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SUMMARY

For modern evidence-based medicine, decisions on disease prevention or management strate-
gies are often guided by a risk index system. For each individual, the system uses his/her baseline
information to estimate the risk of experiencing a future disease-related clinical event. Such a
risk scoring scheme is usually derived from an overly simplified parametric model. To validate a
model-based procedure, one may perform a standard global evaluation via, for instance, a receiver
operating characteristic analysis. In this article, we propose a method to calibrate the risk index
system at a subject level. Specifically, we developed point and interval estimation procedures
for t-year mortality rates conditional on the estimated parametric risk score. The proposals are
illustrated with a dataset from a large clinical trial with post-myocardial infarction patients.

Some key words: Cardiovascular diseases; Cox model; Nonparametric functional estimation; Risk index; ROC analysis;
Survival analysis.

1. INTRODUCTION

The choice of disease prevention or management strategy for an individual from a population
of interest is often made based on his/her risk of experiencing a certain clinical event during a
specific follow-up time period. Subjects classified as high risk may be recommended for intensive
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prevention or therapy. The risk is usually estimated via a parametric or semiparametric regression
model using baseline risk factors. For example, Eagle et al. (2004) created a simple bedside risk
index system to predict six-month post-discharge mortality for patients hospitalized due to acute
coronary syndrome. A proportional hazards model (Cox, 1972) was utilized to fit the data on
post-discharge follow-up mortality and all potential predictors taken at admission as well as
during hospitalization. The six-month post-discharge mortality rate is then estimated with the
fitted model for each future individual patient.

An empirical model is merely an approximation to a true model, and it is crucial to assess its
performance for appropriate clinical decision making. In addition to checking the fitted model with
routine goodness-of-fit techniques, the model-based scoring system is often evaluated or validated
globally based on specific summary measures, such as the receiver operating characteristic
curve (Pepe et al., 2004; Wang et al., 2006; Ware, 2006; Cook, 2007), expected Brier score
(Gerds & Schumacher, 2006) or the net reclassification index (Pencina et al., 2008). For example,
Uno et al. (2007) developed procedures for evaluating the accuracy of empirical parametric
models in predicting t-year survival with respect to various global accuracy measures. For the
aforementioned post-discharge mortality example, the investigators used an independent cohort to
validate their system with an overall c-statistic. However, even if the risk index system is acceptable
using a global average measure, for the group of patients with the same model-based risk score,
the corresponding parametric risk estimator may not approximate its true mortality rate well.
Consequently, clinicians may be misguided in choosing therapies for treating these individuals.

In this paper, we propose a procedure for calibrating the parametric risk estimates. Specifically,
under a general survival analysis setting, a consistent estimation procedure is proposed for t-
year mortality rates of patients grouped by a parametric risk score. Furthermore, we provide
pointwise and simultaneous confidence intervals for such risks over a range of estimated risk
scores. These interval estimates quantify the precision of our consistent point estimator. Moreover,
the upper or lower bounds of the intervals provide valuable information for complex cost-benefit
decision making. Pointwise confidence interval estimates of the true average risk may be of
interest to individual patients with a specific risk score. Simultaneous interval estimates can be
used to identify subgroups with differential risks and to assist in selecting target populations
for appropriate interventions. Our proposal is also useful for calibrating a risk index system
when applied to populations different from the study population. For example, the Framingham
Risk Score (Anderson et al., 1991) for predicting the risk of coronary heart disease was developed
based on a U.S. population. Its applicability to other populations has been extensively investigated
in recent years (D’Agostino et al., 2001; Brindle et al., 2003; Zhang et al., 2005). For a new
population, our procedure can be used to assess the true risk of coronary heart disease for
subjects with any given Framingham Risk Score.

2. A CONSISTENT ESTIMATOR FOR THE MEAN RISK OF SUBJECTS WITH THE SAME

MODEL-BASED RISK SCORE

Consider a subject randomly drawn from the study population. Let T̃ be the time to the
occurrence of a specific event since baseline and U be the corresponding set of risk factors/markers
ascertained at baseline; some marker values may be collected repeatedly over time. In this paper,
we assume that markers are measured at a well-defined time zero. Discussions on the setting
where time zero is not well defined are given in § 5. Now, assume that T̃ has a continuous
distribution given U . Also, let P(u) = pr(T̃ < t0 | U = u). The event time T̃ may be censored
by a random variable C , which is assumed to be independent of T̃ and U . For T̃ , one can
only observe T = min(T̃ , C) and δ = I (T̃ � C), where I (·) is the indicator function. Our data
{(Ti , δi , Ui ), i = 1, . . . , n} consist of n independent copies of (T, δ, U ).
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One may estimate P(u) fully nonparametrically. Li & Doss (1995) and Nielsen (1998) con-
sidered local linear estimators of the conditional hazard function by smoothing over the
q-dimensional U . However, such nonparametric estimates may not behave well when q > 1
and n is not large. A standard, feasible way to reduce the dimension of u is to approximate P(u)
with a working parametric or semiparametric model such as the proportional hazards model:

P(u) = g{log �(t0) + βTx}, (1)

where g(s) = 1 − exp(−es), �(·) is the working baseline cumulative hazard function for T̃ ; x, a
p × 1 vector, is a function of u; and β is an unknown vector of regression parameters.

To obtain an estimate for P(u) via (1), one may employ the maximum partial likelihood
estimator β̂ for β with all mortality information from the data collected up to time t0. That is, β̂

is the maximizer of the log partial likelihood function,

n∑
i=1

∫ t0

0

⎡
⎣βT Xi − log

⎧⎨
⎩

n∑
j=1

Y j (t) exp(βT X j )

⎫⎬
⎭

⎤
⎦ d Ni (t),

where Ni (t) = I (Ti � t)δi and Yi (t) = I (Ti � t), for i = 1, . . . , n. When the model (1) is correctly
specified, β̂ consistently estimates the true value of β. On the other hand, if there is no vector ζ

such that pr(T1 > T2 | ζ T X1 > ζ T X2, T2 � t0) = 1, then β̂ converges to a finite constant β0, as
n → ∞, even when the model (1) is misspecified (Hjort, 1992). Alternatively, one may use an
estimate of β by fitting a global Cox model without truncating at t0, denoted by β̃. When the Cox
model fits the data well, β̃ may be more efficient than β̂.

