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Calibration after bootstrap for accurate uncertainty
quantification in regression models
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Obtaining accurate estimates of machine learning model uncertainties on newly predicted data is essential for understanding the
accuracy of the model and whether its predictions can be trusted. A common approach to such uncertainty quantification is to
estimate the variance from an ensemble of models, which are often generated by the generally applicable bootstrap method. In
this work, we demonstrate that the direct bootstrap ensemble standard deviation is not an accurate estimate of uncertainty but
that it can be simply calibrated to dramatically improve its accuracy. We demonstrate the effectiveness of this calibration method
for both synthetic data and numerous physical datasets from the field of Materials Science and Engineering. The approach is
motivated by applications in physical and biological science but is quite general and should be applicable for uncertainty
quantification in a wide range of machine learning regression models.
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INTRODUCTION

Machine learning is seeing an explosion of application in physical
and biological science for predicting properties of chemical and
materials systems, expanding the widely used tools of Quantitative
Structure Property/Activity Relationship (QSPR/QSAR) modeling.
Machine learning applications frequently make use of supervised
regression to predict the desired target property as a function of
easily accessible features. However, uncertainty quantification (UQ)
remains a major challenge for these models. UQ approaches for
regression models generally fall into four categories that include
methods based on: (1) feature data, (2) ensembles of models, (3) a
statistical estimator to approximate the variance of predictions, and
(4) Bayes' theorem. Recent work on UQ for QSPR/QSAR has
investigated all of these approaches'~’. Despite this work, methods
appear to vary in effectiveness between datasets', and there is no
obvious choice for a UQ method that is simultaneously easy to
implement, generalizable, and empirically validated.

A widely used and extremely general approach to UQ in machine
learning is based on the ensemble method, which is a technique that
makes predictions using multiple machine learning models and
outputs a weighted average as the final prediction. A common
technique to construct an ensemble of predictors is through
bootstrap aggregating, which is also called bagging. In the bagging
approach, multiple models are each trained on a subset of data from
the training set, where each subset is constructed by choosing points
uniformly at random with replacement®. A well-established machine
learning approach that uses bagging is random forests, which are
made up of a bootstrap ensemble of decision trees®.

Because ensemble methods work by computing a distribution
of predicted values, they naturally lend themselves to computing
estimates of uncertainty. There has been substantial interest in
developing theoretically sound and computationally efficient
methods for UQ in ensemble methods in the past few
decades'®'8, Particular attention has been given to the use of
bootstrap and jackknife resampling methods in classification''~'4,
including methods of rescaling estimated error rates to make

them more accurate'?. Work has also been done on the use of
ensemble methods for variance estimation in regression. One thread
of research has focused on applying a secondary resampling
technique such as bagging or the related jackknife method to
bagged learners to estimate variance'®'""'6, This resampling on top
of the original bootstrapping can be very computationally intensive,
so a major focus has been on making these methods more efficient.
However, efforts toward making these resampling techniques more
computationally efficient can lead to biased estimates of variance,
and efforts to correct these biases appear to have mixed results
empirically'®. In the second thread of related work, for the specific
context of random forests and other tree-based models, Lu and
Hardin'® provided a promising framework for estimating the
distribution of prediction errors for a test-set observation x using a
weighted sum of prediction errors for out-of-bag cohabitants of x in
the trees comprising the model. However, there is no way at present
to apply this approach outside of tree-based models.

One general and common UQ technique is to use the standard
deviation of the predicted values from the ensemble as an
uncertainty estimate'>>®. Such an approach to uncertainty
calculation has multiple advantages, including being simple to
implement and parallelize, and maintaining desirable features of
the original regression model (e.g., perhaps being differentiable
with respect to certain features). While this technique has in some
cases been shown to correlate well with the uncertainty of
predictions’®, it is not clear that this standard deviation should
accurately predict the standard error of predictions in general. In
fact, if the test set includes points very different from training data,
the ensemble standard deviation has been shown to substantially
underestimate uncertainty?>.

