
University of Massachusetts Amherst

From the SelectedWorks of Patty S. Freedson

September, 2011

Calibrating a Novel Multi-Sensor Physical
Activity Measurement System
D. John
S. Liu
J. E. Saski
C. A. Howe
J. Staudenmayer, et al.

Available at: https://works.bepress.com/patty_freedson/10/

http://www.umass.edu
https://works.bepress.com/patty_freedson/
https://works.bepress.com/patty_freedson/10/


Calibrating a novel multi-sensor physical activity measurement

system

D John1, S Liu2, J E Sasaki1, C A Howe1,3, J Staudenmayer4, R X Gao2, and P S Freedson1

P S Freedson: psf@kin.umass.edu

1University of Massachusetts, Dept. of Kinesiology, 30 Eastman Lane, Amherst, MA-01003.

2University of Connecticut, Dept. of Mechanical Engineering, Storrs, CT-06269.

3Ohio University, School of Applied Health Sciences and Wellness, Athens, OH-45701.

4University of Massachusetts, Dept. of Mathematics and Statistics, Amherst, MA-01003.

Abstract

Advancing the field of physical activity (PA) monitoring requires the development of innovative

multi-sensor measurement systems that are feasible in the free-living environment. The use of

novel analytical techniques to combine and process these multiple sensor signals is equally

important. This paper, describes a novel multi-sensor ‘Integrated PA Measurement System’

(IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple

variables from the sensor signals, and proposes design changes to improve the feasibility of

deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration

sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to

obtain contextual information (indoors vs. outdoors) of PA. During lab-based calibration of the

IMS, data were collected on participants performing a PA routine consisting of seven different

ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure)

and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were

used to determine if the IMS can be used to predict the variables of interest. Finally, physical

modifications for the IMS that could enhance feasibility of free-living use are proposed and

refinement of the prediction techniques is discussed.
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1. Introduction

Obtaining a complete picture of free-living physical activity (PA) requires information on

activity intensity, duration, type, and the context of PA (e.g., indoors vs. outdoors, PA

domain). Commonly used PA criterion measures are doubly labeled water and indirect

calorimetry. However, the doubly labeled water technique does not provide comprehensive

information about free-living PA and it is not practical to use portable indirect calorimeters

for long durations. The advent of small sensor-based (e.g., acceleration, respiration, and

heart rate sensors) monitors with large storage capacity has advanced the field of PA

measurement. Sensor-based activity monitors are both feasible and provide reasonably

accurate estimates of PA (Troiano et al., 2008, Staudenmayer et al., 2009). It has been

suggested that integrating physiological variables with measures of dynamic motion may

improve the prediction of PA (Haskell et al., 1993). Comprehensive and accurate

information about PA may be obtained if signals from sensors detecting physiological
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variables and motion are combined with signals from sensors that provide information on

the environmental context of PA.

The ‘Physical Activity Guidelines Advisory Committee Report’ (2008) emphasized the need

to develop and evaluate new motion sensor and physiological monitoring technologies to

measure PA. The report suggested that such technologies may improve the accuracy and

reliability of free-living PA assessment and could lead to a better understanding of the dose-

response between PA and health among different populations. In an effort to improve

sensor-based objective measures of PA, the National Institutes of Health supported the

development of new sensor-based objective monitors that are valid and reliable and can be

deployed in the free-living environment. This support came through the Exposure Biology

Program of the Genes and Environment Initiative (GEI).The program funded the

development of the multi-sensor ‘Integrated Measurement System’ (IMS) (Figure 1) at the

University of Massachusetts, Amherst (Kinesiology Dept.). The IMS simultaneously

measures body movement (acceleration) at two locations, respiration (breathing frequency

and volume), and the environmental context of an activity (indoors vs. outdoors). Measuring

body motion provides quantitative knowledge of the force acting on the human body during

dynamic movement (Cavagna et al., 1961). This knowledge is indicative of the

physiological responses during whole body movement (Cavagna et al., 1961). Accurate

measures of respiration variables can be used to refine PA predictions and quantify the

user’s internal exposure to environmental pollutants and particles. Internal exposure to

pollutants was an area of particular interest to the Exposure Biology Program.

Free-living PA is variable at both an inter- and intra-individual level. PA researchers are

now interested in information on both activity type and intensity. Information on these

variables could be gleaned through combined analysis of features contained in the ‘raw’

signals from the IMS sensors. Complex modeling methods like ‘machine learning’

techniques may be required to completely describe the information contained within the

various signals. Prediction performance of such techniques mainly depends on the

identification of optimal features or predictor variables that are input into the prediction

model and the number of activities on which the model is trained. Input features are

typically a combination of time- (e.g., mean and median) and frequency-domain (e.g.,

spectral energy) attributes of the sensor signals, and characteristics that are fundamentally

representative of a specific movement or posture (e.g., static vs. dynamic acceleration)

(Preece et al., 2009). Machine learning techniques are rapidly gaining prominence in the

field of PA monitoring (Lau et al., 2008, Staudenmayer et al., 2009, Rothney et al., 2007).

