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Abstract

Recent developments in wireless sensor networks have made feasible distributed camera networks, in

which cameras and processing nodes may be spread over a wide geographical area, with no centralized

processor and limited ability to communicate a large amount of information over long distances. This

paper overviews distributed algorithms for the calibration of such camera networks- that is, the automatic

estimation of each camera’s position, orientation, and focal length. In particular, we discuss a decentralized

method for obtaining the vision graph for a distributed camera network, in which each edge of the graph

represents two cameras that image a sufficiently large part of the same environment. We next describe

a distributed algorithm in which each camera performs a local, robust nonlinear optimization over the

camera parameters and scene points of its vision graph neighbors to obtain an initial calibration estimate.

We then show how a distributed inference algorithm based on belief propagation can refine the initial

estimate to be both accurate and globally consistent.

I. INTRODUCTION

Modern urban life is characterized by the ubiquity of digital cameras. We are constantly imaged by

our friends’ cell phones and digital cameras, the surveillance cameras in subway stations, busy streets,

and shopping malls, and even mapping cameras on trucks or satellites. Many of these devices can now

communicate wirelessly, so that the set of cameras can be viewed as a wide-area sensor network with

thousands of nodes. Clearly, the proliferation of large numbers of interconnected cameras in the public

sphere raises legitimate privacy concerns (e.g., see the article by Widen in this special issue).

In contrast, here we are motivated by scenarios in which a camera network may be the best way to

obtain time-critical information about an emergent situation where the safety or security of human lives
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is at stake, such as a natural disaster site, an urban combat zone, or a battlefield. Camera networks will

be essential for 21st century military, environmental, and surveillance applications [1], but pose many

challenges to traditional computer vision.

Until recently, computer vision research on collections of tens or hundreds of cameras has generally

taken place in a controlled environment with a fixed camera configuration. For example, many research

labs have designed rooms in which the walls and ceiling are studded with cameras, for the purposes of

3D model acquisition and virtual reality (e.g., [2], [3], [4]). To undertake a computer vision task, images

from all cameras are quickly communicated to a central processor.

The same experimental assumptions clearly do not apply to real-world scenarios in which battery-

powered cameras are spread over a wide geographical area. For example, camera nodes may be quickly

deployed by soldiers moving rapidly through hostile terrain, or first responders moving through a dan-

gerous disaster zone. Accurate initial positions and orientations of such cameras will be unknown; even

if some nodes are equipped with GPS receivers, these systems cannot be assumed to be highly accurate

and reliable [5], nor do they operate indoors. The nodes are unsupervised after deployment, and generally

have no knowledge about the topology of the broader network [6]. Most nodes are unable to communicate

beyond a short distance due to power limitations and short-range antennas, and communication must be

kept to a minimum because it is power-intensive. Furthermore, a realistic camera network is constantly

in motion. The number and location of cameras changes as old cameras wear out and new cameras

are deployed to replace them. Precipitation, wind, and seismic events will jolt the cameras, or remote

directives may reposition or reorient them for a variety of tasks.

Our main interest in this paper is the calibration of a distributed camera network. That is, how can

we automatically estimate the three-dimensional location and orientation of each camera, as well as any

variable intrinsic parameters of the cameras such as their focal lengths? Accurate estimates of these

parameters are critical for enabling good performance on higher-level collaborative computer vision tasks

that the camera network may undertake, such as multiple object tracking, three-dimensional reconstruction

of scene objects, novel view synthesis, or efficient image-based routing.

To make our algorithms applicable to emerging real-world scenarios, we began our research with two

guiding principles. First, the estimation problems we consider must be solved using distributed algorithms,

as opposed to requiring images or data from all cameras to be transmitted to a single, centralized processor.

Second, we strive for algorithms that make efficient use of the underlying communication links in the

network, instead of assuming that large amounts of data can be transmitted by the sensor nodes with no

penalty.
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The paper is organized as follows. Section II introduces notation and terminology related to camera

calibration. Section III reviews approaches to estimating the vision graph for a distributed camera network,

in which each camera is represented by a node, and an edge appears between two nodes if the two cameras

jointly image a sufficiently large part of the environment. We emphasize an algorithm we recently proposed

in [7]. In Section IV we review approaches for distributed estimation of the calibration parameters of

all cameras in the network based on the vision graph. We focus on an efficient method for initializing

and refining the calibration estimates we recently proposed in [8], [9]. Throughout Sections III and IV,

we illustrate our results on a running example of a set of images acquired from cameras distributed

throughout RPI’s campus. Section V concludes the paper with discussion and ideas for future work.

II. NOTATION AND TERMINOLOGY

Formally, camera calibration is the estimation of the parameters that describe how a perspective camera

projects 3-D points in a fixed world coordinate system to 2-D points on an image plane. These calibration

parameters can be divided into four or more internal parameters related to a camera’s optics, such as its

principal point, aspect ratio, lens distortion, and focal length, and six external parameters, namely the

rotation angles and translation vector that relate the camera coordinate frame to the world coordinate

frame. These various parameters can be encapsulated in a 3 × 4 camera matrix P = K[R | t], where K

is an upper triangular matrix that is purely a function of the internal parameters, R is a rotation matrix

parameterized by three angles, and t is a translation vector in R
3. Since the fixed internal parameters of

a given camera can usually be estimated individually prior to deployment [10], [11], [12], we are mainly

concerned with estimating the external parameters, though we include the focal length as an unknown

parameter to be estimated.

We model a camera network with two undirected graphs: a communication graph and a vision graph.

