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2ICREA (Institució Catalana de Recerca i Estudis Avançat), University of Barcelona, IEEC-UB, Martı́ i Franquès 1, E-08028 Barcelona, Spain
3Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway
4Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
6Institute for Applied Computational Science, Harvard University, MA 02138, USA

Accepted 2015 February 5. Received 2015 February 4; in original form 2014 October 27

ABSTRACT

We exploit cosmological model-independent measurements of the expansion history of the

Universe to provide a cosmic distance ladder. These are supernovae Type Ia used as standard

candles (at redshift between 0.01 and 1.3) and baryon acoustic oscillations (at redshifts be-

tween 0.1 and 0.8) as standard rulers. We calibrate (anchor) the ladder in two ways: first using

the local H0 value as an anchor at z = 0 (effectively calibrating the standard candles) and

secondly using the cosmic microwave background-inferred sound-horizon scale as an anchor

(giving the standard ruler length) as an inverse distance ladder. Both methods are consistent,

but the uncertainty in the expansion history H(z) is smaller if the sound-horizon scale is used.

We present inferred values for the sound horizon at radiation drag rd which do not rely on

assumptions about the early expansion history nor on cosmic microwave background mea-

surements but on the cosmic distance ladder and baryon acoustic oscillations measurements.

We also present derived values of H0 from the inverse distance ladder and we show that they

are in very good agreement with the extrapolated value in a � cold dark matter model from

Planck cosmic microwave background data.

Key words: cosmology: observations – distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

Accurate distance determinations at cosmological distances have

been one of the observational evidences on which the standard

cosmological model is built. It is the distance redshift relation that

gives us the Universe’s expansion history and from there we gather

information about the Universe’s content (dark matter and most

importantly dark energy) e.g. Riess et al. (1998) and Perlmutter

et al. (1999).

Since no one technique could, until recently, measure distances

of extragalactic or cosmologically distant objects,1 a succession of

methods was used. In this approach – the cosmic distance ladder

– each rung of the ladder provides the information necessary to

determine the distance of the next rung, see e.g. Rowan-Robinson

(1985) for an historical introduction. Traditionally, the cosmic dis-

tance ladder relies on standard candles and in particular Type 1a

supernovae (SN1a), to extend the ladder well into the Hubble flow,

⋆ E-mail: ajcuesta@icc.ub.edu
1 But see Simon, Verde & Jimenez (2005), Riess et al. (2014), Reid et al.

(2009) and Kuo et al. (2013) for recent advances on this front.

i.e. at distances beyond roughly 100 Mpc. SN1a are still today one

of the key data sets to map the expansion history of the Universe at

z � 1 (e.g. Riess et al. 2007; Hicken et al. 2009; Conley et al. 2011;

Suzuki et al. 2012; Betoule et al. 2014; Sako et al. 2014). On their

own however they only provide an ‘uncalibrated’ distance scale as

the absolute magnitude of the standard candle cannot be accurately

modelled or derived from theory. In other words, the (relative) dis-

tance scale they provide must be calibrated, and this is traditionally

done with a distance ladder.

Since 2005 another technique to measure extragalactic distances

has become possible (Cole et al. 2005; Eisenstein et al. 2005) and it

is called baryon acoustic oscillations (BAO). In the past 10 yr, BAO

measurements have undergone a spectacular development having

now been measured from several independent surveys with few per

cent precision over the redshift range from z = 0.1 to z > 1 (see e.g.

Beutler et al. 2011; Anderson et al. 2014; Font-Ribera et al. 2014;

Kazin et al. 2014; Ross et al. 2014; Tojeiro et al. 2014; Delubac et al.

2015). This is a standard ruler technique: the length of sound horizon

at recombination is imprinted in the clustering of dark matter and

its tracers like galaxies, provided one can accurately model the

possible evolution of the observational signature due to gravitational

instability. The distance scale given by the BAO feature as measured
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Figure 1. Schematic diagram of the redshift ranges covered by each of the data sets used in this paper. From low to high redshift, we show the local

measurement of the expansion rate H0, the luminosity distances of SN1a, the distance determinations from the BAO in galaxy clustering, and the sound-horizon

scale in the CMB.

from large-scale structure must also be calibrated by knowing the

size of the standard ruler. This is provided by cosmic microwave

background (CMB) observations. The sound-horizon determination

from CMB data is somewhat cosmological model-dependent, as it

is sensitive to the early expansion history and the composition of

the early Universe. Nevertheless, it is exquisitely well measured

– its error bar being below 1 per cent – for models with standard

early expansion history (e.g. standard number of effective neutrino

species etc.), and extremely robust to systematic and instrumental

errors (see e.g. Planck Collaboration XVI 2014b). However, a recent

model-independent determination of the standard ruler size is given

by Heavens, Jimenez & Verde (2014).

