
requires the input to be a precision matrix [2], [30], [35], the rank-based CLIME method is 
not applicable.
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APPENDIX A PROOF OF PROPOSITION III.1

Proof: To show the equivalence between (14) and (15), we only need to verify that the 

optimal solution  to (15) satisfies

(A.1)

We then prove (A.1) by contradiction. Assuming that there exists some  such that

(A.2)

(A.2) implies that  is also a feasible solution to (15) and

(A.3)

(A.3) contradicts with the fact that  minimizes (15). Thus (A.1) must hold, and (15) 
is equivalent to (14).

Appendix B Parametric Simplex Method

We provide a brief description of the parametric simplex method only for self-
containedness. More details of the derivation can be found in [34]. We consider the 
following generic form of linear program,

(B.1)

where c ∈ ℝm, A ∈ ℝn×m, and b ∈ ℝn. It is well known that (B.1) has a dual formulation as 
∈follows,

(B.2)

where y = (y1, …, yn)T ∈ ℝn are dual variables. The simplex method usually solves either 
(B.1) or (B.2). It contains two phases: Phase I is to find a feasible initial solution for Phase 
II; Phase II is an iterative procedure to recover the optimal solution based on the given initial 
solution.
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Different from the simplex method, the parametric simplex method adds some perturbation 
to (B.1) and (B.2) such that the optimal solutions can be trivially obtained. More 
specifically, the parametric simplex method solves the following pair of linear programs

(B.3)

(B.4)

where β ≥ 0 is a perturbation parameter, p ∈ ℝn and q ∈ ℝm are perturbation vectors. When 

β, p, and q are suitably chosen such that b + βp ≥ 0 and c + βq ≤ 0, x = 0 and y = 0 are the 
optimal solutions to (B.3) and (B.4) respectively. The parametric simplex method is an 
iterative procedure, which gradually reduces β to 0 (corresponding to no perturation) and 
eventually recovers the optimal solution to (B.1).

To derive the iterative procedure, we first add slack variables w = (w1, …, wn)T ∈ ℝn, and 
rewrite (B.3) as

(B.5)

where H = [AI], ,  and

Since b + βp ≥ 0 and c + βq ≤ 0,  is the optimal solution to (B.5). We then 
divide all variables in  into a nonbasic group  and a basic group . In particular,

 belong to the nonbasic group denoted by , and  belong to the 

basic group denoted by . We also divide H into two submatrices  and , where 

contains all columns of H corresponding to , and  contains all columns of H 

corresponding to . We then rewrite the constraint in (B.5) as . 
Consequently, we obtain the primal dictionary associated with the basic group  by

(B.6)

(B.7)

where , , , , 

 and φP is the objective value of (B.5) at current iteration.

We then add slack variables z = (z1, … , zm)T, and rewrite (16) as
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(B.8)

To make the notation consistent with the primal problem, we define

Similarly we can obtain the dual dictionary associated with the nonbasic variable  by

(B.9)

(B.10)

where , and φD is the objective value of the dual problem at current iteration.

Once we obtain (B.6), (B.7), (B.9), and (B.10), we start to decrease β, and the smallest value 
of β at current iteration is obtained by

we then swap a pair of basic and nonbasic variables in B and N and update the primal and 
dual dictionaries such that β can be decreased to β*. See more details on updating the 
dictionaries in [34]. By repeating the above procedure, we eventually decrease β to 0. The 
parametric simplex method guarantees the feasibility and optimality for both (B.3) and (B.4) 
in each iteration, and eventually obtain the optimal solution to the original problem (B.3).

Since the parametric simplex method starts with all zero solutions, it can recover the optimal 
solution only in a few iterations when the optimal solution is very sparse. That naturally fits 
into the sparse estimation problems such as the EPIC method. Moreover, if we rewrite (16) 
in the same form as (B.3), we need to set p = (0T, eT, 0)T and start with β = 1. Since c = 

(−1T, −c)T, we can set q = 0 i.e., we do not need perturbation on c. Thus the computation in 
each iteration can be further simplified due to the sparsity of p and q.

