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Abstract

Complex classification performance metrics
such as the Fβ-measure and Jaccard index
are often used, in order to handle class-
imbalanced cases such as information re-
trieval and image segmentation. These per-
formance metrics are not decomposable, that
is, they cannot be expressed in a per-example
manner, which hinders a straightforward ap-
plication of M-estimation widely used in su-
pervised learning. In this paper, we con-
sider linear-fractional metrics, which are a
family of classification performance metrics
that encompasses many standard ones such
as the Fβ-measure and Jaccard index, and
propose methods to directly maximize per-
formances under those metrics. A clue to
tackle their direct optimization is a calibrated
surrogate utility, which is a tractable lower
bound of the true utility function represent-
ing a given metric. We characterize sufficient
conditions which make the surrogate maxi-
mization coincide with the maximization of
the true utility. Simulation results on bench-
mark datasets validate the effectiveness of
our calibrated surrogate maximization espe-
cially if the sample sizes are extremely small.

1 Introduction

Binary classification, one of the main focuses in ma-
chine learning, is a problem to predict binary responses
for input covariates. Classifiers are usually evaluated
by the classification accuracy, which is the expected
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proportion of correct predictions. Since the accuracy
cannot evaluate classifiers appropriately under class
imbalance (Menon et al., 2013) or in the presence of
label noises (Menon et al., 2015), alternative perfor-
mance metrics have been employed such as the Fβ-
measure (van Rijsbergen, 1974; Joachims, 2005; Nan
et al., 2012; Koyejo et al., 2014), Jaccard index (Koyejo
et al., 2014; Berman et al., 2018), and balanced er-
ror rate (BER) (Brodersen et al., 2010; Menon et al.,
2013, 2015; Charoenphakdee et al., 2019). Once a
performance metric is given, it is a natural strategy
to optimize the performance of classifiers directly un-
der the given performance metric. However, the al-
ternative performance metrics have difficulty in di-
rect optimization in general, because they are non-
decomposable, for which per-example loss decomposi-
tion is unavailable. In other words, the M-estimation
procedure (van de Geer, 2000) cannot be applied,
which makes the optimization of non-decomposable
metrics hard.

One of the earliest works tackling the non-traditional
metrics (Koyejo et al., 2014) generalized performance
metrics into the linear-fractional metrics, which are
the linear-fractional form of entries in the confusion
matrix, and encompasses the BER, Fβ-measure, Jac-
card index, Gower-Legendre index (Gower and Legen-
dre, 1986; Natarajan et al., 2016), and weighted accu-
racy (Koyejo et al., 2014). Koyejo et al. (2014) formu-
lated the optimization problem in two ways. One is
a plug-in rule (Koyejo et al., 2014; Narasimhan et al.,
2014; Yan et al., 2018) to estimate the class-posterior
probability and its optimal threshold, and the other is
an iterative weighted empirical risk minimization ap-
proach (Koyejo et al., 2014; Parambath et al., 2014)
to find a better cost with which the minimizer of the
cost-sensitive risk (Scott, 2012) achieves higher util-
ities. Although they provide statistically consistent
esitmators, the former suffers from high sample com-
plexity due to the class-posterior probability estima-
tion, while the latter is computationally demanding
because of iterative classifier training.
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Z-estimation (§3.3)

bVφ(f) = 0
Estimation equation

Vφ(f) = 0
Surrogate maximization (§3.1)

argmaxf Uφ(f)
Utility maximization

argmaxf U(f)

consistent
(§5)

=

calibrated
(§4)

Figure 1: Overview of this work. Intuitively, we can obtain the utility maximizer by solving bVφ(f) = 0.

Our goal is to seek for computationally more efficient
procedures to directly optimize the linear-fractional
metrics, without sacrificing the statistical consistency.
Specifically, we provide a novel calibrated surrogate
utility which is a tractable lower bound of the true
utility representing the metric of our interest. The sur-
rogate maximization is formulated as the combination
of concave and quasi-concave programs, which can be
optimized efficiently. Then, we derive sufficient con-
ditions on the surrogate calibration, under which the
surrogate maximization implies the maximization of
the true utility. In addition, we show the consistency
of the empirical estimation procedure based on the the-
ory of Z-estimation (van der Vaart, 2000). An overview
of our proposed method is illustrated in Fig. 1.

