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Summary: In medical sciences, statistical analyses based on observational studies are common phenomena. One

peril of drawing inferences about the effect of a treatment on subjects using observational studies is the lack of

randomized assignment of subjects to the treatment. After adjusting for measured pretreatment covariates, perhaps

by matching, a sensitivity analysis examines the impact of an unobserved covariate, u, in an observational study. One

type of sensitivity analysis uses two sensitivity parameters to measure the degree of departure of an observational

study from randomized assignment. One sensitivity parameter relates u to treatment and the other relates u to

response. For subject matter experts, it may be difficult to specify plausible ranges of values for the sensitivity

parameters on their absolute scales. We propose an approach that calibrates the values of the sensitivity parameters

to the observed covariates and is more interpretable to subject matter experts. We will illustrate our method using

data from the U.S. National Health and Nutrition Examination Survey regarding the relationship between cigarette

smoking and blood lead levels.
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1. Introduction

1.1 Observational Studies and Sensitivity Analyses

An observational study estimates treatment effects on subjects, when subjects are not

assigned to treatments at random. Because subjects in treated and control groups may

not be comparable, differences in their responses could be observed even if there were

no treatment effect. A sensitivity analysis examines the impact of hidden bias due to an

unobserved covariate in an observational study; see §4, Rosenbaum (2002) for a review.

Methods and applications of sensitivity analyses for general observational studies include

Cornfield et al. (1959), Rosenbaum and Rubin (1983), Rosenbaum (1986), Gastwirth (1992),

Marcus (1997), Pan and Frank (2003), Imbens (2003), Shepherd et al. (2007), Small (2007),

and Hosman et al. (2010). These authors consider the effect of unobserved covariates to

conduct sensitivity analyses to hidden bias in observational studies. In general, sensitivity

parameters quantify the impact of the unobserved covariates on treatment or on response

and measure the degree of departure of observational studies from randomized assignments.

Sensitivity parameters can be difficult for some subject matter experts to interpret. In this

paper, we develop an approach for calibrating sensitivity parameters to observed covariates

to make sensitivity parameters more interpretable.

To illustrate the challenges of interpreting sensitivity parameters, consider Bingenheimer

et al. (2005)’s study of the effect of exposure to firearm violence on subsequent perpetration

of serious violence. Using data from Chicago and controlling for 153 pre-exposure covariates

through propensity score sub-classification, Bingenheimer et al. estimate that exposure to

firearm violence approximately doubles the probability that an adolescent will perpetrate

violence over the next two years (p-value for no effect < 0.001). In a news article that

accompanies Bingenheimer et al.’s paper, Holden (2005) reports that a number of scholars

are not convinced by the findings of the study. For example, Holden says, “Economist
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Stephen Durlauf of the University of Wisconsin, Madison, calls the study an “implausible

modeling of violence exposure.” The authors assume that the individuals with the same

propensity rankings are equally likely to encounter violence, he says. But such exposure may

not be random; rather it probably stems from “something that has not been measured”

— such as recklessness, says Durlauf.” Bingenheimer et al. in fact conducts a sensitivity

analysis that considers what the effect of an unobserved confounder like recklessness would

be. Suppose the unobserved confounder is standardized to have mean 0 and variance 1;

e.g., a standardized measure of recklessness. Bingenheimer et al. consider various effects

this unobserved confounder might have, for example: (A) the unobserved confounder has

a 0.43 larger mean for exposed subjects and a 0.6 larger mean for perpetrators; or (B)

the unobserved confounder has a 0.49 larger mean for exposed subjects and a 0.69 larger

mean for perpetrators. An unobserved confounder with properties (A) would still leave the

p-value for testing no effect below 0.05 but an unobserved confounder with properties (B)

would bring the p-value above 0.05. Thus, the key issue for assessing what the impact of

not having measured the confounder recklessness on the conclusions of the study is whether

standardized recklessness has properties more like (A) or (B). It may be difficult for subject

matter experts to think about this in terms of absolute numbers; e.g., it may be difficult to

think about whether standardized recklessness is more likely to have a 0.43 larger mean for

exposed subjects (A) or a 0.49 larger mean for exposed subjects (B). In this paper, we re-

frame the question in terms of comparing unobserved covariates to observed covariates. For

example, we would look for an observed covariate among the 153 observed covariates that

is similar in its properties to hypothetical unobserved confounder (A) and another observed

covariate that is similar in its properties to hypothetical unobserved confounder (B), and ask

the question, do we think the unobserved confounder is more similar in its properties to the

first observed covariate or to the second covariate. The key output of our method is a graph
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like Figure 2 that tells readers if an unobserved covariate had a strength of confounding

similar to a given observed covariate, would there still be strong evidence for the exposure

having a causal effect on the outcome.

The paper is organized as follows. In the rest of Section 1 we describe a motivating example

from the U.S. National Health and Nutrition Examination Survey regarding the relationship

between cigarette smoking and blood lead levels followed by a sensitivity analysis for matched

pairs. In Section 2, we explain notation and reviews of methodology. The proposed method of

calibrating sensitivity analysis to observed covariates is discussed in Section 3. In Section 4,

empirical results from the motivating example are given to illustrate our proposed method.

Finally, in Section 5, we give a brief discussion.

