

Calibrating a software cost estimation model : why and how

Citation for published version (APA):
Ceulenaere, A. M. E., Genuchten, van, M. J. I. M., & Heemstra, F. J. (1987). Calibrating a software cost
estimation model : why and how. Information and Software Technology, 29(10), 558-568.

Document status and date:
Published: 01/01/1987

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://research.tue.nl/en/publications/a7c9613f-df88-4134-82a5-27cb81c5f060

Calibrating a software cost
estimation model: why and how

by A M E CUELENAERE, M J I M van GENUCHTEN and F J HEEMSTRA

Abstract. Calibration, has been .found to be difficult in practice.
Wide experience in using the estimation model is necessary;
experience which the beginner naturally lacks. This paper
indicates why it is important to calibrate a model and how the
inexperienced user can be helped by an expert system. In addition,
the development of, and experience with, the prototype of an
expert system are described. The system dealt with here is
intended for the calibration o f the PRICE SP estimation.

Keywords: SoJtware estimation, prototyping, s~?ftware project
planning, calibration, estimation model

E
xperience has shown that planning and estimat-
ing software projects is a difficult task. Budgets
are constantly exceeded and agreements about

delivery times have to be repeatedly updated. The two
most important causes of this are as follows.

First, the large number of factors that influence the
costs and duration of a software project. An investigation
of these factors has shown 1 that there are no straightfor-
ward definitions of factors such as the volume, quality and
complexity of the software used. In addition, it has proved
difficult to quantify a number of factors and it is necessary
to resort to criteria such as many, normal and few.
Subjectivity plays a part in this; what one software
designer classifies as ' a great many ' may be regarded as
belonging to the category ' m a n y ' by another. In addition,
it has proved difficult to determine the effect of a
particular factor on software costs. Studies on this
occasionally contradict each other. A further difficulty is
that the various factors influence each other mutually.
Another problem is that when developing a new program,
the software designer has to make an estimate of the costs
and duration in advance. Among other things, this
involves estimating the values of the cost drivers. For

Nederlandse Philips Bedrijven, EDP-IndustriEle Toepassingen, Build-
ing HKB-4, PO Box 218, 5600 MD Eindhoven, The Netherlands

example, how many lines of code, or how many function
points will the program comprise and what will the
complexity be? In addition to the problems mentioned
above, the uncertainty about the values of the factors also
plays an important part now.

Second, the lack of data on completed projects. Know-
ledge of and experience with developing software, with
specific product and project characteristics and with the
influence of cost drivers only exists in the heads of a few
people. For others who are confronted with such pro-
blems it is difficult, if not impossible, to locate this
fragmentary and often unstructured knowledge and expe-
rience. In this way, mistakes are repeated. A databank
with old project data, in which the knowledge and
experience from the heads of the individuals are made
explicit, can support project management in estimating
the time, money and resources required by offering
relevant information on old and comparable projects z.

Under the increasing pressure to control the costs and
lead time involved in software development there is a
growing stream of publications on this subject and in the
past ten years various models have been designed for
estimating software costs. These are known as cost
estimation models. Examples are C O C O M O 3, SLIM 4
and Jensen's JS-2 and JS-3 5. In these a project to be
estimated is characterized in terms of the input variables
of a model and, among other things, the model calculates
the costs and the lead time of the project. Such models are
based on a large number of historical projects and
frequently projects from the USA. It is necessary to adapt
such models to the environment in which they are to be
used: in other words, the model must be calibrated. The
environments in which software is developed differ so
sharply that one environment cannot act as a model for
the other. In calibration, values are assigned to one or
more model variables. These values are derived from
projects which have been carried out in the environment
in which the model is to be used. An incorrect calibration
has a negative effect on the quality of the subsequent
estimates made with the model.

558 0950-5849/87/100558-10503.00 (~ 1987 Butterworth & Co (Publishers) L t d . information and software technology

software development

Calibrating a model is a problem. To be able to carry
out calibration, data on historical projects should be
available. As already mentioned, it is precisely this
information that is lacking. The above mentioned pro-
blems relating to the cost drivers are encountered when
assigning values to model variables. In addition, when
performing the calibration the user is often meeting the
model for the first time, whereas experience is needed in
using the model to be able to calibrate properly. A
possible solution to this problem is to make the experience
required for calibrating the model available to the
inexperienced user. One way to do this is to use an expert
system. This article describes the development of an
expert system such as this for the PRICE SP cost
estimation model used at Philips.