If standard candles, calibrated from the local measurement of H0

provide a ‘direct’ cosmic distance ladder (from nearby out towards

cosmological distances), the BAO provides an ‘inverse’ cosmic

distance ladder, calibrated at recombination z ∼ 1100 and extended

in, towards lower redshifts.

The spectacular progress in surveying the Universe of the past

decade means that SN1a and BAO measurements now overlap in

redshift and the statistical errors in both distance measures as func-

tion of redshifts are reaching percent level.

This implies that now the direct and inverse cosmic distance

ladders overlap and can be calibrated off one another, see Fig. 1.

Here, we consider the SN1a distance ladder and the BAO one

first separately then jointly. This paper shows a similar approach to

that shown in Aubourg et al. (2014) and Heavens et al. (2014), in

the sense that they also combine BAO and SN1a to build a distance

ladder. However, there are differences. In Aubourg et al. (2014),

only the inverse cosmic distance ladder is considered to derive the

value of the Hubble constant, so there is no attempt to infer the

value of the sound-horizon scale, which we do here. The approach

in Heavens et al. (2014) is different in aims and underlying assump-

tions. While we work in the framework of the � cold dark matter

(�CDM) model and its extension, their analysis only relies on the

assumptions of homogeneity and isotropy, a metric theory of gravity,

a smooth expansion history, and the existence of standard candles

(SN1a) and a standard BAO ruler (i.e. no dark energy modelling or

general relativity is assumed, only a Friedmann–Robertson–Walker

metric). With only these assumptions, and using standard clocks as

an additional data set, they measure both the Hubble constant and

the size of the standard ruler. They also explore the role that a prior

on the Hubble constant (similar to the one we use here in the direct

distance ladder) plays on the results.

We begin by reviewing the basic equations and the state of the

art in Section 2. Then in Section 3, we present the data sets we

use. In Section 4, we proceed to first calibrate the cosmic distance

ladder represented by the SN1a to the sound-horizon measurement

provided by the CMB via the BAO measurements. This provides an

inverse distance ladder and a derived determination of the Hubble

constant. Then we calibrate the SN1a +BAO distance ladder with

the local H0 measurement and infer values for the sound horizon

at radiation drag which are independent on early Universe physics.

Finally, we report constraints on the expansion history both absolute

H(z) and relative E(z) = H(z)/H0. We draw our conclusions in

Section 5.

2 STAT E O F T H E A RT A N D BAC K G RO U N D

From the above discussion it should be clear how important an

absolute distance scale is and how this is directly related to the

H0 determination. In the era of precision cosmology, discrepancies

of about 10 per cent, in supposedly well-known cosmological pa-

rameters such as the Hubble constant, have generated contradictory

claims about being an indication for new physics that might explain

the difference (e.g. Marra et al. 2013; Verde, Protopapas & Jimenez

2013, 2014; Bennett et al. 2014; Wyman et al. 2014). Such is the

case of the difference between direct measurements of the local ex-

pansion rate from Riess et al. (2011) even after the recalibration of

the distance to NGC 4258 2 from Humphreys et al. (2013), 73.0 ±
2.4 km s−1 Mpc−1, and the value of H0 extrapolated assuming a

�CDM model from the epoch of recombination to redshift z = 0

from CMB measurements by the Planck satellite (Planck Collabora-

tion XVI 2014b), 67.3 ± 1.2 km s−1 Mpc−1. It is important to stress

2 Hereafter, we refer to this recalibrated value simply as ‘Riess’.
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Figure 2. Left-hand panel: comparison between local measurements [using Riess et al. 2011 and Humphreys et al. 2013 (dark blue, upper bar) and its

reinterpretation by Efstathiou 2014 (light blue, lower bar)] and CMB-derived measurements of the Hubble constant from Planck+WP data (labelled as Planck)

for several assumed cosmologies. The error bars correspond to 68 per cent confidence. The tension between the local and the CMB determinations is evident

for some models (�CDM and O�CDM) but not for others (wCDM or Neff�CDM). The two measurements labelled ‘Planck �CDM’ refer to the Planck

collaboration measurement (dark red, lower bar; Planck Collaboration XVI 2014b) and the re-analysis of Spergel, Flauger & Hlozek (2015, light red, upper

bar). The bars in faded out colours represent reinterpretations of the original data sets represented in solid colours. Right-hand panel: the sound-horizon scale: its

determination is virtually cosmology independent for cosmologies that differ on late-time history of the Universe, but the determination is extremely sensitive

to uncertainties in the early (pre-recombination) history.

that the CMB estimates of H0 are extrapolations, and therefore are

cosmological model-dependent.