1.2 A Motivating Example: Lead in the Blood of Smokers

Using data from the 2007–2008 U.S. National Health and Nutrition Examination Survey

(NHANES), we study the effect of smoking on blood lead levels among 679 daily smokers

and 2661 non-smokers. A daily smoker reported smoking every day for the previous 30

days and smoking an average of at least 10 cigarettes per day on these days. A non-smoker

reported smoking fewer than 100 cigarettes in his or her life and smoking no cigarettes in

the previous 30 days. All subjects were at least 20 years old and had no tobacco use besides

cigarette smoking in the previous 5 days.

Does smoking increase blood lead levels? To answer this question, we first matched 679

daily smokers with 2661 candidates of non-smokers using the pairmatch function in the

optmatch package in R (Hansen, 2007) applied to a distance matrix that combined a caliper

on an estimated propensity score with a rank based Mahalanobis distance (Rosenbaum,

2002). Pairs were matched for age, gender, education, income and race. Table 1 shows means

and standardized differences in means (i.e., the difference in means divided by a measure of

the average within treatment group standard deviation) before and after matching. Before
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matching, the covariates income-to-poverty level, gender, 9–11th grade education, high school

education, college education, White race, Mexican American race, and other Hispanic are

out of balance; the magnitude of their standardized differences are all greater than 0.2.

The matching approximately balances all of the observed covariates. After matching, the

magnitude of standardized difference is less than 0.1 for all of the covariates except 9–11th

grade education, for which the standardized difference is 0.11. The outcome is a binary

response of whether blood lead levels is greater than or equal to 5 ug/dl, where 5 ug/dl is

the reference level at which Centers for Disease Control and Prevention recommends public

health actions to be initiated (www.cdc.gov/nceh/lead/). We use McNemar’s test statistic

to test for the effect of smoking on high blood lead. Of 679 pairs, there are 68 pairs in

which exactly one person has high blood lead. Of these, there are 46 pairs in which the daily

smokers have high blood lead and 22 pairs in which the non-smokers have high blood lead. If

the study were free of hidden bias, McNemar’s test statistic would yield a significance level

of 0.0025, which would suggest strong evidence that smoking causes high blood lead if the

study were free of hidden bias.

[Table 1 about here.]

1.3 Simultaneous Sensitivity Analyses to Hidden Bias

How sensitive to hidden bias from an unobserved covariate is the result that smoking causes

high blood lead? One type of sensitivity analyses, simultaneous sensitivity analyses, use two

sensitivity parameters, Γ and ∆, to measure the degree of hidden bias due to the unobserved

covariate in an observational study (Gastwirth et al., 1998). Suppose there is an unobserved

covariate u that lies between 0 and 1. One sensitivity parameter, Γ, relates u to treatment;

namely, the odds ratio of receiving treatment for two subjects with different values of u is at

most Γ, and the other parameter, ∆, relates u to response; namely, the odds ratio of having

higher response for two subjects with different values of u is at most ∆. The simultaneous
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sensitivity analysis finds the maximum p-value over all distributions of u for given values of

Γ and ∆. If u is either irrelevant to smoking (i.e., Γ = 1) or irrelevant to high blood lead

(i.e., ∆ = 1), the maximum one-sided p-value = 0.0025; therefore, there is strong evidence

that smoking causes high blood lead. If Γ > 1 and ∆ > 1, the maximum p-value is changed

and this may or may not alter the result that there is strong evidence smoking causes high

blood lead. For example, for Γ = ∆ = 2, one person in a pair may be twice as likely to

smoke and twice as likely to have high blood lead as the other because they have different

values of u, but there is still strong evidence that smoking causes high blood lead because

the maximum one-sided p-value = 0.0285. On the other hand, when Γ = ∆ = 2.5, there

is no longer strong evidence that smoking causes high blood lead because the maximum

one-sided p-value = 0.0963. Web Appendix B.1 gives the simultaneous sensitivity analysis

for the NHANES data.

In this paper, we propose a method to provide a way to interpret sensitivity parameters in

terms of the observed covariates that subject matter experts are familiar with. Specifically,

we calibrate the values of Γ and ∆ in a simultaneous sensitivity analysis to the observed

covariates in an observational study.

2. Notation and Reviews

2.1 Notation

Suppose that there are I matched sets, i = 1, . . . , I, matched for observed covariates, x.

Within a set i, there are ni > 2 subjects, j = 1, . . . , ni, and N =
∑

ni subjects in total. If

subject ij receives treatment, then Zij = 1. If otherwise, then Zij = 0. Let mi be the number

of treated subjects in set i such that mi =
∑ni

j=1 Zij. In a full matching, each set contains

either one treated subject and ni−1 controls or ni−1 treated subjects and one control such

that mi = 1 or mi = ni − 1 for i = 1, . . . , I. In a matching with multiple controls, mi = 1
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and ni > 2 for i = 1, . . . , I. In a matching with a fixed number of controls, k, mi = 1 and

ni = k+1 for i = 1, . . . , I. A pair matching is a special case of matching with a fixed number

of controls with k = 1.

Let xij be the vector of P observed covariates for subject ij. If a study is free of hidden bias,

the probability that subject ij receives the treatment is a function of the observed covariates

xij describing subject ij, say pZij
= g(xij). If two subjects, ij and ij′, with the same observed

covariates have different probabilities of receiving the treatment, there is hidden bias. That

is xij = xij′ but pZij
6= pZij′

. We will assume that this hidden bias comes from an unobserved

covariate uij such that if uij were observed, there would be no hidden bias. Following Neyman

(1923) and Rubin (1974), each subject ij has two potential outcomes, (y
(0)
ij , y

(1)
ij ), and y

(z)
ij

denotes the response that would be observed for subject ij if subject ij’s level of Z were set

to z. The response actually observed from subject ij is yij = Zijy
(1)
ij + (1− Zij)y

(0)
ij .