Next, we estimate �(t) in (1) with Breslow’s estimator (Kalbfleisch & Prentice, 2002),

�̂(t) =
n∑

i=1

∫ t

0

d Ni (s)∑n
j=1 Y j (s) exp(β̂T X j )

,

which is a step function that only jumps at observed failure times. It follows that a model-based
estimate of P(u) is P̂(u) = g(γ̂ Tx+), where γ̂ = [log{�̂(t0)}, β̂T]T and x+ = (1, xT)T. Following
from the convergence of β̂ and arguments given in Hjort (1992), P̂(u) converges to a deterministic
function P̄(u) in probability, as n → ∞. When (1) is correctly specified, P̄(u) = P(u).

Although most likely (1) is not the true model, the parametric risk scores {P̂(u)} or {γ̂ Tx+}
can be used as a risk index system for future populations similar to the study population.
Consider a future subject with (T̃ , U, X ) = (T̃ 0, U 0, X0) and P̂(U 0) = g(γ̂ T X0+) = v. When (1)
is misspecified, the risk of T̃ 0 < t0 may be quite different from v. To calibrate the subject-level
model-based risk estimate, one needs a consistent estimate for

τ (v; t0) = pr{T̃ 0 < t0 | P̂(U 0) = v},
the mortality rate among subjects with risk score P̂(U 0) = v. Here, the probability is with respect
to T̃ 0, U 0 and {(Ti , δi , Ui ), i = 1, . . . , n}.

To estimate τ (v; t0), let �v(t) = − log{1 − τ (v; t)} be the corresponding cumulative hazard
function and we propose a nonparametric kernel Nelson–Aalen estimator for �v(t) based on
{Ti , δi , P̂(Ui )}, for i = 1, . . . , n. As for the standard one-sample estimation of the cumulative
hazard function, we focus on the class of potential estimators which are step functions over t
and only jump at the observed failure times with jump sizes ��v(t). First, we consider a local
constant estimator by assuming that for v′ in a small neighbourhood of v, ��v′(t) ≈ ��v(t).
Specifically, for any given t and v, we obtain ��̃v(t) as the following minimizer:

arg min
a

n∑
i=1

Kh(D̂vi ){�Ni (t) − Yi (t)a}2 =
∑n

i=1 Kh(D̂vi )�Ni (t)∑n
i=1 Kh(D̂vi )Yi (t)

, (2)
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where �Ni (t) = Ni (t) − Ni (t−) = limw→0
∫ t

t−w d Ni (s); D̂vi = ψ{P̂(Ui )} − ψ(v); K (·) is a
smooth symmetric density function; Kh(x) = K (x/h)/h, h = O(n−v) is a bandwidth with
1/2 > v > 0; and ψ(·) : (0, 1) → (−∞,∞) is a known increasing smooth function (Wand et al.,
1991; Park et al., 1997). Based on (2), we obtain a local constant estimator for �v(t0) as

�̃v(t0) =
∫ t0

0

∑n
i=1 Kh(D̂vi )d Ni (t)∑n

i=1 Kh(D̂vi )Yi (t)
.

Here, we adopt the notation
∫

�Ni (t)W (t)dt ≡ ∫
W (t)d Ni (t) as in Nielsen & Tanggaard (2001).

When P̂(·) is deterministic, the limiting distribution of such a nonparametric estimator with
a fixed v has been derived by Nielsen & Linton (1995) and Du & Akritas (2002). Here, we
investigate the asymptotic properties of �̃v(t0) over a set of v at a given time t0 in the presence
of the additional variability in P̂(·).

The above estimator can potentially be improved by considering a local linear approximation
to �v(t) (Fan & Gijbels, 1996; Li & Doss, 1995). That is, for v′ in a small neighbourhood of v,
we assume ��v′(t) ≈ ��v(t) + bv(t){ψ(v′) − ψ(v)}. Thus, for any given t and v, we replace a
in (2) by a local linear function a + bD̂vi with unknown intercept and slope parameters a and b.
The resulting estimator ��̂v(t) is the intercept of the vector that minimizes

n∑
i=1

Kh(D̂vi ){�Ni (t) − Yi (t)(a + bD̂vi )}2

with respect to (a, b). The corresponding estimator �̂v(t) for �v(t) is the sum of ��̂v(·) over
all distinct observed death times by t . The resulting estimator for τ (v; t0) is τ̂ (v; t0) = 1 −
exp{−�̂v(t0)}. In Appendix A, we show that under mild regularity conditions, if h = O(n−ν) with
1/5 < ν < 1/2, τ̂ (v; t0) is consistent for τ (v; t0), uniformly in v ∈ J = [ψ−1(ρl + h), ψ−1(ρr −
h)], where (ρl, ρr ) is a subset contained in the support of ψ{P̄(U )}.

3. POINTWISE AND SIMULTANEOUS INTERVAL ESTIMATION PROCEDURES FOR τ (v; t0)
OVER RISK SCORE V

For any fixed v ∈ J , we show in Appendix A that the distribution of

(nh)1/2{�̂v(t0) − �v(t0)} (3)

can be approximated well by the conditional distribution of a zero-mean normal distribution

n−1/2h1/2
n∑

i=1

Kh(D̂vi )V̂i (v; t0)ξi + (nh)1/2{�̂v(t0, γ̂
∗) − �̂v(t0)}, (4)

given the data for large n and h = O(n−ν) with 1/5 < ν < 1/2, where  = (ξ1, . . . , ξn)
are standard normal random variables independent of the data, V̂i (v; t0) = ∫ t0

0 {d Ni (s) −
Yi (s)d�̂v(s)}/{n−1 ∑n

j=1 Kh(D̂v j )Y j (s)}, �̂v(t0, γ ) is given in (A3) and γ̂ ∗ is given in (A5).
A perturbed version of the observed �̂v(t0) is �̂v(t0, γ̂ ∗) with the same perturbation variables
, which accounts for the extra variability of γ̂ . Although asymptotically one only needs the
first term of (4) since γ̂ = O(n−1/2), the inclusion of the second term is likely to improve the
approximation to the distribution of (3) in finite sample. This perturbation method is similar to
the so-called wild bootstrap (Wu, 1986; Härdle, 1990; Mammen, 1992) and has been used suc-
cessfully for a number of interesting problems in survival analysis (Jin et al., 2001; Park & Wei,
2003; Cai et al., 2005). The distribution of (4) can be easily approximated by generating a large
number M of realizations of .
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Calibrating parametric subject-specific risk estimation 393

With the above approximation, for any v ∈ J , one may obtain a variance estimator of (3),
σ̂ 2

v (t0), based on the empirical variance of M realizations from (4). For any given α ∈ (0, 1),
a 100(1 − α)% confidence interval for �v(t0) can be obtained as �̂v(t0) ± (nh)−1/2cσ̂v(t0),
where c is the 100(1 − α/2)th percentile of the standard normal. The corresponding pointwise
100(1 − α)% confidence interval for τ (v; t0), the mortality rate with score v, is

1 − exp
{ − �̂v(t0) ± (nh)−1/2cσ̂v(t0)

}
.