We illustrate the idea in Figure 1 with a hypothetical network of ten cameras. Figure 1a shows a snapshot

of the locations and orientations of the cameras. Figure 1b illustrates the communication graph for the

network; an edge appears between two cameras in this graph if they have one-hop direct communication.

This is a common abstraction in wireless ad-hoc networks (see [13] for a review). The communications

graph is mostly determined by the locations of the nodes and the topography of the environment; in a

wireless setting, the instantaneous power each node can expend towards communication is also a factor.

Figure 1c illustrates the vision graph for the network; an edge appears between two cameras in this

graph if they observe some of the same scene points from different perspectives. We note that the presence

of an edge in the communication graph does not imply the presence of the same edge in the vision graph,
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Fig. 1. (a) A snapshot of the instantaneous state of a camera network, indicating the fields of view of ten cameras. (b) The

associated communication graph. (c) The associated vision graph. Note the presence of an edge in one graph does not imply

the presence of the same edge in the other graph.

since the cameras may be pointed in different directions (for example, cameras A and C). Conversely, an

edge can connect two cameras in the vision graph despite a lack of physical proximity between them (for

example, cameras C and F ). Figure 2 illustrates the communication and vision graphs for a simulated

example in which 30 cameras are scattered around several buildings. We can see that the communication

and vision graphs are not highly correlated.
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Fig. 2. (a) A simulated camera network (the focal lengths of the cameras have been exaggerated). (b) The corresponding

communication graph, assuming each camera has the same fixed antenna range. (c) The corresponding vision graph.

We note that our research focus is at the application layer of a camera network architecture, as opposed

to the physical layer comprised of the cameras themselves or the communication layer that defines

networking protocols. Considerations of these layers are addressed at length in other articles in this special
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issue. An increasing number of options are available to implement the physical layer of a camera network,

including the Cyclops [14], CMUCam [15], Panoptes [16], or Mesheye [17] systems. Small embedded

sensor network platforms such as Crossbow motes [18] are frequently augmented with cameras to create

visual sensor networks.

III. ESTIMATING THE VISION GRAPH

Antone and Teller [19] used a camera adjacency graph similar to our vision graph to calibrate hundreds

of still omnidirectional cameras in the MIT City project. However, this adjacency graph was obtained

from a priori knowledge of the cameras’ rough locations acquired by a GPS sensor, instead of estimated

from the images themselves. Similarly, Sharp et al. [20] addressed how to distribute errors in estimates

of camera calibration parameters with respect to a vision graph, but this graph was manually constructed.

Kulkarni et al. [21] proposed a method in which a reference object is moved to many positions around

the cameras’ environment. The detected presence of the object in different views at the same time instant

provides an approximate initialization for the cameras’ regions of overlap.

Many researchers have approached the vision graph estimation problem using the spatio-temporal paths

of tracked objects that enter and exit the field of view of each camera [22], [23]. In some cases, this is

referred to as estimating the topology of the network. Special cases of such objects include identifiable

people [24], pedestrians [25] or vehicles [26]. In some cases, the objects are assumed to move on a ground

plane that is known [27], [28] or estimated from object tracks [29], [30]. Van den Hengel et al. [31]

took a slightly different approach in which the vision graph was initially assumed to be fully connected,

and edges were removed that are contradicted by observed evidence over time. Most of these approaches

either assume that the cameras’ fields of view are non-overlapping or that a common dominant plane

exists in the scene (Meingast et al. [32] is one exception). Neither scenario is our primary interest in this

paper, since in the first case, the cameras’ positions and orientations are difficult to estimate accurately

from the images alone, and in the second case, it is more appropriate to relate the cameras by image

homographies rather than full 3D calibration.

Graph relationships on image sequences are frequently encountered in image mosaicking applications,

e.g., [33], [34], [35]. However, in such cases, adjacent images can be assumed to have connecting edges,

since they are closely-sampled frames of a smooth camera motion. Furthermore, a chain of homographies

can usually be constructed that gives reasonable initial estimates for where other graph edges occur. The

problem considered here is substantially more complicated, since a camera network generally contains

a set of unordered images taken from different viewpoints. The images used to localize the network
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may even be acquired at different times, since we envision that a wireless camera network would be

realistically deployed in a time-staggered fashion (e.g., by soldiers advancing through territory or an

autonomous unmanned vehicle dropping camera nodes from the air), and that new nodes will occasionally

be deployed to replace failing ones.

Brown and colleagues [36], [37] addressed multi-image matching for the problem of constructing

mosaics from an unordered set of images, though the vision graph is not explicitly constructed in either

case. Also in the unordered case, Schaffalitzky and Zisserman [38] used a greedy algorithm to build a

spanning tree (i.e., a partial vision graph) on a set of images, assuming the multi-image correspondences

were available at a single processor.

An alternate method for distributed feature matching (which implicitly defines a vision graph) was

described by Avidan et al. [39], who used a probabilistic argument based on random graphs to analyze

the propagation of wide-baseline stereo matching results obtained for a small number of image pairs to

the remaining cameras. The results were based on simulated data and not applied to the camera calibration

problem.

In the rest of this section, we summarize our basic approach to estimating the vision graph, which

is more fully described in [7]. First, each camera detects a set of distinctive feature points in its image

that are likely to match other images of the same scene. Both the number of features and the length of

each feature descriptor are substantially reduced to form a fixed-length “feature digest” that the camera

broadcasts to the rest of the network. Each receiver camera decompresses the feature digest to recover the

approximate feature descriptors, which are matched with its own features to generate putative matches.

If enough matches are found, a vision graph edge is established.

