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Calibrating Noise to Sensitivity in Private Data
Analysis

Cynthia Dwork∗, Frank McSherry†, Kobbi Nissim‡ and Adam Smith§

We continue a line of research initiated in Dinur and Nissim (2003); Dwork and
Nissim (2004); Blum et al. (2005) on privacy-preserving statistical databases.

Consider a trusted server that holds a database of sensitive information. Given a
query function f mapping databases to reals, the so-called true answer is the result of
applying f to the database. To protect privacy, the true answer is perturbed by the
addition of random noise generated according to a carefully chosen distribution, and
this response, the true answer plus noise, is returned to the user.

Previous work focused on the case of noisy sums, in which f =
∑
i g(xi), where xi

denotes the ith row of the database and g maps database rows to [0, 1]. We extend the
study to general functions f , proving that privacy can be preserved by calibrating the
standard deviation of the noise according to the sensitivity of the function f . Roughly
speaking, this is the amount that any single argument to f can change its output. The
new analysis shows that for several particular applications substantially less noise is
needed than was previously understood to be the case.

The first step is a very clean definition of privacy—now known as differential privacy—
and measure of its loss. We also provide a set of tools for designing and combining
differentially private algorithms, permitting the construction of complex differentially
private analytical tools from simple differentially private primitives.

Finally, we obtain separation results showing the increased value of interactive sta-
tistical release mechanisms over non-interactive ones.

1 Introduction

We continue a line of research initiated by Dinur and Nissim (2003) on privacy in
statistical databases. A statistic is a quantity computed from a sample. Intuitively,
if the database is a representative sample of an underlying population, the goal of a
privacy-preserving statistical database is to enable an analyst to learn properties of the
population as a whole while protecting the privacy of the individual contributors.
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We assume the database is held by a trusted server, or curator, who will release in-
formation about the database, either as a single-shot release (the noninteractive model),
or interactively, in response to a sequence of queries from analysts. We ask: what con-
ditions can we place on the algorithm, or “mechanism”, run by the server in order to
be guaranteed that not too much is revealed about any one individual?

Previous work focused on the case of noisy sums, in which the server aims to release
a statistic of the form f(x) =

∑
i g(xi), where xi denotes the ith row of the database

x and g maps database rows to [0, 1]. We extend the study to general functions f ,
proving that privacy can be preserved by calibrating the standard deviation of the noise
according to the sensitivity of the function f . Roughly speaking, this is the amount
that a change in any single argument to f can change its output. The new analysis
shows that for several particular applications substantially less noise is needed than was
previously understood to be the case.

Our starting point is a new definition of privacy, ε-differential privacy1. An inter-
action between a user and a privacy mechanism results in a transcript. For now it is
sufficient to think of transcripts corresponding to a single query function and response,
but the notion is general and our results apply to transcripts that result from interaction
between an analyst and a server responding to queries.

Roughly speaking, a mechanism is ε-differentially private if for all transcripts t and
for all databases x and x′ differing in a single row, the probability of obtaining transcript
t when the database is x is within a (1 + ε) multiplicative factor of the probability of
obtaining transcript t when the database is x′. More precisely, we require that the ratio
of the two probabilities lie in [e−ε, eε]. In our work, ε is a parameter chosen by policy.

We then formally define the sensitivity S(f) of a function f . This is a quantity
inherent in f ; it is not chosen by policy and is independent of the database.

We show a simple method of adding noise that ensures ε-differential privacy; the
noise depends only on ε. Specifically, to obtain ε-differential privacy it suffices to add
noise according to the Laplace distribution, where Pr[y] ∝ e−ε|y|/S(f).

The extension to privacy-preserving approximations to “holistic” functions f that
operate on the entire database broadens the scope of private data analysis beyond the
original motivation of a purely statistical, or “sample population” context. Now we can
view the database as an object that is itself of intrinsic interest and that we wish to
analyze in a privacy-preserving fashion. For example, the database may describe a con-
crete interconnection network—not a sample subnetwork—and we wish to learn certain
properties of the network without releasing information about individual edges, nodes,
or subnetworks. The technology developed herein therefore extends the scope of the
line of research, beyond privacy-preserving statistical databases to privacy-preserving
analysis of data.

Differential privacy, a stronger notion than appears in previous work Dinur and
Nissim (2003); Dwork and Nissim (2004); Blum et al. (2005); Sweeney (2002), satisfies

1The original version of this paper used the term ε-indistinguishability.
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a number of important properties. Foremost among these are closure under composi-
tion and postprocessing. It is these properties that permit differentially private pro-
gramming, that is, the construction of privacy-preserving algorithms for sophisticated
analytical tasks from the creative combination of differentially private primitives.

1.1 Contributions

Definitions of Privacy (Section 2) Definition of privacy requires care. We prove
equivalence of differential privacy to notions based on semantic security and sim-
ulation. The definitions in previous work Dinur and Nissim (2003); Dwork and
Nissim (2004); Blum et al. (2005) focused on “evolution of confidence” arguments
that captured changes to an adversary’s ability to distinguish among different pos-
sible values of the data of a single individual as the number of functions evaluated
on the dataset increased. Our introduction of differential privacy, with its suc-
cinct bounds on cumulative privacy loss, allows substantial simplification of those
analyses.

Databases x and x′ are adjacent if one is a subset of the other, and the larger
contains the data of just one additional individual. The new formulation has the
following appealing interpretation: no matter what an adversary knows ahead of
time—even if the adversary knows both x and x′, the adversary learns essentially
the same things, with essentially the same probabilities, independent of whether
the actual dataset is x or x′. For example, suppose only the larger dataset con-
tains the data of Alice, and suppose the adversary knows that Alice is a smoker,
but does not know whether or not she has lung disease. Seeing the outcome of a
differentially private study could teach the adversary that there is a strong corre-
lation between smoking and lung disease among the population sampled to create
the data set. This is simply learning about the population, and such facts of life
are the purpose of many studies and learning techniques. This particular learned
fact allows the adveresary to conclude that Alice is at high risk for lung disease.
However, differential privacy ensures that the attacker would draw this conclusion
about Alice whether or not Alice’s data were included in the data set. Differential
privacy limits the adversary to these kinds of aggregate conclusions.

Differential privacy, which is multiplicative, differs from traditional definitions in
cryptography, which consider additive changes in probabilities. A simple hybrid
argument shows that, in our context, any nontrivial utility requires nonnegligible
(in n, the size of the database) information leakage. The multiplicative measure
provides meaningful guarantees even when ε is a small constant. We give an
example highlighting why more standard measures, such as statistical difference,
are insufficient in our setting and need to be replaced with a more discriminating
one.

Examples of Sensitivity-Based Analysis (Section 3) We analyze the sensitivity
of specific data analysis functions, including histograms, contingency tables, and
covariance matrices, all of which have very high-dimensional output, showing these
are independent of the dimension. Previous privacy-preserving approximations to
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these quantities used noise proportional to the dimension; the new analysis permits
noise of size O(1). We also give two general classes of functions which have low
sensitivity: functions which estimate distance from a set (e.g., the number of
points that need to be deleted for a data set to be well-clustered) and functions
which can be approximated from a random sample.

Limits on Non-Interactive Mechanisms (Section 4) There are two natural mod-
els for privacy-preserving data analysis: interactive and non-interactive. In the
non-interactive setting, the curator—a trusted entity—publishes a “sanitized” ver-
sion of the collected data; the literature uses terms such as “anonymization,” “de-
identification,” and “synthetic data”. Traditionally, sanitization employed some
perturbation and data modification techniques, and may also have included some
accompanying synopses and statistics. In the interactive setting, the data collec-
tor provides a mechanism with which users may pose queries about the data, and
receive (possibly noisy) responses.

The first of these appears to be more difficult (see Evfimievski et al. (2003);
Chawla et al. (2005a;b)), since any potential release must be useful for essen-
tially all possible analyses. This would contradict powerful negative results that
“overly accurate” answers to “too many” queries is blatantly non-private Dinur
and Nissim (2003), meaning an attacker can reconstruct large parts of the data
set. In contrast, powerful results for the interactive approach have been obtained
(Dinur and Nissim (2003); Dwork and Nissim (2004); Blum et al. (2005) and the
present paper).

We show that for any noninteractive differentially private mechanism M, there
exist low-sensitivity functions f(x) which cannot be approximated at all based on
M(x), unless the database is very large: If each database entry consists of d bits,
then the database must have 2Ω(d) entries in order to answer all low-sensitivity
queries with nontrivial accuracy—even to answer queries from a restricted class
called sum queries. In other words, a noninteractive mechanism must be tailored to
suit certain functions to the exclusion of others. This is not true in the interactive
setting, since one can answer the query f with little noise regardless of n.

The separation results are significant given that the data-mining and statistical
literature has focused almost exclusively on non-interactive mechanisms, and that
many of these mechanisms fall into the “local”, or “randomized response” frame-
work (see Related Work below).

1.2 Related Work

The literature in statistics and computer science on disseminating statistical data while
preserving privacy is extensive; we discuss only directly relevant work here.

Privacy from Perturbation. The venerable idea of achieving privacy by adding
noise is both natural and appealing. An excellent and detailed exposition of the many
variants of this approach explored in the context of statistical disclosure control un-
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til 1989, many of which are still important elements of the toolkit for data privacy today,
may be found in the survey of Adam and Wortmann Adam and Wortmann (1989). The
“classical” antecedent closest in spirit to our approach is the work of Denning Denning
(1980).

Perturbation techniques are classified into two basic categories: (i) Input pertur-
bation techniques, where the underlying data are randomly modified, and answers to
questions are computed using the modified data; and (ii) Output perturbation, where
(correct) answers to queries are computed exactly from the real data, but noisy versions
of these are reported. Both techniques suffer from certain inherent limitations (see be-
low); it seems that these limitations caused a decline in interest within the computer
science community in designing perturbation techniques for achieving privacy.

The work of Agrawal and Srikant Agrawal and Srikant (2000) rekindled this interest;
their principal contribution was an algorithm that, given an input-perturbed database,
learns the original input distribution. Subsequent work studied the applicability and
limitations of perturbation techniques, and privacy definitions have started to evolve,
as we next describe.