To make inference about the mortality rate over a range of v, one may construct simultaneous
confidence intervals for {τ (v; t0), v ∈ J } by considering a suptype statistic

W = supv∈J

∣∣∣∣∣(nh)1/2 �̂v(t0) − �v(t0)

σ̂v(t0)

∣∣∣∣∣ . (5)

However, the distribution of (nh)1/2{�̂v(t0) − �v(t0)} does not converge as a process in v, as
n → ∞. Therefore, we cannot use the standard large sample theory for stochastic processes to
approximate the distribution of W . On the other hand, by the strong approximation arguments
and extreme value limit theorem (Bickel & Rosenblatt, 1973), we show in Appendix B that a
standardized version of W converges in distribution to a proper random variable. In practice, for
large n, one can approximate the distribution of W by W ∗, the supremum of the absolute value
of (4) divided by σ̂v(t0), with (4) perturbed by the same set of  for all v ∈ J . It follows that the
100(1 − α)% simultaneous confidence interval for τ (v; t0) is

1 − exp
{ − �̂v(t0) ± (nh)−1/2d σ̂v(t0)

}
,

where the cut-off point d is chosen such that pr(W ∗ < d) � 1 − α.
As for any nonparametric functional estimation problem, the choice of h for τ̂ (v; t0) is crucial

for making inferences about τ (v; t0). To incorporate censoring, we propose obtaining an optimal
h by minimizing mean integrated squared martingale residuals over time interval (0, t0) through
K -fold crossvalidation. Such a procedure has been successfully used for bandwidth selection in
Tian et al. (2005). Specifically, we randomly split the data into K disjoint subsets of about equal
sizes denoted by {Ik, k = 1, . . . , K }. For each k, we use all observations not in Ik to obtain �v(t)
with a given h. Let the resulting estimators be denoted by �̂v(k)(t). We then use the observations
from Jk to calculate the sum of integrated squared martingale residuals

∫ t0

0

∑
j∈Ik

{
N j (t) −

∫ t

0
Y j (s)d�̂P̂(u j )(k)(s)

}2

d

⎧⎨
⎩

∑
j i ∈Ik

N ji (t)

⎫⎬
⎭ . (6)

Lastly, we sum (6) over k = 1, . . . , K , and then choose hopt as the minimizer of the sum of
K martingale residuals. Since the order of hopt is expected to be n−1/5 (Fan & Gijbels, 1995),
the bandwidth we use for estimation is h = hopt × n−d0 with 0 < d0 < 3/10 such that h = n−ν

with 1/5 < ν < 1/2. This ensures that the resulting functional estimator �̂v(t0) with the data-
dependent smooth parameter has the above desirable large sample properties.

4. NUMERICAL STUDIES

4·1. Example

We illustrate the new proposal with a dataset from the Valsartan in Acute Myocardial Infarction
study (Pfeffer et al., 2003). This large clinical study, often referred to as the VALIANT study, was
conducted to evaluate the effect of angiotensin II receptor blocker and angiotensin converting
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Table 1. Estimates of the regression coefficients, the corresponding standard errors and p-values,
multiplied by 100, derived from fitting the Cox model to the VALIANT dataset based on survival

time information up to t0 and based on the entire dataset
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Est 2·8 28·9 −1·2 20·6 24·2 −43·3 25·2 24·1 16·1 22·0 16·4
t0 = 6 SE 0·3 3·2 0·2 6·6 7·2 10·7 7·2 6·1 8·8 10·8 6·2

p 0·0 0·0 0·0 0·2 0·1 0·0 0·1 0·0 7·0 4·2 0·8
Est 3·0 23·7 −1·0 29·5 32·7 −46·3 29·6 26·8 24·3 23·1 23·5

t0 = 24 SE 0·2 2·3 0·1 4·7 5·1 7·7 5·2 4·4 6·2 8·0 4·5
p 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·4 0·0
Est 2·7 27·3 −1·1 24·1 28·3 −50·6 26·3 26·4 19·6 22·7 18·2

Global SE 0·3 3·0 0·2 5·6 6·8 9·3 6·2 5·2 7·6 9·5 5·8
p 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 1·0 1·7 0·2

Est, estimates; SE, standard error; p, p-value; Global, entire dataset.

enzyme inhibitors on overall mortality among patients with myocardial infarction complicated by
left ventricular systolic dysfunction and/or heart failure. The trial was designed to compare three
treatments, angiotensin II receptor blocker valsartan, angiotensin converting enzyme inhibitor
captopril and a combination of these two drugs, for treating high-risk patients after myocardial
infarction with respect to mortality and morbidity. The study was conducted from 1999 to 2003
with a total of 14 703 patients assigned randomly and equally to the three groups. The median
follow-up time was 24·7 months. There are no significant differences among the three groups
with respect to the overall mortality and thus we combine all three groups to develop a risk
scoring system for mortality.

For simplicity, we used 11 baseline covariates from each study subject considered by
Solomon et al. (2005) in our analysis. These 11 predictors are potentially the most significant
ones among the risk factors identified by Anavekar et al. (2004) for the overall mortality based
on this study. We fitted the survival data with an additive Cox model using these 11 covariates to
obtain a parametric risk score for each individual. Specifically, the vector U = X consists of age,
X1; Killip class, X2; estimated glomerular filtration rate, X3; history of myocardial infarction, X4;
history of congestive heart failure, X5; percutaneous coronary intervention after index myocardial
infarction, X6; atrial fibrillation after index myocardial infarction, X7; history of diabetes, X8;
history of chronic obstructive pulmonary disease, X9; new left bundle-branch block, X10; and
history of angina, X11. Our analysis includes n = 14 088 patients who had complete information
on these 11 covariates.