These techniques employ a ‘learning-augmented’ approach and have immense potential to

improve PA measurement. Researchers can improve prediction performance of these models

by manipulating the number and type of features input into the model and training the model

against newer examples of PA.

This paper describes (a) the IMS and its various sensors (section 2), (b) the methodology

used to calibrate the IMS (section 3), (c) preliminary calibration analyses of the IMS using

machine learning techniques that employ few simple signal characteristics as input features

(sections 4 and 5), d) proposed physical modifications for the IMS device (section 6) and,

(e) the refinement process of machine learning prediction models by increasing the

complexity and number of input features (section 6).

2. IMS description

The IMS (See Figure 1) consists of: a) two tri-axial accelerometers that detect motion of the

hip and arm, b) two piezoelectric sensors that measure chest and abdominal expansion to

estimate breathing volume and frequency, and c) an ultraviolet selective thin film sensor
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providing information about environmental context (indoors vs. outdoors). The hip

accelerometer is housed within an 8.5 × 5 × 1.5 cm plastic case (hip unit) that also contains

an 8-bit microcontroller and a 3.7 V Lithium-Polymer rechargeable battery. Power supply

from the battery is controlled by a small on/off switch. The wrist accelerometer and the

ultraviolet sensor are contained within a 7 × 4.5 × 1.5 cm plastic case (wrist unit). Data from

the wrist unit is transmitted to the hip unit using a 5-ft long ethernet cable. The piezoelectric

respiration sensor is encased within a molded box (3.5 × 2.5 × .5 cm) with black plastic

Velcro bands attached to either side of the sensor. The black Velcro bands are secured to

reusable elastic Velcro belts worn around the chest and abdomen. The respiration sensors

are connected to the waist unit using two conductor wires. The microcontroller in the hip

unit receives and processes information from all the sensors and stores data on a 2 GB non-

volatile, flash memory Secure Digital (SD) card that is inserted into a spring-loaded slot in

the waist unit. Additional information about the IMS design can be found elsewhere (Liu S,

2010). Raw output from the IMS is processed and viewed using a software application code

written in Matlab (MathWorks, Natick, MA).

2.1. IMS Sensors

2.1.1 Motion sensing accelerometers—The two accelerometers (hip and wrist) in the

IMS are MMA7260QT (6 × 6 × 1.45 mm) (Freescale Semiconductor, Austin, TX)

capacitive acceleration sensors. This low current consumption accelerometer can detect

accelerations between ± 6 g. Accelerations are sampled at a frequency of 30 Hz using a 12

bit analog-to-digital converter. Acceleration output is displayed in units of milli-Gs. Signals

from all three axes of both the hip and wrist accelerometers are shown in Figure 2, panels A

and B.

2.1.2. Piezoelectric respiratory sensors—The two respiratory sensors (Sleepmate

Respiratory Effort Monitoring System, Sleepmate Technologies, Glen Burnie, MD) contain

a piezoelectric sensor that produces a voltage signal in response to shear stress from chest

and abdominal expansion. This system does not require any external interface or power

source. The analog signals from the respiratory sensors are digitized using a 12-bit analog-

to-digital convertor at a sampling rate of 30 Hz. The digitized signal is then filtered using a

15 Hz high pass filter. Output from the ventilation sensor is displayed as volts. Individual

signals from both respiratory sensors can be seen in Figure 2 C.

2.1.3. Ultraviolet selective thin film sensor—The ultraviolet sensor in the wrist unit is

the TW30SX (sglux SolGel Technologies GmbH, Berlin, Germany). This sensor is a

titanium dioxide photodiode that captures UVA, UVB, and UVC rays. This sensor has a

large active sensing area of 4.18 mm2, which makes it highly sensitive even when the

radiation is low. The high sensitivity of the sensor improves the ability of the IMS to

distinguish between indoor and outdoor light. The radiation detected by the photodiode is

converted to an electrical signal and output is displayed in volts. The sensor response to

varying levels of light exposure can be seen in Figure 2 D.

3. IMS calibration methodology

Since their inception, sensor-based PA monitors have been successfully calibrated in

laboratory settings (Arvidsson et al., 2007, Freedson et al., 1998). We used a similar

approach in calibrating the IMS. Laboratory-based calibration techniques involve subjects

performing a variety of activities (ambulatory and free-living) while simultaneously

recording responses from a sensor-based monitor and a criterion measure (usually oxygen

consumption) for comparison. The criterion measure is then estimated from monitor output

using prediction techniques.
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3.1. Visit 1

Data collection for IMS calibration was conducted in the Physical Activity and Health Lab

at the University of Massachusetts, Amherst. During the first visit, volunteers were provided

information about the study, completed a health history questionnaire, and their seated blood

pressure was measured. Participants were considered to be ineligible if the health history

questionnaire determined the prevalence or symptoms of any cardiovascular, pulmonary,

metabolic, and joint or musculoskeletal disorders, or if they were taking any medications

known to affect metabolism or heart-rate. Additionally, adult volunteers were deemed

ineligible if their resting systolic or diastolic blood pressure measures were above 140 and

90 mm Hg, respectively. All eligible volunteers signed a written informed consent form

approved by the institutional human subjects review committee and were scheduled for a

second visit. Volunteers were instructed to fast for at least four hours prior to coming into

the lab for visit two.