In the context of this work, calibration refers to any
transformation of an uncertainty estimate to make it more
accurate that can then be applied to new predictions, and it is a
natural approach to take when uncertainty estimates can be
assessed in some manner. In particular, once an uncertainty
estimate has been computed, it is almost always possible to use
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some form of cross-validation data to judge its accuracy and, if
necessary, modify the estimate to be more accurate. For example,
Kuleshov et al.° proposed a calibration method for deep learning
uncertainty estimates by generalizing the method of Platt
scaling®' used in classification and demonstrated that it could
be used to produce accurate confidence intervals. Beyond
improving accuracy, one benefit of using some sort of calibration
post-processing step is that it can allow for more interpretable
values from UQ methods which initially only provide estimates of
relative uncertainty. For example, when using uncertainty
estimates based on distances in feature space, Hirschfeld et al.!
proposed calibrating the estimates so that they can be interpreted
as variances. In their calibration method, the distance-based
uncertainty estimate U(x) is assumed to be linearly related to the
prediction variance 62(x) such that 6%(x) = aU(x) + b. The values
of a and b can be found by minimizing the sum of the negative
log-likelihoods that each predicted value in the validation set was
drawn from a normal distribution with a mean equal to the true
value of the point, and variance equal to aU(x) + b. (See equations
(11) and (12) in Hirschfeld et al.') Janet et al.> showed that for
neural network predictions, the distance to available data in the
latent space of the neural network, when calibrated by a linear
rescaling similar to Hirschfeld et al, provided a more accurate
error estimate than using the standard deviation of predictions by
an ensemble of neural networks. Similarly, Levi et al.>> demon-
strated that the same calibration approach can yield accurate
uncertainties when applied to standard deviations predicted
directly by a neural network, and Busk et al.?® further refined this
result by showing that a nonlinear scaling function is also
effective. All of these works provide calibrations for specific cases
to improve uncertainty quantification from feature distances or
neural network predicted variances. However, they do not
demonstrate that the approaches can be used more generally or
propose directly calibrating ensemble errors.

Musil et al.>* proposed using the same type of log-likelihood
optimization as Hirschfeld et al.' for calibrating ensemble standard
deviation as a UQ metric. They demonstrated that such calibration
was effective for a large dataset with ensembles of sparse Gaussian
process regression models generated by subsampling, and proposed
that the calibration could also be applied to other models and
methods of generating ensembles, such as bootstrapping. In this
paper, we extend this work to show that this calibration technique is
extremely general. In particular, we demonstrate that the approach
works for multiple model and dataset types, many of which are quite
small, and therefore one might expect to have difficulty providing
robust error estimation. We also demonstrate the effectiveness of this
calibration approach in the presence of varying amounts of Gaussian
noise. Finally, we provide approaches to visualize the accuracy of
uncalibrated and calibrated models, including distinguishing effects
of true failures in the method as opposed to failures simply due to
the presence of poor sampling.

We begin by investigating the accuracy of the standard
deviation of bootstrap ensemble predictions in estimating the
true standard error of predicted values. We refer to this bootstrap
estimate as G, (where the subscript uc refers to uncalibrated and
we use the A notation to refer to predicted values from the
machine learning model(s)). Then, we implement a method of
calibrating 6, to yield a calibrated estimate G.y (where the
subscript cal refers to calibrated), and demonstrate the effective-
ness of this calibration in producing highly accurate uncertainty
estimates across multiple sets of both synthetic and physical data.
We will use the general symbol 6 when referring nonspecifically to
one or both of 6, and 6.,. We evaluate ¢ for random forests,
bootstrap ensembles of linear ridge regression models, bootstrap
ensembles of Gaussian process regression (GPR) models, and
bootstrap ensembles of neural networks. We perform these
evaluations at some level for a total of 10 datasets.
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We use two methods of evaluating the accuracy of 6. First, we
examine the distribution of the ratios of test-set residuals
(differences between observed and predicted values) to corre-
sponding values of ¢, which we call the r-statistic distribution:

, reS|EiuaI B
o

as proposed by Ling et al.> and further applied by Lu et al.?® If &
accurately represents the standard deviation of residuals and the
model has no bias, the r-statistic distribution should be normally
distributed with a mean of zero and a standard deviation of one.
Thus, the closeness of the r-statistic distribution to a standard
normal distribution is a method of assessing the accuracy of 6.
One weakness of assessment with the r-statistic distribution is that
it does not provide a way to directly evaluate whether larger
(smaller) values of 6 correspond to larger (smaller) residuals. To
address this weakness, we also plot binned values of & (x-axis)
against the root mean square of the residuals (y-axis) in each bin
(see Methods for details). We call this an RMS residual vs. 6 plot, or,
put more succinctly, a residual vs. error (RVE) plot, and it was first
introduced for this type of analysis by Morgan and Jacobs'®. A
similar visualization was independently proposed by Levi et al.?2.
For perfectly accurate ¢ and infinite sampling, we would expect
this plot to have a slope of one and an intercept of zero, i.e., the
magnitude of 6 should correlate perfectly with the root mean
square of the model residuals. By comparing the points on this
plot to the identity function, one can understand whether G is
underestimating or overestimating the standard deviation of
residuals at various levels of uncertainty. We show that 0y
correlates with the actual standard deviation of residuals (i.e.,
larger ensemble standard deviations correspond to larger
standard deviations of residuals), but that for different models
and datasets, they systematically underestimate or overestimate
the true values.

After evaluating 0, using the above methods, we implement a
log-likelihood optimization calibration scheme similar to the one
from Hirschfeld et al'. described above, and evaluate the quality of
Oca after calibration. The only difference between our log-
likelihood optimization method and the log-likelihood optimiza-
tion method described above from Hirschfeld et al. is that we
assume the estimated standard deviation is linearly related to the
true standard deviation, rather than the variances being linearly
related. We show that this calibration method is highly effective at
calibrating the ensemble standard deviation as an estimate of
uncertainty. Finally, we compare our values of G, for GPR to the
Bayesian uncertainty estimates typically used for a single GPR
model, which we refer to as dgpr and show that G is more
accurate than either uncalibrated or calibrated values of Ggpr. This
is consistent with previous findings of Musil et al.*.

Overall, our results suggest that the calibrated ensemble
standard deviation as an uncertainty estimate can be used across
many different machine learning models and datasets. The
method can be applied to any model where the bootstrap and
CV ensemble generation is not computationally prohibitive. The
approach is therefore likely to be of significant utility for many
machine learning applications.

|25

RESULTS

Comparison of uncalibrated and calibrated estimates

In this section, we show the effects of calibration on select
combinations of models and datasets to illustrate several key
points. The complete set of all model and dataset combinations
we considered are included in the Supplementary Information and
show results completely consistent with those shown in the main
text. First, we used the r-statistic distribution and RMS residual vs.
0 plots to evaluate our calibration method for random forest
models using the synthetic?’, diffusion®®, and perovskite?®
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Fig. 1
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Calibrated and uncalibrated r-statistic and RVE plots for random forest. Distributions of r-statistic values (top row) and RMS residual

vs. 0 plots (bottom row) for random forest, using the synthetic (panels a and d), diffusion (panels b and e), and perovskite (panels ¢ and f)
datasets, shown with both uncalibrated and calibrated & values. Markers which are not filled in represent bins with fewer than 30 points.

Statistics for each plot are summarized in Table 1.