2.2 Models for Treatment and Response in the Population Before Matching

Following Gastwirth et al. (1998) and Small et al. (2009), in the population before matching,

the following models will be used:

Zij ⊥⊥ (y
(0)
ij , y

(1)
ij ) | xij , uij, (1)

Pr(Zij = 1 | xij , uij) =
exp{β(z = 1,xij) + γuij}

exp{β(z = 0,xij)}+ exp{β(z = 1,xij) + γuij}
, and (2)

Pr(y
(0)
ij = y | xij , uij) = exp{ζ(xij, uij) + κ(y,xij) + δyuij}, (3)

where A ⊥⊥ B | C is Dawid’s (1979) notation for conditional independence of A and B given

C, β(·) and κ(·) are unknown functions, ζ(xij, uij) are normalizing constants, and γ and δ

are unknown parameters. Assumption (1) ensures that uij is the only relevant unobserved

covariate; i.e., treatment Zij and response under control y
(0)
ij are dependent only because of

their dependence on uij. Model (2) is a logit model for the treatment assignment. Model

(3) allows for y
(0)
ij to take on several common distributions such as binary, Poisson, normal,
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or gamma. For example, if y
(0)
ij is binary, then ζ(xij, uij) = − log[exp{κ(y = 0,xij)} +

exp{κ(y = 1,xij) + δuij}] and Pr(y
(0)
ij = 1 | xij , uij) = exp{κ(y = 1,xij) + δuij}/[exp{κ(y =

0,xij)} + exp{κ(y = 1,xij) + δuij}] is a logit model. If y
(0)
ij is continuous and follows a

normal distribution with mean µ = τ(xij) + δuij where τ(·) is a known function of xij, and

variance σ2, then ζ(xij, uij) = −1/2 log(2πσ2) − µ2/2σ2, κ(y,xij) = −{y2 − 2τ(xij)y}/2σ2

and Pr(y
(0)
ij = y | xij , uij) = (2πσ2)−1/2 exp{−(y − µ)2/2σ2}. Model (3) only specifies the

form of the relationship between uij and y
(0)
ij , and allows for any possible relationship between

xij and y
(0)
ij since κ(·) and ζ(·) are not restricted.

The parameters γ and δ in models (2) and (3) are sensitivity parameters which determine

the strength of the relationship between the unobserved covariate uij and the treatment Zij

and the response under control y
(0)
ij , respectively. If uij were irrelevant to Zij and y

(0)
ij , then

γ = δ = 0. To make the parameters γ and δ meaningful, uij needs to be scaled in some way.

We assume a binary unobserved covariate such that

Pr(uij = 1 | xij) = Pr(uij = 0 | xij) =
1

2
, (4)

which also implies that uij and xij are independent. Wang and Krieger (2006) show that

among all distributions for uij with mean 1/2 and variance 1/4, uij being Bernoulli with

probability 1/2 maximizes the upper bound on the p-value. In practical terms, this means

that the conclusions we reach assuming the unobserved covariate is binary with probability

1/2 are at worst conservative in terms of being able to reject the null hypothesis of no

treatment effect.

2.3 Test Statistics and Sensitivity Analyses of Hidden Bias

For all matched sets, let Z be the vector of treatments, Z = (Z11, . . . , ZI,nI
)T , y be the

vector of observed responses, y = (y11, . . . , yI,nI
)T , X be the matrix of observed covariates,

X = {x11, . . . ,xI,nI
}T , and u be the vector of unobserved covariates, u = (u11, . . . , uI,nI

)T .

Let m denote the vector of the number of treated units in set i, m = (m1, . . . , mI). Consider
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Fisher’s sharp null hypothesis of no treatment effect (Fisher, 1935), H0 : y
(0) = y(1), against

the alternative hypothesis that more treatment causes higher responses. Common tests for

matched studies such as McNemar’s test, Wilcoxon’s signed rank test, Mantel-Haenszel test,

and aligned rank test of Hodeges and Lehmann have test statistics in the form of

T = t(Z,y) =
I∑

i=1

di

ni∑

j=1

cijZij, (5)

where di and cij are any function of y; see Rosenbaum (2002), §2 for details.

Let yi(1) 6 . . . 6 yi(ni) and Zi(1) 6 . . . 6 Zi(ni) be the order statistics for match set i, and

ỹ = (y1(1), . . . , yI(nI))
T and Z̃ = (Z1(1), . . . , ZI(nI))

T denote the vectors of ordered yij and Zij .

Following Gastwirth et al. (1998), we consider inference conditional on these order statistics

ỹ. For Fisher’s sharp null hypothesis of no treatment effect, the upper tail area of the test

statistic T is bounded by,

PrH0(T > k | m, ỹ,X,u) 6 max
u∈U

{PrH0(T > k | m, ỹ,X,u)} , (6)

where U is the set of possible values of u; see Gastwirth et al. (1998) and Gastwirth et al.