3.2. Visit 2

3.2.1. Pre-testing protocol—Participants rested for 15 min by lying still on a bed in a

climate controlled area of the laboratory. Researchers then measured each participant’s

resting metabolic rate using a validated (Nieman et al., 2005, Stewart et al., 2005) hand held

portable metabolic measurement unit (MedGem, MicroLife, Golden, CO).

3.2.2. Testing protocol—Male participants wore the reusable chest respiration sensor

attached to a Velcro belt secured above the line of the nipple. Female participants wore this

belt at the level of the bra strap line. The abdominal respiration sensor belt was worn above

the line of the iliac crest for all subjects. The hip unit was clipped to the abdominal

respiration sensor belt in line with the anterior axillary line of the dominant hip. The

dominant hip was defined as the one that was ipsilateral to the hand used for writing

(dominant hand). The wrist unit was secured at the most distal part of the dominant wrist

using a Velcro strap. The wrist unit and respiration sensors were connected to the hip unit

using conductor wires. After being instrumented with the IMS, participants wore a face

mask and a calibrated portable metabolic unit (Oxycon Mobile, Cardinal Health, Yorba

Linda, CA) that was secured to the upper back in a harness unit. This metabolic unit is an

open circuit indirect calorimeter that collects breath-by-breath metabolic and respiratory

data.

A researcher monitored metabolic data collection and recorded all start-stop times to ensure

synchronization of the metabolic data with the IMS sensor signals. Commencement of data

collection was marked when the IMS power button was switched to the ‘on’ position.

The PA routine was randomly selected from one of two different routines:

Routine 1- a) computer work, b) level treadmill walking at 3 mph, c) stationary cycling

at 300 kilopond-meters/min (kpm/min), d) moving a box with a 10 lb weight, e)

inclined treadmill walking at 3 mph and a 5% grade, f) inclined treadmill walking at 4

mph and a 5% grade, and g) playing tennis against a practice wall.

During ‘moving the box with a 10 lb weight,’ the participant carried the box and walked

a distance of 8 m between point ‘A’ and point ‘B. At each point, the participant placed

the box down and paused for a few seconds before bending down to pick the box again.

This activity was repeated for 7 min.

Routine 2- a) filing journal articles alphabetically in a cabinet, b) carpet vacuuming, c)

self-paced walking, d) level treadmill walking at 4 mph, e) stationary cycling at 600

kpm/min, f) solo basketball, and g) level treadmill running at 6mph.
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After completing the PA routine, participants were taken outdoors to test the wrist unit light

sensor. Researchers recorded current weather conditions (sunny vs. cloudy) at this point.

Participants stood for 30 s in an open area devoid of any obstruction to sunlight exposure

(light condition). This was followed by standing under a tree (shade condition).

Additionally, to determine the sensitivity of the light sensor when exposed to diffused light,

participants stood indoors next to a large glass window (window condition) with the wrist

unit facing the window. Clear plain glass partially filters out (approximately 30%) ultra

violet radiation (Tuchinda et al., 2006). It was important to determine the response of the

wrist unit light sensor to diffused light because most people spend their time indoors or in an

environment not exposed to direct sunlight (e.g., travelling in an automobile) (McCurdy and

Graham, 2003). Participants then completed a wearability questionnaire, which was used to

determine the comfort level while wearing the IMS during the testing session.

4. Data analyses

Preliminary analyses were conducted to determine if the IMS could be used to predict the

variables of interest, i.e., ventilatory and PA variables. Data from 50 adult participants

(Mean ± SD: age= 32.6 ± 9.0 yrs; body mass index= 24.7 ± 4.9 kg˙m−2) were used in the

following preliminary analyses

4.1. Ventilation Analyses

Minute ventilation volume and breathing rate (breaths/min) were estimated using the

techniques developed by Liu et al. (Liu et al., 2009, Liu et al., 2008). All ventilation

estimations were made after tissue artifact was minimized from the two respiration sensor

signals using the Empirical Mode Decomposition technique (EMD) (Liu et al., 2008).