Definitional Work. Several privacy definitions have been put forward since Agrawal
and Srikant (2000). Their definition measured privacy in terms of the noise magni-
tude added to a value. This was shown to be problematic, as the definition ignored
what an adversary knowing the underlying probability distribution might infer about
the data Agrawal and Aggarwal (2001). Evfimievsky et al. Evfimievski et al. (2003)
noted, however, that such an average measure allows for infrequent but noticeable pri-
vacy breaches, and suggested measuring privacy in terms of the worst-case change in
an adversary’s a priori to a posteriori beliefs. Their definition is a special case of Defi-
nition 2.1 for input perturbation protocols of a limited form. A similar, more general,
definition was suggested in Dinur and Nissim (2003); Dwork and Nissim (2004); Blum
et al. (2005). This was modeled after semantic security of encryption.

Our basic definition of privacy, ε-differential privacy, requires that a change in one
database entry induce a small change in the distribution on the view of the adversary,
under a specific, “worst-case” measure of distance. It is the same as in Evfimievski
et al. (2003), adapted to general interactive protocols. An equivalent, semantic security-
flavored formulation is very close to the definitions from Dinur and Nissim (2003); Dwork
and Nissim (2004); Blum et al. (2005); those definitions allowed a large loss of privacy
to occur with negligible probability.

We note that k-anonymity Sweeney (2002) and the similarly motivated notion of
protection against isolation Chawla et al. (2005a;b) have also been in the eye of privacy
research. The former is a syntactic characterization of (input-perturbed) databases
that does not immediately capture semantic notions of privacy; the latter definition is a
geometric interpretation of protection against being brought to the attention of others.
The techniques described herein yield protection against isolation.
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Sum Queries. A cryptographic perspective on perturbation was initiated by Dinur
and Nissim Dinur and Nissim (2003). They studied the amount of noise needed to
maintain privacy in databases where a query returns (approximately) the number of
1’s in any given subset of the entries. They showed that if queries are not restricted,
the amount of noise added to each answer must be very high—linear (in n, the size of
the database) for the case of a computationally unbounded adversary, and Ω(

√
n) for a

polynomially (in n) bounded adversary. Otherwise, the adversary can reconstruct the
database almost exactly, producing a database that errs on, say, 0.01% of the entries.
In contrast, jointly with Dwork, they initiated a sequence of work Dinur and Nissim
(2003); Dwork and Nissim (2004); Blum et al. (2005) which showed that limiting the
users to a sublinear (in n) number of queries (“SuLQ”) allows one to release useful
global information while satisfying a strong definition of privacy. For example, it was
shown that the computationally powerful noisy sum queries discussed above, that is,∑n
i=1 g(i, xi), where g maps rows to values in [0, 1], can be safely answered by adding

o(
√
n) noise (from a gaussian, binomial, or Laplace distribution)—a level well below the

sampling error one would expect in the database initially. Dwork and Nissim (2004);
Blum et al. (2005) also introduced the concept of a privacy-preserving computation,
specifically, noise sums, as a computational primitive, a precursor of the programmable
nature of differential privacy.

1.3 Discussion

Since the appearance of the preliminary version of this paper Dwork et al. (2006b), dif-
ferential privacy has become a central concept in research on data privacy. By providing
the first definition that ensures precise and meaningful guarantees in the presence of
arbitrary side information, it has given rise to a large body of work that spans many
areas of computer science as well as statistics, economics, law and policy. An impas-
sioned argument for the choice of definition appears in Dwork (2006); Dwork and Naor
(2010).

The first large scale public implementation of a variation of differential privacy is in
the US Census Bureau’s OnTheMap, a mapping and reporting tool integrating adminis-
trative records with census and survey data Machanavajjhala et al. (2008). Differential
privacy in the local model, in which data are randomized to satisfy differential privacy
before collection (see Example 1 below) has been deployed for browser telemetry Er-
lingsson et al. (2014) and for learning trending behaviors Federighi (2016).

This paper is an update of the conference version Dwork et al. (2006b), with revisions
to presentation and terminology. We do not aim to survey all the subsequent work on
differential privacy. At the end of each section, we briefly discuss how the technical
ideas we present have affected subsequent research. We refer the interested reader to
several recent monographs and tutorials Dwork and Roth (2014); Vadhan (2016); Hardt
et al. (2016); Ligett et al. (2016).
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2 Definitions

We are concerned with the interaction between two parties: a database access protocol
M, given a static data set x as input, and an adversary A who makes queries to
and receives answers from M. It is convenient to allow messages to be either finite
strings or real-valued vectors. We model the adversary as a computationally unbounded,
probabilistic interactive function. Given a database access protocolM, an adversary A,
and a particular database x, let the random variable ViewM,A(x) denote the adversary’s
view of their interaction (meaning the list of messages sent back and forth as well as the
adversary’s internal state and random choices). The randomness in ViewM,A(x) comes
from the coins of M and of A. We will drop either or both of the subscripts M and A
when the context is clear. Note that for noninteractive schemes, there is no dependence
on the adversary A and we simply write M(x).

While we have been speaking of a database as a collection of rows, each containing
the data of an individual, it can also be useful to think of a database as a histogram
describing, for all possible types of individuals, the number of individuals of this type
in the database. For example, if an individual is represented by some number d of
attributes, the histogram would say, for each possible d-bit string s, the number of indi-
viduals in the database with attribute string s. More generally, letting N = {0, 1, . . . , },
a dataset is a finite multiset in a domain D, represented as a vector x ∈ N|D|, where the
ith entry counts the number of occurences in the dataset of the ith element in D (ac-
cording to some canonical order). We typically consider domains D of the form {0, 1}d
or Rd. Distance between datasets is measured via the set difference metric d4(·, ·),
defined as the `1 distance ‖x−x′‖1 between the two input multisets (that is, the size of
their symmetric difference). Differential privacy requires that similar datasets give rise
to similar distributions on outputs. More generally, it imposes a Lipschitz condition on
the mapping from datasets to the distribution on outputs.

Given a distance measure on datasets, we say two datasets are neighbors (or adja-
cent) if they are at distance 1. Differential privacy requires that neighboring datasets
lead to very similar distributions on transcripts. The stringency of the definitions is
measured by a positive parameter ε, called the privacy loss.

We begin by stating a definition for noninteractive mechanisms, which do not take
explicit input from an outside analyst, and discuss interactive mechanisms later in this
section. Formally, a noninteractive mechanism M is a randomized function from data
sets to some space O of outputs, namely a map from ND × Ω to O, where Ω is a
probability space. Each dataset x induces a distribution M(x) over O.

Definition 2.1. A noninteractive mechanismM is ε-differentially private (with respect
to a given distance measure) if for all neighboring datasets x,x′ ∈ ND, and for all events
(measurable sets) S in the space of outputs of M:

Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S) . (1)

The probabilities are over the coin flips of M.

We say that ε is a bound on the privacy loss of M. As we will see when we
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describe specific differentially private mechanisms, ε is typcially a parameter: the same
mechanism can usually be run with different values of ε.

Remark 2.1. In the preliminary version of this paper, datasets were vectors of known
length n with entries in D, with closeness measured via Hamming distance dH(·, ·) over
Dn×Dn. The definitions and results in this paper extend to the Hamming metric with
only minor changes, though the resulting definitions have subtly different interpreta-
tions; see Section 2.2. More generally, one can think of differential privacy as a family
of definitions parameterized by a collection of possible datasets and a metric on this
collection; see Section 2.2.

The Hamming distance definition is implied by the set difference definition (up to a
factor of 2 in the leakage ε). To see why, consider a domain of the form D′ = [n] ×D
for a fixed value of n. We can embed ordered lists as subsets of this new domain by
considering datasets of the form x = {(1, x̃1), (2, x̃2), . . . , (n, x̃n)} where the x̃i all lie in
D. Note that for any two such datasets x,x′ that differ on a single element, the set
difference distance between x and x′ is 2. IfM is ε-differentially private (as in Def. 2.1)
then, for all events S, we have Pr[M(x) ∈ S) ≤ e2ε Pr[M(x′) ∈ S]. ♦

Definition 2.1 is unusual for cryptography, in that in most cryptographic settings
it is sufficient to require that distributions be statistically close or that they be com-
putationaly indistinguishable. In contrast, Definition 2.1 is much more stringent than
statistical closeness: one can have a pair of distributions whose statistical difference is

arbitrarily small, yet where the ratio Pr(M(x)∈S)
Pr(M(x′)∈S) is infinite (by having a point where

one distribution assigns probability zero and the other, non-zero).

Definition 2.1 looks at the worst case over pairs of neighboring databases; the proba-
bilities in the definition only over the random choices of the mechanismM. In particular,
differential privacy requires randomization. That is, except for constant mechanisms,
which ignore their input and output a fixed value, deterministic mechanisms cannot
satisfy differential privacy.

For most mechanisms it suffices to quantify over singleton events S. Namely, if the
output space O is discrete, it suffices that Pr(M(x) = t) ≤ eε Pr(M(x′) = t) for all
outputs t ∈ O in order for (1) to hold (since the probability of an event E ⊆ O is the
sum of the probabilities of its elements). Similarly, if O is infinite but the distribution
M(x) has a well-defined density px for each x, then it suffices that px(t) ≤ eεpx′(t) for
all outputs t ∈ O.

Differential privacy captures a classical technique used in the social sciences to survey
the prevalence of embarassing or illegal practices Warner (1965). Usually described in
terms of a few flips of a fair coin, we frame the technique in terms of ε to illustrate its
adjustment to accomodate any given bound on the privacy loss.

Example 1 (Randomized response). Consider a survey setting, in which the individuals
in the survey are known and the goal is to determine the (approximate) fraction engaging
in a specific activity. Thus, for each individual i there is a secret bit xi ∈ {0, 1}. Two
such datasets are neighbors if they differ in one entry: That is, for some 1 ≤ i ≤ n,
the ith person does, or does not, engage in the activity, everyone else stays the same.