datasets (see Datasets sub-section in the Methods for more
information). These results are shown in Fig. 1. Note that before
calibration, there is a consistent positive slope in the RMS residual
vs. 0 plots as 0, becomes larger—that is, larger uncertainty
estimates correspond to larger residual values. However, for all
three datasets, the uncalibrated points on the RMS residual vs. &
plots fall below the identity function, meaning they are over-
estimating the uncertainty of predictions. After calibration, all
three r-statistic distributions appear to be reasonably close to
standard normal distributions, and the binned uncertainty
estimates lie very closely on the identity function line. Note that
points in Fig. 1, which are not filled in represent bins that have
fewer than 30 points and therefore may deviate from the identity
function just due to poor sampling. In general, we find that
calibrated points with good sampling are quite close to the
identity function line. Overall, the results in Fig. 1 demonstrate
that our calibration method performs very well for ensembles of
random forest models. To further illustrate the power and general
applicability of our method, we have performed our recalibration
method using random forests on seven additional datasets from
the materials science community (see Datasets sub-section in the
Methods for more information), for a total of 10 datasets
(1 synthetic, 9 materials datasets). In all cases, the 6, values are
greatly improved with our calibration approach (also see
Supplementary Table 1). See Supplementary Figs. 55-68 in the
Supplementary Information for r-statistic and RMS residual vs. &
plots for these additional datasets.

Calibrated ensembles of GPR and linear models

In Fig. 2, we show the r-statistic and RMS residual vs. & plots for
the diffusion dataset using a bootstrap ensemble of 200 GPR
models and a bootstrap ensemble of 500 linear ridge regression
models. Before calibration, the GPR values of 0, appear to
underestimate the true uncertainty, while after calibration, the
r-statistic distribution appears very close to standard normal, and

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

the well-sampled points lie closely on the identity function line.
We did not expect our method to work as well for linear ridge
regression since the uncertainty in linear regression models is
typically dominated by bias, while the bootstrap standard
deviation attempts to capture variance (see further discussion of
this issue below). As shown in Fig. 2, the r-statistic distribution for
the calibrated linear ridge regression uncertainty estimates
appears to be close to a standard normal distribution. However,
the fitted line to the calibrated points on the RMS residual vs.
uncertainty-estimate plot has a slope of 0.597, substantially less
than 1. We also ran a test using neural network models, using a
smaller ensemble and just one dataset as the fitting is much more
computationally demanding. Specifically, we used an ensemble of
25 neural networks on the diffusion dataset and found our
calibration scheme performed well for well-sampled cases, with
calibrated errors close to the identity line (See Supplementary
Figs. 53-54). Additional study is needed to more thoroughly
explore the UQ behavior of neural network ensembles, specifically,
to assess how well our approach performs for different types of
network architectures and non-bootstrap methods of generating
ensembles (e.g., selection of different models during training,
restarting from different initial weights, and dropout).

Comparison of ensemble and Bayesian error estimates of GPR

To provide a comparison to our bootstrap ensemble method of
uncertainty estimation for GPR, in Fig. 3 we show the results of our
calibration method applied to the Bayesian standard deviation
estimates Ogpgr, Which are often used for UQ for GPR. In the RMS
residual vs. Ggpr plot, the uncalibrated Ggpr values do not seem to
be strongly correlated with the residuals. Because of this, after
calibration, several well-sampled points deviate substantially from
the identity function line. Note that as shown in Table 1, the
uncalibrated and calibrated fitted lines have slopes of 0.151 and
0.343, respectively. Furthermore, both the uncalibrated and
calibrated r-statistic distributions have a sharp peak close to 0,
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Fig.2 Calibrated and uncalibrated r-statistic and RVE plots for GPR and linear ridge regression. Distributions of r-statistic values (top row)
and RMS residual vs. 6 plots (bottom row) for Gaussian process regression (panels a and ¢) and linear ridge regression (panels b and d), using
the diffusion dataset, shown with both uncalibrated and calibrated ¢ values. Markers which are not filled in represent bins with fewer than 30

points. Statistics for each plot are summarized in Table 1.

suggesting that the 6gpr values may be overestimating the true
uncertainty.