(2000) for calculation of bounds. For instance, in pair matching, the chance that the treated

subject in pair i has the higher response under the null hypothesis is

pi(u) =
exp{γ(ui2 − ui1)} exp{δ(yi(2) − yi(1))(ui2 − ui1)}+ 1

[1 + exp{γ(ui2 − ui1)}][1 + exp{δ(yi(2) − yi(1))(ui2 − ui1)}]
.

The right-hand side of (6) is then

max
u∈U

{PrH0(T > k | m, ỹ,X,u)} =
∑

b∈B

χ

(
I∑

i=1

bidi > k

)
∏

(p+i )
bi(1− p+i )

1−bi ,

where B is the set containing 2I distinct vectors b of dimension I with coordinates equal to

one or zero, χ(event) = 1 or 0 if the event occurs or does not, di is any function of y defined

in (5), and p+i is the maximum value of pi(u), which is

p+i =
exp(γ) exp{δ(yi(2) − yi(1))}+ 1

{1 + exp(γ)}[1 + exp{δ(yi(2) − yi(1))}]
;

see Web Appendix A for details on computation of pi(u) and p+i in the case of pair matching.

In the case of matching with multiple controls or full matching, it may be computationally
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difficult to find the exact upper bound in (6). However, a computationally quick asymptotic

separability approach provides an approximation for the bounds that converges to the exact

upper bound as the number of matched sets converges to infinity (Gastwirth et al., 2000;

Small et al., 2009). The upper bound, maxu∈U{PrH0(T > k | m, ỹ,X,u)}, is the maximum

one-sided p-value for a test statistic T . Hereafter we refer this upper bound as ‘the maximum

p-value’ in the paper (i.e., dropping terms ‘one-sided’ and ‘for a test statistic T ’).

3. Calibrating Sensitivity Analyses to Observed Covariates

3.1 Sensitivity Models for Treatment and Response

To calibrate the effects of unobserved covariates relative to observed covariates, we specify

parametric models for the effects of observed covariates xij in models (2) and (3) in which

xij are linear predictors in the link functions for generalized linear models. Specifically, we

specify model (2) so that

Pr(Zij = 1 | xij , uij) =
exp(θTxij + γuij)

1 + exp(θTxij + γuij)
; (7)

i.e., the treatment Zij follows a logistic regression model that is linear in xij and uij, where

θ = {θ1, . . . , θP}T are P parameters for effects of xij on Zij and the sensitivity parameter,

Γ = exp(γ), is the odds ratio for receiving treatment for uij = 1 vs. uij = 0. For a binary

response, we specify model (3) so that

Pr(y
(0)
ij = 1 | xij , uij) =

exp(φTxij + δuij)

1 + exp(φTxij + δuij)
, (8)

where φ = {φ1, . . . , φP}T are P parameters for effects of xij on y
(0)
ij and the sensitivity

parameter, ∆ = exp(δ), is the odds ratio for y
(0)
ij = 1 for uij = 1 vs. uij = 0. For a normal

response, we specify model (3) so that

Pr(y
(0)
ij = y | xij , uij) =

1√
2πσ

exp

{
−(y − φTxij − δuij)

2

2σ2

}
; (9)

i.e., y
(0)
ij is normal with mean φTxij + δuij and the sensitivity parameter, ∆ = exp(δ),

reflects the effect of the unobserved covariate uij on the response; see Gastwirth et al. (1998)
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for further discussion of interpreting ∆. Similar models as (8) or (9) can be specified for

other types of responses. Note that the models in (7)–(8) may be misspecified in that the

effects of the covariates xij on the logit of the probability may not be linear. Such potential

misspecification may be mitigated by including quadratics, interactions and other functions

of the covariates in xij .

Suppose we are considering possible effects (γ, δ) of the unobserved covariate uij. To

calibrate how the effects of the unobserved covariate compare to the effects of an observed

covariate xijp, we would like to compare γ to θp in model (7) and δ to φp in model (8) or (9),

and hence need to estimate θ and φ. We can do so by the method of maximum likelihood,

but because uij is unobserved, we need to marginalize over uij to find the likelihood of

the observed data. Note that, even though uij is independent of xij, the coefficients on xij

in model (7) or (8) cannot be consistently estimated by logistic regression Zij or y
(0)
ij on

xij, because the logistic regression model is generally not collapsible (Guo et al., 1995) and

estimates that ignore uij are biased (Gail et al., 1984). To marginalize over uij, we use models

and assumptions (1)–(4) to obtain

pZij
= Pr(Zij = 1 | xij , γ) =

1

2

1∑

c=0

Pr(Zij = 1 | xij , uij = c, γ), (10)

and

p
y
(0)
ij

= Pr(y
(0)
ij = y | xij , δ) =

1

2

1∑

c=0

Pr(y
(0)
ij = y | xij , uij = c, δ). (11)

From the marginalized density in (10), the log-likelihood function for θ given Z, X and γ is

logL(θ;Z,X, γ) =
I∑

i=1

ni∑

j=1

{
Zij log

(
pZij

1− pZij

)
+ log

(
1− pZij

)}
, (12)

and from the marginalized density in (11), the log-likelihood function of φ given y(0), X and
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δ is

logL(φ;y(0),X, δ)

=





∑I
i=1

∑ni

j=1

{
y
(0)
ij log

(
p
y
(0)
ij

1−p
y
(0)
ij

)
+ log

(
1− p

y
(0)
ij

)}
if y

(0)
ij is binary

∑I
i=1

∑ni

j=1 log
(
p
y
(0)
ij

)
if y

(0)
ij is continuous.