The state of the art in CMB data is provided by the temperature

anisotropy measurements by the Planck satellite (Planck Collab-

oration I 2014a; Planck Collaboration XVI 2014b) which is al-

most always combined with the polarization data at low multipoles

from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite

(Bennett et al. 2013) referred to as WP. The Planck data are often

further complemented by higher multipoles measurements by the

ACT and SPT experiments (Reichardt et al. 2012; Das et al. 2014)

referred to as highL.

We can quantify how model-dependent is the CMB-based H0

determination using the publicly released Monte Carlo markov

chains (MCMC) ran by the Planck collaboration to explore

the cosmological parameter space and find parameter estimates.

We find that the Planck+WP data set constraints H0 to be

within 64.2 < H0 < 70.4 km s−1 Mpc−1 (at 99 per cent con-

fidence level) for the flat �CDM model, whereas this becomes

43.3 < H0 < 71.4 km s−1 Mpc−1 for the non-flat �CDM

(O�CDM) model (43.2 < H0 < 69.3 km s−1 Mpc−1 when using

Planck+WP+highL), and 58.7 < H0 < 100 km s−1 Mpc−1 (with

the upper boundary being set by the prior) for a model where the

dark energy is not a cosmological constant but its equation-of-state

parameter does not change in time (the wCDM model). Therefore,

a ‘concordance’ value of 70 km s−1 Mpc−1 (Bennett et al. 2014) or

the central measured value by Riess et al. (2011) and Humphreys

et al. (2013) 73.0 km s−1 Mpc−1 can be considered ruled out or

perfectly acceptable depending on the context of the cosmological

model (as already discussed in the literature see e.g. Verde et al.

2014). This is summarized in the left-hand panel of Fig. 2 where

68 per cent confidence regions are shown.

Re-analysis by Spergel et al. (2015) dropping the 217GHz data

of the Planck data set and re-analysis of the direct distance ladder

by Efstathiou (2014) report a modest shift (less than 0.5σ ) in their

Hubble constant determinations. This can be appreciated in Fig. 2

left-hand panel.

The CMB on the other hand, offers directly the absolute distance

calibrator for the BAO, the sound horizon at radiation drag,3 rd.

This quantity is exquisitely well measured, yet it shows some small

cosmological dependence. For example, while it is measured with

a 0.4 per cent uncertainty in the �CDM model for the Planck+WP

data set (rd = 147.49 ± 0.59 Mpc; Planck Collaboration XVI

2014b), its central value is about 2.7 per cent, or 4 Mpc, lower

in a model where the effective number of neutrino species, Neff,

is not fixed to the standard value corresponding to three neutrino

families, but is allowed to vary,4 Neff�CDM, rd = 143.5 ± 3.3 Mpc

(Planck Collaboration XVI 2014b). This is illustrated in the right-

hand panel of Fig. 2, where the error bars correspond to 68 per cent

confidence.

In summary, there is a residual cosmological dependence in rd,

which is however very mild when the late-time expansion history

or the geometry is concerned. In these cases, the standard ruler is

measured with better than per cent precision. However, as expected,

when the early expansion history is affected (as in the case with a

possible dark-radiation component, illustrated by the Neff case),

the rd determination is degraded to a 2.3 per cent measurement

(68 per cent confidence). It is important to bear in mind that a

3 per cent knowledge of the rd calibrator at z ∼ 1100 is comparable

to that of the H0 one at z = 0. In other words, the inverse distance

ladder calibration is significantly better than the direct one only if

the early expansion history is virtually fixed.

The Hubble parameter as a function of redshift H(z) is the key

quantity we seek to measure

H (z) = H0E(z), (1)

3 This is slightly different from the sound horizon at recombination but the

two quantities are tied to one another.
4 Recall that Neff parameterises non-standard early expansion history.
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where, for example, for a non-flat universe with generic equation-

of-state parameter w(z),

E(z) =
{
�m(1 + z)3 + �k(1 + z)2

+�� exp

[
3

∫ z

0

1 + w(z′)

(1 + z′)
dz′

]}1/2

. (2)

Here, �� and �m denote the present-day dark energy and dark

matter densities normalized to the critical density; the curvature

parameter is �k = 1 − �m − ��. Of course for a flat �CDM

model we have

E(z) =
√

�m(1 + z)3 + (1 − �m) . (3)

In practice, SN1a measure the luminosity distance; each (un-

normalized) standard candle at redshift z can ultimately yield an

estimate of

dL(z) = H0DL(z) = (1 + z)H0DM (z)

=
(1 + z)
√

�k

sink(
√

�kD(z)), (4)

where sink(x) = sinh (x), x or sin (x) if the curvature is negative, zero

or positive, respectively, �k is the curvature parameter (in units of

the critical density) and

D(z) =
∫ z

0

1

E(z′)
dz′ = H0DC(z) . (5)