When interpreting this comparison of dgpg to our method based
on the bootstrap ensemble (see Fig. 2), it is important to also
consider the prediction error, since in Fig. 3, the predictions are
being made by a single GPR model trained on the entire training
set, rather than an ensemble of models trained on bootstrap
samples of the training set. Note in Table 1 that the RMSE of the
single model is somewhat lower than that of the bootstrap
predictions (0.269 vs. 0.310). To address this issue, the right panels
of Fig. 3 show the results of our calibration method for predictions
made by a single GPR model, but with uncertainty estimates still
obtained as the standard deviation of the predictions of a
bootstrap ensemble, as in Fig. 2. This slightly different method of
developing calibrated error estimates appears to be less accurate
for the error estimates in this particular case, although more study
would be needed to determine if this is a general effect. However,
the approach is still more accurate than the Bayesian uncertainty
estimates, while yielding identical prediction accuracy. It is also
important to note that the superiority of our method is confined
to the setting in which we hope to obtain accurate uncertainty
estimates for predictions on a test set we know is similar to our
training set. When test-set values are substantially different from a
training set, the G, will likely underestimate the true uncertainty,
perhaps severely. In that setting, 6cpr may do a better job of
indicating a higher degree of uncertainty, although Gcpr
converges asymptotically to zero (or a constant) for features far
from the training data due to the kernel becoming zero.
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However, for our present goal of obtaining accurate uncertainty
estimates for predictions of reasonably similar data, this test
demonstrates that our approach is significantly more accurate
than the widely used Ggpgr values, even when they are calibrated.

Impact of noise on calibration performance

In Fig. 4, we show the results of adding varying amounts of noise
to the synthetic dataset, and then using our calibration method
with a random forest. We generated seven noisy training and test
sets by adding Gaussian noise with mean 0 and standard
deviation equal to 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 2.0 times the
standard deviation of the original training set (cases 0.1, 0.2, 0.3,
and 0.5 are shown in Fig. 1 and all the cases are in the
Supplementary Information in Supplementary Figs. 23-36). For the
0.1 and 0.2 noise cases, our method appears to work similarly well
to the no-noise case. For the 0.3 noise case, the calibrated points
on the RMS residual vs. ¢ plot appear to diverge somewhat from
the identity function line. Then, for the 0.5 noise case, the values of
Ocal have started collapsing to a constant value. For the 1.0 and 2.0
noise cases, the 0., values approximately converge to a constant
of 1 standard deviation of the noisy dataset. The trend of
convergence toward a constant G, is expected, since, as the noise
increasingly dominates the underlying true values, this trend in
the calibration is the only option to obtain accurate uncertainty
estimates. In the limiting case, when the training and test values
are normally distributed and totally independent of the features,
the best a model can do is to predict the training set mean and
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Fig.3 Bayesian vs. bootstrap calibrated and uncalibrated r-statistic and RvE plots for a single GPR model. Distributions of r-statistic values
(top row) and RMS residual vs. gpr plot (bottom row) for Bayesian uncertainty estimates obtained from a single Gaussian process regression
model (panels a and ¢) and bootstrap uncertainty estimates obtained for the same single Gaussian process regression model (panels b and d),
using the diffusion dataset. Both uncalibrated and calibrated 0¢pr values are shown. Markers which are not filled in represent bins with fewer

than 30 points. Statistics for each plot are summarized in Table 1.

estimate the training set standard deviation as the uncertainty.
Overall, these results indicate that our calibration method is robust
to small and even quite significant (0.2 times the standard
deviation of the original training set) amounts of noise and
handles very large amounts of noise in the way we would expect.
It is somewhat unclear how well the approach works with
intermediate amounts of noise of about 0.3 times the standard
deviation of the original training set, and additional study is
needed for this case.

In Table 1, we present the r-statistic mean and standard
deviation, the fitted slopes, y-intercepts, and R? values, the
calibration factors a and b, and the root-mean-square error (with
prediction errors normalized by training set standard deviation)
for all the plots in Figs. 1-4. For additional plots and a complete
table of these values for all tests we ran, please see Supplementary
Table 1 and plots in the Supplementary Information.