(13)

The log-likelihood (12) can be maximized using the observed data to estimate θ. The log-

likelihood (13) contains partially unobserved data because y
(0)
ij is only observed if Zij = 0.

One method is to replace y
(0)
ij with y

(1)
ij for those who have Zij = 1, because under Fisher’s

sharp null hypothesis, y
(0)
ij is equal to y

(1)
ij . Another method is to use only data from subjects

whose Zij = 0. Assumption (1) ensures that model (3) continues to hold if we condition on

Zij = 0. The log-likelihood (13) restricted to subjects whose Zij = 0 is

logL(φ;y(0),X, δ) =

I∑

i=1

ni∑

j=1

(1− Zij)× logL(φ; y
(0)
ij ,xij, δ), (14)

where y(0) and X are rows of y(0) and X when Zij = 0. If Fisher’s sharp null hypothesis is

true, both methods provide good estimates. Estimates based on (14) are less efficient than

estimates based on (13) due to the use of partial data. If the alternative hypothesis is true

(i.e., treatment effect exists), estimates based on (14) are still good estimates while estimates

based on (13) may be biased depending on the magnitude of treatment effect. We conduct

a simulation study to examine the performance of estimates from both methods under null

and various alternative hypotheses. The details of the simulation study are provided in Web

Appendix C.1. The results show that under the null, both methods are consistent with

estimates based on (13) being more efficient. Note that the amount of lost efficiency depends

on the proportion of controls. When the alternative hypothesis is true, estimates based on

(14) remain consistent, and estimates based on (13) deviate from true parameters as the

magnitude of treatment effect increases. In this paper, we use estimates based on the log-
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likelihood (14), using only data from subjects whose Zij = 0, and obtain estimates for φ

from maximizing (14).

3.2 Graphical Calibration to Observed Covariates

In Section 3.1, we have shown how to compare the effect of an unobserved covariate with

effect Γ on treatment and with effect ∆ on response to that of observed covariates with

Θ = exp(θ) and Φ = exp(φ). To summarize these comparisons in a digestible way, we

would like to take a graphical approach. Using the simultaneous sensitivity analysis method

described in Section 2, we can draw the curve in Figure 1(a) that shows for what values of

Γ and ∆ the maximum p-value for testing Fisher’s sharp null hypothesis of no treatment

effect in (6) is less than α (to the left of the curve) or greater than α (to the right of the

curve). Figure 1(a) only shows Γ > 1 and ∆ > 1. Figure 1(b) expands Figure 1(a) to show all

possible values of Γ and ∆. In Figure 1(b), quadrants I and III are mirror sides to each other

and so are quadrants II and IV; e.g., both (Γ,∆) and (1/Γ, 1/∆) yield the same maximum

p-value in (6). We denote two solid curves in quadrants I and III by Ωα, the shaded area by

Ω−
α and the white area by Ω+

α . On the graph, we would like to plot the effects of observed

covariates so that if the effect of an observed covariate is in Ω−
α and the unobserved covariate

has similar effect as the observed covariate, then the maximum p-value would be less than

α. Vice versa, if an observed covariate is in Ω+
α and the unobserved covariate has similar

effect as the observed covariate, then the maximum p-value would be greater than α. A

complication in making this graph is that the estimated effects of the observed covariates

from Section 3.1 depend on the values of γ and δ, or equivalently the values of Γ and ∆. We

particularly care about the effects of the observed covariates relative to (Γ,∆) ∈ Ωα, since

Ωα is the borderline between having a significant effect vs. non-significant effect. In Web

Appendix C.2, we conduct a simulation study to study the sensitivity of estimates for Θ

and Φ along these curves. The results show that the estimates are not sensitive to the choice
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of (Γ,∆) ∈ Ωα. We suggest using as a default choice for the estimated effects of observed

covariates, the estimated effects for the (Γ,∆) ∈ Ωα that intersect the line Γ = ∆.

[Figure 1 about here.]

When estimatingΘ andΦ from the log-likelihoods (12) and (14), we could consider (γ, δ) as

unknown parameters and estimate them. Copas and Li (1997) discuss that such an approach

may not be robust to small changes in the model; e.g., changing model (2) from a logistic

regression to a probit regression. In this paper, we adopt Copas and Li (1997)’s suggestion

and conduct a sensitivity analysis for the effect of different (Γ,∆) ∈ Ωα rather than try to

estimate (Γ,∆).

4. Empirical Results: Smoking and High Blood Lead

To illustrate our proposed method, we consider the study from Section 1.2 on the effect of

smoking on high blood lead. We provide the R codes for our proposed method in Web Section

D.