A. Feature Detection and Description

Our first step in estimating the vision graph is the detection of high-quality features at each camera

node, i.e. regions of pixels representing scene points that can be reliably, unambiguously matched in

other images of the same scene.

Several researchers have obtained point correspondences for topology and calibration estimation using

modulated light sources moved throughout a darkened room [40], [41], [42] or placed on the cameras

themselves [43]. Maas [44] used a moving reference bar of known length. It is common to acquire match-

ing feature points using images of one or more planar targets containing parallel lines, a “checkerboard”

image, or uniquely identifiable tags [45], [46], [47]. However, for large-scale outdoor camera networks,

we believe it is important to develop techniques in which neither the cameras nor the scene are altered
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from their natural state, with no assumptions about camera synchronization or interactions between the

user and the environment.

A recent focus in the computer vision community has been on different types of “invariant” detectors

that select image regions that can be robustly matched even between images where the camera perspectives

or zooms are quite different. Our approach is based on the popular and successful Scale-Invariant Feature

Transform (SIFT) detector/descriptor proposed by Lowe [48]. Mikolajczyk and Schmid [49] showed that

this combination outperformed most other detector/descriptor combinations in their experiments; for a

broad survey of other modern feature detectors, see [50].

The basic idea of the SIFT detector is to process the image at multiple scales with a difference-of-

Gaussian filter, and return scale-space extrema of the result. Qualitatively, this results in the detection of

“blobs” that are distinguishable from their background at different scales. The number of features detected

by the sending camera, which we denote N , is determined by the number of scale-space extrema of the

image and user-specified thresholds to eliminate feature points that have low contrast or too closely

resemble a linear edge (see [48] for more details). For a typical image, N is on the order of hundreds

or thousands.

Once feature locations and regions of support have been determined, each region must be described

with a finite number of scalar values– this set of numbers is called the descriptor for the feature. The

simplest descriptor is just a set of image pixel intensities; however, the intensity values alone are unlikely

to be robust to scale or viewpoint changes. The SIFT feature descriptor that we use is a histogram of

gradient orientations designed to be invariant to scale and rotation of the feature. Typically, the algorithm

takes a 16 × 16 grid of samples from the the gradient map at the feature’s scale, and uses it to form a

4 × 4 aggregate gradient matrix. Each element of the matrix is quantized into 8 orientations, producing

a descriptor of dimension 128.

B. Feature Digest Construction

The next step is to select a subset containing M of the N features for the feature digest, such that

the selected features are both highly distinctive and spatially well-distributed across the image (in order

to maximize the probability of a match with an overlapping image). We measure feature distinctiveness

using a strength measure based on the eigenvalues of the local gradient matrix at each feature [37].

If the digest is to contain M features, we could just send the M strongest features. However, in practice,

there may be clusters of strong features in small regions of the image that have similar textures, and

would unfairly dominate the feature list. Therefore, we need a way to distribute the features more fairly
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across the image. In our approach, we use a 2-dimensional k-d tree [51] containing c cells constructed

from the image coordinates of feature points. For each nonterminal node, we partition the node’s data

along the dimension that has larger variance. Finally, we select the ⌊M
c
⌋ strongest features from each

k-d cell to add to the feature digest. An alternate approach would be to use the adaptive non-maximal

suppression approach described by Brown et al. [37].

Once the M features have been selected, we compress them so that each is represented with K

parameters (instead of the usual 128-dimensional SIFT descriptor). We do so by projecting each feature

descriptor onto the top K principal component vectors computed over the descriptors of the N original

features. Specifically, the feature digest is given by {v, Q, p1, . . . , pM , (x1, y1), . . . , (xM , yM )}, where

v ∈ R
128 is the mean of the N SIFT descriptors, Q is the 128 × K matrix of principal component

vectors, pj = QT (vj − v) ∈ R
K , where vj is the jth selected feature’s SIFT descriptor ∈ R

128, and

(xj , yj) are the image coordinates of the jth selected feature. Thus, the explicit relationship between the

feature digest length L, the number of features M , and the number of principal components K is

L = b(128(K + 1) + M(K + 2)), (1)

where b is the number of bytes used to represent a real number. Therefore, for a fixed L, there is a

tradeoff between sending many features (thus increasing the chance of matches with overlapping images)

and coding the feature descriptors accurately (thus reducing false or missed matches). These tradeoffs

are analyzed in detail in [7]. We note that our concept of a feature digest seems related to Jannotti and

Mao’s concept of a “geographic hash table” [52].

C. Feature Matching and Vision Graph Edge Formation

When the sending camera’s feature digest is received at a given camera node, the goal is to determine

whether a vision graph edge is present. In particular, for each sender/receiver image pair where it exists,

we want to obtain a stable, robust estimate of the epipolar geometry [53] based on the sender’s feature

digest and the receiver’s complete feature list. We also obtain the correspondences between the sender

and receiver that are consistent with the epipolar geometry, which are used to provide evidence for a

vision graph edge.