Contributions: (i) Surrogate calibration (Sec. 4):
We propose a tractable lower bound of the linear-
fractional metrics with calibration conditions, which
guarantee that the surrogate maximization implies
the maximization of the true utility. This approach
is model-agnostic differently from many previous ap-
proaches (Koyejo et al., 2014; Narasimhan et al., 2014,
2015; Yan et al., 2018). (ii) Efficient gradient-based
optimization (Secs. 3.2 and 3.3): The surrogate utility
has affinity with gradient-based optimization because
of its non-vanishing gradient and an unbiased estima-
tor of the gradient direction. Even though the linear-
fractional objective does not admit concavity in gen-
eral, our proposed algorithm is a two-step approach
combining concave and quasi-concave programs and
hence computationally efficient. (iii) Consistency anal-
ysis (Sec. 5): The estimator obtained via the surrogate
maximization with a finite sample is shown to be con-
sistent to the maximizer of the expected utility.

2 Preliminaries

Throughout this work, we focus on binary classifica-
tion. Let [n]

.
= {1, . . . , n}. Let 1{A}

.
= 1 if the

predicate A holds and 0 otherwise. Let X ⇢ R
d be

a feature space and Y = {±1} be the label space. We
assume that a sample S

.
= {(xi, yi)}

n
i=1 ⇢ X⇥ Y inde-

pendently follows the joint distribution P with a den-
sity p. We often split S into two independent samples
S0 = {(xi, yi)}

m
i=1 and S1 = {(xi, yi)}

n
i=m+1. Usually,

m = bn2 c. For a function h : X ⇥ Y ! R, we write
E[h(X,Y )] =

R
X⇥Y

h(X,Y )dP. An expectation with
respect to X is written as EX [h(X)]

.
=

R
X
h(X)dPX

for a function h : X ! R, where PX denotes the X-
marginal distribution. A classifier is given as a func-
tion f : X ! R, where sgn(f(·)) determines predic-
tions. Here we adopt the convention sgn(0) = �1.
Let F ⇢ R

X be a hypothesis set of classifiers. Let
⇡

.
= P(Y = +1) and ⌘(X)

.
= P(Y = +1|X) be the

class-prior/-posterior probabilities of Y = +1, respec-
tively. The 0/1-loss is denoted as `(t)

.
= 1{t0}, while

� : R ! R�0 denotes a surrogate loss. The norm
k · k without a subscript is the L

2-norm. For a set
A ⇢ F, denote Ac as the complementary set of A,
namely, Ac .

= F \A.

The following four quantities are focal targets in binary
classification: the true positives (TP), false negatives
(FN), false positives (FP), and true negatives (TN).

Definition 1 (Confusion matrix). Given a classifier
f 2 F and a distribution P, its confusion matrix is
defined as C(f,P)

.
= [TP,FN;FP,TN], where

TP(f,P)
.
= P(Y = +1, sgn(f(X)) = +1),

FN(f,P)
.
= P(Y = +1, sgn(f(X)) = �1),

FP(f,P)
.
= P(Y = �1, sgn(f(X)) = +1),

TN(f,P)
.
= P(Y = �1, sgn(f(X)) = �1).

FN and TP as well as TN and FP can be trans-
formed to each other: FN(f,P) = ⇡ � TP(f,P) and
TN(f,P) = (1� ⇡)� FP(f,P). They can be expressed
with ` and ⌘, such as TP(f,P) = EX [`(�f(X))⌘(X)].
The goal of binary classification is to obtain a classi-
fier that “maximizes” TP and TN, while keeping FP

and FN as “low” as possible. Classifiers are evaluated
by performance metrics that trade off those four quan-
tities. Performance metrics need to be chosen based
on user’s preference on the confusion matrix (Sokolova
and Lapalme, 2009; Menon et al., 2015). In this work,
we focus on the following family of utilities represent-
ing the linear-fractional metrics.

Definition 2 (Linear-fractional utility1). A linear-
fractional utility U : F ! [0, 1] is defined as

U(f)
.
=

EX [W0(f(X), ⌘(X))]

EX [W1(f(X), ⌘(X))]
, (1)

1As mentioned by Dembczyński et al. (2017), there is a
dichotomy in the definition of performance metrics: pop-
ulation utility (PU) and expected test utility (ETU). We
adopt PU, which is defined as the linear-fractional trans-
form of the population confusion matrix in this context.
This is convenient to avoid estimating η compared to ETU.
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where W0,W1 : R ⇥ [0, 1] ! R are class-conditional
score functions given as

Wk(⇠, q)
.
= ak,+1`(�⇠)q + ak,�1`(�⇠)(1� q) + bk,

and a0,+1 > 0, a0,�1  0, b0 2 R, a1,+1 � 0, a1,�1 �
0, b1 2 R are constants such that 0  U(f)  1 (8f).

The class-conditional score functions corre-
spond to a linear-transformation of TP and
FP: EX [Wk(f(X), ⌘(X))] = ak,+1TP(f,P) +
ak,�1FP(f,P) + bk. Examples of U are shown in
Tab. 1. Given a utility function U, our goal is to
obtain a classifier f† that maximizes U.

f† = argmax
f2F

U(f). (2)

Traditional Supervised Classification: Here, we
briefly review a traditional procedure for supervised
classification (Vapnik, 1998). Our aim is to obtain
a classifier with high accuracy, which corresponds to
minimizing the classification risk R(f)

.
= E[`(Y f(X))].