In Section 1.2, assuming no hidden bias, McNemar’s test statistic for no smoking effect on

high blood lead yields a p-value of 0.0025. A simultaneous sensitivity analysis that examines

the effect of associations between an unobserved covariate and, respectively, smoking and

high blood lead is carried out to investigate the impact of the unobserved covariate on

the results that smoking causes high blood lead; see Web Appendix B.1; Web Table 1

shows the maximum p-value for McNemar’s test statistic for a given (Γ,∆). To calibrate

the simultaneous sensitivity analysis to observed covariates, we use a conventional level of

significance, that is α = 0.05, and therefore, Ω.05 is a set of possible values of (Γ,∆) for

which the maximum p-value for McNemar’s test statistic is 0.05. The set Ω.05 does not have

a closed form, but we can approximate it by the set Ω.05 as follows. We expand the values of

(Γ,∆) from 1.01 to 16 with an increment of 0.01 and create a 1500× 1500 grid. For each Γ,
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we look for a ∆ such that the maximum p-value is close to 0.05. For example, Ω.05 includes

(Γ,∆) = (1.43,9.25), (1.60,4.22), (2.20,2.22) and (6.95,1.47), where the maximum p-values

for McNemar’s test statistics are 0.0500, 0.0499, 0.0497 and 0.0500, respectively. In Web

Appendix B.2, we list 100 randomly selected values of (Γ,∆) and their maximum p-values

from the collection of (Γ,∆) ∈ Ω.05.

Our goal is to compare the effects of observed covariates on smoking and high blood lead

to the possible effects of an unobserved covariate on smoking and high blood lead. The

observed covariates include age, income-to-poverty level, gender, education and race. To

make the effects of continuous observed covariates comparable with the effects of a binary

unobserved covariate, we adopt Gelman (2008)’s suggestion to standardize the continuous

covariates (age and income-to-poverty level in our case) to mean 0 and standard deviation

(SD) 0.5. The coefficients for the scaled covariates correspond to 2-SD changes; this is roughly

comparable to the coefficient on a binary covariate, which corresponds to exactly a 2-SD

change if the binary covariate has probability 1/2. Following our suggestion in Section 3,

we use Γ = ∆ = 2.21 as a default choice in this example, where the maximum p-value is

approximately equal 0.0497. Using the optim function in R, we maximize two log-likelihood

functions, logL{θ;Z,X, γ = log(2.21)} and logL{φ;y(0),X, δ = log(2.21)}, in (12) and (14)

to obtain θ̂γ and φ̂δ. We then calculate Θ̂γ = exp(θ̂γ) and Φ̂δ = exp(φ̂δ) which are the

estimated effects of observed covariates on smoking and high blood lead. See Web Appendix

B.3 for more details.

Figure 2 depicts calibration of the simultaneous sensitivity analysis. The solid curves

represent values of (Γ,∆) ∈ Ω.05. The shaded area represents values of (Γ,∆) ∈ Ω
−

.05,

where the maximum p-value is less than 0.05. Because covariates of age of 2-SD difference,

income-to-poverty level of 2-SD difference, 9–11th grade vs. college education, high school

vs. college education, some college vs. college education, Black vs. White race, Mexican
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American vs. White race and other races vs. White race fall into Ω
−

.05, if the effect of an

unobserved covariate is similar to the effect of any of these observed covariates, then there

is strong evidence that smoking causes high blood lead. The white area represents values of

(Γ,∆) ∈ Ω
+

.05, where the maximum p-value is greater than 0.05. Because covariates of male

vs. female gender, less than 9th grade vs. college education and other Hispanic vs. White

race fall into Ω
+

.05, if the effect of an unobserved covariate is similar to the effect of any of

these observed covariates, then there is not strong evidence that smoking causes high blood

lead.

[Figure 2 about here.]

In addition to individual covariate comparisons discussed previously, we can also provide

calibration to the effects of multiple observed covariates by comparing an unobserved co-

variate to a binary covariate constructed from several observed covariates. For example,

if a binary unobserved covariate is similar in its effects to level 1 being male gender and

Black race vs. level 0 being female gender and White race, then the effects of this observed

covariate constructed from gender and race are (e0.86−0.77, e1.67+0.56) = (1.09, 9.33) ∈ Ω
−

.05.

Thus, if the effect of an unobserved covariate is similar to that of a binary covariate of

male gender and Black race vs. female gender and White race, there would be strong

evidence that smoking causes high blood lead; i.e., the maximum p-value for McNemar’s

test statistic would be less than 0.05. Another example is if an unobserved covariate is

similar in its effects to level 1 being age of 2-SD older, 9–11th grade education and Black

race vs. level 0 being age of 2-SD younger, college education and White race, then the

effects of this observed covariate constructed from age, gender, education and race are

(e−0.63+2.24−0.77, e0.81−0.09+0.56) = (2.32, 3.63) ∈ Ω
+

.05. Hence, if an unobserved covariate has

similar effect as a binary covariate of age of 2-SD older/9–11th grade education/Black race

vs. age of 2-SD younger/college education/White race, there would not be strong evidence



16 Biometrics, mm yyyy

that smoking causes high blood lead; i.e., the maximum p-value for McNemar’s test statistic

would be greater than 0.05.

5. Discussion

In this paper, we have proposed a method to calibrate a simultaneous sensitivity analysis

to observed covariates for a matched observational study. We believe that comparing effects

of an unobserved covariate with effects of observed covariates on treatment and on response

can aid subject matter experts in specifying plausible ranges of values for the sensitivity

parameters on their absolute scales. Our method is a tool to help researchers interpret

sensitivity parameters but still requires researchers’ judgment to decide whether a study’s

conclusions made under the assumption of no unobserved confounding are likely to still be

valid even if there is a plausible amount of unobserved confounding or should be taken with

a grain of salt because of concern about unobserved confounding. For example, in one study,

a researcher might think the unobserved covariate could only have an effect as strong as that

of the most important observed covariates, but in another study, a researcher might think

that the unobserved covariate could only have an effect half as strong as that of the most

important observed covariate. The calibration, e.g., Figure 2, needs to be combined with such

researcher’s judgment to decide whether a study’s conclusions made under the assumption

of no unobserved confounding are likely to still be valid even if there is a plausible amount

of unobserved confounding or should be taken with a grain of salt.