Based on the sender’s message, each receiving node generates an approximate descriptor for each

incoming feature as v̂j = Qpj + v. If we denote the receiving node’s features by SIFT descriptors {ri},

then we compute the nearest (r1
j ) and the second nearest (r2

j ) receiver features to feature v̂j based on the

Euclidean distance between SIFT descriptors in R
128. Denoting these distances d1

j and d2
j respectively,
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Fig. 3. Example results of image matching from a pair of images. (a) Image 1. (b) Image 2. (c) The 1976 detected features

in Image 1. (d) The k-d tree and corresponding 256-feature digest in image 1. (e) The dots indicate 78 features in Image 1

detected as correspondences in Image 2, using the minimal Euclidean distance between SIFT descriptors and the ratio criterion

with a threshold of 0.6. The 3 squares indicate outlier features that were rejected. The circles indicate 45 new correspondences

that were grown based on the epipolar geometry, for a total of 120 correspondences. (f) The positions of the 120 corresponding

features in Image 2. (Figure from [7].)

we accept (v̂j , r1
j ) as a match if d1

j/d2
j is below a certain threshold. The rationale, as described by Lowe

[48], is to reject features that may ambiguously match several regions in the receiving image (in this

case, the ratio d1
j/d2

j would be close to 1). However, it is possible that this process may reject correctly

matched features or include false matches (also known as outliers). To combat the outlier problem, we

robustly estimate the epipolar geometry, and reject features that are inconsistent with it [54]. To make

sure we find as many matches as we can, we add feature matches that are consistent with the epipolar

geometry and for which the ratio d1
j/d2

j is suitably low. This process is illustrated in Figure 3.

Based on the grown matches, we establish a vision graph edge if the number of final feature matches

exceeds a threshold τ , since it is highly unlikely that a large number of good matches consistent with

the epipolar geometry occur by chance. We model the establishment of vision graph edges as a typical

detection problem [55], and analyze the performance at a given parameter combination as a point on

a Receiver-Operating-Characteristics (ROC) curve. This curve plots the probability of detection pd (i.e.,
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Fig. 4. Sample images from the 60-image test set gathered on the RPI campus.

the algorithm finds an edge while there is actually an edge) against the probability of false alarm pfa

(i.e., the algorithm finds an edge while the two images actually have little or no overlap). The user can

select an appropriate point on the ROC curve based on application requirements on the performance of

the predictor.

We simulated an outdoor camera network using a set of 60 widely-separated images taken on the

RPI campus, acquired with a Canon PowerShot G5 digital camera in autofocus mode (so that the focal

length for each camera is different and unknown) and an image resolution of 1600 × 1200. Figure 4

shows some example images from the test set. Figure 5 illustrates the ROC curves resulting from the

vision graph generation algorithm using fixed message sizes of length L =80, 100, and 120 kilobytes.

We can see that for all message lengths, the algorithm has good performance, since high probabilities of

detection can be achieved with low probabilities of false alarm (e.g. pd ≥ 0.8 when pfa = 0.05). As the

message length increases, the detector performances become more similar (since the message length is

not as limiting), and detection probability approaches that which can be achieved by sending all features

with no compression at all (the upper line in Figure 5). Once the vision graph is established, we can use

feedback in the network with less message compression to refine edge decisions, moving closer to the

May 28, 2008 DRAFT



11

ideal ROC curve.
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Fig. 5. Best achievable ROC curves for message lengths 80KB, 100KB and 120KB. The “ideal” curve is generated by applying

our algorithm using all features from each image and no compression. Once the vision graph is established, false edges can be

removed based on further messages (e.g., moving from the circular to the square operating point). (Figure from [7].)

IV. CALIBRATING THE CAMERA NETWORK

Once the vision graph is established, the next step is to obtain an estimate of the calibration parameters

for all cameras. A substantial body of work exists on the distributed localization of nodes in wireless

sensor networks based on considerations such as the time-of-flight between nodes (see, e.g., [56]). Our

interest is in calibration techniques for a visual sensor network that use the cameras’ images as the basis

for estimation.

The classical problem of externally calibrating a pair of cameras is well-understood [57]; the parameter

estimation usually requires a set of feature point correspondences in both images (we described one

approach to obtaining a set of such correspondences in Section III). When no points with known 3-D

locations in the world coordinate frame are available, the cameras can be calibrated up to a similarity

transformation [54]. That is, the cameras’ positions and orientations can be accurately estimated relative

to each other, but not in an absolute sense. Without metric information about the scene, an unknown

scale parameter also remains; for example, the same set of images would be produced by cameras twice

as far away from a scene that is twice as large.

Multi-camera calibration can be accomplished by minimizing a nonlinear cost function of the calibration

parameters and a collection of unknown 3-D scene points projecting to matched image correspondences;

this problem is also known as Structure from Motion (SFM). The optimization process for estimating
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the parameters is called bundle adjustment [58]. Good results are achievable when the images and

correspondences are all accessible to a powerful, central processor. It is beyond the scope of this paper

to survey the centralized SFM problem here, but the book by Hartley and Zisserman [54] is an excellent

reference. Also, Ma et al. [59] outlined a complete step-by-step recipe for the SFM problem, assuming

the information from all cameras is collected in one place. We note that SFM is closely related to a

problem in the robotics community called Simultaneous Localization and Mapping (SLAM) [60], [61], in

which mobile robots must estimate their locations from sensor data as they move through a scene. SFM

also forms the fundamental core of commercial software packages such as Boujou or SynthEyes for the

problems of “matchmoving” or camera tracking, which are used to insert digital effects into Hollywood

movies.

However, the unsupervised calibration of a distributed camera network is a new and challenging

problem. There is no centralized collection of instantaneous images from each camera, and no user

to help select feature points in corresponding images. Communication between cameras is expensive and

implemented on a hop-by-hop basis, so it is impractical for each camera to obtain detailed knowledge

about the images available throughout the entire network. On the other hand, to be useful, the results

of a distributed algorithm must be comparable to the results that can be obtained with a centralized

algorithm. Relatively few algorithms have been proposed for fully distributed 3D calibration of a large-

scale camera network. We do not consider algorithms in which each camera independently calibrates itself

based on images of a placed reference device with known world coordinates (e.g., [62]) as fundamentally

distributed.