Since optimizing the 0/1-loss ` is a computationally
infeasible problem (Ben-David et al., 2003; Feldman
et al., 2012), it is a common practice to instead min-
imize a surrogate risk Rφ(f)

.
= E[�(Y f(X))], where

� : R! R�0 is a surrogate loss. If � is a classification-
calibrated loss (Bartlett et al., 2006), it is known that
minimizing Rφ corresponds to minimizing R. Eventu-
ally, what we actually minimize is the empirical (surro-
gate) risk bRφ(f)

.
= 1

n

Pn

i=1 �(yif(xi)). The empirical

risk bRφ(f) is an unbiased estimator of the true risk
Rφ(f) for a fixed f 2 F, and the uniform law of large
numbers guarantees that bRφ(f) converges to Rφ(f) for
any f 2 F in probability (Vapnik, 1998; van de Geer,
2000; Mohri et al., 2012). This strategy to minimize
bRφ is called empirical risk minimization (ERM).

The traditional ERM is devoted to maximizing the
accuracy, which is not necessarily suitable when an-
other metric is used for evaluation. Our aim is to give
an alternative procedure to maximize U directly as in
Eq. (2). In the next section, we introduce a tractable
counterpart of the true utility U because U contains
the 0/1-loss ` and is intractable as Rφ above.

3 Surrogate Utility and Optimization

The true utility in Eq. (1) consists of the 0/1-loss `,
which is difficult to optimize. In this section, we in-
troduce a surrogate utility in order to make the opti-
mization problem in Eq. (2) easier.

3.1 Lower Bounding True Utility

Assume that we are given a surrogate loss � : R !
R�0. We hope that the surrogate utility should lower-

bound the true utility U, and that TP / FP should
become larger / smaller as a result of optimization,
respectively. We realize these ideas by constructing
surrogate class-conditional score functions W0,φ and
W1,φ as follows:

W0,φ(⇠, q)
.
= a0,+1(1� �(⇠))q + a0,�1�(�⇠)(1� q) + b0,

W1,φ(⇠, q)
.
= a1,+1(1 + �(⇠))q + a1,�1�(�⇠)(1� q) + b1.

(3)

We often abbreviate EX [Wk,φ(f(X), ⌘(X))] as E[Wk,φ]
if it is clear from the context. Given the surrogate
class-conditional scores, define the surrogate utility as
follows.

Uφ(f)
.
=

EX [W0,φ(f(X), ⌘(X))]

EX [W1,φ(f(X), ⌘(X))]
=

E[W0,φ]

E[W1,φ]
. (4)

To construct Uφ, the 0/1-losses appearing in the true
utility U are replaced with the surrogate loss �. The
surrogate class-conditional scores in (3) are designed so
that the surrogate utility in (4) bounds U from below.

Lemma 3. For all f and a surrogate loss � : R! R�0

such that �(t) � `(t) for all t 2 R, Uφ(f)  U(f).

Proof. Fix ⇠ 2 R and q 2 [0, 1]. Since `(�⇠) = 1 �
`(⇠), a0,+1`(�⇠) = a0,+1(1�`(⇠)) � a0,+1(1��(⇠)) (*
a0,+1 � 0). Together with a0,�1`(�⇠) � a0,�1�(�⇠)
(* a0,�1  0), we confirm W0(⇠, q) � W0,φ(⇠, q). It
can be confirmed that W1(⇠, q)  W1,φ(⇠, q) as well.
Hence, U(f) � Uφ(f) is easy to see.

Due to this property, maximizing Uφ is at least maxi-
mizing a lower bound of U. We will discuss the good-
ness of this lower bound in Sec. 4, but we can immedi-
ately see Uφ(f)( U(f))  1 for any f . In the rest of
this paper, we assume that Uφ is Fréchet differentiable.

3.2 Tractability of Surrogate Utility

The surrogate utility Uφ comes to have a non-vanishing
gradient by using a smooth �, and is guaranteed to be
a lower bound of U. In this subsection, we discuss how
it can be maximized efficiently.

Let us consider an empirical estimator of Uφ:

bUφ(f) =
1
m

Pm

i=1
fW0,φ(f(xi), yi)

1
n�m

Pn

i=m+1
fW1,φ(f(xi), yi)

, (5)

where

fW0,φ(⇠, y)
.
=

(
a0,+1(1� �(⇠)) + b0 if y = +1,

a0,�1�(�⇠) + b0 if y = �1,

fW1,φ(⇠, y)
.
=

(
a1,+1(1 + �(⇠)) + b1 if y = +1,

a1,�1�(�⇠) + b1 if y = �1.