Remark B.1: For sparse estimation problems, Phase I of the simplex method does not 
guarantee the sparseness of the initial solution. As a result, Phase II may start with a dense 
initial solution, and gradually reduce the sparsity of the solution. Thus the overall 
convergence of the simplex method often requires a large number of iterations when the 
optimal solution is very sparse.
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APPENDIX C Smoothed Proximal Gradient Algorithm

We first apply the smoothing approach in [28] to obtain a smooth surrogate of the matrix 
#x2113;1 norm based on the Fenchel dual representation,

(C.1)

where η > 0 is a smoothing parameter. (C.1) has a closed form solution  as follows,

(C.2)

where , and γk is the minimum positive value such that 

. See [9] for an efficient algorithms to find γk with the average 

computational complexity of O(d2). As is shown in [28], the smooth surrogate  is 
smooth, convex, and has a simple form gradient as

Since  is obtained by the soft-thresholding in (C.2), we have G(Ω) continuous in Ω with 
the Lipschitz constant η−1. Motivated by these good computational properties, we consider 
the following optimization problem instead of (18),

(C.3)

To solve (C.3), we adopt the accelerated projected gradient algorithm proposed in [27]. 
More specifically, we define two sequences of auxiliary variables {M(t)} and {W(t)} with 
M(0) = W(0) = Ω(0), and a sequence of weights {θt = 2/(1+t)}. For the tth iteration, we first 

calculate the auxiliary variable M(t) as

We then calculate the auxiliary variable W(t) as

where ηt is the step size. We can either choose ηt = η in all iterations or estimate ηt’s by the 
back-tracking=line search for better empirical performance [4]. At last, we calculate Ω(t) as,
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The next theorem provides the convergence rate of the algorithm with respect to minimizing 
(18).

Theorem C.1: Given the desired accuracy ε such that , let η = 
d−1ε/2, we need the number of iterations to be at most

Proof: Due to the fact that ||A||F ≤ d||A||∞, a direct consequence of (C.1) is the following 
uniform bound

Then we consider the following decomposition

where the last inequality comes from the result established in [27],

Thus given dη = ε/2, we only need

(C.4)

By solving (C.4), we obtain

Theorem C.1 guarantees that the above algorithm achieves the optimal rate of convergence 
for minimizing (18) over the class of all first-order computational algorithms.
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APPENDIX D Proof of Lemma 1

Proof: [7] shows that there exist universal constants κ3 and κ4 such that

(D.1)

(D.2)

We then define the following events

Conditioning on , we have

(D.3)

Conditioning on  and , (D.3) implies

(D.4)

(D.4) further implies

(D.5)

Conditioning , (D.5) implies

(D.6)

Combining (D.1), (D.2), and (D.6), for small enough ε such that
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(D.7)

we have

(D.8)

By taking the union bound of (D.8), we have

If we take , then (D.7) implies that we need n large enough such that

Taking , we then have

(19) is a direct result in [24], therefore its proof is omitted.

Appendix E Proof Of Theorem IV.1

Proof: We first define the following pair of orthogonal subspaces ,

We will use  to exploit the sparseness of Γ*j. We then define the following event

Conditioning on , we haveis
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(E.1)

Now let τj = ||Γ*j||1, (E.1) implies that (Γ*j, τj) is a feasible solution to (13). Since 
is the empirical minimizer, we have

(E.2)

where the last equality comes from the fact that .

Let  be the estimation error, (E.2) implies

(E.3)

where (i) comes from the constraint in (13):  and (ii) comes from the fact 

 Combining the fact  with 
(E.3), we have

(E.4)

where . (E.4) implies that  belongs the following cone shape set

The following lemma characterizes an important property of  when  holds.

Lemma E.1: Suppose that X ~ EC(µ, ξ, Σ), and (A.1) and  hold. Given any , for 

small enough λ such that , we have

(E.5)
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The proof of Lemma E.1 is provided in Appendix E.1. Since ∆*j exactly belongs to , we 
have a simple variant of (E.5) as

(E.6)

where the last inequality comes from the fact that  has at most s nonzero entries. Since

(E.7)

where the last inequality comes from (E.4). Combining (E.6) and (E.7), we have

(E.8)

Assuming that , (E.8) implies

(E.9)

Combining (E.6) and (E.9), we have

(E.10)

Assuming that , (E.10) implies

(E.11)

Recall , in order to secure

we need large enough n such that
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Combining (E.9) and (E.11), we have

(E.12)

Combining (E.4), (E.6), and (E.12), we obtain

(E.13)

Combining (E.12) and (E.13), we have

(E.14)

By Lemma E.1 again, (E.14) implies

(E.15)