Several researchers have addressed camera network calibration based on an object that moves through

a planar environment, which is less general than the 3D camera calibration problem addressed here

(e.g., [63]). An excellent algorithm of this type called SLAT (Simultaneous Location and Tracking) was

proposed by Funiak et al. [64]. The key innovations were a relative overparameterization of the cameras

that allows Gaussian densities to be used, and a linearization procedure to address the uncertainty in

camera angle for proper use of a Kalman filter. It would be very interesting to see how such an approach

would scale to full calibration of large outdoor camera networks with many moving objects.

Many distributed algorithms for full 3D camera network calibration rely on using image correspon-

dences to estimate the epipolar geometry between image pairs. When the intrinsic camera parameters

are known, this information can be used to extract estimates of the rotation and translation between

each camera pair. For example, Barton-Sweeney et al. [42] used an Extended Kalman Filtering frame-

work on the estimated epipolar geometry to estimate the rotation and translations between a camera
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pair. Mantzel et al. [65] proposed an algorithm called DALT (Distributed Alternating Localization and

Triangulation) for camera network calibration. As the the title suggests, each camera calibrates itself by

alternating between 1) triangulating 2D image projections into 3D space, assuming the camera matrices

are known, and 2) estimating the camera matrices based on putative image-to-world correspondences.

While their optimization approach is simpler than bundle adjustment, this work includes some interesting

analysis of the computational and power requirements that would be incurred by the algorithm on a

realistic platform. We finally note that these algorithms use a user-inserted calibration object as the basis

for establishing point correspondences, instead of extracting such correspondences from images of an

unstructured environment as described in the previous section.

In the rest of this section, we summarize our basic approach to the distributed calibration of camera

networks, which is more fully described in [8], [9], [66]. Our goal is to design a calibration system in

which each camera only communicates with (and possesses knowledge about) those cameras connected

to it by an edge in the vision graph. The result will be that each camera has an estimate of 1) its own

location, orientation, and focal length, 2) the corresponding parameters for each of its neighbors in the

vision graph, and 3) the 3D positions of the image feature points it has in common with its neighbors.

It is important to obtain the reconstruction in a metric framework, where the recovered geometry of the

cameras/scene differs from the truth only by an unknown rotation, translation, and scale.

A. Initializing the Calibration

The first step our algorithm is the formation of clusters. Each node independently forms a cluster Ci

depending on the number of correspondences detected along each vision graph edge. (We assume these

correspondences were formed during the process of estimating the vision graph, and retained for the

purposes of calibration.) Initially, this cluster is formed as Ci = {j | j ∈ Nb(i)}, where Nb(i) denotes the

set of nodes neighboring i in the vision graph. However, nodes that share only a few corresponding points

with node i are removed from the cluster in order to ensure a minimum nucleus of corresponding points

seen by all cameras in the cluster. The minimum cluster and nucleus size required for viable calibration

depend on the number of parameters to be estimated at each node [67], [68]. In our experiments, we use

a minimum cluster size of 3 cameras and a nucleus of at least 8 corresponding points.

Next, the parameters of the cluster are estimated through an iterative minimization process called bundle

adjustment [58]. We denote {P1, . . . , Pm} as the cameras in i’s cluster, where m = |{i, Ci}|. Similarly,

we denote {X1, . . . , Xn} as the 3D points that are seen by at least 3 cameras in the cluster. We define

a binary indicator function χjk such that χjk = 1 if point k is observed by camera j and 0 otherwise.
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Node i must now solve the structure-from-motion problem, i.e., estimate the camera parameters P as

well as the unknown scene points X using only the 2D image correspondences {ujk, j = 1, . . . , m, k =

1, . . . , n | χjk = 1}. If ûjk represents the projection of X̂ i
k onto P̂ i

j for some estimate (P̂ i, X̂i), then the

bundle adjustment cost function that is minimized at each cluster i is given by

min
{P̂ i

j },j∈{i,Ci}

{X̂i
k},k=1,...,n

∑

j

∑

k

χjk(ûjk − ujk)
T Σ−1

jk (ûjk − ujk) (2)

where Σjk is the 2×2 covariance matrix associated with the noise in the measurement ujk. The quantity

inside the sum is called the Mahalanobis distance between ûjk and ujk. The minimization is taken over

the 3D points seen by at least three cameras, as well as the focal lengths, rotation matrix parameters and

the translation vectors of all cameras in the cluster. The optimization is solved using a sparsity-exploiting

Levenberg-Marquardt algorithm, as described by Hartley and Zisserman [54].

As with any nonlinear minimization algorithm, the critical issue is obtaining a “good” initialization

point such that the optimization converges to a desirable local minimum. For the calibration problem,

we obtain this initial point in three steps.

First, we find the set of n′ points seen by all the cameras in the cluster (which we call the nucleus)

and form a 3m × n′ measurement matrix W created from the ujk’s in the nucleus, represented in

homogenous coordinates. The goal is to factorize this matrix into a product of the camera matrices and

the homogeneous 3D scene points via the relationship

W =





λ11u11 λ12u12 · · · λ1nu1n′

λ21u21 λ22u22 · · · λ2nu2n′

...
...

. . .
...

λm1um1 λm2um2 · · · λmnumn′




=





P1

P2

...

Pm





(
X1 X2 · · · Xn′

)
. (3)

By (3), the measurement matrix is ideally of rank four, but the factors λij (called the projective depths)

are unknown. To accomplish the factorization, we use the algorithm proposed by Sturm and Triggs [69],

[70] that alternates between updating the projective depths and applying the singular value decomposition

to find the best rank-4 approximation of the measurement matrix.