25

Consider randomizing each bit independently by flipping it with a certain probability.
Specifically, for b ∈ {0, 1}, let R(b) denote a Bernouilli random variable with Pr(R(b) =
b) = eε

eε+1 and Pr(R(b) = 1− bb) = 1
eε+1 . The mechanism outputs

M(x1, ..., xn) = (R(x1), ..., R(xn)).

This mechanism is ε-differentially private, since for any two neighboring datasets x,x′

differing only in the ith entry, and output y = y1, ..., yn, the ratio Pr(M(x)=y)
Pr(M(x′)=y) equals

Pr(R(xi)=yi)
Pr(R(x′

i)=yi)
. By definition of R, this ratio lies in e±ε, as desired.

We can use the mechanism to estimate the proportion of 1’s and 0’s in any subset of

individuals. For every x, given a response y1, ..., yn, the function g(y) =
∑
i

(eε+1)yi−1
eε−1

is an unbiased estimator of the number of 1’s in x, with standard deviation Θ(
√
n/ε)

as n→∞ and ε→ 0.

This technique has the strength of permitting estimations for the number of 1’s in
multiple subsets of the xj ’s with no further privacy loss. ♦

Definition 2.2 (Laplace Distribution). The Laplace distribution Lap(λ) has density
function h(y) = 1

2λ exp (−|y|/λ), mean 0, and standard deviation
√

2λ.

Example 2 (Laplace Noise). Suppose that the domain D is {0, 1} (so each person’s data
is a single bit), and again the analyst wants to learn f(x) = x(1), the total number of
1’s in the database. Here we are using the histogram representation of the dataset, and
adjacent datasets x,x′ satisfy ||x− x′||1 = 1.

Consider the mechanism that computes the true answer f(x) and then adds noise
drawn from the Laplace distribution with parameter 1/ε:

M(x) = f(x) + Y, where Y ∼ Lap(1/ε).

This mechanism, which adds noise of magnitude roughly 1
ε , independent of n, is

ε-differentially private. To see why, note that for any real numbers y, y′, we have
h(y)
h(y′) ≤ e|y−y

′|/λ. For any two databases x and x′ which differ in a single entry, the

sums f(x) and f(x′) differ by one. Thus, for every t ∈ R, the ratio of the densities

of the distribution of M on inputs x and x′ is
px(t)

px′ t)
= h(t−f(x))

h(t−f(x′)) , which is at most

eε|f(x)−f(x′)| ≤ eε, as desired. The same mechanism can be used to release a close
approximation to the total number of entries in the dataset x(0) + x(1).

The standard deviation of this estimator is roughly a factor of
√
n smaller than that

of the previous mechanism from Example 1. ♦

Taken together, these examples illustrate that, for a given goal, there may be several
differentially private algorithms with the same privacy parameter and different levels
of success achieving the goal. For a given value of ε, the definition specifies a set of
acceptable algorithms or processes.
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Non-negligible Leakage and the Choice of Distance Measure. Differential privacy can
be viewed as requiring that the probability distributions of M(x) and M(x′) be close
in the multiplicative metric on probability distributions. For two random probability
distributions p and q defined on the same σ-algebra of events, the distance is given by

sup
events S

∣∣∣∣ln(p(S)

q(S)

)∣∣∣∣ = inf
{
ε : for all events S, p(S) ≤ eεq(S) and q(S) ≤ eεp(S)

}
.

Note that, while we talk of “multiplicative” distance, since we are concerned with the
ratio of probabilities of a given event under two neighboring datasets, our formal measure
is the logarithm of this ratio. This is done for ease of use; for example, so that we can
apply the triangle inequality. Given random variables A and B, we write A ≈ε B to
denote that the distributions of A and B are within multiplicative distance at most ε.

In Example 2 above it is clear that to get any reasonable approximation to f(x),
we must have ε at least as large as 1/‖x‖, where ‖x‖ denotes the number of entries
in x. This value of ε is large for cryptography, where the usual requirement is for the
leakage, or security parameter (what we call here the privacy loss), to drop faster than
any polynomial in the lengths of the inputs. However, non-negligible privacy loss is
necessary for statistical utility: If the distance ε between the distributions induced by
close databases is much less than 1/‖x‖, then the distance between the distributions
induced by any two databases of size ‖x‖ is close to zero (at most ε‖x‖) and so no
statistic about the database can be usefully approximated.

The necessity of nonnegligible leakage helps to explain the choice of multiplicative
distance measure used in Definition 2.1. The following example illustrates why more
standard, “average-case”, distance measures such as total variation distance do not yield
meaningful guarantees when ε ≥ 1/‖x‖.

Example 3. Consider a setting where each entry in a dataset includes some identifying
information that makes it unique (say, name or social security number). Look at the
candidate sanitization M which, on input a set x, independently outputs each element
with probability ε (that is, it outputs a subsample of x where each entry appears with
probability ε). If x and x′ differ in a single position, the statistical difference between
M(x) and M(x′) is ε, since the probability that the one element in the symmetric
difference x4x′ appears in the output is ε (and the transcript distributions are identical
otherwise). Nevertheless, it is clear that such a mechanism reveals private information
about some subset (about an ε fraction) of the individuals in the dataset. When ε ≥
1/‖x‖, then the expected size of the set is at least 1.

This example mechanism does not satisfy differential privacy for any finite value
of ε, since if x and x′ differ by the addition of one entry x′ in x′ \ x, then the set of
outputs that include x′ has probability zero when the database is x, and probability ε
when the database in x′. With this mechanism, when n is large, the probability that
any specific individual’s privacy is compromised is small; but we find unpalatable a
“lottery” philosophy that sacrifices a small number of individuals on every invocation.
♦
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Interactive Mechanisms: Quantifying Over Adversaries. In many cases, it makes sense
to consider an interactive mechanism, which responds to queries from a potentially
adversarial analyst. In that case, the mechanism consists of a series of randomized
functions, one for each round, mapping a set of allowable queries to a set of outputs.
The adversary’s view of the interaction with the mechanism, denoted ViewM,A(x),
can then be described by the transcript—the sequence of messages exchanged between
mechanism and adversary—together with the randomness of the adversary. For a given
dataset x and adversary A, the adversary’s view is a random variable ViewM,A(x).

Definition 2.3. An interactive mechanismM is ε-differentially private (with respect to
a given distance measure) if for all neighboring datasets x,x′ ∈ D∗, for all adversaries
A, and for all events (measurable sets) S in the space of views:

Pr(ViewM,A(x) ∈ S) ≤ eε Pr(ViewM,A(x′) ∈ S) . (2)

As we will see in the next section, this more complicated definition is usually not
needed, since we can design interactive mechansism by ensuring that ear round (viewed
as a noninteractive mechanism) is differentially private.

2.1 Fundamental Properties

In this section we discuss some fundamental properties that follow from the defini-
tion of differential privacy. All differentially private algorithms enjoy these properties.
Throughout the section, we use the notation for noninteractive mechanisms since it is
easier to read; the discussion applies equally well to the interactive case.

Immunity to Auxiliary Information. Differential privacy makes no reference to an input
distribution, and it makes sense regardless of what other information the adversary
has—or will have in the future—about the data set. We discuss this idea further in
Section 2.2.

Postprocessing. Anything derived from the output of a differentially private algorithm
is itself differentially private, and the derivation incurs no further privacy loss.

Proposition 2.4 (Closure under postprocessing). Let g be a randomized function. If
M is an ε-differentially private mechanism, then the mechanism M′ = g ◦ M is ε-
differentially private.

Proof. Fix an event S in the output space of g and neighboring data sets x,x′. Let
R be a random variable denoting the randomness used by g, and write g(z) = g̃(z;R)
where g̃ is deterministic. Then Pr(g(M(x)) ∈ S) = Pr((M(x), R) ∈ g̃−1(S)). For each
possible value r of R, let Sr = {s : (s, r) ∈ g̃−1(S)}. Since M is ε-differentially private,
for each value r we have Pr(M(x) ∈ Sr) ≤ eε Pr(M(x′) ∈ Sr), hence Pr(g̃(M(x), R) ∈
S|R = r) ≤ eε Pr(g̃(M(x′), R) ∈ S|R = r). We conclude that Pr(g̃(M(x), R) ∈ S) ≤
eε Pr(g̃(M(x′), R) ∈ S), as desired.
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Composition. Differentially private algorithms compose, in the sense that when several
differentially private algorithms are run “independently” (that is, using independent
randomness), then the joint output of all the algorithms is still differentially private.
The simplest form of this is the following:

Lemma 2.5 (Simple Composition). Let M1, ...,Mk be a fixed sequence of mecha-
nisms, where Mi is εi-differentially private. Then their joint output, given by M(x) =

(M1(x), . . . ,Mk(x)), is ε-differentially private for ε =
∑k
i=1 εi.

In fact, the lemma holds even when the mechanisms run on the data maybe specified
adaptively, based on the outputs of previous mechanisms. To formalize the adaptive
model, imagine an interaction between an analyst/adversary A and a curatorM holding
a dataset x. At each round i from 1 to k, where k is finite but need not be fixed in
advance, the analyst A specifies a positive number εi and a mechanism Mi that is
εi-differentially private. The curator computes ai ← Mi(x) and sends ai to A. The
transcript of the interaction is the sequence of triples {(εi,Mi, ai)}i=1,...,k.

Lemma 2.6 (Composition). Suppose that there is an ε > 0 such that the curator M
stops answering queries in the first round j where

∑j
i=1 εi > ε, thereby ensuring that∑

i εi ≤ ε for the rounds at which queries were answered. Then M is ε-differentially
private.

Before proving the lemma, we note that composition has (at least) two important
consequences. First, differentially private algorithms may be constructed modularly.
For example, if we wish to design an interactive protocol, then it suffices that each
round of the protocol be differentially private. The computation done at a given round
may depend arbitrarily on the outputs of past rounds. Similarly, we may design an iter-
ative algorithm that proceeds in stages, where outputs from early stages determine the
computations performed in later ones. We give examples of such iterative mechanisms
in Section 3.