First, suppose that we are interested in predicting the six-month mortality rates of future
patients. To this end, we let t0 = 6 months and fitted the survival observations truncated slightly
after six months with a Cox model (1) and x = u. The estimated regression coefficient vector
β̂ is given in Table 1. These estimates, coupled with the estimated intercept γ̂ = −6·02, create
a risk score P̂(u) for six-month mortality of future patients. To obtain τ̂ (v, 6) for a given
P̂(u) = v, we let K (·) be the Epanechnikov kernel, and ψ(v) = log{− log(1 − v)}, which leads
to ψ{P̂(U )} = γ̂ T X+. The smoothing parameter h = 0·18 was obtained by multiplying hopt by
a factor of n−0·07 as defined in § 3, with ten-fold crossvalidation. We chose the second and 98th
percentiles of the empirical distribution of {γ̂ T X+i }i=1,...,n as the boundary points ρl and ρr

for interval J . To approximate the distribution of (3) and W in (5), we used the perturbation-
resampling method (4) with M = 500 independent realized standard normal samples .

The smoothed density estimate for P̂(U ), shown in Fig. 1(a), provides useful infor-
mation regarding the relative size of the subgroup of individuals with P̂(U ) = v, where
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Fig. 1. Prediction of six-month and 24-month mortality risks based on the 11 risk factors. Panel (a) shows the
estimated density function of the model-based risk estimate for t0 = 6 (solid line) and 24 (dashed line) months.
Shown also are the point (thick solid curve) estimate of the true risk function τ (v, t0) along with their point-
wise (dark shaded region) and simultaneous (light shaded region) confidence intervals for (b) t0 = 6 months; and

(c) t0 = 24 months. The dashed line is the 45◦ reference line.

v ∈ J = [0·02, 0·24]. In Fig. 1(b), we present the point and interval estimates for τ (v, 6). The
estimated risk scores for most patients are less than 0·15. For groups of subjects with low risk
scores, their interval estimates tend to be tight. For example, among subjects with P̂(u) = 0·045,
the six-month mortality rate is likely to be between 0·03 and 0·05, based on the 95% point-
wise confidence interval. The corresponding simultaneous confidence interval is [0·02, 0·06].
For this subgroup, the Cox model appears to be slightly overestimating the risk with a p-value
of 0·08 when testing the difference τ (v, 6) − v = 0. For patients whose risk scores are greater
than 0·15, the interval estimates are relatively wide, as expected. For example, the mortality rate
among patients with P̂(u) = 0·17 is estimated as 0·21 with a 95% pointwise confidence interval
of [0·18, 0·23] and a simultaneous interval of [0·17, 0·25]. The Cox model underestimates the
risk of this subgroup substantially with a pointwise p-value of 0·001 and a familywise adjusted
p-value of 0·04 after controlling for the overall Type I error. For comparison, we also obtained the
regression coefficient estimates based on the global Cox model without truncation. As shown in
Table 1, the estimates are slightly different from the ones obtained based on survival information
up to six months only. Under the global model, when the Cox model predicted risk is 0·045, the
calibrated risk estimate is 0·034 with 95% pointwise and simultaneous confidence intervals being
[0·03,0·04] and [0·02,0·05]. Overall, we find that the global model and the truncated version lead
to very similar interval estimates for the present case.

Next, suppose that we are interested in predicting long-term survival for future patients similar
to the VALIANT study population. Here, we let t0 = 24 months and fitted the survival obser-
vations slightly truncated at 24 months with a Cox model and x = u. The resulting regression
coefficient estimates are also given in Table 1. For this case, the bandwidth h = 0·15 and the
range of the estimated risk score v is from 0·04 to 0·48. The smoothed density function estimation
of the parametric score is also given in Fig. 1(a). Relatively few patients have scores beyond 0·3.
Our point and interval estimates for the true mortality rate are given in Fig. 1(c). For example,
for subjects with a risk score of 0·1, their 24-month mortality rate is estimated as 0·09 with 95%
pointwise and simultaneous confidence intervals being [0·08, 0·11] and [0·07, 0·12], respectively.
For patients whose risk scores are high, as expected, their interval estimates can be quite wide.
For example, for subjects with a risk score of 0·3, the true mortality rate is likely to be between
0·26 and 0·37 based on the 95% simultaneous confidence interval. Under the global model, the
calibrated risk estimates at risk scores of 0·1 and 0·3 are similar to the above results based on the
truncated fitting.
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Fig. 2. Performance of the new procedure under a misspecified model with sample size 5000 for t0 = 10: (a) the
sample average of τ̂ (v, t0) (solid) compared with truth (dashed); (b) the empirical standard error estimate (solid) and
the average of the estimated standard errors (dotted); and (c) the empirical coverage of the 95% confidence intervals
based on the proposed resampling procedures. The 45◦ reference line in (a) corresponds to the Cox-model-based

risk estimates.

4·2. Simulation studies

We conducted simulation studies to examine the validity of the proposed inference proce-
dures; and compared the performance of the calibrated prediction procedures with that of the
prediction based on the Cox model. We first simulated data from a normal mixture model un-
der which the Cox model is misspecified. In particular, we generated all discrete covariates,
X D = (X2, X4, X5, X6, X7, X8, X9, X10, X11)T, based on their empirical distribution from the
observed data. Then, for each given value of X D , we generated the corresponding value of
XC = (X1, X3), from N (μX D , �), where μX D is the empirical mean of XC given X D and � is
the empirical covariance matrix of XC in the VALIANT dataset. Then, we generated T from

log T̃ = αX4 X8 + βT
X4 X8

X−(48) + σX4 X8ε, ε ∼ N (0, 1),

where for (X4, X8) = (0, 0), (0, 1), (1, 0) and (1, 1), we let αX4 X8 = 11·5, 8·5, 5·5, 8·5 and
σX4 X8 = 0·9, 1·5, 1·3, 1·0; X−(48) denotes the covariate vector with (X4, X8) excluded and βX4 X8

is obtained from fitting a lognormal model to the subset of VALIANT data with a given value
of (X4, X8). The censoring was generated from a Weibull (5, 30) that was obtained by fitting
the Weibull model to the VALIANT data. This results in about 77% censoring and overall event
rates of 17% by month 10 and 22% by month 24. We considered a moderate sample size of
5000 and a relatively larger sample size of 10 000. For all the simulation studies, we obtain
β̂ based on the truncated partial likelihood function at t0. For ease of computation, the band-
width for constructing the nonparametric estimate was fixed at h = 0·37, 0·38, 0·29 and 0·27 for
(i) n = 5000, t0 = 10; (ii) n = 5000, t0 = 24; (iii) n = 10 000, t0 = 10; and (iv) n = 5000, t0 =
24, respectively. Here, h was chosen as the average of the bandwidths selected based on (6) with
d0 = 0·1 from 10 simulated datasets.