For flat spatial geometry dL(z) = (1 + z)D(z). Clearly, H0 gives

the normalization. In practice, SN1a data constrain the distance

modulus μ = m − M, the difference between the apparent and

absolute magnitude of each SN1a

μ(z) = 25 + 5 log10 (DL(z))

= 25 + 5 log10 dL(z) − 5 log10 H0, (6)

where DL(z) is in Mpc. Since H0 is not known a priori and the

absolute magnitude of the standard candles M cannot be accurately

modelled or derived from theory, μ(z) is not a direct measurement

of H(z); however, we note that the fine slicing of the redshift range

(here we use all 31 bins of Betoule et al. 2014) allows us to compute

several relative distances μ(zi)–μ(zj) = 5log10(dL(zi)/dL(zj)) which

from the above equation are independent from H0. So the shape of

E(z) is constrained whereas its overall normalization is not.

Most BAO analyses instead measure a combination of radial and

angular signal DV/rd,

DV (z) =
[

(1 + z)2DA(z)2 z

H (z)

]1/3

=
[
DM (z)2 z

H (z)

]1/3

=
1

H0

(
z
D(z)2

E(z)

)1/3

(7)

and the sound horizon rd is (approximating for a matter dominated

universe at high redshift),

rd =
1

H0

∫ ∞

zd

cs(z)

E(z)
dz, (8)

where cs(z) denotes the sound speed in the photon baryon fluid,

cs(z) ≃ c/
√

3(1 + 3ρb(z)/4ρr (z)) and zd the radiation drag redshift.

Note that we have highlighted explicitly the H0 dependence of rd,

however zd can be parametrized as a function of �bh2 and �mh2

(Eisenstein & Hu 1998), which together with the �m dependence

of E(z) break the degeneracy and constrain h, only from BAO and

SN1a data if the baryon to radiation ratio is fixed. The baryon to

photon ratio is exquisitely well measured by the CMB for all models

Figure 3. Constraints in the �m–H0 plane from BAO only, SN1a only, and

the combinations BAO+SN1a+H0 and BAO+SN1a+rd. A �CDM model

is assumed. Here, rd is considered a derived parameter which depends on the

densities of matter, baryons, and radiation, but we will drop that assumption

in our analysis. The contours represent the 1σ and 2σ regions.

with standard early expansion history. Therefore, the dependence

on H0 is not completely eliminated in DV/rd. This is illustrated in

Fig. 3, which shows, for a �CDM case, the different degeneracy

directions of SN1a data (green line), BAO data (magenta line), and

from a Gaussian prior in rd 147.49 ± 0.59 Mpc (blue line). The

latter shows the dependence of rd on �mh2. We also compare in this

figure the contraints from the combination of BAO+SN1a and a H0

prior of 73.0 ± 2.4 km s−1 Mpc−1 (red line), as opposed to when

BAO+SN1a are calibrated using the Gaussian prior in rd (black

line and filled blue contours). In what follows, we will indicate

results obtained under this assumption (i.e. that rd is a derived

parameter which depends on the densities of matter, baryons, and

radiation) with the ‘*’ symbol. Conversely, one can infer rd ignoring

its dependence on the matter, baryon, and radiation densities (i.e. as

if it were an independent cosmological parameter) from BAO (with

or without the addition of SN1a) and without any input from the

CMB, if the ladder is calibrated on a local measurement of H0 and

a parametrized form of the expansion history is used.

The uncalibrated standard ruler yields

dV (z) = DV (z)/rd =
(

z
D(z)2

E(z)

)1/3

r̂d
−1

, (9)

where

r̂d =
∫ ∞

zd

cs(z)

E(z)
dz = H0rd . (10)

From these equations, it is clear that uncalibrated standard can-

dles and rulers can only yield relative expansion history information

i.e. H(z)/H0. Moreover, to infer constraints on the expansion history

H(z)/H0 from dL(z) and dV(z) an underlying cosmological model

must be assumed (for example, the curvature). Because of the in-

tegral nature of D(z), while for a given E(z) only an assumption

about curvature is needed to relate E(z) to D(z), to invert the rela-

tion going from D(z) to E(z) requires assuming a functional form

MNRAS 448, 3463–3471 (2015)
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Figure 4. Left: the distance–redshift relation as probed by current BAO measurements. The quantity plotted is DV(z)/rd = ((1 + z)2DA(z)2cz/H(z))1/3/rd

normalized by the values for our fiducial cosmology given by the best-fitting parameters from the Planck analysis for a �CDM model BAO measurements

shown in black are not used here, but are included in this plot for completeness. Right: the luminosity distance–redshift relation from SN1a measurements

normalized by the fiducial cosmology values. Here, the JLA sample has been binned using 31 nodes equally separated in log(1+z). We remind the reader that

these bins are correlated, therefore their full covariance matrix is included in our analysis and required to establish concordance with Planck.

for E(z). Rather than working with a model-independent form for

E(z) (like a polynomial, or some function specified by its values at

certain redshift values), here we use a suite of cosmological models:

�CDM, O�CDM, wCDM and Neff�CDM. In this case, the param-

eters describing the expansion history are the standard cosmological

background parameters relative to that model.