Second, if differentially private mechanisms are run separately on different datasets,
then the joint output is still differentially private even for individuals whose data appear
in several of the data sets. For example, suppose that two hospitals which serve over-
lapping populations independently run ε-differentially private algorithms M1 and M2

on their datasets. We may view the data collected by the two hospitals as a single large
dataset x (where each individual’s entry contains data from one or both hospitals), and
view M1 and M2 as each operating on different parts of x. The composition lemma
then implies that the joint output of M1 and M2 is 2ε-differentially private. Many
natural approaches to defining privacy do not yield composable definitions.

Proof. For simplicity we will assume that all the mechanismsMi have the same output
space O. 2 Also for simplicity, assume that O is discrete; the general case follows by a
similar argument. Consider the case k = 2. Fix a pair of neighboring datasets x and

2This is without loss of generality, as otherwise we can define O = ∪iOi.
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x′, an analyst A, and random coins r for the analyst (or, more simply, we can consider
a deterministic analyst). LetM1 denote the first mechanism selected by A the analyst.

The second mechanism depends on the output of M1; let M(a)
2 denote the mechanism

selected in the second stage when a is the output ofM1, and let ε
(a)
2 denote the privacy

loss of M(a)
2 . Consider an event S ⊆ O × O. For each element a of O, define the set

Sa = {s : (a, s) ∈ S}. We can write

Pr(M(x) ∈ S) =
∑
a∈O

Pr(M1(x) = a) Pr(M(a)
2 (x) ∈ Sa).

By the differential privacy ofM1 andM(a)
2 , we get Pr(M1(x) = a) ≤ eε1 Pr(M1(x′) =

a) and Pr(M(a)
2 (x) ∈ Sa) ≤ eε

(a)
2 Pr(M(a)

2 (x′) ∈ Sa). Since ε1+ε
(a)
2 ≤ ε for all a ∈ O (by

the constraint imposed by the curator), we have Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S), as
desired.

The argument extends to all finite k > 2 by induction.

Group Privacy. Differential privacy with respect to changes of an individual’s data im-
plies differential privacy with respect to changes in the data of small sets of individuals.

Definition 2.7. A mechanism is (k, ε)-differentially private if for all pairs x,x′ which
differ in at most k entries (that is, d4(x,x′) ≤ k), for all adversaries A and for all
events S in the output space, Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S).

In this case we may say the mechanism is ε-differentially private for groups of size k.

Lemma 2.8. Every (1, εk )-differentially private mechanism is also (k, ε)-differentially
private.

Proof. Consider a chain of at most k databases connecting x to x′, where only one entry
changes at each step. The probability of any event changes by a factor of exp(±ε/k) at

each step, so Pr(M(x)∈S)
Pr(M(x′)∈S) ∈ exp(±ε/k)k = exp(±ε).

2.2 Bibliographic Notes and Discussion

In the initial version of this paper, differential privacy was called indistinguishability.
The name “differential privacy” was suggested by Michael Schroeder, and was first used
in Dwork (2006). The initial version of this paper used the Hamming metric on data
sets; we adopt the more general set difference metric here.

The composition and postprocessing properties stated in Section 2.1 did not appear
in the initial version, although they were known at the time and have since become
folklore. The failures to compose suffered by other approaches to defining privacy are
discussed by Ganta et al. (2008). Some relaxations of differential privacy are known to
satisfy even stronger composition properties (Dwork et al. (2010); Dwork and Rothblum
(2016); Bun and Steinke (2016)).
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Interpreting Differential Privacy

In Appendix 4.4, we discuss some alternate formulations of differential privacy in terms
of simulation, and the change to an adversary’s prior distribution about an individual.

Subsequent to the original version of this paper, significant research considered dif-
ferent interpretations of differential privacy. The definition of semantic privacy given
in this paper provides guarantees on how a Bayesian adversary’s posterior distribution
compares to its prior, under assumptions on the form of the adversary’s prior. Such
assumptions are known to be necessary (Dwork, 2006; Dwork and Naor, 2010; Kifer
and Machanavajjhala, 2011). In contrast, one may also formulate definitions by com-
paring the adversary’s posterior distributions in different settings (say, assuming that
someone’s data was or was not used in the computation) Kasiviswanathan and Smith
(2008); Bassily et al. (2013).

McSherry and Talwar (2007) provided a game-theoretic interpretation of differential
privacy. Specifically, suppose that individual i has preferences over the possible out-
comes O of the mechanism Z, and that these preferences are expressed via a nonnegative
utility function ui : O → R≥0. Then, for any two neighboring databases x,x′ differing
in the data of the ith individual, the expected utility experienced by i will be essen-
tially the same regardless of which dataset is used: E(ui(M(x))) ≤ eεE(ui(M(x′)))
and E(ui(M(x))) ≥ e−εE(ui(M(x′))). This has implications for (approximate) truth-
fulness, since there is litte incentive to misreport one’s data.

Finally, Wasserman and Zhou (2010) provided an interpretation of differential pri-
vacy, based on hypothesis-testing, that is close to our notion of semantic privacy. Specif-
ically, fix an ε-differentially private mechanism M, an i.i.d. distribution on the data x,
an index i, and disjoint sets S and T of possible values for the i-th entry xi of x. Then
any hypothesis test (given M(x), and full knowledge of the input product distribution
on x and the differentially private mechanismM) for the hypothesis H1 : xi ∈ S versus
the alternative H1 : xi ∈ T must satisfy

1− β ≤ eεα , (3)

where α is the significance level (maximum type-I error, or “false positive”) and 1− β
is the power (β is the maximum type-II error, or “false negative”) of the test. In
other words, the test rejects the hypothesis with approximately the same probability
regardless of whether the hypothesis is true.

Generalizations and Variants

The mostly widely used variant of differential privacy is (ε, δ)-differential privacy (first
stated in Dwork et al. (2006a) and closely related to the definition used in Dinur and
Nissim (2003); Dwork and Nissim (2004); Blum et al. (2005)); this definition adds an
additive approximation (+δ) to the inequality in Equation (1). When δ is sufficiently
small (in particular, much smaller than 1/n), the definition provides similar semantics
to ε-differential privacy Kasiviswanathan and Smith (2008).
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Several other variants and generalizations of differential privacy have appeared since
the original version of this paper. Among other features, these variants seek to incor-
porate specific types of data (such as graphs, where each edge may depend on more
than one person’s information), known dependencies among data records, adversarial
uncertainty, computational considerations, and optimization for a high degree of com-
position.

3 Sensitivity and Privacy

We now present the most basic tool for constructing differentially private mechanisms.
We formally define sensitivity of functions and then prove that choosing noise dis-

tributed according to the Laplace distribution with expected magnitude S(f)
ε ensures

ε-differential privacy when the query function f has sensitivity S(f). We extend the
analysis to vector-valued functions f , and even to adaptively chosen series of query
functions. Intuitively, this analysis shows how a “privacy budget” ε can be spent by a
sequence of queries.

Definition 3.1 (L1 Sensitivity). The L1 sensitivity of a function f : D∗ → Rd is the
smallest number S(f) such that for all neighboring datasets x,x′,

‖f(x)− f(x′)‖1 ≤ S(f) .

Recall that neighboring datasets are defined to be multisets whose symmetric dif-
ference is a singleton. This yields S(f) = supx,x′:d4(x,x′)=1 ‖f(x) − f(x′)‖1. A simple
application of the triangle inequality shows that sensitivity is a Lipschitz condition on
f : for all pairs of data sets x,x′ ∈ D∗:

‖f(x)− f(x′)‖1
d4(x,x′)

≤ S(f).

We note that the neighboring relation is often defined in terms of the Hamming
distance (instead of size of symmetric difference) yielding a slightly different notion of
sensitivity. All our results can be easily modified to accomodate this variant. Further-
more, one can define sensitivity with respect to any metric on the output space; see
Section 3.3.

Example 4 (Sums, Counts and Histograms). Consider SUMv(x) =
∑|x|
i=1 v(xi) where

v : D → Rd and assume a bound ‖v(x)‖1 ≤ γ for all x ∈ D, so that S(SUMv) ≤ γ.
As a special case, taking v(x) = 1 for all x ∈ D, we obtain the function computing

the number of individuals in x, COUNT(x) = |x| =
∑|x|
i=1 v(xi) =

∑|x|
i=1 1, and hence

S(COUNT) = 1.

Now consider an arbitrary partition of the domainD into d disjoint regionsB1, . . . , Bd.
The histogram function HIST : N|D| → Zd counts the number of dataset points which
fall into each of the bins HIST(x) = (|x ∩ B1|, . . . , |x ∩ Bd|). We may capture this

as HIST(x) =
∑|x|
i=1 v(xi), where, the function v maps each data item to a vector of
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dimension d containing d− 1 zeroes and a single one: v(x) = (0, 0, ..., 1, ...0). Note that
||v(x)||1 = 1 for all x ∈ D and so S(HIST) = 1. Indeed, neighboring databases have
histograms that differ in exactly one of the counts—one bin loses or gains a point. ♦

3.1 Calibrating Noise According to SL1(f)

Definition 3.2 (Laplace Probability Distribution). The Laplace distribution with pa-
rameter λ, denoted Lap(λ), is the distribution on R with probability density function

p(y) =
1

2λ
e−λ|x|.

The distribution has mean 0 and standard deviation λ
√

2. The d-dimension Laplace
distribution on Rd, denoted Lap(λ)d, is a product of d Laplace distributions; that is, the
coordinates are i.i.d. Lap(λ).

Observe that for Y drawn from the Laplace distribution, p(y)/p(y′) ≤ e|y−y
′|/λ.

Similarly, for Y drawn from the d-dimensional Laplace distribution, the density function
at y is proportional to exp(−λ‖y‖1), and so for any points y, y′ ∈ Rd, we have:

p(y)

p(y′)
≤ exp(λ‖y − y′‖1) . (4)

It follows that to release a (perturbed) value f(x) while satisfying differential privacy,
it suffices to add Laplace noise with λ = S(f)/ε in each coordinate:

Proposition 3.3 (Laplace Mechanism—Nonadaptive Version). For all f : D∗ → Rd,
the following mechanism is ε-differentially private:

Mf (x) = f(x) + (Y1, . . . , Yd) where the Yi are drawn i.i.d. from Lap(S(f)/ε).