Calibrated Surrogate Maximization of Linear-fractional Utility in Binary Classification

Table 1: Examples of the linear-fractional performance metrics. β > 0 is a trade-off parameter for the Fβ-measure, while
α ≥ 0 is for the Gower-Legendre index.

Metric
Fβ-measure

(van Rijsbergen, 1974)
Jaccard index

(Jaccard, 1901)
Gower-Legendre index

(Gower and Legendre, 1986)

Definition (1+β2)TP
(1+β2)TP+β2FN+FP

TP

TP+FN+FP

TP+TN

TP+α(FP+FN)+TN

(a0,+1, a0,�1) (1 + �2, 0) (1, 0) (1,�1)
b0 0 0 1� ⇡

(a1,+1, a1,�1) (1, 1) (0, 1) (1� ↵,↵� 1)
b1 �2⇡ ⇡ 1 + (↵� 1)⇡

A global maximizer of bUφ could be efficiently obtained
if bUφ were concave. However, this is hard to achieve
in our case regardless of the choice of � due to its
fractional form. Nonetheless, we may formulate our
optimization problem as a quasi-concave program un-
der a certain condition. First, we introduce the notion
of quasi-concavity.

Definition 4 (Quasi-concavity (Boyd and Vanden-
berghe, 2004)). A function h : A ! R is said to be
quasi-concave if the super-level set {x 2 A | h(x) � ↵}
is a convex set for 8↵ 2 R.

A quasi-concave function is a generalization of a con-
cave function and has the unimodality though it is
not necessarily concave, which ensures the unique-
ness of the solution. Next, we have the following re-
sult, whose proof is given in App. B. Let bUn

φ(f)
.
=

1
m

Pm

i=1
fW0,φ(f(xi), yi) be the numerator of bUφ.

Lemma 5. Let F̄
.
= {f | bUn

φ(f) � 0} ⇢ F. If � is

convex, bUφ in Eq. (5) is quasi-concave over F̄ and bUn
φ

is concave over F.

From Lemma 5, we observe the following two impor-
tant facts. First, in the range of f 62 F̄, our objec-
tive bUφ is generally neither concave nor quasi-concave,
but its numerator bUn

φ is concave. Second, bUφ is quasi-
concave over F̄. These observations motivate us to
employ Algorithm 1, which first increases the numera-
tor bUn

φ only to make it positive and then maximizes the

fractional form bUφ. Since the former is a concave pro-
gram and the latter is a quasi-concave program within
F̄, the entire optimization can be performed compu-
tationally efficiently. For quasi-concave optimization,
normalized gradient ascent (NGA) (Hazan et al., 2015)
is applied, which is guaranteed to find a global solu-
tion of quasi-concave objectives. The behavior of Al-
gorithm 1 is illustrated in Figure 2.

3.3 Gradient Direction Estimator

The empirical estimator bUφ in Eq. (5) is generally bi-
ased due to its fractional form. Nevertheless, its gradi-
ent rf

bUφ is unbiased to the expected gradient rfUφ

Algorithm 1: Hybrid Optimization Algorithm
Input : � convex loss, ✓ initial classifier

parameter
while bUn

φ(fθ)  0 do

gn  � rθ
bUn
φ(fθ)

✓  � gradient_based_update(✓, gn)

end
while stopping criterion is not satisfied do

g  � rθ
bUφ(fθ), bg = g/kgk

✓  � gradient_based_update(✓, bg)
end
Output: maximizer fθ

up to a positive scalar multiple. Hence, we may safely
use rf

bUφ as the update direction in NGA.

Below, we state this idea formally. Under the inter-
changeability of the expectation and derivative, the
gradient of the expected utility Uφ is expressed as

rfUφ(f)

=
1

(E[W1,φ])2| {z }
positive scalar

E[W1,φ]E[rW0,φ]� E[W0,φ]E[rW1,φ]| {z }
gradient direction (

.
= Vφ(f))

= cVφ(f), where c = (E[W1,φ])
�2 > 0,

from which we can see that its gradient direction is
parallel to Vφ. Vφ can be unbiasedly estimated.

Lemma 6. Denote fW0,φ(f(xi), yi) = fW0,φ(zi) for
simplicity. Define

bVφ(f)
.
=

1

m(n�m)

mX

i=1

nX

j=m+1

n
fW1,φ(zj)rf

fW0,φ(zi)

�fW0,φ(zi)rf
fW1,φ(zj)

o
.

(6)

Then, we have Vφ(f) = ES[bVφ(f)].