Briefly, EMD eliminates spurious harmonic frequencies, identifies true instantaneous

frequencies within a given signal, and displays data in the form of a full energy-frequency-

time spectrum. In this technique, signals from the respiratory sensors were decomposed into

numerous Intrinsic Mode Functions (IMF). Each IMF corresponds to a specific frequency

range within the sensor signal. Typically, higher frequency IMFs consist of tissue artifact

and the lower frequency IMFs result from respiration. Breathing frequencies from both belts

were calculated after spectral analyses were used to reconstruct the respiratory signal from

the appropriate IMF. Liu et al. (2008) reported that the EMD technique performs better than

two commonly used tissue artifact removal techniques (low-pass filtering and Independent

Component Analysis). The average value of the breathing frequencies from the chest and

abdominal sensors was used as the estimated breathing frequency for an activity (Liu et al.,

2008). Minute ventilation was predicted using a previously validated multiple regression

technique (Liu et al., 2009). The prediction variables included the 10th and the 90th

percentiles of the abdominal and chest sensor signal distributions and the estimated

breathing frequency (Liu et al., 2009).

The predicted ventilation volumes and breathing frequencies were compared to the criterion

measures obtained from the ventilation sensor in the portable metabolic unit. Bland Altman

analyses were used to examine agreement between the criterion and predicted ventilation

variables for individual subjects.

4.2. PA Intensity and Type

We assessed the accuracy of four different pattern recognition or ‘machine learning’

techniques in identifying the activity type and intensity classification. Metabolic equivalents

(METs) were used to define intensity classifications (light intensity= METs <3 METs,

moderate intensity= METs ≥ 3 and <6 METs, and vigorous= ≥ 6 METs). Activity intensity

was computed using the individual’s measured resting metabolic rate as the denominator for
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MET calculations. The pattern recognition techniques used were Support Vector Machine

(SVM) with a Gaussian and a Linear kernel, k-Nearest Neighbor (kNN), and Linear

Discriminant Analysis (LDA). Previous reports have shown that these types of pattern

recognition techniques are useful in measuring PA (Brezmes et al., 2009, Lau et al., 2008).

For example, Lau et al., (2008) demonstrated that an SVM technique using acceleration and

gyroscope signals as input features correctly identified walking up and down stairs and

walking up and downhill with approximately 80% accuracy. Another study by Brezmes et

al., (2009) demonstrated that the kNN technique using cell phone-based triaxial acceleration

signals correctly recognized ambulatory (90% accuracy) and postural changes (sitting vs.

standing) (70% accuracy).

We also examined the performance of 4 different models per technique for predicting PA

type and intensity. The models used were 1) triaxial hip acceleration signals only (M1), 2)

triaxial hip acceleration and respiratory signals from the chest and abdomen sensors (M2), 3)

triaxial acceleration from the hip and wrist accelerometers (M3), and 4) triaxial acceleration

from the hip and wrist accelerometers and respiratory signals from the chest and abdomen

sensors (M4). Since these were preliminary analyses, we used only two simple signal

features to perform predictions; i.e., the mean and standard deviations of the output signals.

The performance of these pattern recognition techniques was examined by computing the

percent of activities correctly classified (intensity) or recognized (type) for each model as

compared to the criterion measure obtained from the ventilation sensor in the portable

metabolic unit or observed activity, respectively.

4.3. Light Sensor Response

Light sensor testing was performed on 10 of the 50 adult participants. This testing was

conducted with no obstructions (e.g., clothing) to the sensor. The sensor responses for the

three testing conditions were compared to previously established voltage response ranges

derived from ‘in-house’ testing of the sensor by the researchers. These were as follows: (a)

exposure to sunlight (under sunny, cloudy, or shady conditions) = 2.5 to 4 volts, (b)

exposure to diffused sunlight through a glass window = 0.8 to 1.2 volts, and (c) no exposure

to sunlight (indoors) = 0 to 0.2 volts. Testing of the sensor’s response to diffused light was

conducted with the participant standing at a fixed distance of 2 ft away from the window.

The performance of the light sensor was determined by computing the percent correct

classification for the three testing condition. The light sensor response was 100% accurate

for all 10 participants during all three testing conditions.

We also conducted testing in the above described conditions when the sensor was obstructed

with clothing of different thickness and color. We found that the accurate differentiation

between indoor and outdoor conditions requires the light sensor to be free from obstructions

like clothing. Thick fabrics completely block any diffusion of UV light and the light sensor

response is similar to the indoor condition. The sensor also has a higher signal response

when covered by thin fabrics of lighter colors as compared to similar fabric of darker colors.

There is a greater diffusion of UV light through light colored fabrics than dark colored

fabrics (e.g., white vs. grey). Thus, it is advisable that researchers interested in determining

the environmental context of free-living PA must ensure that the wrist unit is unobstructed

by clothing and is exposed to the environment.