DISCUSSION

It is useful to consider the nature of machine learning model errors
to better understand why our calibrated bootstrap approach is so
effective and some of the limitations of our method. The total
expected squared error in a model can be represented as?’:

E[(FOX) + e = F00)?] = (EFOO] — FO))+E[ (FOO — E[FX)])"] + 02
2
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Here, the expectation is the average over all possible training
datasets of size n, which we can imagine to be randomly sampled
from the total possible space of data. The three right-hand side
terms from left to right are the model bias squared, model
variance, and noise variance, respectively. The model bias (or just
bias) is the difference between the expected value of our model
averaged over all training set samplings E[F(X)] and the under-
lying true function F(X). The model variance (or just variance) is
the squared spread in F(X) relative to its average, again taken over
all training set samplings. In the absence of noise, the bootstrap
approach is an estimate of the variance term in this expression.
However, it is an imperfect estimate as the sampling is not all
possible training datasets of size n but instead the finite number
of bootstrap resampling datasets. We have attempted to use
enough bootstrap samples to remove the finite sampling error
from being significant, but the nature of the bootstrap datasets is
still a source of error. For models with little bias, as is the case for
almost all of the models studied here, our approach can be
understood to be calibrating the variance estimate. It is perhaps
not totally surprising that the approximate sampling from
bootstrap gives a variance estimate that is off but strongly
correlated with the correct answer, given that it is an approxima-
tion to the proper sampling to estimate this correct answer. These
considerations also suggest that the present method may be less
accurate or fail entirely when bias is a dominant source of error.
Such situations would include cases where the predicted test data
are far outside the domain of the model. As an example of our

npj Computational Materials (2022) 115
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Table 1. Summary of computed values from Figs. 1-4.
r-stat mean r-stat stdev RVE slope RVE RVE R? a b Overall RMSE
intercept

Fig. 1

RF, Synthetic Uncalibrated ~ 0.043 0.675 0.489 0.046 0964 0.445 0.070 0.196
Calibrated 0.060 0.938 1.099 —0.031 0.964

RF, Diffusion Uncalibrated —0.022 0.707 0.660 0.017 0971 0.647 + 0033 + 0.368
Calibrated ~ —0.027 0.979 1.010 —0.013 0.970 0047 0.025

RF, Perovskite Uncalibrated —0.014 0.766 0.875 —0.023 0.972 0.807 + 0.002 + 0377
Calibrated ~ —0.019 0.941 1.080 ~0.024 0.953 0038 0.003

Fig. 2

LR, Diffusion Uncalibrated ~ 0.001 1.574 0.575 0.279 0.561 0927+ 0.154 + 0.481
Calibrated 0.002 1.058 0.597 0.193 0521 0115 0.041

GPR, Diffusion Uncalibrated —0.094 2.182 1.779 0.047 0.963 1.867 0.048 £ 0.310
Calibrated ~ —0.039 0.963 0.905 0.015 0.929 0.207 0.029

Fig. 3

GPR Bayesian, Diffusion Uncalibrated  0.001 0.873 0.151 0.212 0.154 0.214+ 0.227 + 0.269
Calibrated ~ —0.001 0.901 0.343 0.164 0.149 0122 0.043

GPR Single Predictor, Uncalibrated —0.078 2.004 1.101 0.106 0.869 1.545 =+ 0.071 + 0.269

Diffusion Calibrated ~ —0.032 0.932 0.650 0.073 0.846 0.208 0.031

Fig. 4

RF, Synthetic, 0.1 noise Uncalibrated ~ 0.037 0.775 0.394 0.101 0926 0394 0.105 0.225
Calibrated 0.047 0.979 1.001 —0.005 0926

RF, Synthetic, 0.2 noise Uncalibrated  0.020 0.914 0.292 0.187 0.914 0.290 0.194 0.288
Calibrated 0.008 0.977 1.008 —0.009 0914

RF, Synthetic, 0.3 noise Uncalibrated  0.038 1.017 0.279 0.256 0.804 0.253 0.264 0.366
Calibrated 0.036 1.004 1.103 —0.035 0.804