Lemma 6 can be confirmed by simple algebra, noting
that two samples S0 and S1 are independent and iden-
tically drawn from P. Since solving rbUφ(f) = 0 is
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bUφ

bUn
φ

F̄

F̄c F̄c

1

2

3

Figure 2: Illustration of our hybrid optimization ap-

proach in Algorithm 1. 1� maximize the numerator bU
n

φ

(concave), 2� once bU
n

φ(f) ≥ 0, optimize the fraction bUφ,

3� maximize the fraction bUφ (quasi-concave only in F̄).

Algorithm 2: Normalized Gradient Ascent
Input : ✓ initial classifier parameter, � learning

rate
while stopping criterion is not satisfied do

g  � bVφ(fθ), bg = g/kgk
✓  � ✓ + �bg

end
Output: learned classifier parameter ✓

identical to solving bVφ(f) = 0, gradient updates us-
ing rbUφ is aligned to the maximization of Uφ. Hence,
optimization procedures that only need gradients such
as gradient ascent and quasi-Newton methods (Boyd
and Vandenberghe, 2004), e.g., the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Fletcher, 2013)
can be applied to maximize Uφ. Note that Algorithm 2
can be regarded as an extension of the traditional gra-
dient ascent using bVφ. We plug either Algorithm 2 or
BFGS using the normalized gradient to the second half
of Algorithm 1.

4 Calibration Analysis: Bridging

Surrogate Utility and True Utility

In Sec. 3, we formulated the tractable surrogate util-
ity. Given the surrogate utility Uφ, a natural question
arises in the same way as the classification calibration
in binary classification (Zhang, 2004b; Bartlett et al.,
2006): Does maximizing the surrogate utility Uφ im-
ply maximizing the true utility U? In this section, we
study sufficient conditions on the surrogate loss � in
order to connect the maximization of Uφ and the max-
imization of U. All proofs in this section are deferred
to App. A.

t

0

1

O

0-1

log2(1 + e−t)

log2(1 + e−τ t)

Figure 3: An example of τ -discrepant loss with τ > 0:
φ(t) = log

2
(1+ e−t) for t ≤ 0 and φ(t) = log

2
(1+ e−τt) for

t > 0.

First, we define the notion of U-calibration.

Definition 7 (U-calibration). The surrogate utility
Uφ is said to be U-calibrated if for any sequence of
measurable functions {fl}l�1 and any distribution P, it
holds that Uφ(fl)! U⇤

φ =) U(fl)! U† when l !1,

where U⇤
φ

.
= supf Uφ(f) and U† .

= supf U(f) are the
suprema taken over all measurable functions.

This definition is motivated by calibration in
other learning problems such as binary classifica-
tion (Bartlett et al., 2006, Theorem 3), multi-class
classification (Zhang, 2004a, Theorem 3), structured
prediction (Osokin et al., 2017, Theorem 2), and AUC
optimization (Gao and Zhou, 2015, Definition 1). If a
surrogate utility is U-calibrated, we may safely opti-
mize the surrogate utility instead of the true utility U.
Note that U-calibration is a concept to reduce the sur-
rogate maximization to the maximization of U within
all measurable functions. The approximation error of
Uφ is not the target of our analysis as in Bartlett et al.
(2006).

Next, we give a property of loss functions that is
needed to guarantee U-calibration.

Definition 8 (⌧ -discrepant loss). For a fixed ⌧ > 0,
a convex loss function � : R ! R�0 is said to be ⌧ -
discrepant if � satisfies limt&0 �

0(t) � ⌧ limt%0 �
0(t).

Intuitively, ⌧ -discrepancy means that the gradient of
� around the origin is steeper in the negative domain
than the positive domain (see Figure 3). The value ⌧

controls steepness of the TP / FP surrogates appearing
in the surrogate utility Uφ. Note that �(⇠) and �(�⇠)
appearing in Eqs. (3) and (4) correspond to TP and
FP, respectively, by their constructions.

Below, we see calibration properties for specific linear-
fractional metrics, the Fβ-measure and Jaccard index.
Note that those calibration analyses can be extended
to general linear-fractional utilities, which is deferred
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to App. A.4.

Fβ-measure: The Fβ-measure has been widely used
especially in the field of information retrieval where
relevant items are rare (Manning and Schütze, 2008).
Since it is defined as the weighted harmonic mean of
the precision and recall (see Tab. 1), its optimiza-
tion is difficult in general. Although much previous
work has tried to directly optimize it in the context of
the class-posterior probability estimation (Nan et al.,
2012; Koyejo et al., 2014; Yan et al., 2018) or the
iterative cost-sensitive learning (Koyejo et al., 2014;
Parambath et al., 2014), we show that there exists a
calibrated surrogate utility that can be used in the
direct optimization as well.