5. Results

5.1. Ventilation Prediction

Table 1 displays a comparison between the mean predicted ventilation volume obtained

from the chest and abdomen sensors and the mean criterion measures obtained from the
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ventilation sensor in the portable metabolic unit for each activity. Overall, the average

absolute percent difference between the estimated and the criterion was approximately 9%

with a predicted root mean square error of 7.24 L˙min−1. This technique performed

reasonably well during moderate intensity activities. However, predicted ventilation

volumes during light and vigorous activities were overestimated and underestimated,

respectively. Additionally, although Bland Altman analyses revealed a low overall

prediction bias of 0.36 L˙min−1, the 95% limits of agreement were wide and ranged between

−18.23 and 17.52 L˙min−1.

Table 1 also shows a comparison between average predicted breathing frequency and the

average criterion measures obtained from the ventilation sensor in the portable metabolic

unit for each activity. Overall, this technique underestimated breathing frequency (root mean

square error= 7.7 breaths˙min−1). Bland Altman analyses revealed an overall bias of −4.46

breaths˙min−1 and wide limits of agreement ranging between −15.03 and 6.10

breaths˙min−1.

5.2. PA Type and Intensity Classification

Among the four prediction models, M4, which uses signals from the two accelerometers and

two ventilation sensors, provided the best estimates of activity type and intensity

classification. Among the four pattern recognition techniques examined, the SVM with a

Gaussian kernel performed the best. This technique using M4 resulted in accuracy rates up

to 73.7% ± 13.5% and 71.4% ± 14.7% for activity type and intensity classification,

respectively. The performance the four prediction models and four pattern recognition

techniques are shown in Table 2.

Since SVM with the Gaussian kernel provided the best estimates of PA, we further

examined the performance of this technique in predicting the 14 individual activities.

Among the 14 activities, computer work, filing papers, moving a box, stationary cycling at

300 kpm˙min−1, singles tennis against a practice wall, and treadmill running at 6 mph were

correctly recognized at least 80% of the time. In contrast, the technique performed poorly

(less than 60% accuracy) in predicting self-paced walking, and treadmill walking at 3 mph at

0 and 5% grade. Among these three poorly predicted ambulatory activities, the prediction

technique incorrectly classified level treadmill walking at 3 mph as walking at 3 mph at a

5% grade (37% of the time) and vice versa (44% of the time). Similarly, self-paced walking

was confused with level treadmill walking at 4 mph (27% of the time).

6. Discussion

6.1. Prediction Performance of Preliminary Analyses

6.1.1. Breathing Frequency and Ventilation Volume—In general, the ventilation

volume prediction model performed reasonably well for moderate intensity activities, but

overestimated and underestimated volumes for light and high intensity activities,

respectively. Although there was a low overall bias of 0.36 L˙min−1, the prediction model

lacked precision (95% limits of agreement= −18.23 to 17.52 L˙min−1). The bias in

ventilation volume estimates using the IMS respiratory sensors are lower than that from a

study (−0.71 L˙min−1) by Witt et al. where ventilation volumes were estimated by

measuring abdomen and chest wall expansion (Witt et al., 2006). Similar to our study, the

estimation technique used by Witt et al. was low on precision (Witt et al., 2006). In

comparison, Gastinger et al. reported similar bias (−1.03 L˙min−1) but better precision (95%

limits of agreement= −8.23 to 6.17 L˙min−1) in predicting ventilation volume (Gastinger et

al., 2010). The activities performed in the studies by Witt et al. and Gastinger et al. were

limited to rhythmic ambulatory activities and did not induce a lot of variability in
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respiration. In comparison, our exercise protocol consisted of several simulated free-living

activities, which cause a higher variability in respiration than ambulatory activities.

Additionally, a closer inspection of the respiratory signals suggests increased tissue artifact

and background noise during light and vigorous activities, respectively. This may have

caused the overestimation of ventilation volumes during light activity and underestimation

during vigorous activity. Thus, introducing more independent variables into the prediction

model and improving the EMD algorithm (enhanced artifact reduction from respiratory

signals) may result in a better prediction of ventilation volume.

Unlike ventilation volume, breathing frequency estimates in the current study were more

inaccurate than those from the study by Witt et al (2006). The breathing frequency

estimation technique in our study consistently underestimated breathing frequency for all 14

activities. Similar to ventilation volume, the predictions were reasonably good for moderate

intensity activities while estimates for light and vigorous activities revealed large

underestimations. The breathing frequency estimation model solely relies on the ability of

the EMD algorithm to eliminate tissue artifact and background noise from the respiratory

sensor signals. Thus it is necessary to improve the EMD algorithm to obtain improved

measures of breathing frequency.

6.1.2. PA Type and Intensity—Among the four PA (type and intensity classification)

prediction techniques examined in this study, the SVM with a Gaussian kernel produced the

most accurate results. Importantly, the M4 prediction model (acceleration from the two

accelerometers and the two respiration sensors) performed the best in predicting both

activity type and classifying activity intensity. This finding reinforces the advantages of

using multi-sensor monitoring systems like the IMS over commonly available single-sensor

activity monitors. Currently, most acceleration-based activity monitors are worn at the hip

and predict PA using a single acceleration signal (vertical axis) (Staudenmayer et al., 2009).