In what follows, sometimes we will have to assume a fidu-

cial cosmology, we take the Planck best-fitting �CDM model,

where �m = 0.315, �� = 0.685, H0 = 67.3 km s−1 Mpc−1, and

rd = 147.49 Mpc.

3 DATA SETS

In this section, we describe the cosmological data sets we use in this

analysis. These are the recent BAO measurements from the SDSS-

III BOSS survey (Dawson et al. 2013) data release 11 and a recent

compilation of Supernovae data which we describe in details below.

A compilation of the state-of-the-art galaxy BAO measurements is

shown in the left-hand panel of Fig. 4 and the SN1a measurements

we use here are shown in the right-hand panel of Fig. 4. Clearly

most of the statistical power for the BAO (when used in conjunction

with SN1a) comes from the two BOSS measurements, which we

use here.

Both data sets are complementary in the sense that the distance

measurements determined using BAO have high precision, but they

sparsely cover the redshift range. In particular, at low redshifts, due

to the limited volume that can be observed, the error bars are large.

On the other hand, the SN1a compilation by Betoule et al. (2014)

samples the redshift range 0.01 < z < 1.0 really well. This gives

a relative distance measurement (this is shown in Fig. 8), with the

normalization being unknown. Supernovae are usually normalized

at z = 0 using H0 and BAO at z = 1100 using rd. But since the two

‘ladders’ overlap, they can be calibrated off each other.

3.1 BAO data

The galaxy BAO measurements shown in Fig. 4 are the

6dF measurement at low redshift (Beutler et al. 2011),

rd/DV(0.106) = 0.336 ± 0.015, the Main Galaxy Sample (MGS)

Table 1. Odds (Cumulative in

redshift up to zmax) that BAO

measurements are consistent with

Planck �CDM cosmology.

zmax ln T Odds

0.20 0.231 496 1:1.2

0.35 0.294 514 1:1.3

0.44 0.327 827 1:1.4

0.57 0.531 189 1:1.7

0.60 0.790 740 1:2.2

0.73 0.805 645 1:2.2

BAO from SDSS-II (Ross et al. 2014), DV(0.15)/rd = 4.47 ±
0.16 the two measurements from galaxy BAO from the baryon

oscillation spectroscopic survey (SDSS-III BOSS; Anderson

et al. 2014; Tojeiro et al. 2014), DV(0.32)/rd = 8.465 ±
0.175 and DV(0.57)/rd = 13.77 ± 0.13 and the recon-

structed WiggleZ measurements of Kazin et al. (2014)

DV (0.44)(rfid
d /rd) = 1716 ± 83 Mpc, DV (0.60)(rfid

d /rd) = 2221 ±
101 Mpc, and DV (0.73)(rfid

d /rd) = 2516 ± 86 Mpc.

The BOSS measurement at z = 0.57 used here is the anisotropic

measurement presented in Anderson et al. (2014), which measures

DA(z) and H(z) rather than DV(z). For simplicity, we only include

those measurements with smaller uncertainties at a given redshift.

Those are the MGS BAO and the two galaxy BAO measurements

shown in the left-hand panel of Fig. 4 in blue, green, and red,

respectively. We have also tested the effect of adding the anisotropic

BAO results from the Lyman-α forest of BOSS by Font-Ribera et al.

(2014) and Delubac et al. (2015). Since they do not change our

results significantly, we will not include them here.

We have tested the consistency between the above compilation

of BAO measurements and a �CDM model as described by the

Planck best-fitting cosmological parameters. To do so, we adopt

the approach proposed in Verde et al. (2013, 2014) of measuring

the multidimensional Tension (T) and interpret it in terms of odds

using the Jeffreys’ scale. In Table 1, we report ln T and the odds

that a set of BAO distance measurements (starting from low to

high redshift) are consistent with Planck �CDM cosmology. In the

MNRAS 448, 3463–3471 (2015)
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Table 2. Comparison between Hubble constant values for different data sets and

cosmological models. Units are km s−1 Mpc−1. The * denotes the case where rd is a

derived parameter depending on the densities of matter, baryon and radiation. In this

case, we fix the baryon and radiation densities to their best-fitting Planck values.