The next section deals in greater detail with the
importance of calibration. Next, the PRICE SP model is
described in broad outline and it is indicated why this
model is difficult to calibrate. The section entitled 'An
expert system as an aid' explains the part which an expert
system can play in solving these difficulties. In addition,
the development of the prototype of an expert system of
this kind is described and the initial experiences with the
prototype are discussed. The article ends with conclusions
and recommendations.

This article is based on a study carried out by Eind-
hoven University of Technology (department of industrial
engineering and management science, management in-
formation systems and automation group) and Philips
(EDP - Industri61e Toepassingen).

Need for cal ibrat ion

The literature on cost estimation models is unanimous in
its verdict that calibration is needed for every model,
regardless of its type. Models such as C O C O M O 3,
SLIM 4, JENSEN 5 and ESTIMACS 6 are based on project
data from a specific software development environment.
For example, the comparisons in Boehm's C O C O M O
model are derived from a database of 63 projects carried
out between 1964 and 1979 by the US company TRW
Systems. It is doubtful whether such a collection of project
data is representative enough for a development environ-
ment in Europe in 1987. Can the same cost drivers be
distinguished in both situations and is their influence on
costs and lead time the same in both situations?

For example, in the C O C O M O database only seven of
the 63 projects were developed in a semidetached environ-
ment. Of these seven, only one relates to the category of
business applications. The program in question comprises
132000 lines of code, is programmed in PL/I and the
values for the cost drivers generally do not differ much
from the nominal values. Obviously, an organization
which mainly focuses on the development of administra-

tive software, uses R PG as a programming language, and
operates in a semidetached environment will find little or
nothing to go by in the C O C O M O database. The
situation is even worse if the relevant organization uses
methods and techniques which were not yet in existence at
the time of the CO CO MO projects. Examples which
come to mind are fourth and fifth generation equipment,
development environments, workbenches, prototyping
and enduser computing. For these reasons, before using a
model in a specific development environment for the first
time it must be tailored for that environment. In other
words: it is necessary to calibrate.

This need is underlined by a number of studies. For
example, Kemerer 7 investigates whether cost estimation
models can be generalized for environments other than
those in which they have been developed. To answer this
question he uses data from 15 completed projects. All
these projects relate to comprehensive business applic-
ations. With the aid of four uncalibrated models an
estimate is made of the number of man months required.
Kemerer does this by using COCOMO, SLIM,
ESTIMACS and Function Point Analysis (FPA). For
each model and each project he investigates the difference
between the estimated and the actual number of man
months. For both C O C O M O and SLIM it turns out that
the estimate given is too wide for all the projects. When
using SLIM the average overshoot is 772%, with
C O C O M O (regardless of whether basic, intermediate or
detailed C O C O M O is used) it is 600%. FPA and
ESTIMACS give distinctly better results with overshoots
of 100% and 85 %, respectively. The results after calibr-
ation of the models proved to be significantly better. The
figures show that cost estimation models cannot be
transplanted to a different environment without paying
the penalty. Accordingly, Kemerer advocates calibration.

A similar study was carried out by Rubin 6. He made a
comparison between the JENSEN, SLIM, G E C O M O (a
variant of COCOMO) and ESTIMACS models. Using
these models, an estimate was made of the number of man
months and the duration for the development of a specific
(administrative) program. From Table 1 it can be seen
that the estimates vary greatly. Rubin's explanation of this
is that the models are based on various databases of
historical projects and have not been calibrated for the
specific development environment.

In the study done by Kitchenham and Taylor 8, too, the
need for calibration is demonstrated by evaluating the
C O C O M O and SLIM models with reference to a large
number of projects. Like Kemerer, they show that for
both models the estimates of costs and duration work out
much higher than reality in almost every case.