After this step, the cameras are recovered up to a projective transformation. This means that while

some geometric properties of the reconstructed configuration will be correct compared to the truth (e.g.,

the order of 3D points lying along a straight line), others will not (e.g., the angles between lines/planes or

the relative lengths of line segments). The mathematical cause of this ambiguity is that we can substitute

all Pj with PjH
−1 and all Xk with HXk for any 4 × 4 nonsingular matrix H and get the same set of

ujk.
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In order to make the reconstruction useful (i.e., to recover the correct camera configuration up to an

unknown rotation, translation, and scale), we need to estimate the matrix H that turns the projective

factorization into a metric factorization. There are several methods for this process (sometimes called

auto-calibration); all depend heavily on projective geometry too complex to describe here. The approach

we favor is based on estimating a 4 × 4 symmetric rank-3 matrix called the absolute dual quadric,

which is constrained by the camera matrices and some known properties of each camera’s fixed internal

parameters (for example, that the elements of the CCD array are square). Detailed descriptions of metric-

from-perspective recovery based on this approach are given by Pollefeys et al. [67], [68].

Finally, 3D scene points not in the nucleus that are seen by at least two cameras can be triangulated

[71], [72] and incorporated into the bundle adjustment cost function (2), which is then minimized from

the initial point obtained from factorization.

We reported detailed results of testing this initial calibration algorithm on synthetic camera/scene

configurations in [8], showing that the calibration accuracy was quite good and declined gracefully with

additional measurement noise. We also analyzed the algorithm’s cost in terms of the numbers of messages

each camera would transmit/receive compared to those of a centralized algorithm where one node acts as

a “master”. We found that the distributed algorithm makes fairer use of the underlying communication

links, and reduces the maximum number of messages per node/edge, which would be a a particularly

important issue for the longevity of battery-operated or otherwise power-constrained wireless sensor

networks [73].

Here, we illustrate the performance of the initialization algorithm on the experimental testbed of real

campus images described in the previous section, focusing on 15 images of a particular church-like

building in the scene. Figure 6a shows an example image of this building with some typical feature

points (i.e., the ujk) overlaid. Figure 6b shows an overhead view of the reconstructed 3D scene and

camera configuration obtained from applying the distributed calibration algorithm, aligning each camera’s

reconstructed scene points to the same frame and displaying the average position/orientation of each

camera. No single camera would have full knowledge about the entire scene as shown, and each camera

really only knows its location relative to its neighbors and reconstructed scene points. While the ground

truth for the configuration is unknown, the quality of the structure recovery is apparent; for example, the

right angles of the building faces are clearly well-estimated. Furthermore, the Euclidean reprojection error,

obtained by averaging the values of ‖ûjk−ujk‖ for every camera/point combination, was computed as 0.59

pixels, meaning the reprojections are accurate to within less than a pixel. This compares favorably with

the reprojection error of 0.34 pixels that was obtained from a centralized bundle adjustment computation.
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Roof lines

(a) (b)

Fig. 6. (a) Original image, with detected feature points overlaid. (b) Top view of the reconstructed 3D scene and camera

configuration for the real experiment. The color of each scene point indicates to which of the clusters it belongs, illustrating

that points from different clusters are correctly merged in the final scene. (Figure (b) from [8].)

B. Refining the Calibration

Even when the initial local calibrations are reasonably accurate, the estimates of the same parameter

at different nodes will generally be inconsistent. That is, estimates of the same camera parameters by

different neighbors will vary slightly due to the different underlying data used for the neighbors’ local

computations. A simple approach to obtaining consistency would be to collect and average the inconsistent

estimates of each parameter and redistribute the result. However, this is only statistically optimal when

the joint covariances of all the camera parameter estimates are identical, which is never the case, and

in practice performs poorly [66]. In this section, we show how the camera parameter estimates can be

made more globally consistent using a probabilistic framework that combines the parameter covariance

matrices properly.
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Many researchers have proposed methods for dealing with inconsistent estimates in wireless sensor

networks. These are typically based on verifying whether estimates of the same parameter are sufficiently

close [74], [75], [76] and/or consistent with prior knowledge [77]. Most such approaches are well-suited

for sensors that measure a scalar quantity such as temperature or pressure. In contrast, in camera net-

works we face inconsistencies in a continuous, high-dimensional parameter space, and require principled

statistical methods for resolving them.

We propose a method based on belief propagation [78], a method for probabilistic inference in networks

that several researchers have recently applied to discrete or low-dimensional sensor networking and

robotics problems (e.g., [79], [80], [81], [82]).

Let Yi represent the true state vector at node i that collects the parameters of that node’s camera matrix

P i
i as well as those of its neighbors P i

j , j ∈ Nb(i), and let Zi be the noisy “observation” of Yi that comes

from the local initial calibration process. That is, the observations arise out of local bundle adjustment on

the image projections of common scene points {ujk} that are used as the basis for the initial calibration.

Our goal is to estimate the true state vector Yi at each node given all the observations by calculating the

marginal

p(Yi|Z1, . . . , ZM ) =

∫

{Yj ,j 6=i}
p(Y1, . . . , YM |Z1, . . . , ZM ) dYj . (4)

Recently, belief propagation has proven effective for marginalizing state variables based on local

message-passing; we briefly describe the technique below. According to the Hammersley-Clifford theorem

[83], [84], a joint density is factorizable if and only if it satisfies the pair-wise Markov property,

p(Y1, Y2, ...YM ) ∝
∏

i∈V

φi(Yi)
∏

(i,j)∈E

ψij(Yi, Yj), (5)

where φi represents the belief (or evidence) potential at node i, and ψij is a compatibility potential

relating each pair of nodes (i, j) ∈ E. Pearl [85] later proved that an inference on this factorized model

is equivalent to a message-passing system, where each node updates its belief by obtaining information

(or “messages”) from its neighbors. This process is what is generally referred to as belief propagation.