For the Fβ-measure (1+β2)TP
(1+β2)TP+β2FN+FP

= (1+β2)TP
TP+FP+β2π

,

define the true utility UFβ and the surrogate utility
U

Fβ

φ as

UFβ (f) =
EX

⇥
(1 + �2)`(�f)⌘

⇤

EX [`(�f)⌘ + `(�f)(1� ⌘) + �2⇡]
,

U
Fβ

φ (f) =
EX

⇥
(1 + �2)(1� �(f))⌘

⇤

EX [(1 + �(f))⌘ + �(�f)(1� ⌘) + �2⇡]
.

As for UFβ

φ , we have the following Fβ-calibration guar-

antee. Denote (U
Fβ

φ )⇤
.
= supf U

Fβ

φ (f).

Theorem 9 (Fβ-calibration). Assume that a surro-
gate loss � : R ! R�0 is differentiable almost every-

where, convex, and non-increasing, and that (U
Fβ

φ )⇤ �
(1+β2)τ
β2�τ

and � is ⌧ -discrepant for some constant ⌧ 2

(0,�2).2 Then, U
Fβ

φ is Fβ-calibrated.

An example of the ⌧ -discrepant surrogate loss is shown
in Figure 3. Here ⌧ is a discrepancy hyperparameter.
From the fact (U

Fβ

φ )⇤  1, ⌧ ranges over (0, β2

2+β2 ].
We may determine ⌧ by cross-validation, or fix it at
⌧ = β2

2+β2 by assuming (U
Fβ

φ )⇤ ⇡ 1.

Jaccard Index: The Jaccard index, also referred to
as the intersection over union (IoU), is a metric of sim-
ilarity between two sets: For two sets A and B, it is
defined as |A\B|

|A[B| 2 [0, 1] (Jaccard, 1901). The Jaccard
index between the sets of examples predicted as pos-
itives and labeled as positives becomes TP

TP+FN+FP
, as

is shown in Tab. 1. This measure is not only used
for measuring the performance of binary classifica-
tion (Koyejo et al., 2014; Narasimhan et al., 2015),
but also for semantic segmentation (Everingham et al.,
2010; Csurka et al., 2013; Ahmed et al., 2015; Berman
et al., 2018).

2Note that (U
Fβ

φ )∗ is non-negative and therefore such τ
always exists. The non-negativity is discussed in App. A.5.

For the Jaccard index TP

TP+FN+FP
= TP

FP+π
, define the

true utility UJac and the surrogate utility UJac

φ as

UJac(f) =
EX [`(�f)⌘]

EX [`(�f)(1� ⌘) + ⇡]
,

UJac

φ (f) =
EX [(1� �(f))⌘]

EX [�(�f)(1� ⌘) + ⇡]
.

As for UJac

φ , we have the following Jaccard-calibration.
Denote (UJac

φ )⇤
.
= supf U

Jac

φ (f).

Theorem 10 (Jaccard-calibration). Assume that a
surrogate loss � : R ! R�0 is differentiable al-
most everywhere, convex, and non-increasing, and that
(UJac

φ )⇤ � ⌧ and � is ⌧ -discrepant for some constant

⌧ 2 (0, 1). Then, UJac

φ is Jaccard-calibrated.

Theorem 10 also relies on the ⌧ -discrepancy as in The-
orem 9. Thus, the loss shown in Figure 3 can also be
used in the Jaccard case with a certain range of ⌧ . In
the same manner as the Fβ-measure, a hyperparame-
ter ⌧ ranges over (0, 1), which we may either determine
by cross-validation or fix to a certain value.

Remark: The ⌧ -discrepancy is a technical assump-
tion making stationary points of Uφ lie in the
Bayes optimal set of U. This is a mere sufficient
condition for U-calibration, while the classification-
calibration (Bartlett et al., 2006) is the necessary and
sufficient condition for the accuracy.3 It is left as an
open problem to seek for necessary conditions.

5 Consistency Analysis: Bridging

Finite Sample and Asymptotics

In this section, we analyze statistical properties of the
estimator bVφ in Eq. (6). To make our analysis simple,
the linear-in-input model fθ(x) = ✓>x is considered
throughout this section, where ✓ 2 Θ is a classifier pa-
rameter and Θ ⇢ R

d is a compact parameter space.
The maximization procedure introduced above can be
naturally seen as Z-estimation (van der Vaart, 2000),
which is an estimation procedure to solve an estima-
tion equation. In our case, the maximization of Uφ is
reduced to a Z-estimation problem to solve the system
bVφ(f) = 0. The first lemma shows that the deriva-
tive estimator bVφ admits the uniform convergence. Its
proof is deferred to App. C.