Proof. We introduce some notation. Consider the random variable corresponding to
the outcome of mechanism Mf when executed with input x. We use p[M(x) = z]
to denote the probability density of this variable at point z. Let x,x′ be neighboring
databases. From Equation (4) we have that

p[Mf (x) = z]

p[Mf (x′) = z]
≤ exp

(
ε · ‖f(x)− f(x′)‖1

SL1
(f)

)
≤ exp(ε). (5)

Let Z ⊂ R be a measurable set. Using Eqn. (5) we get

Pr[Mf (x) ∈ Z] =

∫
z∈Z

p[Mf (x) = z]dz

≤ exp(ε)

∫
z∈Z

p[Mf (x′) = z]dz

= exp(ε) · Pr(Mf (x′) ∈ Z).
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Dealing with Adaptivity

Proposition 3.3 is a special case of the privacy of a more general, possibly adaptive,
interactive process. Adaptivity complicates the nature of the “query function”, which is
no longer predetermined, but rather a strategy for producing queries based on answers
given thus far. For example, an adaptive histogram query might ask to refine those
regions with a substantial number of respondents, and we would expect the set of such
selected regions to depend on the random noise incorporated into the initial responses.

Consider a querying strategy A issuing a sequence of k adaptive queries toM. The
i-th query fi : N|D| → R is a function that maps data sets to reals; let ai denote
the answer sent by M back to A. Note that fi is determined by a1, . . . , ai−1 and the
random coins r tossed by A. The view of A in the interaction can be summarized by
the vector (r, a1, a2, . . . , ak)—we can omit the fi since they are determined by r and the
aj , for j < i. For any particular view v, consider the function fv : ND → Rk whose ith
coordinate fvi is the i-th query in the interaction described by v. We use the superscript
v to make the dependency on the transcript explicit.

Consider a mechanism M that, upon receiving the i-th query, either (a) answers
ai = fvi (x) + Lap(λ) for some fixed λ, or (b) refuses to answer (ai =⊥). We can bound
the privacy loss in this interaction in terms of the L1 sensitivity of the joint function fv,
yielding a more nuanced version of composition than given in Lemma 2.6. The server
limits the queries by refusing to answer once the sensitivity S(fv1 , . . . , f

v
i ) is above a

certain threshold T . Note that the decision whether or not to respond is based solely
on S(fv1 , . . . , f

v
i ), independent of the data set x. This decision is not disclosive, since it

can be computed by the user submitting the queries.

Theorem 3.4 (Laplace Mechanism—Adaptive Version). Consider an arbitrary adap-
tive query strategy and let fv(x) : N|D| → Rk be its query function as parameterized by a
view v = (r, a1, a2, . . . , ak). The mechanism above, which answers ai = fvi (x)+Lap(T/ε)
as long as S(fv) ≤ T , is ε-differentially private.

Proof. Let x,x′ be neighboring data sets. Using the law of conditional probability,

p[(r,M(x)) = (r, a1, a2, . . . , ak)]

p[(r,M(x′)) = (r, a1, a2, . . . , ak)]
=

∏
i≤k

p[M(x)i = ai|r, a1, . . . , ai−1]

p[M(x′)i = ai|r, a1, . . . , ai−1]
.

For each term in the product, fixing r and the first i − 1 answers a1, . . . , ai−1 fixes
the values of fvi (x) and fvi (x′). As such, the conditional distributions on ai are either
Lap(λ), with λ = T/ε, or the constant ⊥. We can bound the product as∏

i≤k

p[M(x)i = ai|r, a1, . . . , ai−1]

p[M(x′)i = ai|r, a1, . . . , ai−1]
≤

∏
i≤k

exp(|fvi (x)− fvi (x′)|/λ)

= exp(‖fv(x)− fv(x′)‖1/λ)

≤ exp(SL1(fv)/λ) ≤ exp(ε),

where the last inequality follows from our setting of λ.
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3.2 Some Useful Insensitive Functions

We describe specific functionalities which have low sensitivity, and which consequently
can be released with little added noise using the protocols of the previous section. In
many cases, the sensitivity-based approach presented here permits the introduction of
far less distortion than suggested by previous frameworks Blum et al. (2005), while
ensuring a cleaner notion of privacy.

Disjoint Analyses. There are many types of analyses that first partition the input
space into disjoint regions and then examine each region separately. One very simple
example of such an analysis is a histogram, which simply counts the number of elements
that fall into each region. Imagining that D is subdivided into d disjoint regions and
that f : D∗ → Zd is the function that counts the number of elements in each region,
we saw in Example 4 that S(f) = 1, and so we can apply the Laplace mechanism
with λ = 1/ε to each count independently. In contrast, in the framework of Blum
et al. (2005), the noise has expected magnitude Θ(

√
d/ε). This Θ(

√
d) factor can be

significant in applications where the number of regions d exceeds the number n of data
points—which is often the case with contingency tables.

More generally, letting D be partitioned into d disjoint regions B1, . . . , Bd, let f =
(f1, . . . , fd) : D∗ → Rd be a function whose i-th output coordinate f(x)i depends only
on those elements in the i-th region, i.e., x ∩ Bi. Let x′ be a neighbor of x resulting
from the addition or removal of an entry and observe that f(x)i 6= f(x′)i for at most
one i ∈ [d]. We hence get that S(f) ≤ maxi S(fi). Again, and importantly, the bound
is independent of the output dimension d.

Distance from a Property. A property is a subset S of D∗. The distance fS(x)
between a particular dataset x and S is the cardinality of the symmetric difference
between x and its nearest point x′ in S (i.e., the minimum number of changes in terms
of removing and inserting elements to x that lead to an element of S). For example, we
might ask how close to well-clustered a dataset is, meaning, how many data points need
to be changed for a clustering of at least given quality to exist. For any set S ⊆ D∗,
fS(x) has sensitivity (at most) 1.

Mean and Covariance. One very common analysis applied to datasets is estimating
the mean and covariance of attributes of the data. Let v : D → Rd be some function
mapping rows in the database to column vectors in Rd, and assume an upper bound
γ = maxx∈D ‖v(x)‖1. The mean vector µ and covariance matrix C are defined as



35

follows:

µ(x) = avg
i
v(xi) =

1

|x|

|x|∑
i=1

v(xi)

and C(x) = avg
i
v(xi)v(xi)

T − µµT =
1

|x|

|x|∑
i=1

v(xi)v(xi)
T − µµT .

The mean can be simply estimated as µ(x) = SUMv(x)/COUNT(x) where COUNT(x)
and SUMv(x) are from Example 4. The covariance matrix can be treated similarly:
viewing the d×d matrice v(x)v(x)T as a d2 dimensional vector, avgi v(xi)v(xi)

T can be

estimated as SUMvvT (x)/COUNT(x), where SUMvvT (x) =
∑|x|
i=1 v(xi)v(xi)

T . Ob-
serve that ‖v(x)v(x)T ‖1 ≤ γ2 and hence S(SUMvvT ) ≤ γ2. We can therefore construct
the following 3ε-differentially private mechanism for estimating mean and covariance:

M(x) : Let ñ = COUNT(x) + Lap(1/ε).

Let s̃ = SUMv(x) + Lap(γ/ε)d.

Let c̃ = SUMvvT (x) + Lap(γ2/ε)d
2

.

Output µ̃ = s̃/ñ.

Output C̃ = c̃/ñ− s̃s̃T /ñ2.

The mechanism is 3ε-differentially private by the composition property (Lemma 2.6).

In the framework of Blum et al. (2005), the noise added to each query is proportional
to the square root of the number of queries. For SUMv this gives noise proportional
to γ
√
d in each of its d coordinates and for SUMvvT this gives noise proportional to

γ2d in each of its d2 coordinates. By treating the coordinates jointly, our mechanism
M hence improves the noise in estimating SUMv and SUMvvT by factors of

√
d and d

respectively, while also providing a stronger privacy guarantee than Blum et al. (2005).

Functions with Low Sample Complexity. Any function f which can be accurately
approximated by an algorithm which looks only at a small fraction of the database has
low sensitivity, and so the value can be released with relatively little noise. In particular,
functions which can be approximated based on a random sample of the data points fit
this criterion.

Lemma 3.5. Let f : D∗ → Rd. Suppose there is a randomized algorithm A such that
for all input datasets x: (1) A operates on a subsample x̃ of x where each element of x
appears in x̃ with probability at most α, and (2) ‖A(x)− f(x)‖1 ≤ σ with probability at
least β > 1+α

2 . Then S(f) ≤ 2σ.

The lemma translates a property of f related to sample complexity into a combi-
natorial property related to privacy. It captures many of the low-sensitivity functions
described in the preceding sections, although the bounds on sensitivity given by the
lemma are often quite loose.
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Proof. Let x = (x1, . . . , x|x|). For any i ∈ [|x|] denote by A(x)
∣∣
−i the distribution

on the outputs of A conditioned on the event that xi is exluded from the subsample
x̃. By the definition of conditional probability, we get that for all x the probability
that A(x)

∣∣
−i is within distance σ of f(x) is strictly greater than (β − α)/(1− α) ≥ 1

2 .

Let x′ = x \ {xi}. By the union bound, there exists some point p in the support of
A(x)

∣∣
−i which is within distance σ of both f(x) and f(x′), and hence ‖f(x)−f(x′)‖1 ≤

‖f(x)− p‖1 + ‖p− f(x′)‖1 ≤ 2σ.

One might hope for a converse to Lemma 3.5, but it does not hold; not all functions
with low sensitivity can be approximated by an algorithm with low sample complexity.
The counterexample is easiest to state for Hamming distance, though it extends directly
to set difference: let D = GF (2dlogne) and let f(x) denote the Hamming distance
between x and the nearest codeword in a Reed-Solomon code of dimension k = n(1 −
o(1)). One cannot learn anything about f(x) if one sees fewer than k positions of the
input3, and yet f has sensitivity 1.

3.3 Sensitivity in General Metric Spaces

The intuition that insensitive functions of a database can be released privately is not
specific to the L1 norm. Indeed, it seems that if removing or adding one entry to x
induces a small change in f(x)—under any measure of distance on f(x)—then we should
be able to release f(x) privately with relatively little noise. We formalize this intuition
for a general metric dZ on the output f(x). We will use symmetry, i.e. dZ(x, y) =
dZ(y, x), and the triangle inequality: dZ(x, y) ≤ dZ(x, z) + dZ(z, y).