The marginalization is then achieved through the update equations

mt
ij(Yj) ∝

∫

Yi

ψ(Yi, Yj)φ(Yi)
∏

k∈Nb(i)\j

mt−1
ki (Yi) dYi (6)

bt
i(Yi) ∝ φ(Yi)

∏

j∈Nb(i)

mt
ji(Yi), (7)

where mt
ij is the message that node i transmits to node j at time t, and bt

i is the belief at node i about

its state, which is the approximation to the required marginal density p(Yi) at time t. This algorithm is
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also called the sum-product algorithm.

In our problem, the joint density in (4) can be expressed as

p (Y1, Y2, . . . YM |Z1, . . . , ZM ) ∝ p (Y1, Y2, . . . YM , Z1, . . . , ZM ) (8)

=
∏

i∈V

p(Zi|Yi)
∏

(i,j)∈E

p(Yi, Yj). (9)

Here, Zi is observed and hence the likelihood function p(Zi|Yi) is a function of Yi. Similar factorizations

of the joint density are common in decoding systems [86].

p(Yi, Yj) encapsulates the constraints between the variables Yi and Yj . That is, the random vectors Yi

and Yj may share some random variables that must agree. We enforce this constraint by defining binary

selector matrices Cij based on the vision graph as follows. Let Mij be the number of variables that Yi

and Yj have in common. Then Cij is a binary Mij × |Yi| matrix such that CijYi selects these common

variables. Then we assume

P (Yi, Yj) ∝ δ(CijYi − CjiYj) (10)

where δ(x) is 1 when all entries of x are 0 and 0 otherwise. The joint density (10) makes the implicit

assumption of a uniform prior over the true state variables; i.e. it only enforces that common parameters

match. In our experiments, we found this formulation to result in equal or better performance than a

softer constraint in which the compatibility potential is higher for more similar parameter estimates.

Therefore, we can see that (9) is in the desired form of (5), identifying

φi(Yi) ∝ p(Zi|Yi) (11)

ψij(Yi, Yj) ∝ δ(CijYi − CjiYj). (12)

Based on this factorization, it is possible to perform the belief propagation directly on the vision

graph edges using the update equations (6) and (7). Figure 7 illustrates one step of the message passing

procedure, indicating the actual camera parameters that are involved in each message. For example,

in order to calibrate, Camera 1 must collect other nodes’ estimates of its own parameters, as well as

estimates of its neighbors’ parameters (i.e., those of Cameras 2, 3, and 8). Each of its vision graph

neighbors sends Camera 1 the subset of these parameters about which it has information in the form of

a message mj1, j ∈ Nb(1).

In our problem, we modeled the likelihood densities p(Zi|Yi) as Gaussian; in this case, (6) and (7)

reduce to simply passing and updating the first two moments of each Yi. Let µi represent the mean of

Yi and Σi the corresponding covariance matrix. Node i receives estimates µj
i and Σj

i from each of its
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Fig. 7. An intermediate stage of message-passing. The P
j

i indicate the camera parameters that are passed between nodes.

neighbors j ∈ Nb(i). Then the update equations (6) and (7) reduce to minimizing the sum of the KL

divergences between the updated Gaussian density and each incoming Gaussian density. Therefore, the

belief update reduces to the well-known equations [87]:

µi
i ←



Σ−1
i +

∑

j∈Nb(i)

(Σj
i )

−1




−1 

Σ−1
i µi +

∑

j∈Nb(i)

(Σj
i )

−1µj
i



 (13)

Σi
i ←



Σ−1
i +

∑

j∈Nb(i)

(Σj
i )

−1




−1

. (14)

We note that (13)-(14) can be iteratively calculated in pairwise computations, instead of computed in

batch, and that this pairwise fusion is invariant to the order in which the estimates arrive.

We obtain the mean and covariance of the assumed Gaussian density p(Zi|Yi) based on forward

covariance propagation from the bundle adjustment process. That is, the covariances of the noise in

the image correspondences used for bundle adjustment are propagated through the bundle adjustment

cost functional (2) to obtain a joint covariance matrix for the structure-from-motion parameters at each

node [54]. Since we are predominantly interested in localizing the camera network, we marginalize

out the reconstructed 3D structure to obtain covariances of the camera parameters alone. While the Σj
i

obtained by covariance propagation through the bundle adjustment cost functional are not usually diagonal

(thus implying non-negligible dependencies among the parameters), we found that we could substantially

improve the estimation accuracy, global consistency, and computational speed of the refinement algorithm

by substituting each Σj
i by its diagonal approximation.

The belief propagation framework as described above is generally applicable to many information

fusion applications. However, when the beliefs represent distributed estimates of camera parameters,

there are several additional issues that must be addressed, including:

1) Minimal parameterizations. Even if each camera matrix is parameterized minimally at node i (i.e. 1
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parameter for the focal length, 3 parameters for the camera center, 3 parameters for the rotation

matrix), there are still 7 degrees of freedom corresponding to an unknown similarity transformation

of all cameras in Yi. Without modification, the covariance matrices in (13)-(14) have null spaces

of dimension 7 and cannot be inverted. We address this issue by placing node i’s camera at the

origin and fixing the scale of the cluster before each fusion.