A number of studies have concentrated on the
C O C O M O model with regard to the aspect of calibr-
ation. The choice of this model is obvious, because in his

vol 29 no 10 december 1987 559

Table I. Comparison of cost estimation models (M M = man months and m = months)

Models

JENSEN SLIM GECOMO ESTIMACS

Cost 940 MM 20 MM 363 MM 17100 hours Estimation Schedule 31 m 17 m 23 m 16 m

book Software Engineering Economics 3 Boehm gives a
very clear explanation of the model, the necessary input,
the output and the database of old project data which is
used.

Two studies must be mentioned in this context.
Miyazaki and Mori 9 made an extensive evaluation of
COCOMO, using the data from 33 old projects. These
differ from the C O C O M O projects in that they were
generally developed in a semidetached environment, were
frequently programmed in COBOL and, on average, were
considerably wider in scope. In this study, too, it is shown
that in the absence of calibration a marked overestim-
ation of costs and duration takes place, the average
deviation being 166% and less than 20% in only 6% of
cases. On the basis of these research results, Miyazaki and
Mori adapt the C O C O M O model by taking account of
the specific characteristics of the environment in which the
projects had originated. They do this by eliminating a
number of cost drivers which were not relevant (in their
situation) from the C O C O M O model. In addition, they
adjust the model by changing the influence values of the
various factors on the basis of their old project data. The
effect of this calibration speaks for itself. The average
deviation after calibration amounted to only about 17 %.
If one places the evaluation data of Kemerer and of
Miyazaki and Mori side by side, it is seen that in the first
case there is an average overestimate of 600 % and in the
second case of an average of 166%. These differences
show that development environments can vary greatly
and calibration is therefore essential.

A similar study was carried out by Saalfrank et al '°.
They describe a procedure called COKAL with which
models of the C O C O M O type can be calibrated. An
evaluation of C O C O M O employing COKAL produces
significantly better estimating results than when it is not
used.

The conclusion from the above is that calibration of a
cost estimation model with reference to a specific develop-
ment environment is essential. Finally, it must be pointed
out that calibration is not a one-off activity but must be
repeated periodically. The characteristics of a develop-
ment environment can change in the course of time as a
result of technological and methodological changes in
software development and because of changes in person-

nel and organization. Recalibration then becomes nece-
ssary, in which respect weighting factors can be intro-
duced to allow the influence of projects on the calibration
to increase in line with the recentness of the project.

Now that the need for calibration has been demon-
strated, the next section will discuss the calibration of a
cost estimation model, namely PRICE SP.

P R I C E S P

Background to the PRICE models

The PRICE models are used for estimating hardware and
software costs. PRICE stands for Programmed Review of
Information for Costing and Evaluation. The models
have been developed and are supported by RCA PRICE
Systems, part of General Electric. The number of man
months and the lead time required for software projects
are estimated by using the PRICE SP (Software Product-
ivity) model.

The content of the PRICE models is secret. A model
remains a black box, even for those who rent it. The
PRICE user sends his or her input data via a modem to a
time-sharing computer in the USA, UK or France and
receives the estimate almost directly by return. In spite of
this restriction and the high rental price the model is
widely used in the United States. Some users are:

• Boeing
• General Dynamics
• US Ministry of Defense
• IBM
• General Electric
• Texas Instruments.

PRICE is less widely used in Europe.

PRICE SP model

A diagram showing the input and output of the PRICE
SP model is presented in Figure 1.

The output of the model essentially consists of an
estimate of the number of man months and the lead time
required for the project. These are the dependent vari-
ables. As already mentioned, the model itself is and

560 information and software technology

software development

Input Model Output

t Instructions New code
New design
Application ~,
Utilization
Platform

E Product-
s dependent
t variables
i
m
a

t Process-
o dependent
r variables

Productivity index
Manload
Fractional time , I=,
Complexity

Figure 1. Diagram o] PRICE SP

Price SP
Cost

Schedule

remains a black box. The input for the model is a
characteristic of the project to be estimated. The charac-
teristic consists of ten variables, called the independent
variables. These variables and their definitions are shown
in Table 2. The definitions are taken over literally from the
P R I C E manual ~1. Since these are sometimes not very
enlightening, a brief explanation is given where necessary.