The added advantage of using a multi-sensor system like the IMS over uniaxial acceleration

motion sensors is apparent when comparing the PA prediction performance between models

M1 and M4. Since M1 uses only the hip accelerometer signals to predict PA, it is

representative of commonly used accelerometer-based activity monitors. Using multiple

sensors (hip plus wrist acceleration sensors and respiratory sensors) in M4 improves

prediction performance by approximately 23% over M1 when using the SVM with a

Gaussian kernel technique. In addition, including the signal from the wrist acceleration

sensor in M4 may have improved the prediction of those activities involving increased hand

and upper-body movement but minimal movement of the feet (e.g., filing papers, doing

dishes, etc.). During such activities there is minimal generation of a signal from the hip

acceleration sensor.

6.1.3. Light Sensor Response—The light sensor of the IMS may be able to provide

valuable information about the context (indoors vs. outdoors) in which an activity was

performed. Outdoor light conditions during the 10 sessions varied depending upon the time

of testing and weather conditions (sunny vs. cloudy). It was interesting to note that

irrespective of these varying conditions, the voltage response of the sensor fell within the

range of 2.5 to 4 volts that is required for the response to be correctly classified as ‘exposure

to sunlight.’ Thus, varying outdoor conditions during the day will not affect the ability of the

IMS to distinguish whether an activity was performed outdoors or indoors.

6.1.4. Future Directions—The eventual goal of our project was to develop an activity

monitoring system that is valid and reliable and can be deployed in the free-living

environment. To achieve this, we are currently refining the IMS in two key areas. The first

area of improvement is to increase the feasibility of using of the IMS for prolonged periods

in the free-living environment. Although most participants reported that the IMS was
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comfortable to wear and did not hamper the performance of the activities, these opinions

were based on approximately 90 minutes of wear time in a laboratory setting and is not

representative of the free-living environment. In the free-living environment users will be

required to wear the IMS for long duration during waking hours. Currently, the IMS is a

prototype design that is a wired system and hampers wearability for extended periods of

time in the free-living environment. In comparison to the abdominal respiratory sensor belt,

the chest belt is cumbersome when wearing the IMS for a long time period (10 hrs) in the

free-living condition (unpublished observations). Thus, there is a need for select design

improvements that could increase the feasibility of using the IMS in the free-living

environment. To this effect, we have secured a supplemental grant that will be used to

convert the IMS into a wireless, one-belt (abdominal respiratory sensor) monitoring system.

The proposed wireless IMS will use a ‘ZigBee’-based standardized wireless protocol.

‘ZigBee’ is a low power consumption, low data rate, and low cost data wireless transmission

platform. These enhancements could greatly improve the feasibility of using the IMS in the

free-living environment.

Our preliminary analyses with simple input features suggest that the IMS has the potential to

provide reasonable estimates of ventilation and PA. The second area of improvement for the

IMS is the refinement of the preliminary prediction models. Converting the IMS to a

wireless system will not affect the PA and ventilation prediction models described earlier.

However, eliminating the chest respiratory belt/sensor warrants substantial modifications to

the prediction models to improve their accuracy. Herein lies the advantage of machine

learning techniques. Decreased prediction performance due to complete elimination of a

physiological signal (chest respiratory sensor) can be accounted for or even reversed by

identifying additional optimal features and inputting those into the prediction model. The

potential of improving performance of the machine learning techniques used in this study is

demonstrated below.

6.1.5. Prediction Performance of the One-Belt Respiratory Sensor IMS—The

first step adopted towards improving ventilation estimates was to obtain a more accurate

prediction of breathing frequency. Breathing frequency estimates were improved by

introducing an Intrinsic Mode Function (IMF) selection criterion called the ‘correlation

criterion.’ As a reminder, IMFs are groups of respiratory signals that correspond to a

specific frequency range obtained from the EMD technique. In this selection criterion the

IMF with the highest correlation to the original respiration sensor signal was determined and

used to compute breathing frequency. Figure 3 (A) displays the breathing frequency

estimates obtained from the one-belt abdominal respiratory sensor system. Breathing

frequency estimates improved by approximately 41% (root mean square error of 4.1

breaths˙min−1) over that obtained when using the previously described two-belt respiratory

sensor IMS.

Minute ventilation volumes using the one belt respiratory system was predicted using

multiple regression analyses. The independent variables in this analysis were the 10th, 25th,

50th, 75th, and 90th percentiles of the signal distribution from the abdomen respiratory sensor

and the estimated breathing frequency from this signal. Estimated volumes using the one

belt IMS system is shown in Figure 3 (B). This prediction model had a root mean square

error of 8.59 L˙min−1 and a mean absolute percent error of 26.6% in predicting ventilation

volume. Although the errors were higher than the two-belt respiratory sensor system, the

regression equation for the mean predicted values returns a high R2 value (0.96). This

suggests that the source of the error is systematic in nature and can potentially be reduced

further by exploring other prediction models.
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We also examined the effect of adding more predictor variables when estimating PA activity

type and ventilation variables using the one-belt IMS. A different technique was used to

estimate PA intensity in METs. PA intensity was predicted using the Support Vector

Regression (SVR) technique. SVR is the regression version of the SVM and is a common

application form of the latter.