Definition 3.6. Let Z be a metric space with a distance function dZ(·, ·). The sen-
sitivity SZ(f) of a function f : D∗ → Z is the amount that the function value varies
when a single entry of the input is changed.

SZ(f)
def
= sup

x,x′: d4(x,x′)=1

dZ(f(x), f(x′))

Given a point z ∈ Z, (and a measure on Z) we can attempt to define a probability
density function

pz,ε(y) ∝ exp

(
ε · dZ(y, z)

2 · SZ(f)

)
.

There may not always exist such a density function, since the right-hand expression
may not integrate to a finite quantity. However, if it is finite then the distribution given
by pz,ε(·) is well-defined.

3This follows from the fact that a random Reed-Solomon codeword can be thought of as a Shamir
secret sharing of a random secret, and so any subset of k positions will look uniformly random, regardless
of whether the data set is a random codeword or a uniformly random string drawn from the entire space.
See Ben-Sasson et al. (2003) for a discussion of other, simpler sets that satisfy similar properties.
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To reveal an approximate version of f(x) with sensitivity S, one can sample a value
according to pf(x),ε/SZ(f)().

p[M(x) = y] = pf(x),ε/SZ(f)(y)

=
exp

(
ε

2SZ(f) · dZ(y, f(x))
)

∫
z∈Z exp

(
ε

2SZ(f) · dZ(z, f(x))
)
dz
. (6)

Theorem 3.7. In a metric space where pf(x),ε/SZ(f)() is well-defined for all x, adding
noise to f(x) as in Eqn. (6) preserves ε-differential privacy.

Proof. Let x and x′ be two neighboring databases. The distance dZ(f(x), f(x′)) is at
most SZ(f). For all y we get

exp
(

ε
2SZ(f) · dZ(y, f(x))

)
exp

(
ε

2SZ(f) · dZ(y, f(x′))
) = exp

(
ε

2SZ(f)
· (dZ(y, f(x))− dZ(y, f(x′)))

)

≤ exp

(
ε

2SZ(f)
· (dZ(f(x), f(x′)))

)
≤ eε/2,

where the first inequality follows by triangle inequality and the second inequality follows
from the definition of SZ(f).

For the normalization factor
∫
y∈Z exp

(
ε·dZ(y,f(x))

2S(f)

)
dy a similar analysis gives that

on any point y the integrand differs on x and x′ by at most a factor of eε/2. Hence

∫
y∈Z exp

(
ε·dZ(y,f(x′))

2S(f)

)
dy∫

y∈Z exp
(
ε·dZ(y,f(x))

2S(f)

)
dy
≤ eε/2.

We conclude that the ratio pf(x),ε/SZ(f)(y)
/

pf(x′),ε/SZ(f)(y) is bounded by eε/2 ·
eε/2 = eε, as desired.

Remark 3.1. One can dispense with the factor of 2 in the definition of pz,ε() in cases
where the normalization factor does not depend on x. This introduces slightly less noise.
♦

As a simple example, consider a function whose output lies in the Hamming cube
{0, 1}d. By Theorem 3.7, one can release f(x) safely by flipping each bit of the output
f(x) independently with probability roughly 1

2 −
ε

2S(f) .
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3.4 Bibliographic Notes and Discussion

The mechanisms discussed in this section add data-independent noise to the value of a
function of the data set. There are now many differentially private mechanisms based
on more sophisticated kinds of randomization. However, the Laplace mechanism of
Proposition 3.3 remains widely used, both as is, and as a subroutine in more sophis-
ticated differentially private algorithms. The Laplace mechanism is also the basis for
most current implementations of differentially private mechanisms.

While L1 sensitivity is often the right notion for differential privacy, it is not the only
relevant notion of sensitivity. For example, L2 sensitivity is the right notion for adding
Gaussian noise instead of Laplace noise; this yields (ε, δ)-differential privacy Dwork
et al. (2006a). Subsequent to the initial version of this work, research showed that
data-dependent distortion is often much more powerful. The framework of smooth
sensitivity Nissim et al. (2007) allows the release of f(x) with noise magnitude that
depends both on f and x. To ensure that the noise magnitude does not leak information
about x, noise is calibrated to a measure of variability of f in the neighborhood of the
instance x. In the PTR (propose-test-release) framework Dwork and Lei (2009), a
mechanism first tests (with differential privacy) that the sensitivity of f is low in the
neighborhood of the dataset x, and only proceeds if the test indicates low sensitivity,
in which case Laplace noise is added to f(x).

A significant line of work investigates the release of functions f that consist of m
linear queries. The seminal paper of Blum et al. (2008) showed that data-dependent
noise could allow one to release exponentially many such queries with high accuracy.
This led to a large body of follow-up work, for example, the development of on-line
techniques based on the multiplicative weights algorithm Dwork et al. (2009); Hardt
and Rothblum (2010), and geometric techniques that vastly generalize Section 3.3 (e.g.,
Hardt and Talwar (2010)). These investigations have also led to a fascinating interplay
with computational complexity theory (e.g., Dwork et al. (2009); Vadhan (2016)).

The Laplace mechanism applies only to functions that return numerical values, but
there is also now a wide range of differentially private mechanisms for other types of
outputs. The exponential mechanism McSherry and Talwar (2007) extends the Laplace
mechanism as one of the basic constructions for differential privacy. This mechanism
provides the basis for both practical algorithms and fundamental feasibility results, for
example on differentially private learning Kasiviswanathan et al. (2008).

4 Separating Interactive from Non-Interactive Mecha-
nisms

Consider a query set of interest, and consider database access mechanisms providing
(distorted) answers to queries from this set. So far, we have focused on mechanisms
based on Laplace noise (Proposition 3.3) that answer one query at a time. However,
ideally, one would want to release a single “synopsis” that allows users to answer many
different queries. More formally, a non-interactive ε-differentially private mechanism for
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answering a set F of queries consists of two algorithms MNI = (M,Eval) where M is
is an ε-differentially private mechanism. First, M is executed on an input dataset x
and outputs a “summary” s (this can be an arbitraty data structure). Then, Eval(s, f)
is executed to answer the query function f in the set F . We show that generating such
synopses differentially privately is impossible when the set F is very large.

In this section, it will be more convenient to work with the Hamming distance
version of differential privacy. Here data sets are ordered vectors of a known length n,
with entries in a domain D (so that x ∈ Dn). Two data sets are neighbors if they differ
in one element, and the privacy condition holds for all such pairs of neighbors. As usual,
ε-differential privacy requires probabilities of events to be within a factor of eε on any
pair of neighboring databases.

We consider “counting” queries, specified by a predicate v : [n]×D → {0, 1}, where
the query value is

SUMv(x) =

|x|∑
i=1

v(i, xi).

Note that the the predicate takes as input the index i as well as xi.

Observation 1. The sensitivity of SUMv is S(SUMv) = maxx∈D v(i, x) ≤ 1. Hence,
the mechanism that answers any single query with Laplace noise Lap(1/ε) is ε-differentially
private. This mechanism gives a good additive approximation to SUMv(x) as long as ε
is larger than 1/|x|.

We show below that for any noninteractive ε-differentially private mechanismMNI ,
there are many functions v for which SUMv() cannot be answered by MNI unless the
dataset consists of at least about |D|1/3 points. For these queries, it is not possible to
distinguish the synopsis of a dataset in which v(i, xi) = 0 for all xi ∈ x from a dataset
in which v(i, xi) = 1 for all xi ∈ x.

Let D = {0, 1}d. We look at a class of predicates based on the inner product modulo
2. Given strings r, x ∈ {0, 1}d, let r � x denote the modulo 2 inner product of r and x,
that is r � x =

⊕
j x

(j)r(j). Given a list of strings r = (r1, r2, ..., rn) ∈ ({0, 1}d)n, we
can define a predicate vr : [n]×D → {0, 1} by vr(i, x) = ri�x. For such a predicate vr
and a data set x = (x1, x2, ..., xn), we have

SUMvr(x) =

n∑
i=1

vr(i, xi) =

n∑
i=1

ri � xi .

Theorem 4.1 (Non-interactive Mechanisms Require Large Databases). Suppose that
M is an ε-differentially private non-interactive mechanism with domain D = {0, 1}d.
For all n and for at least 2/3 of the strings r = (r1, ..., rn) in ({0, 1}d)n, the following
two distributions have statistical difference O(n4/3ε2/32−d/3):

Distribution 0: M(x) where x = {(1, x2), . . . , (n, xn)}, xi ∈R {x ∈ Dn : SUMvr(x) = 0} ,
Distribution 1: M(x) where x = {(1, x2), . . . , (n, xn)}, xi ∈R {x ∈ Dn : SUMvr(x) = n} .
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The proof of Theorem 4.1 is postponed until Section 4.2, where it accompanies a
similarly structured proof for a second separation result stated in Proposition 4.2 below.

For now, observe that Theorem 4.1 implies that in any given run of the mechanism
M, it is impossible to learn a reasonable approximation to SUMvr(x) (since even dis-
tinguishing between its extreme values, 0 and n, is impossible to do reliably). The order
of the quantifiers is important: as pointed out in Observation 1, there exists a mech-
anism that can accurately answer any particular query SUMvr(·). However, no single
non-interactive scheme can simultaneously answer most queries of this form, unless n
grows exponentially with d.

The strong, multiplicative notion of ε-differential privacy in Definition 2.1 is essential
to Theorem 4.1. Consider, for example, the candidate synopsis which outputs m pairs
(i, xi) for uniformly random indices in i in [n]. When m = θ(1) this is essentially
Example 3; it fails to satisfy differential privacy but yields O(1/n)-close distributions
on every pair of neighboring, n-entry databases. However, such a mechanism does
permit estimating SUMvr(x) for most r within additive error O(n/

√
m). Thus, even

for constant m, this is better than what is possible for any ε-differentially private non-
interactive mechanism scheme when n = 2o(d).