Input./or P R I C E S P

The ten input variables can be divided into two groups
(see Figure 1). The first g roup of six variables describes the
product to be developed. This g roup consists of the
variables ' instruct ions ' , ' new code' , ' new design', ' appli-

cation' , 'ut i l izat ion ' and 'p la t form' . The second group of
four variables describes the development process that
must result in the required product. This group consists of
the variables 'product ivi ty index', 'man ioad ' , ' fractional
t ime' and 'complexi ty ' .

The variable instructions is a measure for the size of the
program. The user can state the number of source lines or
the number of instructions.

The variables new code and new design indicate what
part of the product must be entirely redeveloped. It may
be possible for a part of the code and/or of the design to be
taken from the literature or from a previous project. In
such a case, the values of the variables new code and new
design will be smaller than one.

As the term implies, the variable application describes

Table 2. Input variables for PRICE SP

Variable Description PRICE manual11 Explanation

Instructions is the total number of deliverable, executable,
machine level instructions.

New code
New design
Application
Utilization

Platform

Productivity index

Manload

Fractional time

Complexity

is the amount of new code.
is the amount of new design.
summarizes the application mix of instructions.
is the fraction of available hardware cycle time or
total memory capacity used.
describes the planned operating environment for the
software.
is an empirically derived parameter that serves as a
productivity, skill level, experience and efficiency
index.
is the average number of software personnel involved
in the software project over the entire project.
is the average fractional time dedicated to the
software job.
describes the relative effect of complicating factors
such as product familiarity, personnel software skills,
hardware/software design interactions as they effect
manpower costs.

volume of the program, the manual talks about
machine level instructions, however, some
experienced users consistently use lines of source
code as input
value between 0 and I
value between 0 and 1
value between 0.8 and l I (see Table 2)
value between 0 and 1

value between 0.6 and 2.5 (see Table 3)

(see Table 4)

vol 29 no 10 december 1987 561

Table 3. Table for determining the value of the variable 'application'

Weight Identifying characteristics

Operating systems 10.95

Interactive operations 10.95

Real time command and control 8.46

Online communications 6.16

Data storage and retrieval 4.10

String manipulation 2.31

Mathematical operations 0.86

Task management. Memory management. Heavy hardware interface. Many
interactions. High reliability and strict timing requirements.
Real time man/machine interfaces. Human engineering considerations and
error protection very important.
Machine to machine communications under tight timing constraints. Queuing
not practicable. Heavy hardware interface. Strict protocol requirements.
Machine to machine communications with queuing allowed. Timing restrictions
not as restrictive as with real time command and control.
Operation of data storage devices. Database management. Secondary storage
handling. Data blocking and deblocking. Hashing techniques. Hardware oriented.
Routine applications with no overriding constraints. Not oriented toward
mathematics. Typified by language compilers, sorting, formatting, buffer
manipulation, etc.
Routine mathematical applications with no overriding constraints.

the kind of application. The user is expected to determine
the value of this variable by selecting the class which best
describes his project from Table 3. This is no easy task
because of the sometimes vague description of the classes.

Possible hardware restrictions are described in the
variable utilization. An example of this is the limited
memory space in the computer on which the software
product to be developed must operate.

The last variable which characterizes the project is
platform. Platform describes the environment in which the
software product to be developed will be used. The value
of this variable for a department will be the same for the
various projects. The user is expected to determine the
value of the variable platform by means of Table 4. It is
doubtful whether this table is suitable for general use as an
aid. Intuitively, however, it is clear that the various
platform make differing demands on the software to be
developed.

Productivity index is a variable that is determined by

Table 4. Table for determining the value of the variable 'platform'

Operating environment Platform

Production center internally developed S/W 0.64).8
Production center contracted S/W 1.0
MIL-spec ground 1.2
Military mobile (van or shipboard) 1.4
Commercial avionics 1.7
MIL-spec avionics 1.8
Unmanned space 2.0
Manned space 2.5

calibration on the basis of a number of completed
projects. Calibration of the model and the variable
'productivity index' are dealt with in the next section.