A different approach was used to estimate PA intensity. Four activity type groups were first

determined based on the standard deviations (SD) of the composite vector magnitude of the

acceleration signals from the three axes of the hip accelerometer. The 14 activities were

clustered into one of the following four groups: 1) sedentary activities (SD: 0 to 25 milli G),

2) household activities/other (SD: greater than 25 but < 250 milli G), 3) moderate

locomotion (SD: greater than 250 but <475 milli G), 4) vigorous activity (SD: >475). Based

on these criteria, computer work and filing papers were classified as sedentary activity.

Vacuuming, moving the box, self-paced walking, and cycling at 300 and 600 kpm˙min−1

were classified as household activity/other. Level treadmill walking at 3 and 4 mph and

treadmill walking at 3 mph and 5% grade were classified as moderate locomotion. Level

treadmill running at 6 mph, treadmill walking at 4 mph and 5% grade, singles tennis against

a practice wall, and basketball were classified as vigorous activity. PA intensity in METs

was then predicted using the SVR pattern recognition technique. The features used were the

10th, 25th, 50th, 75th, and the 90th percentiles of the distribution of the two accelerometer

signals, the estimated breathing frequency obtained from the abdomen respiration sensor,

and the correlation between the vector magnitudes of the hip and wrist accelerometer

signals. Breathing frequency was a feature that was used in predicting all PA and ventilation

variables. Table 3A displays the confusion matrix for recognition accuracy among the four

activity type groups. For comparison purposes, we have included the confusion matrix for

recognition accuracy among the four activity type groups when using the-two belt IMS. The

features used in the two-belt IMS prediction model were the mean and standard deviations

of the two acceleration and estimated breathing frequency (Table 3B). The largest error

observed using the SVM prediction technique for the one-belt IMS was in identifying

moderate locomotor activities where 12.1% and 4.4% of the activities were incorrectly

classified as household-activity/other and vigorous activity, respectively. The SVM

technique had high correct classification rates for the different activity groups ranging

between 84 and 94%. Figure 4 shows the comparison between mean predicted METs from

the one-belt IMS system and actual METs obtained from the portable metabolic unit. The

RMSE was 0.67 METs and the mean absolute percent error was very small at around 11%.

Similar to the preliminary analyses described earlier, activity type recognition was

performed using the SVM with Gaussian kernel technique. However, in addition to the mean

and SD of the sensor signals, we also included the correlation between the vector

magnitudes of the hip and wrist accelerometer signals, and the breathing frequency obtained

from the abdominal respiratory sensor into the prediction model. For comparison purposes,

we predicted activity type by inputting the same four features in the k-NN technique. Once

again, we compared the prediction performance of three models (1) M1 (features from the

hip accelerometer signals), (2) M2 (features from the hip accelerometer and the abdominal

respiratory sensor), (3) M3 (features from the hip and wrist acceleration sensors), and (4)

M4 (features from the hip and wrist acceleration sensors and the abdominal respiratory

sensor). The correlation between the vector magnitudes of the hip and wrist acceleration

sensors was used as a prediction variable only for M3 and M4. Figure 5 shows that the M4

model using the SVM with a Gaussian kernel technique was the best predictor of activity

type. In fact, the prediction accuracy increased from around 71% (two-belt respiratory

system and fewer features) to around 79%. Additionally, the prediction accuracies of

individual activities improved and are shown in Figure 6.
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7. Conclusions

Data analyses of the first 50 participants demonstrate that the IMS holds promise in

providing accurate estimates of respiratory and PA variables. Analyses of data from all

participants will establish the validity of the current prediction techniques. These analyses

may also help determine additional features for inputs into the existing prediction algorithms

to improve prediction performance.

The proposed changes to the IMS design will greatly enhance its feasibility in measuring

activity levels of free-living individuals over long periods of time. Increasing user comfort

by eliminating the chest respiratory sensor belt may enhance user compliance and thus

decrease instances of missing data during the measurement period. Similarly, converting the

IMS to a wireless measurement system will not only increase user compliance, but will also

minimize potential damage to the IMS arising from situations where wires could get tangled

and disconnect from the hip unit.