Let  and . Recall , 
by definition of the matrix #x2113;1 and Frobenius norms, (E.13) and (E.15) imply

(E.16)

and

(E.17)

Now we start to derive the error bound of  obtained by the ensemble rule. We have the 
following decomposition
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(E.18)

Moreover, for any A, B, C ∈ ℝd×d, where A and C are diagonal matrices, we have

(E.19)

(E.20)

Here we define the following event

Thus conditioning , (E.16), (E.18), and (E.19) imply

(E.21)

If (A.4): s2logd/n → 0 holds, then (E.21) is determined by the slowest rate . 
Thus for large enough n, there exists a universal constant C4 such that

(E.22)

Similarly, conditioning on , (E.17), (E.18), (E.20) and the fact  imply
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(E.23)

Again if (A.4) holds, then (E.23) is determined by the slowest rate . Thus 
for large enough n, there exists a universal constant C2 such that

(E.24)

We then proceed to prove the error bound of  obtained by the symmetrization procedure 
(18). Let C1 = 2C4, if we choose the matrix #x2113;1 norm as ||·||* in (18), we have

(E.25)

where the second inequality comes from the fact that Ω is a feasible solution to (18), and 
is the empirical minimizer. If we choose the Frobenius norm as ||·||* in (18), using the fact 
that the Frobenius norm projection is contractive, we have

(E.26)

All above analysis are conditioned on  and . Thus combining Lemma 1 with (E.25) and 
(E.26), we have

(E.27)

(E.28)

where p = 1, 2, and (E.27) comes from the fact that ||A||2 ≤ ||A||1 for any symmetric matrix 

A.

APPENDIX F Proof of Lemma E.1

Proof: Since , we have
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(F.1)

Since , we have , which implies

(F.2)

where the last inequality comes from the fact that there are at most s nonzero entries in . 
Then combining (F.1) and (F.2), we have

(F.3)

Since we have , (F.3) implies

APPENDIX G Proof Of Theorem IV.2

Proof: Our following analysis also assumes that  holds. Since 
implies (E.1),

where τj = ||Γ*j||1. Then (Γ*j, τj) is a feasible solution to (13), which implies

(G.1)

Moreover, we have

which further implies
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(G.2)

Combing (G.1) and (G.2), we have where the last inequality comes from

(G.3)

where the last inequality comes from

By (G.3), we have

(G.4)

Recall , by the definition of the max norm and (G.4), we have

(G.5)

where κ7 = κ1(1 + 4c)/c. Since for any A, B, C ∈ ℝd×d, where A and C are diagonal 
matrices, we have

(G.6)

Conditioning on

(G.7)

(G.6), (E.18) and the fact ||Γ||max ≤ M imply

(G.8)
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Again if (A.4): s2 log d/n → 0 holds, then (G.8) determined by the slowest rate 

. Thus for large enough n, if we choose the max norm as ||·||* in (18), we 
have

(G.9)

where the second inequality comes from the fact that Ω is a feasible solution to (18), and 
is the empirical minimizer.

Note that the results obtained here only depend on  and . Thus by Lemma 1 and (G.9), 
let C3 = 2κ7, we have

To show the partial consistency in graph estimation , we follow a similar 
argument to Theorem 4 in [25]. Therefore the proof is omitted.
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Fig. 1. 

Three different graph patterns and corresponding average ROC curves. EPIC outperforms 
the competitors throughout all settings. (a) Band (d = 401). (b) Band (d = 101). (c) Band (d 

= 201). (d) Band (d = 401). (e) Erdös-Rényi (d = 401). (f) Erdös-Rényi (d = 101). (g) Erdös-
Rényi (d = 201). (h) Erdös-Rényi (d = 401). (i) Scale-free (d = 401). (j) Scale-free (d = 101). 
(k) Scale-free (d = 201). (l) Scale-free (d = 401).
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TABLE I
Timing Performance of Different Estimators on the Band, Erdös-Rényi, and Scale-Free 

Models (in Seconds). The Baseline Performance Is Obtained by Solving the CLIME.SC 

Method Using the Simplex Method

Model d EPIC GLASSO.RC CLIME.RC CLIME.SC BASELINE

101 0.1561(0.0248) 0.3633(0.0070) 0.1233(0.0057) 0.1701(0.0119) 49.467(1.7862)

Band 201 1.6622(0.1253) 0.4417(0.0122) 1.5897(0.1249) 1.6085(0.0518) 687.57(23.720)