The variable manload is incorporated in the model
because people and time are not mutually interchange-
able. For example, in order to make the same product, five
people (manload = 5) need more man months than two
people (manload = 2). The difference is caused, among
other things, by the time-consuming mutual communic-
ation. This fact is described in The Mythical Man Month
by Brooks 12.

The variable fractional time describes the fact that
fragmentation of attention leads to lower productivity 13.
In the software world, it frequently happens that people
are partly engaged in developing a new product and
partly in maintaining previous products. For example, if
someone is engaged on a project for three of the five days
each week, the value of the variable fractional time for this
project is 0.6.

Finally, the variable complexity describes project char-
acteristics which mainly influence lead time. The standard
value of this variable is 1.0. Any deviations from this
standard value must be determined b3~he user on the
basis of Table 5.

Example: If a similar project has been carried out
previously, but the language is new to the people on the
project and the project organization is multinational, then
the value of the variable complexity is 1.3 (see Table 5).
For that matter, even in this simple example it is clear that
several interpretations of the table are possible. For
example, a 'multinational project' often means that the
project is carried out at more than one location. So should
the standard value of the variable complexity now be
adjusted by 0.4 or 0.6?

562 information and software technology

software development

Calibration of PRICE SP

The PRICE SP model is calibrated by describing a
number of completed projects with the model. The
dependent variables are now no longer the number of man

Table 5. Table for determining the value of the variable 'com-
plexity'

CPLX Adjustment Example

Personnel

Outstanding crew, among best
in industry -0.2
Extensive experience, some top
talent - 0.1
Normal crew, experienced 0
Mixed experience, some new
hires + O. 1
Relatively inexperienced many
new hires +0.2

Product familiarity

Old hat, redo of previous
work - 0.2
Familiar type of project - 0.1
Normal new project, normal
line of business 0
New line of business + 0.2

Complicating factors

First time with language +0.1
First time with processor +0.1
New language +0.2 to +0.3
New hardware +0.2 to +0.3
More than one location/
organization + 0.2
Multinational project +0.4
Hardware developed in
parallel or many changing
requirements +0.2 to +0.3
Assembly language +0.2 to +0.3

-0.2

+0.1

+0.4

+0.3

months and lead time required, but the variable productiv-
ity index. Since the model must, as it were, be used in
reverse, RCA has called the adapted calibration of the
model ECIRP. A diagram of the adapted calibration of
the model is shown in Figure 2 (for comparison, see Figure
1).

The value of the variable productivity index is deter-
mined for, say, between five and ten projects carried out
by the department concerned. Since the projects are
realized in the same environment, the values for the
variable productivity index determined with the model
must not differ too greatly from each other. Once this
condition is satisfied, then the value to be used in making
the estimate has been determined. If this condition is not
satisfied, then it is not yet possible to start estimating new
projects by means of the PRICE SP model. Obviously, if
there are great differences between the departments in an
organization the model must be calibrated separately for
these departments.

PRICE is based on the assumption that the model can
be calibrated by determining the value of the variable
productivity index on the basis of a number of old
projects. The differences between the organizations must
be reflected in the value of that single variable productiv-
ity index. Information is lost as a result of modelling. It is,
however, true to say that calibrating in only one variable
is better than not calibrating at all.

Problems with calibration

The model can only be successfully calibrated if the model
variables are interpreted and evaluated in a consistent
manner. If this requirement is not met, there is a danger of
calculating in the direction of an apparently accurate
productivity index. In other words, one keeps working on
the input variables until the model determines the same
value of the variable productivity index for various
completed projects. This index can, however, be com-
pletely wrong, with the result that there is a systematic
error in the estimates.

Input Model Output

Cost and schedule
completed

projects

Instructions
New code
New design
Application
Utilization
Platform

Manload
Fractional time
Complexity

Figure 2. Diagram showing the calibration mode of PRICE SP

D-

llL

ECIRP
Productivity
index

vol 29 no 10 december 1987 563

In practice it has proved that interpreting and evaluat-
ing the input variable consistently presents problems for
the beginner. Three causes are discussed here. As already
indicated, calibration often represents the first introduc-
tion to the model. The user is frequently not accustomed
to thinking in terms of the model. It is not easy to interpret
the various tables correctly (e.g. Tables 3, 4 and 5). The
authors believe that the variables and the tables constitute
a poor interface between the model and the beginner.