Relation to Previous Impossibility Results. For binary data sets (where D = {0, 1}),
Dinur and Nissim Dinur and Nissim (2003) showed that every synopsis mechanism that
answers all 2n possible counting queries within additive error cn, for small enough c,
breaches any reasonable notion of privacy in that it allows one to reconstruct almost
the entire data set. The statement of Theorem 4.1 is incomparable: in one sense, it is
weaker since it is specific to differential privacy. On the other hand, it is stronger since
it rules out answering most queries within any nontrivial error whatsoever.

One can formulate these impossibility results in different terms. We consider three
key parameters: |D|, the size of the domain, n the size of the database, and k the number
of queries that cannot be reliably answered. The results of Dinur and Nissim Dinur and
Nissim (2003) use k = 2n = |D|n queries to reconstruct a dataset with n. In contrast,
our results rule out differentially private mechanisms that answer k = 2nd = |D|n queries
(so the size of D is larger, but the relation between D, n and k remains the same). We
discuss more recent lower bounds in Section 4.4.

4.1 A Stronger Separation for Local Mechanisms (Randomized Re-
sponse)

Local mechanisms (sometimes called randomized response schemes) are a class of non-
interactive schemes in which each user’s data is perturbed individually, and then the
perturbed values are published or collected by the analyst. Formally, a local algorithm
is a randomization operator Z : D → {0, 1}∗ such that

MZ(x1, . . . , xn) = (Z(x1), . . . , Z(xn)).
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With a local algorithm, no central server need ever see the individuals’ private data:
each user i computes Z(xi) and releases only that.4 Local mechanisms have their roots
in Warner (1965).

We now strengthen Theorem 4.1 for randomized response schemes. We consider a
simpler class of sum queries, where the same parity predicate is applied to all element
of the data set. Specifically, let D = {0, 1}d and , for r ∈ {0, 1}d, let vr(x) = r� x. For
most vectors r, we show that the parity check vr(x) = r � x will be difficult to learn
from Z(x), and so f(x) = SUMvr (x) will be difficult to learn from MZ(x) unless n is
exponentially large in d.

Proposition 4.2 (Impossibility result for local mechanisms). Suppose that M is a ε-
differentially private randomized response mechanism. For at least 2/3 of the values r ∈
{0, 1}d \ {0d}, the following two distributions have statistical difference O(nε2/32−d/3):

Distribution 0: MZ(x) where each xi ∈R
{
x ∈ {0, 1}d : r � x = 0

}
Distribution 1: MZ(x) where each xi ∈R

{
x ∈ {0, 1}d : r � x = 1

}
In particular, if n = o(2d/3/ε2/3), no user can learn the relative frequency of database

items satisfying the predicate gr(x) = r � x, for most values r ∈ {0, 1}d. Substituting
in k = 2d, we get a lower bound that n = Ω((k/ε2)1/3) data points are necessary to
answer k counting queries when |D| ≥ log(k).

4.2 Proving the Separation Results

The two proofs have the same structure: a hybrid argument with a chain of length
2n, in which the bound on statistical distance at each step in the chain is given by
Lemma 4.3 below. Adjacent elements in the chain will differ according to the domain
from which one of the entries in the database is chosen, and the elements in the chain are
the probability distributions of the sanitizations when the database is chosen according
to the given n-tuple of distributions.

For any r, partition the domain D into two sets: Dr =
{
x ∈ {0, 1}d : r � x = 0

}
,

and D̄r = D \Dr =
{
x ∈ {0, 1}d : r � x = 1

}
. We abuse notation and let Dr also stand

for a random vector chosen uniformly from Dr (similarly for D and D̄r).

The intuition for the key step is as follows. Given a randomized map Z : D →
{0, 1}∗, we wish to show that the quantity Pr[Z(Dr) = z] estimates Pr[Z(D) = z]
with very low multiplicative error (much lower than 1 + ε). This will allow us to show
that Z(Dr) and Z are very close in total variation distance, without having to pay a
factor proportional to the domain size (as we would if we only bounded the additive
error between Pr[Z(Dr) = z] and Pr[Z(D) = z]). Two important facts come into
play. First, when r is chosen at random, Dr consists of 0d (which doesn’t affect things
significantly) together with 2d−1 − 1 points chosen pairwise independently in {0, 1}d.

4This local version of differential privacy is equivalent to the notion of γ-amplification of Evfimievski
et al. (2003), with γ = eε.
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Second, ε-differential privacy implies that each of the terms Pr[Z(x) = z] lies in a small
multiplicative interval around their expectation Pr[Z(D) = z]. This implies a very small
variance for the estimator, which can be combined with pairwise independence to get
the desired bound.

Lemma 4.3. Let Z : D → {0, 1}∗ be a randomized map such that for all pairs x, x′ ∈ D,
and all outputs z, Pr[Z(x) = z] ≤ eε Pr[Z(x′) = z]. Let 0 < α. With probability at least
1− α over r ∈R {0, 1}d \

{
0d
}

,

SD (Z(Dr) , Z(D)) ≤ O
( ε2

α · 2d
)1/3

.

Similarly, With probability at least 1−α over r ∈R {0, 1}d\
{

0d
}

, SD
(
Z(D̄r) , Z(D)

)
≤

O
( ε2

α · 2d
)1/3

.

The lemma is proved in Section 4.3. We now use it to prove the two separation
results.

Proof of Theorem 4.1. Distribution 0 in the statement is M(Dr1 , . . . , Drn). We show
that with high probability over the choice of the ri’s, this distribution is close to the
distribution induced by a uniform input, i.e. M(D, . . . ,D). We proceed by a hybrid
argument, adding one constraint at a time. For each i, we want to show that the
following hybrids are statistically close:

i-th hybrid: M(Dr1 , . . . , Dri , D ,D, . . . ,D)
(i+ 1)-st hybrid: M(Dr1 , . . . , Dri , Dri+1 , D, . . . ,D).

Suppose that we have chosen r1, . . . , ri already. For any x ∈ {0, 1}d, consider the
randomized map where the (i+ 1)-th coordinate is fixed to x:

Z(x) =M(Dr1 , . . . , Dri , x ,D, . . . ,D).

Note that Z(D) is equal to the i-th hybrid, and Z(Dri+1) is equal to the (i + 1)-st
hybrid. Because M is ε-differentially private, it follows that Z(·) satisfies Pr[Z(x) =
z] ≤ eε Pr[Z(x′) = z] for all x, x′ ∈ D and all z, and hence we can apply Lemma 4.3
and get that with probability at least 1− 1

6n over ri+1,

SD (Z(Dri), Z(D)) = σ = O( 3

√
nε2/2d).

By a union bound, for all i the statistical distance between hybrids i and i+1 is bounded
by σ with probability at least 5

6 . We hence conclude that with probability 5
6 ,

SD (M(Dr1 , . . . , Drn),M(D, . . . ,D)) ≤ nσ.

Applying the same reasoning to hybrids starting from Distribution1, i.e.,M(D̄r1 , . . . , D̄rn),
and ending with M(D, . . . ,D) we get that SD (M(Dr1 , . . . , Drn),M(D, . . . ,D)) ≤ nσ
with probability at least 5

6 .
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We conclude that with probability at least 2/3, both chains of hybrids accumulate
statistical difference bounded by nσ, and the distance between Distributions 0 and 1 is
at most 2nσ = O(n4/3ε2/32−d/3), as claimed.

Proof of Proposition 4.2. Let MZ be an ε-differentially private randomized reponse
scheme, i.e., there is a randomized map Z() fromD to {0, 1}∗, such thatMZ(x1, . . . , xn) =
(Z(x1), . . . , Z(xn)). SinceMZ is ε-differentially private, then it must hold that Pr[Z(x) =
z] ≤ eε Pr[Z(x′) = z] for all x, x′ ∈ D and for all outputs z.

It is sufficient to show that with probability at least 2/3 over a random choice
r ∈R {0, 1}d \ {0}, the distributions Z(Dr) and Z(D̄r) are within statistical difference
O(ε2/32−d/3). This follows by applying Lemma 4.3 with α = 1/3. By a hybrid argument,
the difference between Distributions 0 and 1 above is then O(nε2/32−d/3).

4.3 Proving that Random Subsets Approximate the Output Distri-
bution

We now recall and prove Lemma 4.3.

Lemma 4.3. Let Z : D → {0, 1}∗ be a randomized map such that for all pairs x, x′ ∈ D,
and all outputs z, Pr[Z(x) = z] ≤ eε Pr[Z(x′) = z]. Let 0 < α. With probability at
least 1− α over r ∈R {0, 1}d \

{
0d
}

,

SD (Z(Dr) , Z(D)) ≤ O
( ε2

α · 2d
)1/3

.

Similarly, With probability at least 1−α over r ∈R {0, 1}d\
{

0d
}

, SD
(
Z(D̄r) , Z(D)

)
≤

O
( ε2

α · 2d
)1/3

.

Proof. Let px(z) denote the probability that Z(x) = z. If x is chosen uniformly in
{0, 1}d, then the probability of outcome z is p(z) = 1

2d

∑
x px(z).

For r ∈ {0, 1}d and b ∈ {0, 1} let Dr,b =
{
x ∈ {0, 1}d : r � x = b

}
. This choice of

picking not only the string r but also an affine term b ∈ {0, 1} simplifies our calculations.
One can think of Pr[Z(Dr,b) = z] as estimating p(z) by pairwise-independently sampling
2d/2 values from the set D and only averaging over that subset. By the assumption on
Z, the values px(z) all lie in the interval p(z)·[e−ε, eε], which is of width (eε−e−ε)p(z) ≈
2εp(z) around p(z). This estimator will hence have small standard deviation, which we
will use to bound the statistical difference.

For r ∈ {0, 1}d and b ∈ {0, 1} let p̂(z; r, b) = Pr[Z(Dr,b) = z], where the probability
is taken over the coin flips of Z and the choice of x ∈ Dr,b. For a fixed z, p̂(z; r, b) is a
random variable depending on the choice of r, b satisfying

E
r∈R{0,1}d,b∈R{0,1}

[p̂(z; r, b)] = p(z).
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Claim 4.4. Let ε̃ = eε − 1. Varr,b [p̂(z; r, b)] ≤ 2 · ε̃2 · p(z)2

2d
, where the randomness is

over the choice r, b uniformly at random from {0, 1}d, {0, 1} resp.