One setting in which our method is useful is when a proxy is used for the true confounder

that we would like to control for. In medical studies, income, education and occupation are

often used as proxies for socioeconomic status (SES) (Geronimus and Bound, 1998 and Hsu

et al., 2012). For example, suppose college education is used as a proxy for SES and suppose it

is thought that the unobserved part of SES is no more important than the observed part (i.e.,

college education). If a significant treatment effect is found, our method allows a researcher
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to determine if the unobserved SES could explain the significant finding, or instead there

is strong evidence for a treatment effect in spite of unobserved confounding of the specified

magnitude.

Our method of calibrating a sensitivity analysis to observed covariates works for general

matching designs (e.g., pair matching, matching with multiple controls, full matching, etc.)

once Ωα is determined. As discussed in Section 2, an approach using asymptotic separability

is useful for finding the approximation bounds in (6) for more complicated designs.

Though we consider a binary unobserved covariate with probability 1/2 which leads to the

most bias (Wang and Krieger, 2006), our method is able to handle other distributions of

unobserved covariate (e.g., normal) by marginalizing out u in (10) and (11).

A potential limitation to our method and a suggestion for mitigating it is the following.

Our method is motivated by the fact that the sensitivity parameters Γ and ∆ may be difficult

to interpret and we seek to make them easier to interpret by calibrating them to the observed

covariates. This calibration does however require the choice of (Γ,∆) at which to estimate

the effects of the observed covariates. This may create a loop. We have suggested using the

(Γ,∆) ∈ Ω.05 that intersects with the line Γ = ∆ as a default choice at which to estimate

the effects of the observed covariates. In Web Appendix B.4, we examine how sensitive our

proposed method is to different choices of (Γ,∆) ∈ Ω.05 for our motivating example and find

that it is not very sensitive. A different and interesting approach to calibration suggested

by a referee is as follows. Find the smallest α0 such that for all (Γ,∆) ∈ Ωα0 , the estimates

for the observed covariates given (Γ,∆) are all to the southwest of (Γ,∆). This α0 is the

smallest significance level at which we can reject the null hypothesis of no treatment effect

under the assumption that the effect of an unobserved covariate on the treatment and the

outcome is less than that of all the observed covariates.
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Supplementary Materials

Web Appendices A, B, C and D and data from the motivating example are available with

this paper at the Biometrics website on Wiley Online Library.

Acknowledgements

We are grateful to the Associate Editor and two anonymous referees for their comments and

suggestions. Support from the United States National Science Foundation Measurement,

Methodology and Statistics Program is acknowledged.

References

Bingenheimer, J. B., Brennan, R. T., and Earls, F. J. (2005). Firearm violence exposure and

serious violent behavior. Science 308, 1323–1326.

Copas, J. B. and Li, H. G. (1997). Inference for non-random samples. Journal of the Royal

Statistical Society. Series B (Methodological) 59, 55–95.

Cornfield, J., Haenszel, W., Hammond, E. C., Lilienfeld, A. M., Shimkin, M. B., and Wynder,

E. L. (1959). Smoking and lung cancer. Journal of the National Cancer Institute 22,

173–203.

Dawid, A. P. (1979). Conditional independence in statistical theory. Journal of the Royal

Statistical Society. Series B (Methodological) 41, 1–31.

Fisher, R. A. (1935). Design of Experiments. Oliver and Boyd, Edinburgh.

Gail, M. H., Wieand, S., and Piantadosi, S. (1984). Biased estimates of treatment effect in

randomized experiments with nonlinear regressions and omitted covariates. Biometrika

71, 431–444.

Gastwirth, J. L. (1992). Methods for assessing the sensitivity of statistical comparisons used

in title VII cases to omitted variables. Jurimetrics 33, 19–34.



Calibrating Sensitivity Analyses to Observed Covariates 19

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (1998). Dual and simultaneous

sensitivity analysis for matched pairs. Biometrika 85, 907–920.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). Asymptotic separability

in sensitivity analysis. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 62, 545–555.

Gelman, A. (2008). Scaling regression inputs by dividing by two standard deviations.

Statistics in Medicine 27, 2865–2873.

Geronimus, A. T. and Bound, J. (1998). Use of census-based aggregate variables to proxy for

socioeconomic group: evidence from national samples. American Journal of Epidemiology

148, 475–486.

Guo, J. and Geng, Z. (1995). Collasibility of logistic regression coefficients. Journal of the

Royal Statistical Society. Series B (Methodological) 57, 263–267.

Hansen, B. B. (2007). Optmatch: Flexible, optimal matching for observational studies. R

News 7, 18–24.

Holden, C. (2005). Controversial study suggests seeing gun violence promotes it. Science

308, 1239–1240.

Hosman, C. A., Hansen, B. B., and Holland, P. W. (2010). The sensitivity of linear regression

coefficients’ confidence limits to the omission of a confounder. The Annals of Applied

Statistics 4, 849–870.

Hsu, J. Y., Lorch, S. A., and Small, D. S. (2012). Perils and prospects of using aggregate area

level socioeconomic information as a proxy for individual level socioeconomic confounders

in instrumental variables regression. Health Services and Outcomes Research Methodology

12, 119–140.