H0(km s−1 Mpc−1) BAO+SN* BAO+rd BAO+SN+rd Planck+WP

�CDM 68.6 ± 2.2 64.7 ± 2.2 67.7 ± 1.1 67.3 ± 1.2

O�CDM 64.5 ± 7.4 64.8 ± 2.2 67.6 ± 1.1 56.3 ± 5.4

wCDM 72.5 ± 11.1 66.1 ± 2.3 67.7 ± 1.1 83.1 ± 10.7

Neff�CDM 75.7 ± 4.5 66.8 ± 2.7 69.7 ± 1.9 70.7 ± 3.2

Jeffreys’ scale odds less that 1:3 or ln T < 1 indicate that there is

no indication of inconsistency. Strong or highly significant tension

would need odds <1: 12 and <1: 150.

For (isotropic) BAO, the distance measurements is encoded in

terms of the angle-averaged distance DV(z). Being a combination of

DA(z) and H(z) converting this type of measurement to a pure con-

straint on H(z) or a pure constraint on DA(z) or a direct comparison

with the supernova measurements of DL(z) (but see Lampeitl et al.

2010), requires the assumption of a particular cosmological model,

i.e. a shape of the expansion history. H(z) is particularly sensitive

to changes in curvature and dark energy, at the redshifts probed by

BAO from galaxy clustering and SN1a samples.

3.2 SNe data

The compilation of 740 SN1a by Betoule et al. (2014) comprises

239 supernovae by the SuperNovae Legacy Survey (SNLS) and

374 from the Sloan Digital Sky Survey (SDSS) as well as 118

supernovae from low-redshift surveys and a few (9) of them beyond

z > 1 observed using the Hubble Space Telescope. These are binned

in 31 bins equally spaced in log (1 + z) as in the appendix of Betoule

et al. (2014).

The distance information from supernovae data is encoded in

terms of the distance modulus μ(z), (see equation 6) implying that

there is a one-to-one relation between μ(z) and the luminosity dis-

tance DL(z) = (1 + z)2DA(z) for a given value of M.

This relation has been calibrated in (Betoule et al. 2014, see

appendix E and tables F1 and F2) from apparent magnitude of their

SN1a compilation together with the colour terms, shape of the light-

curve terms, and nuisance parameters, in an unbiased manner. We

marginalize over M as in the SN1a JLA module provided by Betoule

et al. (2014).

4 C A L I B R AT I N G T H E C O S M I C L A D D E R

wWe consider the following models for the expansion history

�CDM, O�CDM, wCDM and Neff�CDM. Thus E(z) is described

by 1 (for �CDM) or 2 (other models) parameters and H(z) depends

on one extra parameter H0. We use the publicly available code COS-

MOMC (Lewis & Bridle 2002) to run MCMC and explore the pos-

terior distributions and cosmological constraints for the SN1a and

BAO data sets described in Section 3. We include BAO from LOWZ

and CMASS as implemented in the current version of the code and

also the SN1a JLA module provided by Betoule et al. (2014) at the

website http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html. We

explore a complete set of cosmology runs (see Table 5), in which we

combine BAO+SN1a, BAO+rd (BAO+ a CMB derived rd prior)

and BAO+SN1a+rd. In the case of �CDM, we also explore the

cosmological constraints from BAO and SN1a on their own (see

Table 3).

Table 3. Comparison assuming the �CDM cosmological

model of the CMB measurement of the sound horizon rd

and the direct measurement of the Hubble constant H0 with

extrapolations from BAO and SN data. The * denotes the

case where rd is a derived parameter depending on the

densities of matter, baryon and radiation. In this case, we

fix the baryon and radiation densities to their best-fitting

Planck values.

Data set rd (Mpc) H0 (km s−1 Mpc−1)

Planck+WP 147.49 ± 0.59 –

Riess – 73.0 ± 2.4

BAO+SN+H0 137.0 ± 5.0 72.9 ± 2.4

BAO+SN+rd 147.5 ± 0.6 67.7 ± 1.1

BAO+SN* 145.5 ± 5.9 68.6 ± 2.2

BAO+H0 132.1 ± 5.7 72.6 ± 2.4

BAO+rd 147.5 ± 0.6 64.7 ± 2.2

SN+H0 149 ± 17 73.0 ± 2.4

SN+rd 147.5 ± 0.6 69.9 ± 0.8

BAO* 124 ± 14 77.0 ± 6.6

SN* 162 ± 27 Unconstrained

4.1 The Hubble constant and the inverse distance ladder

To calibrate the BAO on the sound-horizon scale for each of the

models considered we use the corresponding Planck prior on rd

(shown in the right-hand panel of Fig. 2 and in the Planck+WP

column of Table 4). Results are reported in Table 2. These results

are also shown in the right-hand panel of Fig. 6. Note that the

determination in the �CDM model rules out a Hubble constant of

74km s−1 Mpc−1, and is therefore somewhat in tension with the local

determination of Riess et al. (2011) and Humphreys et al. (2013),

as already pointed out before in the literature. Late-time changes

to the expansion history (wCDM, O�CDM) do not change this

conclusion but early changes (see the Neff case) do. This is at the

core of the recent proposals for a new concordance model with

sterile neutrinos (e.g. Hamann & Hasenkamp 2013; Battye & Moss

2014; Dvorkin et al. 2014; Wyman et al. 2014).