Across all four settings, the nonparametric estimator has negligible bias, the estimated standard
errors are close to their empirical counterparts, and the empirical coverage levels of the 95%
confidence intervals are close to the nominal level. The coverage levels of the simultaneous
confidence band were 93·7%, 94·5%, 93·1% and 94·1%, for settings (i), (ii), (iii) and (iv),
respectively. In Fig. 2, we summarize the performance of the point and interval estimates of
the proposed nonparametric procedure for n = 5000 and t0 = 10. Under the correct model
specification, we would expect that the true risk against the predicted risk from the Cox model is
a 45◦ diagonal line. For the present case, the predicted risk based on the Cox model is severely
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Fig. 3. The root mean squared error of the risk estimates for t0 = 10 based on the Cox
model and the nonparametric calibrated procedure when the data were generated from
(a) a normal mixture; and (b) a Cox model, with n = 5000 (solid) and n = 10 000

(dashed) on both panels.

biased. For example, the event rate at t0 = 10 is 0·31 among the subjects whose predicted risk
is 0·20 based on the Cox model. It is interesting that the standard test has very low power in
detecting the lack of fit for the misspecified model. For example, the test based on the Schoenfeld
residuals has about 15% power when n = 5000 and 25% power when n = 10 000.

We also conducted simulation studies to evaluate the performance of the proposed procedure
under the correct model specification. To this end, we generated the covariates and the censoring
time from the same distribution as described above, but generated T̃ from an exponential model
with coefficients obtained by fitting the model to the VALIANT data. The proposed estimators
also perform well with little bias for the point estimation and proper coverage level for intervals
estimators. For example, when n = 5000 and t0 = 10, the empirical coverage level ranges from
0·94 to 0·98 for the pointwise confidence intervals and is about 0·96 for the simultaneous
confidence interval. Similar patterns were observed for t0 = 24.

Lastly, we examined the performance of the nonparametric calibrated risk estimates with
respect to their true predicted risks conditional on the observed data under correctly, and also
incorrectly, specified models. Specifically, for each simulated dataset, we obtained γ̂obs based on
the above Cox models to calculate P̂(U 0) = g(γ̂ T

obs
X0+) for any given covariate U 0, and then

assign future subjects to a risk group �v = {U 0 : P̂(U 0) = v}. A standard Cox model would
estimate the event rate for the subgroup �v as v. On the other hand, the nonparametric procedure
would produce a calibrated estimate τ̂ (v; t0) for the event rate among �v, while the true event rate
conditional on the observed data is τ (v; t0, γ̂obs) = pr{T 0 � t0 | g(γ̂ T

obs
X0+) = v, γ̂obs}. In the previous

simulation studies, τ (v; t0) = E{τ (v; t0, γ̂obs)} with expectation taken over the observed data. For
each dataset, we summarized the performance of the proposed and the parametric risk prediction
procedures based on their squared distance from the true event rate. The root mean squared errors
of the Cox and calibrated estimates for t0 = 10, denoted rMSECox and rMSECalib, respectively, are
shown in Fig. 3. Under the above misspecified normal mixture model, the parametric procedure
is severely biased. For instance, when n = 5000, rMSECox can be as high as 0·12 while rMSECalib

is below 0·03. Under model misspecification, over 90% of the root mean squared error is due
to bias for most of the risk estimates. On the other hand, under the correct specification of the
Cox model, the risk estimators from the nonparametric procedure are only slightly inefficient
compared to the Cox procedure. For example, at t0 = 10 with a sample size of 5000, (rMSECox,
rMSECalib) is (0·003, 0·006) when v = 0·05, is (0·005, 0·008) when v = 0·10 and is (0·017, 0·021)
when v = 0·20.
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5. REMARKS

Due to the complexity of the disease process and heterogeneity among study subjects, it is
unlikely, if not impossible, that a fitted parametric or semiparametric model is the true one. On
the other hand, a reasonable approximation to the true model can be quite useful in practice.
Generally, the standard goodness-of-fit tests only provide qualitative assessment of the model
fitting and may have little power when n is not large. An alternative way to evaluate the overall
adequacy of the fitted model is to use a reasonable, physically interpretable distance function
between the observed and predicted responses averaged over the entire study population (Cook,
2007; Uno et al., 2007). In this paper, we make an extra effort to calibrate the estimation of the
mean risk for subgroups indexed by a parametric score. Through extensive numerical studies, we
find that our two-stage procedure significantly outperforms purely model-based counterparts.

While one may obtain β̂ by fitting a global Cox model, the parametric risk score P̂(U 0) =
g{�̂(t0) + β̂T X0} established based on the survival time observations up to t0 is preferable when
the primary interest is in estimating the t0-year survival rate and the Cox model does not fit the
data well. For such settings, the covariate effects on the t0-year survival rate may vary markedly
across t0. Indeed, we often find that certain covariates are essential for predicting short-term
survival, but not so for predicting long-term survival. On the other hand, for overall decision
making, it may be interesting to construct a unified risk score system, not specific to a time-point
t0. Such a global score may be obtained by fitting the full dataset with a Cox model and obtaining
β̂ as the maximum partial likelihood estimator. Subsequently, one can group future subjects with
β̂T X0 = u and consistently estimate τu(t) = pr(T̃ 0 � t | β̂T X0 = u) for various ts. For a finite
set of time-points, using similar techniques utilized in this article, it is straightforward to obtain
the pointwise and simultaneous confidence intervals for such multiple survival probabilities.
For example, for patients with a risk score of β̂T X0 = 1·40 in the aforementioned VALIANT
study, the simultaneous confidence region for {τ1·40(6), τ1·40(24)} is [0·03, 0·05] × [0·05, 0·09],
for t = 6, 24. For patients with a parametric risk score of β̂T X0 = 2·87, the corresponding
simultaneous confidence region is [0·19, 0·25] × [0·30, 0·38]. A challenging problem is how to
construct a simultaneous confidence band for the subject-specific survival function over an entire
time interval of interest. We expect that the technique developed in Li & Doss (1995) may be
extended to the present case with extra care for the additional variability in P̂(U ).