Following redesign, we will examine the validity and feasibility of use of the IMS in free

living conditions. For this purpose, we plan to conduct a free-living validation/feasibility

study where participants will wear the IMS for at least two to four days during waking

hours. During this period, the IMS will be validated against ‘direct observation’ as the

criterion measure for activity type and intensity. The free-living data will be used to refine

the existing prediction models to provide accurate estimates of sedentary and light intensity

activities. Participants wearing the IMS in the free-living environment will also complete a

wearability questionnaire. This information will help determine the participants’ comfort

level when wearing the IMS during waking hours. The data from the free-living study will

enable the refinement of both the accuracy and feasibility of the IMS and potentially enable

the implementation of the IMS in ongoing free-living cohort studies to obtain a clearer and

more accurate picture of PA at a population level. We also will explore other potential

applications of the IMS sensors. For example, the light sensor can be used to gain a better

understanding of the dose –response relationship between disease development and vitamin-

D production whereas the respiratory sensors can be used to assess sleep apnea and

determine the dose-response relationship between disease and internal exposure to

environmental toxins.
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Figure 1.

The IMS and its various components
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Figure 2.

John et al. Page 15

Physiol Meas. Author manuscript; available in PMC 2012 September 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Individual responses from the various sensors of the IMS and corresponding metabolic

equivalent (MET) values for 6 different activities. (A) Acceleration response from the hip

accelerometer. (B) Acceleration response from the wrist accelerometer. (C) Respiratory

sensor response. (D) Light sensor response to 5 different testing conditions.
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Figure 3.

Comparison between mean estimated and measured respiratory variables obtained using the

one-belt abdominal respiratory sensor IMS (A) Breathing frequency using the correlation

criteria and (B) ventilation volumes.
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Figure 4.

Comparison between mean predicted METS from the one-belt IMS system and actual METs

obtained from the portable metabolic unit.
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Figure 5.

Activity type recognition accuracy of two pattern recognition techniques and four prediction

models using the one-belt abdominal respiratory sensor IMS. Values are mean and SD.
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Figure 6.

Individual activity type prediction performance of the SVM with Gaussian kernel pattern

recognition technique using the one-belt abdominal respiratory sensor IMS.
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Table 1

Estimated ventilatory volume and breathing frequency using the two respiratory sensor IMS. Values are Mean

(SD).

Activity Type Ventilation (L˙min−1) Breathing Frequency (breaths˙min−1)

Measured Predicted Measured Predicted

Computer Work 10.5 (1.6) 17.7 (6.5) 19.2 (2.3) 15.9(6.1)

Filing Papers 12.6 (2.4) 22.8 (10.5) 20.6 (2.9) 13.0 (6.8)

Vacuuming 19.9 (4.4) 24.2 (12.8) 25.1 (3.3) 18.7 (8.4)

Moving the Box 27.5 (4.0) 28.6 (10.5) 25.4 (6.0) 11.0 (6.6)

Self-paced walk 22.4 (4.6) 27.7 (9.9) 23.1 (3.0) 19.6 (6.6)

Cycling 300 kpm 24.6 (3.0) 24.0 (7.0) 22.5 (4.0) 20.9(6.6)

Cycling 600 kpm 39.2 (5.2) 34.4 (7.6) 27.4 (5.3) 24.1 (8.6)

Level treadmill walking (3 mph) 21.5 (3.9) 26.4 (7.9) 22.0 (4.0) 19.6 (7.0)

Treadmill walking (3 mph and 5% grade) 30.7 (5.4) 29.4 (6.7) 25.7 (5.0) 23.3 (6.4)

Level treadmill waking (4 mph) 32.3 (5.6) 32.2 (9.3) 27.1 (3.6) 24.0 (6.5)

Treadmill walking (4 mph and 5% grade) 42.9 (7.1) 36.1 (8.2) 29.1 (5.0) 26.3 (7.2)

Level treadmill running (6 mph) 58.1 (10.1) 47.5 (13.6) 36.2 (5.9) 26.3 (9.7)

Singles tennis against a practice wall 47.3 (14.2) 38.8 (11.7) 38.7 (5.8) 17.6 (10.0)

Basketball 61.0 (8.6) 45.2 (11.0) 42.5 (4.9) 14.3 (9.4)
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Table 3

(A) Percent accuracy for activity type group recognition using the one-belt IMS and the SVM (Gaussian

kernel) prediction technique. (B) Percent accuracy for activity type group recognition using the two-belt IMS

and the SVM (Gaussian kernel) prediction technique.

(A) Truth (%)

Recognition
Sedentary

activity
Household

activity/other
Moderate

locomotion
Vigorous
activity

Sedentary activity 88.8 2.2 0.1 0.0

Household activity/other 11.2 93.9 12.1 7.3

Moderate locomotion 0.0 2.5 83.4 6.0

Vigorous activity 0.0 1.4 4.4 86.7

(B) Truth (%)

Recognition
Sedentary

activity
Household

activity/other
Moderate

locomotion
Vigorous
activity

Sedentary activity 86.1 4.3 0.3 0.7

Household activity/other 12.2 84.2 11.3 2.5

Moderate locomotion 1.4 7.8 83.0 9.2

Vigorous activity 0.2 3.7 5.5 87.5
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