Lemma 11 (Uniform convergence). For simplicity,
assume that m = n/2. For k = 0, 1, let ck

.
=

supξ2R,y2Y |Wk,φ(⇠, y)| < +1. Assume that Wk(·, y)
for y 2 Y are ⇢k-Lipschitz continuous for some 0 <
⇢k < 1, and that kxk < cX (8x 2 X) and k✓k < cΘ

3We give the surrogate calibration conditions for the
accuracy in App. A.3.
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(8✓ 2 Θ) for some 0 < cX, cΘ <1. Then,

sup
θ2Θ

���bVφ(fθ)� Vφ(fθ)
��� = Op(n

� 1

2 ), (7)

where Op denotes the order in probability.

The Lipschitz continuity and smoothness assumptions
in Lemma 11 can be satisfied if the surrogate loss �

satisfies a certain Lipschitzness and smoothness. Note
that Lemma 11 still holds for ⌧ -discrepant surrogates
since we allow surrogates to have different smoothness
parameters for both positive and negative domains.
Lemma 11 is the basis for showing the consistency. Let
✓⇤

.
= argmaxθ2Θ Uφ(fθ) and b✓n = argmaxθ2Θ

bUφ(fθ).
Under the identifiability described below, fθ∗ and fbθn
are roots of Vφ and bVφ, respectively. Then, we can
show the consistency of b✓n.

Theorem 12 (Consistency). Assume that ✓⇤ is iden-
tifiable, that is, inf{kVφ(fθ)k | k✓ � ✓⇤k � ✏} >
kVφ(fθ∗)k = 0 for all ✏ > 0, and that Eq. (7) holds

for bVφ. Then, b✓n
p
! ✓⇤.

Theorem 12 is an immediate result of van der Vaart
(2000, Theorem 5.9), given the uniform convergence
(Lemma 11) and the identifiability assumption. Note
that the identifiability assumes that Vφ has a unique
zero fθ∗ , which is also usual in the M-estimation: The
global optimizer is identifiable. Since Algorithm 1 is a
combination of concave and quasi-concave programs,
the identifiability would be reasonable to assume.

6 Related Work

In this section, we summarize the existing lines of re-
search on the optimization of generalized performance
metrics, which elucidates advantages of our approach.

(i) Surrogate optimization: One of the earliest at-
tempts to optimize non-decomposable performance
metrics dates back to Joachims (2005), formulating the
structured SVM as a surrogate objective. However,
Dembczyński et al. (2013) showed that this surrogate
is inconsistent, which means that the surrogate maxi-
mization does not necessarily imply the maximization
of the true metric. Kar et al. (2014) showed the sub-
linear regret for the structural surrogate by Joachims
(2005) in online setting. Later, Yu and Blaschko
(2015), Eban et al. (2017), and Berman et al. (2018)
have tried different surrogates, but their calibration
has not been studied yet.

(ii) Plug-in rule: Instead of the surrogate optimiza-
tion, Dembczyński et al. (2013) mentioned that a
plug-in rule is consistent, where ⌘ and a threshold
parameter are estimated independently. We can es-
timate ⌘ by minimizing strictly proper losses (Reid

Table 2: Comparison of related work.

Method Consistency
Avoids

to estimate η
Efficient

optimization

ours 3 3 3

(i) 7 3 3

(ii) 3 7 3

(iii) 3 3 7

and Williamson, 2009). The plug-in rule has been in-
vestigated in many settings (Nan et al., 2012; Dem-
bczyński et al., 2013; Koyejo et al., 2014; Narasimhan
et al., 2014; Busa-Fekete et al., 2015; Yan et al., 2018).
However, one of the weaknesses of the plug-in rule is
that it requires an accurate estimate of ⌘, which is
less sample-efficient than the usual classification with
convex surrogates (Bousquet et al., 2004; Tsybakov,
2008). Moreover, estimation of the threshold parame-
ter heavily relies on an estimate of ⌘.

(iii) Cost-sensitive risk minimization: On the other
hand, Parambath et al. (2014) is a pioneering work
to focus on the pseudo-linearity of the metrics, which
reduces their maximization to an alternative optimiza-
tion with respect to a classifier and the sublevel. This
can be formulated as an iterative cost-sensitive risk
minimization (Koyejo et al., 2014; Narasimhan et al.,
2015, 2016; Sanyal et al., 2018). Though these meth-
ods are blessed with the consistency, they need to train
classifiers many times, which may lead to high compu-
tational costs, especially for complex hypothesis sets.

Remark: Our proposed methods can be considered
to belong to the family (i), while one of the crucial
differences is the fact that we have calibration guar-
antee. We do not need to estimate the class-posterior
probability as in (ii), or train classifiers many times as
in (iii). This comparison is summarized in Tab. 2.

7 Experiments

In this section, we investigate empirical performances
of the surrogate optimizations (Algorithm 1 with NGA
and normalized BFGS). Details of datasets, baselines,
and full experimental results are shown in App. D.