2) Frame alignment. Since we assume there are no landmarks in the scene with known 3D positions, the

camera motion parameters can be estimated only up to a similarity transformation, and this unknown

similarity transformation will differ from node to node. The estimates Y i
i and Y j

i , j ∈ Nb(i) must

be brought to a common coordinate system before every fusion step.

The details of how we address each of these issues can be found in [9].

We judge the algorithm’s performance by evaluating the consistency of the estimated camera parameters

throughout the network both before and after the belief propagation algorithm (these results were obtained

using the full covariance matrices, not the diagonal approximation). For the 15-image dataset discussed

in the previous section, we found that the standard deviation between multiple estimates of the same

camera’s center decreased by a factor of 6, that of the camera rotation matrix by a factor of 2, and that of

the focal length by a factor of 1.5. When compared to the standard deviation of the centralized estimate,

we found that the belief propagation standard deviations were larger by factors of 1.2 for the camera

center parameters, 0.9 for the rotation matrix parameters, and 0.7 for the focal lengths, indicating that

the message-passing algorithm approaches a result that is as certain as that of the centralized algorithm.

Figure 8 shows the multiple estimates of a subset of the cameras (aligned to the same coordinate frame)

both before and after the calibration refinement algorithm. Before belief propagation, the estimates of each

camera’s position are somewhat spread out and there are several outliers (e.g., one estimate of camera

13 is far from the other two, and very close to the corner of the building). After belief propagation,

the improvement in consistency is apparent; multiple estimates of the same camera are tightly clustered

together. This improvement would clearly be important for good performance on higher-level vision tasks

in a real camera network.

The computational cost of the distributed initialization and refinement algorithms are quite favorable

compared to the centralized algorithm. The centralized algorithm suffers from needing to solve a very

large (albeit sparse) problem with thousands of variables for which it is very difficult to obtain a good

initial point. On the other hand, the distributed initialization algorithm is much faster (by a factor of 10-15

in our experiments) than the centralized algorithm since it works with smaller problems that are more

easily initialized. While the distributed refinement algorithm is slower due to the large matrices involved,
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Fig. 8. Multiple camera estimates of a subset of cameras (a) before and (b) after the belief propagation refinement algorithm.

(Figure from [9].)

the execution time is still moderately less than the centralized bundle adjustment (and is faster by a factor

of 6 when the covariance matrices are approximated as diagonal). Furthermore, these estimates are based

on our serial simulation of a distributed algorithm; in a real sensor network, first the initialization and

then the refinement algorithm would be run in parallel on each node, resulting in substantial increases

in actual execution speed.

V. DISCUSSION AND CONCLUSIONS

We proposed a complete framework for the calibration of a distributed camera network, starting with

the discovery of visual overlap between cameras and ending with an accurate, consistent estimate of all

camera parameters in the network. The calibration process be viewed as a scalable, parallel algorithm

that has complexity, memory, and networking advantages over a centralized calibration. The local nature

of the calibration allows cameras that view part of the same scene to exchange and interpret visual

information necessary for a higher-level task, such as handing off the tracking of a target that moves

through the field of cameras, without requiring any single node to know the global configuration of the

entire network.
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The algorithms described here made the assumption that the camera nodes and vision graph were fixed.

However, cameras in a real network might change position or orientation after deployment in response

to either external events (e.g., wind or explosions) or remote directives from a command-and-control

center. One simple way to extend our results to dynamic camera networks would be for each camera to

broadcast any new features that appear in its image to the network in a short message, in order to keep

the vision graph up-to-date. Similarly, the distributed calibration estimates could be kept up-to-date by

occasional iterations of the message passing algorithm described in Section IV-B. Overall, the transient

messaging load on the network and the priority of the calibration process at each processor would be

proportional to the magnitude of the camera dynamics. It would be interesting to formalize this intuition

of a continuous, adaptive, and efficient calibration background process in an actual dynamic camera

network with power-constrained sensor nodes. We also note that if the cameras can be actively actuated

to change their orientation and zoom, the calibration problem can be made easier [88].

For distributed wireless camera networks deployed in the real world, it will be important to consider

calibration and other computer vision tasks in the context of the many other tasks the node processors

and network need to undertake. This will entail a tight coupling between the vision algorithms and the

MAC, network, and link-layer protocols, organization, and channel conditions of the network, as well as

the power supply, transmitter/receiver and kernel scheduler of each node. This tight integration would be

critical for making the algorithms described here viable for embedded platforms, such as networks of cell-

phone cameras [89]. The ROC curves in Section III address this issue to some extent for the vision graph

estimation problem (i.e., suggesting what combination of descriptor length and number of descriptors

should be chosen to achieve the best performance given a fixed length for the feature digest). It would

be an interesting and challenging problem to adaptively optimize a trade-off between the calibration

performance at the application layer with the power consumption at the communication/physical layers.

We finally note that several researchers have recently applied more sophisticated and robust distributed

inference algorithms than belief propagation to sensor fusion problems; the work of Paskin, Guestrin, and

McFadden [90], [91] and Dellaert et al. [92] is notable. Future distributed camera calibration techniques

could benefit from these new algorithms.

To conclude, while centralized computer vision algorithms for determining visual overlap and esti-

mating camera calibration parameters are quite mature, and physical and communications-layer issues

for visual sensor networks have made great progress in recent years, a substantial amount of research

remains to be done in integrating the application, communication, and physical layers of a visual sensor

network to produce powerful, self-organizing wireless camera nodes. Such research requires teaming of
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experts in computer vision, embedded systems, networking, and sensor design, and is beginning to take

place in new conference venues aimed at bringing these groups together.
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