The second cause of the problem with calibration is the
fact that the content of the models is secret. As a result, it is
difficult to develop a feeling for the effect of the various
values of the variables on the results obtained with the
model. By way of example, a relationship between the
variable utilization and the number of man months
required is shown in Figure 3. The difference between the
values 0.8 and 0.9 has a much greater effect on the number
of man months than the difference between 0.6 and 0.7.

The third cause of the problems which occur during
calibration is that the registration of completed projects
sometimes contains insufficient information to enable the
ECIRP input variables to be determined. The importance
of having sufficient information about old projects has
already been discussed.

A possible solution

The output of ECIRP is a value for the variable
'productivity index'. The input consists of the values of 11

B

I I I I I I I ~ I i
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Utilization

Figure 3. Relation between the variable 'utilization' and
the number of man months required

variables: nine to characterize the project and two to
express the number of man months and lead time realized.

In the previous section it was stated that calibration
represents the first introduction of the user to the model.
On the other hand, calibration requires the necessary
experience in using the model. It is therefore necessary to
support the model user during calibration. A possible way
to do this is to support the user with the expertise of
experienced users.

It has been found that the experienced users of the
model employ a great many heuristic procedures for
determining the value of the input variables. This exper-
tise was developed during the years when these users were
working with the model. Transferring this knowledge and
experience to new users has proved to be a time-
consuming business. If it is possible to store these heuristic
procedures in a system, then the beginner will always have
a practical aid at hand. A possible form in which a system
such as this can be achieved is an expert system.

An expert s y s t e m as an aid

Role ~?] the expert system in calibration

An expert system is a computing system capable of
representing and reasoning about some knowledge-rich
domain, with a view to solving problems and giving
advice ~4. For extensive information on expert systems the
reader is referred to the many books and articles which
have appeared on this subject recentlyl 5.16

As stated earlier, the expert system must make expertise
in using the model available to the beginner in using
PRICE SP. That means expertise which the expert has
built up over the years. The expert system may be
regarded as an interface between the person who is
calibrating and the input of the ECIRP model. The system
will not generate a value for all the input variables of
ECIRP, but only for those variables which require a great
deal of expertise for determining the value. For example,
there is no point in giving support for the determination of
the value of the variable 'instructions' because in calibr-
ation this only involves counting. The input of the expert
system consists of answers which the estimator gives to
questions asked by the system. The role of the expert
system is shown in Figure 4.

It will have to be easier to answer the questions of the
expert system than to determine the input for ECIRP. In
this way, the gap between the estimator and the model is
reduced. In view of the need for calibration and the
consequences of an inaccurate calibration, the expert
system will constitute a useful aid in estimating software
projects.

A prototype has been developed to investigate whether
an expert system such as this is possible. This prototype

564 information and software technology

 software development

Interface Input Model Output

ira,
t
i • Expert
m system
a
t
o

r

I nstructions •
New code
New design
Application
Utilization •
Platform >

Cost
Schedule
Manload
Fractional time
Complexity

ECIRP

Figure 4. The expert system as an interlace between the estimator and ECIRP

Productivity
index

generates numerical values for the input variables 'com-
plexity', 'application', 'new design' and 'new code' (see
Figure 4).

To develop the expert system 17 discussions were held
with the expert over a period of three months. In order to
show the structure of the knowledge, a form of represent-
ation was selected which from now on will be indicated by
the term 'decision trees'. On the basis of the decision tree,
new discussions were held, resulting in the decision tree
being adapted and extended. The developed system is a
rule based expert system, this means that the knowledge is
stored in the form of production rules ('if-then' rules).

Results

The prototype which was developed generates values for
four input variables: complexity, application, new design
and new code. The total system comprises about 200 rules.
During the discussions with the expert it was found that
there are factors which have an influence on several
variables. For example, if it is clear when determining the
value of the variable complexity that there are experien-

ced developers who have already designed similar sy-
stems, then it is unlikely that the design will be totally new.
In other words, it is unlikely that the variable new design
will be given the value one. It therefore proves that the
sub-areas complexity, application and new code/new
design cannot be separated.