For the present paper, we assume that there are so-called baseline covariates available for
each study patient. Often the baseline is not clearly defined. That is, it may be difficult to define
the time zero for the study patient’s follow-up time. Let S denote the study entry time since
time zero and let U (S) denote the corresponding covariate vector. For the VALIANT trial, every
study participant had a recent nonfatal myocardial infarction with certain complications when
entering the trial. For this case, the time zero for the patient’s survival can be reasonably defined
as the study entry date, which is approximately the time of occurrence of myocardial infarction.
Therefore, S = 0, T̃ represents the survival time since the myocardial infarction and U = U (0)
is the covariate level measured near the time of myocardial infarction. The proposed procedure
would be valid for predicting the risk of death within t0 since experiencing myocardial infarction
for a future population whose distribution of (T̃ 0, U 0) is the same as that of (T̃ , U ).

In general, S may not be well defined or observable. For example, in AIDS studies with HIV
infected patients, the time zero could be the unknown time of infection and S is the time interval
between infection and study entry. For such cases, the observable event time T̃ discussed in this
paper, can be viewed as the residual life after S. Even when S is unknown, our new proposal
is still valid for future subject-specific risk prediction provided that the joint distribution of
{T †, S, U (S)} for the study population is the same as that of {T †0, S0, U 0(S0)} for the future
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population, where T † is the event time since time zero, and T̃ = T † − S is the residual life from
the entry time. Specifically, one can make inferences about the risk function

τ (v; t0) = P[T †0 − S0 � t0 | T †0 > S0, P̂{U 0(S0)} = v] = P[T̃ 0 � t0 | P̂{U 0(S0)} = v].

Here, the probability is taken over T †0, U 0(S0), S0 and the observed data. The quantity τ (v; t0)
is the event rate by t0 among the subgroup of patients who were event-free at study entry with
P̂{U 0(S0)} = v.

When U (s) is measured repeatedly over time, the prediction of residual life with longitudinal
markers is an interesting yet challenging problem. It is generally difficult even to identify a
coherent prediction model for such settings. While the article focuses on the relatively simple
objective of predicting survival time with baseline biomarker value U (0), it is often of interest,
though difficult, to predict the residual life repeatedly based on periodically measured time-
dependent biomarker U (s). In such a case, it is desirable to make predictions based on a fitted
global model describing the dynamic association between the longitudinal markers and survival
time. However, it is generally difficult even to specify a coherent prediction model for such a
setting. For example, in general, imposing the commonly used proportional hazards or accelerated
failure time model on the relationship between the most updated marker value and residual life
over a time span of interest leads to an inconsistent model (Jewell & Nielsen, 1993, Theorem 1).
See Jewell & Nielsen (1993) and Mammen & Nielsen (2007) for excellent discussions on the
prediction of survival times with time-varying markers.
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APPENDIX

In the Appendix, we use standard notation for the empirical process: Pn and P represent the expectation
with respect to the empirical distribution generated {(Ti , δi , Xi ), i = 1, . . . , n} and the distribution gener-
ated by (T, δ, X ), respectively. Similarly, Gn = n1/2(Pn − P). We assume that the covariate X is bounded,
h = O(n−ν) with 1/5 < ν < 1/2, K (x) is a symmetric smooth kernel function with a bounded support
[−1, 1] and

∫
K̇ (x)2dx < ∞, where K̇ (x) = d K (x)/dx . For convenience, we use the following notation:

K j (x) = K (x)x j , K j,h(x) = K j (x/h)/h and m2 = ∫ 1
−1 K 2(x)dx . Unless noted otherwise, suprema are

taken over [ψ−1(ρl + h), ψ−1(ρr − h)] for v and over [0, t0] for t .

APPENDIX A

Asymptotic properties of τ̂ (v; t0)

We first derive the asymptotic properties of τ̂ (v; t0), for v ∈ [ψ−1(ρl + h), ψ−1(ρr − h)]. Without
loss of generality, we choose ψ(x) = log{− log(1 − x)}. Thus, ψ{P̄(U )} = γ T

0 X+, ψ{P̂(Ui )} = γ̂ T X+i ,
and ψ{P̂(Ui )} − ψ{P̄(Ui )} = Op(n−1/2). Let ṽ = ψ(v), λv(t) be the hazard function of T̃ condi-
tional on γ T

0 X+ = ṽ, �v(t) = ∫ t
0 λv(s)ds; ζ (·) be the density function of γ T

0 X+; and Mi (t) = Ni (t) −∫ t
0 Yi (s)d�γ T

0 X+i
(s). In view of τ̂ (v; t0) = 1 − exp{−�̂v(t)} and the delta method, we next establish the

asymptotic properties of �̂v(t). Furthermore, we will repeatedly use the fact that

sup
e0∈[a,b]

|Pn[Kh(E − e0)F − P{Kh(E − e0)F}]| = Op

[{(nh)−1 log(n)}1/2
]
, (A1)
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where {(Ei , Fi )}i=1,...,n are independent and identically distributed realizations of (E, F), satisfying
supe0

P(|F |s | E = e0) < ∞, for all s > 0.

To derive asymptotic properties of �̂v(t0), we first show that there is no additional variability due to γ̂ .
To this end, we write �̂v(t0) = �̂v(t0, γ̂ ) and aim to show that if γ̂ = γ0 + Op(n−1/2),

sup
v

|�̂v(t0, γ̂ ) − �̂v(t0, γ0)| = op

{
(nh)−1/2

}
, (A2)

where

�̂v(t0, γ ) =
∫ t0

0

{
R̂(2)

v (t, γ )d N̂ (0)
v (t, γ ) − R̂(1)

v (t, γ )d N̂ (1)
v (t, γ )

}
, (A3)

R̂( j)
v = π̂ ( j)

v /[π̂ (2)
v π̂ (0)

v − {π̂ (1)
v }2]; N̂ ( j)

v (t, γ ) = ∑
i K j,h{Dvi (γ )}Ni (t)/n; Dvi (γ ) = ψ{g(γ T X+i )} − ψ(v);

and π̂ ( j)
v (t, γ ) = ∑n

i=1 K j,h{Dvi (γ )}Yi (t)/n. We next show that

sup
t,v

∣∣π̂ ( j)
v (t, γ̂ ) − π̂ ( j)

v (t, γ0)
∣∣ = op

{
(nh)−1/2

}
.