A more general analysis is found in Section 4 in Aubourg et al.

(2014) by the BOSS collaboration in which they present H0 con-

straints for more general cosmological models. We refer the reader

to that paper for more details.

4.2 The sound horizon from the distance ladder and H0

In this section rather than using a prior from the sound horizon rd we

use the measurements from the local expansion rate H0 to calibrate

the standard ruler from the BAO on the (relative) distance versus

redshift relation from supernovae data.
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Table 4. Comparison between sound-horizon values for different data sets and cosmological models. Units are Mpc.

The * denotes the case where rd is a derived parameter depending on the densities of matter, baryon and radiation.

In this case, we fix the baryon and radiation densities to their best-fitting Planck values.

rd (Mpc) BAO+SN* BAO+H0 BAO+SN+H0 Planck+WP Planck

�CDM 145.5 ± 5.9 132.1 ± 5.7 137.0 ± 5.0 147.5 ± 0.6 147.5 ± 0.6

O�CDM 155.9 ± 16.2 132.0 ± 5.8 136.9 ± 4.9 147.6 ± 0.6 147.6 ± 0.6

wCDM 140.9 ± 22.0 132.5 ± 6.3 137.0 ± 4.9 147.5 ± 0.6 147.5 ± 0.6

Neff�CDM 132.0 ± 8.7 132.1 ± 5.7 137.1 ± 5.1 143.5 ± 3.3 136.6 ± 4.9

Table 5. Cosmology runs studied in this paper.

BAO only SN only BAO+SN BAO+H0 BAO+rd BAO+SN+H0 BAO+SN+rd

�CDM Yes Yes Yes Yes Yes Yes Yes

O�CDM No No Yes Yes Yes Yes Yes

wCDM No No Yes Yes Yes Yes Yes

Neff�CDM No No Yes Yes Yes Yes Yes

Figure 5. Constraints on the sound horizon rd derived from

SN1a+BAO+H0 chains. Dashed lines show the constraints from CMB

only, whereas solid lines show our results.

As shown in Fig. 5, once we include a prior on the Hubble con-

stant, the inferred distribution of the sound-horizon scale is almost

independent of the assumed cosmological model.

We find values consistent with Planck and WMAP9 measure-

ments (see Table 4). In this table, we also show the values, assum-

ing a �CDM model, of the sound-horizon scale when the Hubble

constant prior is dropped (i.e. BAO+SN1a), but where we fix the

radiation and baryon densities at their best-fitting values. Note that

the error on the rd value inferred from the distance ladder (and there-

fore insensitive to the early expansion history) is comparable to that

obtained from CMB measurements in the case of the Neff�CDM

from Planck +WP data and smaller than that obtained from Planck

data alone.

4.3 Expansion history between 0 < z � 1

The expansion history of the Universe as derived by these intermedi-

ate redshifts cosmological probes is however much more dependent

on the assumed cosmological model. In Fig. 6, we show the derived

expansion history for the �CDM cosmology. The quantity shown

in the plot is the expansion rate ȧ = H (z)/(1 + z) as a function of

redshift z. Note how the uncertainty in the expansion history H(z)

Figure 6. Expansion history from BAO+SN1a+H0 (left-hand panel) and BAO+SN1a+rd (right-hand panel). Contours enclose the 68 per cent region of

possible values of H(z) at that z.
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Figure 7. Expansion history (normalized to H0) from BAO+SN1a using the �CDM, Neff�CDM, O�CDM and the wCDM cosmological models. Contours

enclose the 68 per cent region of possible values of H(z)/H0 at that z.

Figure 8. Expansion history (normalized to H0) from BAO only (left) and SN1a only (right) assuming a �CDM cosmological model. Contours enclose the

68 per cent region of possible values of H(z)/H0 at that z. In both panels, the dotted lines correspond to the BAO+SN1a+rd combination.

depends on the error bar on the distance calibrator rd (right-hand

panel) or H0 (left-hand panel).

On the other hand, the shape of the expansion history i.e. E(z)

is much more robust to the underlying cosmology as shown in

Fig. 7. While with only two BAO measurements E(z) is not well

constrained even in the �CDM model (Fig. 8), the fine redshift

sampling offered by SN1a yields a good determination of E(z) over

the full redshift range for the full set of models considered here.