Proof. Let p∗ be the minimum over x of px(z). Let qx = px(z)− p∗ and q̄ = p(z)− p∗.
The variance of p̂(z) is the same as the variance of p̂(z) − p∗. We can write p̂(z) − p∗
as 2

2d

∑
x qxχ0(x), where χ0(x) is 1 if x ∈ Dr,b and 0 otherwise. The expectation of

p̂(z)− p∗ is q̄, which we can write 1
2d

∑
x qx.

Var
r,b

[p̂(z)] = E
r,b

[(
2
2d

∑
x

qxχ0(x)− 1
2d

∑
x

qx

)2
]

= E
r,b

[(
1
2d

∑
x

qx
(
2χ0(x)− 1

))2
]

(7)

Now
(
2χ0(x)− 1

)
= (−1)r�x⊕b. This has expectation 0. Moreover, for x 6= y, the

expectation of
(
2χ0(x)− 1

)(
2χ0(y)− 1

)
is exactly 1/2d (if we chose r with no restriction

it would be 0, but we have the restriction that r 6= 0d from the lemma statement).
Expanding the square in Eqn. (7),

Var
r,b

[p̂(z)] = 1
22d

∑
x

q2
x + 1

23d

∑
x 6=y

qxqy

=
1− 1

2d

22d

∑
x

q2
x + 1

2d

(
1
2d

∑
x

qx

)2

≤ 1
2d

(
max
x

q2
x + q̄2

)
.

By the indistinguishability condition, both (maxx qx) and q̄ are at most (eε − 1)p∗ ≤
ε̃ · p(z). Plugging this into the last equation proves Claim 4.4.

We now complete the proof of Lemma 4.3. We say that a value z is δ-good for a
pair (r, b) if p̂(z)− p(z) ≤ δ · p(z). By the Chebyshev bound, for all z,

Pr
r,b

[z is not δ-good for (r, b)] ≤ Var [p̂(z)]

δ2p(z)2
≤ 2ε̃2

δ22d
.

If we take the distribution on z given by p(z), then with probability at least 1− α over

pairs (r, b), the fraction of z’s (under p(·)) which are good is at least 1− 2ε̃2

αδ22d .

Finally, if a 1− γ fraction of the z’s are δ-good for a particular pair (r, b), then the
statistical difference between the distribution p̂(z) and p(z) is at most 2(γ+ δ). Setting

δ = 3

√
2αε̃2

2d , we get a total statistical difference of at most 4δ. Since ε̃ < 2ε for ε ≤ 1,

the total distance between p̂(·) and p(·) is at most 4
3
√

12ε22−d, for at least a 1 − α
fraction of the pairs (r, b). The bit b is unimportant here since it only switches Dr and
its complement D̄r. The distance between Z(Dr) and Z(D) is exactly the same as the
distance between Z(D̄r) and Z(D), since Z(D) is the mid-point between the two. Thus,
the statement holds even over pairs of the form (r, 0). This proves Lemma 4.3.
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4.4 Bibliographic Notes and Discussion

There is a large and active literature developing lower bounds for various notions of
privacy. Some of these are specific to differential privacy and its variants (as with the
bounds in thispaper), while others (such as those of Dinur and Nissim Dinur and Nissim
(2003)) are more general and provide concrete algorithmic attacks, essentially ruling out
all reasonable notions of privacy.

Also relevant is the large literature on developing algorithms for answering very
high-dimensional queries subject to differential privacy, starting with the work of Blum,
Ligett and Roth Blum et al. (2008). Our bounds (and those of Dinur and Nissim
(2003)) show that to accurately answer k counting queries, one must roughly have n at
least logarithmic in k (unless |D| is small, less than a specific polynomial in n). The
algorithms of Blum et al. (2008) and subsequent works provide nontrivial answers (with
error o(n)) to k counting queries provided n ≥ poly(log k, log |D|), where the polynomial
varies depending on the context and choice of algorithm.
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and Micali (1984a)); however, it does not directly say what an adversary may do and
learn. In this section we present some “semantically” flavored definitions of privacy,
and show their equivalence to Definition 2.1.

Because of the need to have some utility conveyed by the database, it is not possible
to get as strong a notion of security as we can, say, with encryption. We discuss two def-
initions which we consider meaningful, suggestively named simulatability and semantic
privacy. Simulatability requires that the adversary’s view when interacting with the
mechanism can be “faked” even when the data of any (small) subset of individuals have
been removed.

Definition A-1. A mechanism is (k, ε)-differentially private if for all pairs x,x′ which
differ in at most k entries (that is, d4(x,x′) ≤ k), for all adversaries A and for all
events S in the output space, Pr(M(x) ∈ S) ≤ eε Pr(M(x′) ∈ S).

Recall thatA ≈ε B denotes that the probability distributions of the random variables
A and B are within multiplicative distance ε.

Definition A-2. A mechanism M is (k, ε)-simulatable if for every adversary A, there
exists a simulator A′ such that, for every x ∈ ND, for every I ⊆ x of size k,

ViewM,A(x) ≈ε A′(x \ I)

Lemma A-3. 1. Every (k, ε)-differentially private mechanism is (k, ε)-simulatable.

2. Every (k, ε)-simulatable mechanism is (k, 2ε)-differentially private.

Proof. (1) Suppose Z is (k, ε)-differentially private. Fix the adversary A. On input
x′ = x \ I, the simulator A′ runs an interaction between A and M(x′). Thus, A′(x) =
ViewM,A(x′) ≈ε ViewM,A(x) (since d4(x,x′) ≤ k).

(2) Suppose M is (k, ε)-simulatable. Suppose that x,x′ differ in at most k entries,
that is, d4(x,x′) ≤ k. Let I be their symmetric difference, so that x \ I = x′ \ I.
Simulatability implies that there exists a simulator A′ such that A′(x\I) ≈εM(x) and
A′(x′ \ I) ≈ε M(x′). By construction of I, the input to A′ is the same in both these
equations. By the triangle inequality, the distributions ofM(x) andM(x′) differ by at
most 2ε.

Simulatability still leaves implicit what, exactly, the adversary can compute about
the database. Following the spirit of the definition of semantic security of encryptions
Goldwasser and Micali (1984b), we may ask how an adversary’s knowledge about a
person changes after seeing the output of the mechanism. Extending terminology from
Blum et al. Blum et al. (2005), we say an adversary is informed if she knows all but
k database entries before interacting with the mechanism, and tries to learn about the
remaining ones. The parameter k measures her remaining uncertainty. Simulatability
says that the adversary’s view can be simulated by an informed adversary—hence, that
an informed adversary learns nothing about any particular person.
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We now turn to yet another definition, which formalizes the intuition that an in-
formed adversary “learns nothing” about any individual (or small set of individuals).
Consider an informed adversary who knows a subset x0 of a dataset x. Let x1 denote
the remainder x1 = x \ x0. We encode the adversary’s a priori information about x0

via a random variable X1. We ask: how much does the distribution of X1 change given
the output of the mechanism?

Definition A-4 (Semantic Privacy). A mechanism is (k, ε)-semantically private if for
all fixed datasets x0, for all random variables X1 on sets of size at most k, and for all
outputs t, we have

X1 ≈ε X1

∣∣
M(x0∪X1)=t

where X1

∣∣
M(x0∪X1)=t

denotes the conditional distribution of X1 given that M(x0 ∪
X1) = t.

The role of the multiplicative notion of distance used in the definition of differential
privacy becomes clear here: it allows one to directly infer statements about how an
adversary’s prior distribution changes.

Proposition A-5. A mechanism is (k, ε)-differentially private if and only if it is (k, ε)-
semantically private.

Proof. (1) Let M be a (k, ε)-differentially private mechanism. We show that M is
(k, ε)-semantically private. Fix x0 and a distribution on X1. For every value x1 of X1

and every event S ⊆ O, we need to bound the ratio

Pr(X1 = x1 | M(x0 ∪X1) ∈ S)

Pr(X1 = x1)

Applying Bayes’ rule to the numerator, this ratio equals

Pr(M(x0 ∪X1) ∈ S | X1 = x1) · Pr(X1 = x1)

Pr(M(x0 ∪X1) ∈ S) · Pr(X1 = x1)
=

Pr(M(x0 ∪ x1) ∈ S)

Pr(M(x0 ∪X1) ∈ S)

We can write the denominator of the right-hand side as an expectation over x′1 ∼ X1

of the conditional probability Pr(M(x0 ∪ x′1) ∈ S), that is

Pr(X1 = x1 | M(x0 ∪X1) ∈ S)

Pr(X1 = x1)
=

Pr(M(x0 ∪ x1) ∈ S)

Ex′
1∼X1

Pr(M(x0 ∪ x′1) ∈ S)

Since every term in the expectation is at least e−ε Pr(M(x0 ∪x1) ∈ S), the entire ratio
is at most eε, as desired.

(2) Let M be a (k, ε)-semantically private mechanism. We show that M is (k, ε)-
differentially private. Fix two datasets x,x′ with symmetric difference of size at most k.
The idea is to define a distribution with support on just these two datasets, and apply
semantic privacy.
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Let x0 = x ∩ x′. Let X1 be a random variable that takes the value x \ x0 with
probability α and the value x′ \x0 with probability 1−α, for some α > 0 which we will
make tend to 0. Note that X1 always has size at most k.

By Bayes’ rule, for any event S ⊆ O, we have

Pr(X1 = x \ x0 | M(x0 ∪X1) ∈ S)

Pr(X1 = x \ x0)
=

Pr(X1 = x \ x0 ∧M(x) ∈ S)

Pr(X1 = x \ x0) Pr(M(x0 ∪X1) ∈ S)

=
α

α
· Pr(M(x) ∈ S)

αPr(M(x) ∈ S) + (1− α) Pr(M(x′) ∈ S)
.

The left-hand-side above is at most eε, by semantic privacy, no matter how we set

α. In particular, letting α tend to 0, we get that Pr(M(x)∈S)
Pr(M(x′)∈S) ≤ e

ε, as desired.
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