Since π̂ ( j)
v (t, γ ) = ∫

K j,h(x − ṽ)dPn{I (γ̂ T X+ � x)Y (t)},
∣∣π̂ ( j)

v (t, γ̂ ) − π̂ ( j)
v (t, γ0)

∣∣ �
∣∣∣∣n−1/2

∫
K j,h(x − ṽ)dGn

{
I (γ̂ T X+ � x)Y (t) − I

(
γ T

0 X+ � x
)
Y (t)

}∣∣∣∣
+

∣∣∣∣
∫

K j,h(x − ṽ)P
{

I (γ̂ T X+ � x)Y (t) − I
(
γ T

0 X+ � x
)
Y (t)

}∣∣∣∣
� h−1n−1/2‖Gn‖Hδ

+ Op(n−1/2),

where Hδ = {I (γ T X+ � x)Y (t) − I (γ T
0 X+ � x)Y (t) : x, t, |γ − γ0| � δ} is a class of functions indexed by

x , t and δ. Furthermore, Hδ is uniformly bounded by an envelope function of order δ1/2 with respect
to the L2 norm. By the maximum inequality (Van der Vaart & Wellner, 1996, Theorem 2.14.2) and
|γ̂ − γ0| = Op(n−1/2), we have h−1n−1/2‖Gn‖Hδ

�Op{h−1n−1/2n−1/4 log(n)}. It follows that |π̂ ( j)
v (t, γ̂ ) −

π̂ ( j)
v (t, γ0)| = (nh)−1/2(nh2)−1/4 log(n) + Op(n−1/2) = op{(nh)−1/2}. Consequently, by (A1),

sup
t,v

∣∣R̂( j)
v (t, γ0) − R̂( j)

v (t, γ̂ )
∣∣ = op{(nh)−1/2} (k = 0, 1),

sup
t,v

{∣∣R̂(2)
v (t, γ0) − r (2)

v (t)
∣∣ + ∣∣R̂(1)

v (t, γ0)
∣∣} = Op{(nh)−1/2 log(n)1/2 + h2},

where r (2)
v (t) = 1/{ζ (ṽ)Sv(t)} and Sv(t) = pr(T � t | γ T

0 X+ = ṽ). Next, we note that∣∣∣∣
∫ t0

0
R̂(2)

v (t, γ̂ )d N̂ (0)
v (t, γ̂ ) −

∫ t0

0
R̂(2)

v (t, γ0)d N̂ (0)
v (t, γ0)

∣∣∣∣ � ε̂1 + ε̂2 + ε̂3,

where

ε̂1 = Pn

[∫ t0

0

∣∣R̂(2)
v (t, γ̂ ) − R̂(2)

v (t, γ0)
∣∣Kh(γ̂ T X+ − ṽ)d N (t)

]
,

ε̂2 = Pn

∣∣∣∣{Kh(
¯
γ̂ T X+ − ṽ) − Kh

(
γ T

0 X+ − ṽ
)} ∫ t0

0

∣∣R̂(2)
v (t, γ0) − r (2)

v (t)
∣∣d N (t)

∣∣∣∣ ,

ε̂3 =
∣∣∣∣ Pn

[{
Kh(γ̂ T X+ − ṽ) − Kh

(
γ T

0 X+ − ṽ
)} ∫ t0

0
r (2)
v (t)d N (t)

]∣∣∣∣ .

We next bound these three terms. For the first term, ε̂1 � op{(nh)−1/2}Pn{Kh(γ̂ T X+ − ṽ)N (t0)} =
op{(nh)−1/2}. For the second term, ε̂2 � h−1 supt |R̂(2)

v (t, γ0) − r (2)
v (t)| supx [Pn{|I (γ̂ T X+ � x) −

I (γ T
0 X+ � x)|N (t0)}], which is bounded by Op{h−1(nh)−1/2 log(n)1/2 + h}Op(n−1/2) = op{(nh)−1/2}. For
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the last term,

ε̂3 � n−1/2h−1 sup
x

∣∣∣∣Gn

[{
I (γ̂ T X+ � x) − I

(
γ T

0 X+ � x
)} ∫ t0

0
r (2)
v (t)d N (t)

]∣∣∣∣ + Op(n−1/2)

= Op

{
n−1/2h−1n− 1

4 log(n)
} = op{(nh)−1/2}.

Therefore, supv | ∫ t0
0 R̂(2)

v (t, γ̂ )d N̂ (0)
v (t, γ̂ ) − ∫ t0

0 R̂(2)
v (t, γ0)d N̂ (0)

v (t, γ0)| = op{(nh)−1/2}. Similarly,∫ t0
0 R̂(1)

v (t, γ̂ )d N̂ (1)
v (t, γ̂ ) − ∫ t0

0 R̂(1)
v (t, γt )d N̂ (1)

v (t, γ ) = op{(nh)−1/2}, and thus (A2) holds. On the other

hand, following Li & Doss (1995), we can show supv |�̂v(t0, γ0) − �v(t0)| → 0, in probability. It
follows that supv |�̂v(t0) − �v(t0)| � supv |�̂v(t0, γ̂ ) − �̂v(t0, γ0)| + supv |�̂v(t0, γ0) − �v(t0)| → 0, in
probability. This establishes the uniform consistency of �̂v(t0).

We next derive the asymptotic distribution of Ŵv(t0) = (nh)1/2{�̂v(t0) − �v(t0)}. From (A2), we have
Ŵv(t0) = W̃v(t0) + op(1), where W̃v(t0) = (nh)1/2{�̂v(t0, γ0) − �v(t0)}. Noting that n1/2h5/2 = op(1) and
the decomposition that

W̃v(t0) = (nh)1/2
Pn

[∫ t0

0

{
R̂(2)

v (t, γ0)Kh

(
γ T

0 X+ − ṽ
) − R̂(1)

v (t, γ0)K1,h

(
γ T

0 X+ − ṽ
)}

d M(t)

]

+ (nh)1/2

{
h2 + op(h2)

2

∫ t0

0

π̂ (2)
v (t, γ0)2 − π̂ (1)

v (t, γ0)π̂ (3)
v (t, γ0)

π̂
(2)
v (t, γ0)π̂ (0)

v (t, γ0) − π̂
(1)
v (t, γ0)2

∂2λv(t)

∂ṽ2
ds

}
,

we have

W̃v(t0) = (nh)1/2
Pn

[∫ t0

0

{
R̂(2)

v (t, γ0)Kh

(
γ T

0 X+ − ṽ
) − R̂(1)

v (t, γ0)K1,h

(
γ T

0 X+ − ṽ
)}

d M(t)

]
+ op(1).