In particular, the quantity E(z)/(1 + z) reported in Fig. 7, is useful

to show the transition from a decelerating uiverse when matter

dominates to an accelerated phase at late times dominated by dark

energy. The significance of this transition is robust to the choice of

the underlying model.

5 C O N C L U S I O N S

We have shown how distance measurements from BAO combined

with distance moduli from SN1a can be used as a cosmic distance

ladder. This ladder can be calibrated at z ∼ 0 using local determina-

tions of the Hubble constant or at high redshift using the CMB deter-

mination of the sound horizon at radiation drag. The first approach

is the classic (direct) cosmic distance ladder calibration while we

refer to the second as an inverse cosmic distance ladder. While the

direct calibration is affected by a host of astrophysical processes it

is cosmological model-independent. The inverse ladder has much

smaller calibration errors if the early (z > 1000) expansion history

is standard, but it is model-dependent.

In particular, we find that BAO and SN1a are quite complemen-

tary. SN1a luminosity distance data constrain very well the shape of

the expansion history and they finely probe the redshift range 0 <

z < 1.3 so that the shape of the expansion history, E(z), is very well

constrained but the overall normalization must be set externally for

example by a direct determination of H0. BAO on the other hand

cover sparsely the redshift range but can be used to tie in the low-

redshift Universe to the high-redshift one as the standard ruler is set

at radiation drag (z of O(1000)).

The comparison between the two approaches is useful for two

purposes. (i) explore the origin of possible discrepancies between

the cosmological constraints from the CMB and the ones derived

from local measurements of the expansion rate. This approach is

useful to disentangle information coming from the early Universe

and from the late one which are governed by different physical

processes. Comparing early-time versus late time constraints has

been and will continue to be an insightful way to probe new physics

beyond the adopted cosmological model. (ii) to map directly the

expansion history of the Universe.

We have presented the reconstructed expansion histories derived

by this combination of data sets for different cosmologies, and we

MNRAS 448, 3463–3471 (2015)
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find them to be very stable (both in shape and uncertainties), even

when the curvature of the Universe or when the equation of state of

dark energy are left as free parameters.

By calibrating the BAO+SN1a cosmic distance ladder on the

sound horizon at radiation drag, rd, we obtain a robust determination

of H0 of 67.7 ± 1.1 km s−1 Mpc−1. A similar result is presented

in Aubourg et al. (2014) by the BOSS collaboration, in which they

study cosmological models with more degrees of freedom than here,

i.e. in a general polynomial form of H(z)2 that depends on (1 + z)α ,

with α=0,1,2,3. The results are completely consistent with those

presented here. This is also true when comparing to Heavens et al.

(2014), whose assumptions are completely generic. Using slightly

different BAO data they find rd=142.3 ± 6.1 Mpc which is within

1σ of our result for the O�CDM case. Overall, there is a broad

agreement between the different analyses, implying that there seems

to be no indication for deviations from �CDM, despite the different

approaches and family of deviations considered.

On the other hand, we can calibrate the same ladder on local

measurements of H0 obtaining a constraint on rd which is indepen-

dent on assumptions about early time physics and early expansion

history. We find 137.0 ± 5.0 Mpc for �CDM, and similar results

for O�CDM, wCDM, and Neff�CDM, as shown in Table 4. This

measurement is only weakly dependent on the assumed model for

the late-time expansion history and on the assumed geometry. The

determination of rd is consistent with the value measured by Planck

of 147.5 ± 0.6 Mpc for a standard cosmology with three neutrinos.

Conversely, this measurement of rd places a limit on the number

of relativistic species Neff of 4.62 ± 0.88. While with current CMB

data there is still a degeneracy between Neff and other cosmologi-

cal parameters which propagates into a large uncertainty in rd for

this model, this could be resolved by better measurements of the

CMB damping tail and better peak localization in the (E-mode)

polarization (e.g. Hou et al. 2013).

With all of the above, we find currently no compelling evidence to

invoke non-standard cosmological models to explain the expansion

history between redshifts 0 < z < 1.3. The modest difference (∼2σ )

between the value of the Hubble constant measured directly and

that inferred from the BAO+SN1a+rd ladder (in the context of

�CDM, wCDM or O�CDM) and likewise the difference (∼2σ )

in the sound horizon measured by Planck and inferred from the

BAO+SN1a+H0 ladder may easily result from chance. Indeed,

substitution of WMAP data for Planck reduces this discrepancy

further (Bennett et al. 2014). However, if the significance of this

difference in future experiments rose above chance and beyond

the reach of their systematic errors the approach illustrated here

of comparing direct and inverse distance ladders could provide

evidence for new physics.
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