Some aspects of the development of the e.xpert system
are explained in greater detail. The underlying expertise
for the variables application and complexity are discus-
sed. The results of testing the accuracy of the expert
system are then discussed with regard to these variables.

First, application. It will be explained how the expert,
and hence the expert system, determines the value of the
variable application. According to the PRICE manual the
determination of this value involves making a choice from
seven classes of projects (see Figure 5a). The fact that it
involves more than only a choice can be seen from the way
in which the expert determines the value.

In establishing the value of the variable application, the
following fundamental process can be distinguished: in a

program, data is retrieved and formatted, if necessary, to
carry out a calculation process with them. After this

Operating systems

Interactive operations

Real time command
and control

Online
communications

Data storage and
retrieval

String manipulation

Mathematical
operations

a

Figure 5.

I Data
retrieval

String (1)
manipulation

The classes according to RCA and the .fundamental process

Mathematical
operations

/ String (2)
manipulation

Data]
storage

vol 29 no 10 deccmber 1987 565

Project
multinat ona ?1

External [External I
multi I I°rganizationl

[nati°nal?[[involved~. I

I roJl I oreth n onel
I I I I°r anizati°n?l

Cp

More than o n e

I Iocaton? l

Figure 6. A decision tree

process, the data is formatted again and then stored
somewhere. This process is shown in Figure 5b.

The user is asked to indicate what percentage of his or
her program can be regarded as belonging to data
retrieval, string manipulation (1), mathematical oper-
ations, string manipulation (2) and data storage. These
five parts of the fundamental process correspond to the
bot tom three classes of the RCA application table (com-
pare Figures 5a and 5b). Next, the user is asked whether
any communication takes place with other systems. If so,
it must then be stated what percentages of these five parts
of the fundamental process have to do with communic-
ation. In this way, it is possible for some of the data to be
retrieved through communication with another system.
For example, if the user has classified 20 %of the funda-
mental process as data retrieval, then half of this 20 % can

Table 6. Test results for the variables 'complexity' and 'application'

now be 'upgraded ' to the class 'communicat ion ' . As a
result, the value of the variable application becomes
higher. In the same way, the program is next examined to
see what part must be classified as real time command and
control and as interactive operations (see Table 3). The
foregoing ultimately results in a division of the program
into the six classes from the application table (the class
'operat ing system' is considered separately). After this
division, determining the value of the variable 'applica-
t ion' is only a matter of calculation.

As a second example, a part of the knowledge required
for determining the value of the variable complexity is
shown. The decision tree is shown in Figure 6. As stated,
the decision trees acted as a guideline in the discussions
with the expert. Two-thirds of the effort involved in the
total development consisted of structuring and represent-
ing the knowledge in this form.

Third, testing complexity and application. The ac-
curacy of the stored knowledge for determining the value
of the variables 'complexity ' and 'applicat ion ' was deter-
mined on the basis of six projects. The test results are
presented in Table 6. The columns marked A contain the
values determined by the expert in the past. The columns
marked B show the values generated by the expert system.
The differences are indicated in the columns marked C. In
the case of the variable 'complexity ' only the deviations
from the standard value are stated. A difference of less
than 0.1 for the value of this variable may be described as
good, because a difference such as this results in only a
slight error in the output of the ECIRP model. A
difference in value of 0.5 is acceptable for the variable
'appl icat ion ' (see also Table 3).

The expert system was subjected to a user test on a
modest scale. For some questions it was found that the
number of possible answers was too limited. Additions
were made in consultation with the expert. The user test
also showed that some heuristics are tied to place or time.
Clearly, in developing a definitive system an important
place will have to be given to testing the accuracy of the
stored knowledge and to the user test.