By integration by part and maximum inequality for empirical process, we have

(nh)1/2
Pn

{
K1,h

(
γ T

0 X+ − ṽ
) ∫ t0

0
R̂(1)

v (t, γ0)Y (t)d M(t)

}
= op(1),

(nh)1/2
Pn

[
Kh

(
γ T

0 X+ − ṽ
) ∫ t0

0

{
R̂(2)

v (t, γ0) − r (2)
v (t)

}
d M(t)

]
= op(1),

uniformly in ṽ. Therefore,

Ŵv(t) = (nh)1/2
Pn

{
Kh

(
γ T

0 X+ − ṽ
) ∫ t0

0
r (2)
v (t)d M(t)

}
+ op(1). (A4)

For any fixed v or ṽ, by martingale central limit theorem, (nh)1/2
Pn{Kh(γ T

0 X+ − ṽ)
∫ t0

0 r (2)
v (t)d M(t)} →

N {0, σ 2
v (t0)}, in distribution, as n → ∞, where σ 2

v (t0) = m2
∫ t0

0 r (2)
v (t)d�v(t). It follows that for any fixed

v, Ŵv(t) converges in distribution to N {0, σ 2
v (t0)}.

To demonstrate the validity of the resampling variance estimator, we define

γ̂ ∗ = [log{�̂∗
0(t0)}, β̂∗T

]T, (A5)

where

β̂∗ = β̂ + Â
−1

n∑
i=1

∫ [
ξi

{
Xi − �̂(1)(t,β̂)

�̂(0)(t,β̂)

}
−

∑n

j=1
ξ j Y j (t) exp(β̂T X j ){�̂(0)(t,β̂)X j −�̂(1)(t,β̂)}

n�̂(0)(t,β̂)2

]
d Ni (t),

log{�̂∗
0(t0)} = log{�̂0(t0)} + n−1

�̂0(t)

n∑
i=1

∫ t

0

[
ξi

�̂(0)(s,β̂)
−

∑n

j=1
ξ j Y j (s) exp(β̂T X j )+�̂(1)(t,β̂)T(β̂∗−β̂)

n�̂(0)(s,β̂)2

]
d Ni (s),

�̂( j)(t, β) = n−1
∑n

j=1 Y j (t) exp(βT X j )X⊗k
j and for any vector x , x⊗0 = 1, x⊗1 = x and x⊗2 = xxT. It is

straightforward to show that n1/2(γ̂ ∗ − γ̂ ) conditional on the data and n1/2(γ̂ − γ0) converge to the same
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limiting distribution. From γ̂ ∗ = γ0 + Op(n−1/2) and (A2), (4) = n−1/2h1/2
∑n

i=1 Kh(D̂vi )V̂i (v; t0)ξi +
op(1). Thus the variance estimator for (nh)1/2{�̂v(t0) − �v(t0)} is

σ̂ 2
v (t0) = var

{
n−1/2h1/2

n∑
i=1

Kh(D̂vi )V̂i (v; t0)ξi

∣∣∣∣ (Ti , δi , Ui ) (i = 1, . . . , n)

}
+ op(1)

= P

{
hK 2

h

(
γ T

0 X+ − ṽ
) ∫ t0

0
r (2)
v (t)2Y (t)d�v(t)

}
+ op(1) = σ 2

v (t0) + op(1),

which converges to σ 2
v (t0) in probability.

APPENDIX B

Justification for the validity of the confidence band for τ̂ (v; t0)

We first justify that with proper standardization, W = supv |(nh)1/2�̂v(t0) − �v(t0)/σ̂v(t0)| converges
weakly. It follows from (A4) and the consistency of σ̂v(t0) for σv(t0) that

W = sup
v

∣∣∣∣ (nh)1/2
Pn

{
Kh

(
γ T

0 X+ − ṽ
) ∫ t0

0

r (2)
v (t)

σv(t0)
d Mi (t)

} ∣∣∣∣ + op(1).

This, together with the continuity of r (2)
v (t)/σv(t0), implies that

W = sup
v

∣∣(nh)1/2
Pn

{
Kh

(
γ T

0 X+ − ṽ
)
η
}∣∣ + op(1),

where η = ∫ t0
0 r (2)

ψ−1(γ T
0 X+)(t)d M(t)/σψ−1(γ T

0 X+)(t0). It follows from a similar argument in Bickel & Rosenblatt

(1973) that pr {an(W − dn) < x} → e−2e−x
, where

an =
[

2 log

{
ψ(ρr ) − ψ(ρl)

h

}]1/2

and dn = an + a−1
n log

{
1

4m2π

∫
K̇ (t)2dt

}
.

To justify the validity of the resampling procedure for constructing the confidence band, we consider

W ∗ = sup
v

∣∣∣∣∣ (nh)1/2

σ̂v(t0)

n∑
i=1

ξi

∫ t0

0

Kh (γ̂ T X+i −ṽ){d Ni (t)−Yi (t)d�̂v (t)}
π̂

(0)
v (t,γ̂ )

+ (nh)1/2{�̂v(t0, γ̂
∗) − �̂v(t0, γ̂ )}

∣∣∣∣∣ .

Again, since |γ̂ ∗ − γ̂ | = Op(n−1/2), from (A2), we have

W ∗ = sup
v

∣∣∣∣∣ (nh)1/2

σ̂v(t0)

n∑
i=1

ξi

∫ t0

0

Kh (γ̂ T X+i −ṽ){d Ni (t)−Yi (t)d�̂v (t)}
π̂

(0)
v (t,γ̂ )

∣∣∣∣∣ + op(1).

It follows from the same argument as given in Tian et al. (2005) that

sup
x

|pr{an(W ∗ − dn) < x | (Ti , δi , Ui ), i = 1, . . . , n} − e−2e−x | → 0

in probability as n → ∞. Therefore, the conditional distribution of an(W ∗ − dn) can be used to approxi-
mate the distribution of an(W − dn) for large n.
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