Implementation Details of Proposed Methods:
The linear-in-input model fθ(x) = ✓>x was used for
the hypothesis set F. As the initializer of ✓, the ERM
minimizer trained by SVM was used. For both NGA
and BFGS, gradient updates were iterated 300 times.
NGA and normalized BFGS are referred to as U-GD
and U-BFGS below, respectively. The surrogate loss
shown in Fig. 3 was used: �(m) = log2(1+e�m) when
m  0 and �(m) = log2(1+e�τm) when m > 0, where
⌧ was set to 0.33 in the F1-measure case and 0.75 in
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Table 3: Benchmark results: 50 trials are conducted for each pair of a method and dataset. Standard errors (multiplied by
104) are shown in parentheses. Bold-faces indicate outperforming methods, chosen by one-sided t-test with the significant
level 5%. We emphasize that the same number of gradient updates are executed for both U-GD and U-BFGS.

(F1-measure) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in
adult 0.617 (101) 0.660 (11) 0.639 (51) 0.676 (18) 0.681 (9)

breast-cancer 0.963 (31) 0.960 (32) 0.950 (37) 0.948 (44) 0.953 (40)
diabetes 0.834 (32) 0.828 (31) 0.817 (50) 0.821 (40) 0.820 (42)
sonar 0.735 (95) 0.740 (91) 0.706 (121) 0.655 (189) 0.721 (113)

(Jaccard index) Proposed Baselines

Dataset U-GD U-BFGS ERM W-ERM Plug-in
adult 0.499 (44) 0.498 (11) 0.471 (51) 0.510 (20) 0.516 (10)

breast-cancer 0.921 (54) 0.918 (55) 0.905 (66) 0.903 (78) 0.913 (69)
diabetes 0.714 (44) 0.702 (50) 0.692 (70) 0.698 (56) 0.695 (60)
sonar 0.600 (125) 0.600 (111) 0.552 (147) 0.495 (202) 0.572 (134)
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Figure 4: Convergence comparison of the F1-measure
(left two figures) and Jaccard index (right two figures).
Standard errors of 50 trials are shown as shaded areas.

80 160 240 320 400
n: sample size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

F
1
-m

ea
su
re

diabetes

ERM

W-ERM

Plug-in

U-GD

U-BFGS

80 160 240 320 400
n: sample size

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

F
1
-m

ea
su
re

phishing

ERM

W-ERM

Plug-in

U-GD

U-BFGS

Figure 5: The relationship of the test F1-measure (left
two figures) / Jaccard index (right two figures) and sam-
ple size (horizontal axes). Standard errors of 50 trials are
shown as shaded areas.

the Jaccard index case.4 The training set was divided
into 4 to 1 and the latter set was used for validation.
We used a common learning rate in Algorithm 1, which
was chosen from {101, 10�1, 10�3, 10�5} by cross vali-
dation.

Convergence Comparison: We compare conver-
gence behaviors of U-GD and U-BFGS. In this exper-
iment, we ran them 300 iterations from randomly ini-

4The discrepancy parameter τ should be chosen within
(0, 1

3
) and (0, 1) for the F1-measure and Jaccard index,

respectively. Here, we fix them to the slightly small values
than the upper limits of their ranges. In App. D.6, we
study the relationship between performance sensitivity on
τ .

tialized parameters drawn from N(0d, Id). The results
are summarized in Fig. 4. As we expected, U-BFGS
converges much faster than U-GD in most of the cases,
up to 30 iterations. Note that U-BFGS and U-GD are
in the trade-off relationship in that the former con-
verges within fewer steps while the latter can update
the solution faster in each step.

Performance Comparison in Benchmark: We
compared the proposed methods with baselines. The
results of the F1-measure and Jaccard index are sum-
marized in Tab. 3, respectively, from which we can see
the better or at least comparable performances of the
proposed methods.

Sample Complexity: We empirically study the re-
lationship between the performance and the sample
size. We randomly subsample each original dataset to
reduce the sample sizes to {20, 40, . . . , 400}, and train
all methods on the reduced samples. The experimen-
tal results are shown in Fig. 5. Overall, U-GD and U-
BFGS outperform, which is especially significant when
the sample sizes are quite small. It is worth noting that
U-GD works even better than U-BFGS in some cases,
though U-GD does not behave significantly better in
Tab. 3. This can happen because the Hessian approxi-
mation in BFGS might not work well when the sample
sizes are extremely small.

8 Conclusion

In this work, we gave a new insight into the calibrated
surrogate for the linear-fractional metrics. Sufficient
conditions for the surrogate calibration were stated,
which is the first calibration result for the linear-
fractional metrics to the best of our knowledge. The
surrogate maximization can be performed by the com-
bination of concave and quasi-concave programs, and
its performance is validated via simulations.
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