Application

A B C
Project Expert Expert system Difference

Complexity

A B C
Project Expert Expert system Difference

1 8.04 7.50 0.54
2 7.28 7.24 0.04
3 5.41 4.93 0.48
4 5.00 4.68 0.32
5 7.09 6.89 0.20
6 4.73 4.33 0.40

1 0.09 0.10 0.01
2 0.23 0.21 0.02
3 0.25 0.30 0.05
4 -0.08 -0.10 0.02
5 0.58 0.50 0.08
6 0.90 0.70 0.20

566 information and software technology

software development

Conclusions and recommendations

The estimation of software projects is important and has
proved to be a difficult task in practice. Models are an aid
to estimating. Estimation models should be calibrated.
Calibration must be carried out accurately because this is
the basis for every subsequent estimate made with the
model. Various studies have underlined the need for
calibration, but this is difficult to perform. An important
cause of this is that when performing the calibration the
user is often meeting the model for the first time, whereas
calibration requires experience in using the model. This
experience is necessary to be able to interpret and evaluate
the input variables of the model in a consistent manner.
The authors believe that in making the calibration the
user should be supported by expertise from an experien-
ced model user. One means of distributing expertise is an
expert system. The authors have developed a prototype of
an expert system to support the characterization of
projects for the purpose of calibration in the PRICE SP
input variables. The results to date and the positive
reactions of both the users and the expert have shown that
an expert system is a suitable aid for this application.

The authors have tried to improve the determination of
the input for the calibration of PRICE SP by means of an
expert system. Another possible way of improving model
estimations is to adapt the model itself. Here it is
necessary, to use input variables with values that can be
easily estimated. No matter how well a model may
describe the development of software, if the values of the
input variables are difficult to define then the estimates
made by the model, and hence the model itself, will be of
limited value.

References

1 Heemstra, F J 'Wat bepaalt de kosten van software'
Informatie Vol 29 No 7 special (1987)

2 Noth, T 'UnterstiJtzung des Softwareprojektmanage-
ments durch eine Erfahrungsdatenbank' Proc. Com-
pas '87 Erfolgsfaktoren der integrierten Informations-
verarbeitung, AMK Berlin, FRG (May 1987)

3 Boehm, B W Software Engineering Economics Prent-
ice Hall, Englewood Cliffs NJ, USA (1981)

4 Putnam, L H and Fitzsimmons A' Estimating software

costs' Datamation September, October and Novem-
ber (1979)

5 Jensen, R W 'A comparison of the Jensen and
COCOMO schedule and cost estimation models'
Proc. ISPA Sixth Annual Conf. (May 1984) pp 96-106

6 Robin, H A 'A comparison of cost estimation tools'
Proc. 8th Int. Conf. on Software Engineering IEEE
(1985)

7 Kemerer, C F 'An empirical validation of software
cost estimation models' Comms A CM Vol 30 No 5
(May 1987)

8 Kitehenham, B A and Taylor, N R 'Software project
development cost estimation' J. Syst. Software Vol 5
(1985)

9 Miyazaki, Y and Mori, K 'COCOMO evaluation and
tailoring' Proc. 8th Int. Conf. on Software Engineering
IEEE (1985)

10 Saalfrank, R F, Schelle, H and Schnopp, R
'Produktivitfitseffekte von aufwandeinflubgrobe bei
der softwareeentwicklung' Angewandte Informatik
No 3 (1987)

11 RCA PRICE Systems PRICE S/SP manual (1985)
12 Brooks, F P The Mythical Man-Month, Essays On

S~/'tware Engineering Addison-Wesley, Reading MA,
USA (1975)

13 Sierevelt, H 'Observations on software models' J.
Parametrics Vol 6, No 4 (December 1986)

14 Jackson, P Introduction to Expert System, Addison-
Wesley, Reading MA, USA (1986)

15 Harmon, P and King, D Expert Systems, Artificial
Intelligence in Business, Wiley Press NY, USA (1985)

16 Waterman, D A A Guide to Expert Systems Addison-
Wesley (1986)

Further reading

Cuelenaere, A M E, Genuchten, M J I M van and
Heemstra, F J 'Een expert systeem voor het gebruik van
een software begrotingsmodel' lnformatie Vol 29 No 7
special (1987)
Hayes-Roth, F, Waterman, D A and Lenat, D B Building
Expert Systems, Addison-Wesley, Reading MA, USA
(1983)
Liebowitz, J 'Useful approach for evaluating expert
systems' Expert Syst. Vol 3 No 2 (April 1986) []

vol 29 no 10 december 1987 567