Imbens, G. W. (2003). Sensitivity to exogeneity assumptions in program evaluation. The

American Economic Review 93, 126–132.



20 Biometrics, mm yyyy

Marcus, S. M. (1997). Using omitted variable bias to assess uncertainty in the estimation of

an AIDS education treatment effect. Journal of Educational and Behavioral Statistics

22, 193–201.

Neyman, J. (1923). On the application of probability theory to agricultural experiments.

Reprint in Statistical Science (5:465–480, 1990) .

Pan, W. and Frank, K. A. (2003). A probability index of the robustness of a causal inference.

Journal of Educational and Behavioral Statistics 28, 315–337.

Rosenbaum, P. R. (1986). Dropping out of high school in the united states: An observational

study. Journal of Educational Statistics 11, 207–224.

Rosenbaum, P. R. (2002). Observational Studies. Springer, New York, 2nd edition.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in

observational studies for causal effects. Biometrika 70, 41–55.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandom-

ized studies. Journal of Educational Psychology 66, 688–701.

Shepherd, B. E., Gilbert, P. B., and Mehrotra, D. V. (2007). Eliciting a counterfactual

sensitivity parameter. The American Statistician 61, 56–63.

Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overiden-

tifying restructions. Journal of the American Statistical Association 102, 1049–1058.

Small, D. S., Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2009). Simultaneous

sensitivity analysis for observational studies using full matching or matching with

multiple controls. Statistics and Its Interface 2, 203–211.

Wang, L. and Krieger, A. M. (2006). Causal conclusions are most sensitive to unobserved

binary covariates. Statistics in Medicine 25, 2257–2271.

Received mm yyyy. Revised mm yyyy. Accepted mm yyyy.



Calibrating Sensitivity Analyses to Observed Covariates 21

Γ

∆

1 2 3 4 5 6

1
2

3
4

5
6 Ωα: max p−value = α

Ωα
+: max p−value > α

Ωα
−: max p−value < α

(a)

Ωα
+

Ωα
−

Ωα

Γ

∆

0 1 2 3 4 5 6

0
1

2
3

4
5

6 Ωα: max p−value = α
Ωα

+: max p−value > α
Ωα

−: max p−value < α

(b)

III

III IV

Ωα
+

Ωα
+

Ωα
−

Ωα

Ωα

Figure 1. A simultaneous sensitivity analysis for the maximum p-value for a significance
level of α, when (a) Γ > 1 and ∆ > 1; and (b) Γ > 0 and ∆ > 0. Panel (a) is equivalent
to quadrant I in panel (b). In panel (b), quadrant III is the mirror side of quadrant I and
quadrant II is the mirror side of quadrant IV. The solid curves represent values of (Γ,∆) ∈ Ωα

where the maximum p-value equals to α. The shaded area represents values of (Γ,∆) ∈ Ω−
α

where the maximum p-value is less than α. The white area represents values of (Γ,∆) ∈ Ω+
α

where the maximum p-value is greater than α.
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Figure 2. Calibration of the simultaneous sensitivity analysis to observed covariates in

the NHANES data given (Γ,∆) = (2.21, 2.21) ∈ Ω.05. The solid curves represent values of

(Γ,∆) ∈ Ω.05 where the maximum p-value is approximately equal to 0.05. The shaded area

represents values of (Γ,∆) ∈ Ω
−

.05 where the maximum p-value is less than 0.05. The white

area represents values of (Γ,∆) ∈ Ω
+

.05 where the maximum p-value is greater than 0.05.
The areas (Γ,∆) ∈ {[0, 1]× [0, 1], [0, 1]× [1, 10], [1, 10]× [0, 1]} are magnified to enable clear
display of covariates in these areas.
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Table 1

Summary statistics and covariates balance before and after matching for pairs of a daily smoker and a non-smoker.

Matching Before After

n=679 n=2661 n=679
Variable Smoker Non-smoker Std. Diff.∗ Non-smoker Std. Diff.∗

Covariate

Age 46.7 49.8 -0.19 48.2 -0.09
Income-to-poverty level 2.0 2.6 -0.42 2.1 -0.09
Missing, % 6.0 9.2 -0.12 6.0 0.00

Male, % 56.8 37.8 0.39 55.4 0.03
Education, %
Less than 9th grade 11.2 13.8 -0.08 10.3 0.03
9–11th grade 26.5 13.9 0.32 22.1 0.11
High school graduate 32.3 23.3 0.20 33.7 -0.03
Some college 24.7 25.6 -0.02 28.6 -0.09
College 5.3 23.3 -0.53 5.3 0.00
Unknown 0.0 0.1 -0.04 0.0 0.00

Race, %
White 65.2 40.8 0.50 63.9 0.03
Black 19.1 19.1 0.00 20.6 -0.04
Mexican American 6.5 21.3 -0.44 6.5 0.00
Other Hispanic 4.7 13.4 -0.31 4.7 0.00
Other races 4.4 5.3 -0.04 4.3 0.01

Outcome

High blood lead (> 5 ug/dl), % 6.8 2.4 † 3.2 †

∗ Std. Diff.: Standardized differences = (x̄1− x̄2)/
√

(s21 + s22)/2, where x̄m and s2m are sample
mean and variance for smokers (m = 1) and non-smokers (m = 2)
† Covariate balance will not be checked for response