401 23.061(0.5777) 1.0864(0.1403) 24.441(1.5344) 25.445(3.8066) 4756.4(170.25)

101 0.1414(0.0079) 0.3703(0.0072) 0.1309(0.0331) 0.2073(0.0925) 59.775(2.0521)

Erdös-Rényi 201 1.6214(0.5175) 0.4448(0.0164) 1.5992(0.1840) 1.6155(0.2957) 803.51(29.835)

401 21.722(0.5470) 1.1517(0.0959) 22.795(0.6999) 24.230(3.1871) 4531.7(151.46)

101 0.2245(0.0514) 0.4398(0.0843) 0.1509(0.0054) 0.1871(0.0149) 55.112(1.7109)

Scale-free 201 1.8682(0.1078) 0.4632(0.0067) 1.5472(0.1350) 1.7235(0.1778) 865.98(31.399)

401 21.926(0.7112) 1.0093(0.1140) 23.135(1.4318) 25.596(3.3401) 4991.2(202.44)
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TABLE II

Quantitive Comparison of Different Estimators on the Band, Erdös-Rényi, and Scale-Free Models. The EPIC 
Estimator Outperforms the Competitors in all Settings

Spectral Norm: ∣ ∣ Ω̂ − Ω ∣ ∣
2

Model d EPIC GLASSO.RC CLIME.RC CLIME.SC

101 3.3748(0.2081) 4.4360(9,1445) 3.3961(0.4403) 3.6885(0.5850)

Band 201 3.3283(0.1114) 4.8616(0.0644) 3.4559(0.0979) 4.4789(0.3399)

401 3.5933(0.5192) 5.1667(0.0354) 4.0623(0.2397) 5.7164(0.9666)

101 2.1849(0.2281) 2.6681(0.1293) 2.6787(0.8414) 2.3391(0.2976)

Erdös-Rényi 201 1.8322(0.0769) 2.3753(0.0949) 2.0106(0.3943) 2.0528(0.1548)

401 1.3322(0.1294) 2.4265(0.0564) 2.0051(0.4144) 4.0667(1.1174)

101 2.1113(0.3081) 2.9979(0.1654) 2.0401(0.3703) 2.6541(0.5882)

Scale-free 201 2.3519(0.1779) 3.2394(0.1078) 2.3785(0.4186) 2.5789(0.5139)

401 3.2273(0.1201) 4.0105(0.5812) 3.3139(0.5812) 3.9287(1.1750)
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TABLE III

Quantitive Comparison of Different Estimators on the Band, Erdös-Rényi, and Scale-Free Models. The EPIC 
Estimator Outperforms the Competitors in All Settings

Frobenius Norm: ∣ ∣ Ω̂ − Ω ∣ ∣
2

Model d EPIC GLASSO.RC CLIME.RC CLIME.SC

101 9.4307(0.3245) 11.069(0.2618) 9.7538(0.3949) 11.392(0.8319)

Band 201 12.720(0.2282) 16.135(0.1399) 13.533(0.1898) 14.850(0.6167)

401 18.298(1.0537) 23.177(0.1957) 20.412(0.2366) 25.254(1.0002)

101 6.0660(0.1552) 6.8777(0.2115) 6.7097(0.3672) 7.3789(0.4390)

Erdös-Rényi 201 6.7794(0.1632) 8.1531(0.1828) 7.6175(0.2616) 8.3555(0.2844)

401 7.3497(0.1743) 10.795(0.1323) 8.3869(0.4755) 11.104(0.6069)

101 4.6695(0.2435) 5.6689(0.2344) 4.9658(0.1762) 6.2264(0.3841)

Scale-free 201 5.6732(0.1782) 7.2768(0.0940) 6.2343(0.2401) 7.2842(0.3310)

401 7.2979(0.1094) 9.0940(0.0935) 7.3765(0.2328) 9.5396(0.5636)
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TABLE IV

Quantitive Comparison of the EPIC and Sample Covariance Matrix-Based CLIME Estimators in the Sonar 
Data Classification

Method Misclassification Rate Specificity Sensitivity MCC

EPIC 0.1990(0.0285) 0.7288(0.0499) 0.8579(0.0301) 0.6023(0.0665)

CLIME.SC 0.2362(0.0317) 0.7460(0.0403) 0.7791(0.0429) 0.5288(0.0631)
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