RF, Synthetic, 0.5 noise Uncalibrated ~ 0.039 1.081 0.086 0.451 0.166 0.173 0.405 0.493
Calibrated 0.026 1.009 0.495 0.250 0.166

model failing for out-of-domain test data, in Supplementary Figs.
93-96 we show our recalibration method and associated parity
plots on the diffusion dataset for different test sets that are
outside the training data, which show, as expected, that the model
error cannot be accurately predicted. We believe there is an
opportunity for further research in this area to construct a
combined model domain and uncertainty estimation framework
which provides the user information on whether test data points
are expected to be inside, outside, or near the boundary of the
model domain of applicability, and, if it is within the domain, also
provide model predictions and calibrated uncertainty estimates.
One possible avenue toward realizing this may be to combine
uncertainty predictions from Bayesian methods like GPR to assess
the model domain and use the ensemble models detailed
throughout this study to provide accurate calibrated uncertainty
estimates. Formulation of such a method, if shown to be reliable,
would represent a major step forward for reliable ML model
predictions for many applications in applied science.

The bulk of the testing in this work was done on materials
datasets and we believe that our calibration approach has
immediate practical implications for materials scientists employing
ML for a variety of applications, including both materials property
prediction and iterative materials discovery through active
learning. Present predictive models in materials science generally
do not have model prediction uncertainties for a given data point
(although they often report a single average uncertainty on test
data). For those studies that do report uncertainties on each data
point, the most commonly used approaches at present to obtain
these uncertainties in the materials field are GPR and ensembles
from the random forest or boosted trees. Our work shows (i) that
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these values are likely to be incorrect without calibration and thus
may be misleading, and (i) that the values can be easily corrected
with a simple scheme easily adopted by materials domain
researchers. Obtaining accurate ML model prediction uncertainties
is essential for rational guidance of materials design and informed
materials property prediction, e.g., to determine if a material is worth
pursuing with costly or time-consuming experiments. A concrete
example is to consider searching for new photovoltaic materials with
electronic bandgap energy near the desired value of 1.4 eV for high-
efficiency single-junction solar cell applications. To be of interest, a
researcher might need a material within 0.2 eV of the target value.
Therefore, a material with a predicted bandgap of 1.4+0.1€V is
much more sensible to pursue than one with a predicted bandgap of
1.4+ 1 eV, provided the uncertainties can be trusted.

As a second example, iterative materials discovery methods
based on active learning approaches have gained increasing
popularity in the past several years. In materials applications,
active learning has been used as a design of experiments
approach to discover new materials with the desired property
(e.g., high entropy alloys with high hardness) in the fewest
iteration steps possible3%31, Here, an ML model (commonly GPR or
an ensemble model like a random forest), is fit to available data
with the goal of identifying the most promising next material to
explore, where a cost function, such as the expected improve-
ment>3?, is used to balance exploration of areas of large uncertainty
with the exploitation of regions in the design space that are better
predicted by the model. Within the active learning approach,
having more accurate uncertainty estimates is expected to directly
lead to more efficient convergence to a new promising material.
Based on the success of our calibration method on the 10 datasets
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Fig. 4 Calibrated and uncalibrated r-statistic and RvE plots for random forest using synthetic data with noise added. Distributions of
r-statistic values and RMS residual vs. 6 plots for random forest, using the synthetic dataset with varying amounts of noise added. Gaussian
noise with mean zero and standard deviation equal to 0.1 (panels a and e), 0.2 (panels b and f), 0.3 (panels c and g), and 0.5 (panels d and h)
times the standard deviation of the training set with no noise added. Both uncalibrated and calibrated ¢ are shown. Markers which are not
filled in represent bins with fewer than 30 points. Statistics for each plot are summarized in Table 1.

(9 materials datasets, 1 synthetic dataset) used in this work, we
believe our calibration method offers the materials ML community
a useful tool to obtain accurate model uncertainties. We believe
that accurate uncertainty quantification is one of the key
challenges facing not only the materials research community
but the broader community of scientists using ML methods.
Overall, we have demonstrated that across multiple models and
datasets, our calibrated bootstrap method of estimating uncertainty
is highly accurate. Particularly noteworthy are its exceedingly
accurate estimates for random forest across all observed datasets,
as demonstrated by the r-statistic and RMS residual vs. 6 plots, and
its superior performance for GPR predictions when compared to the
Bayesian UQ method typically used in that setting. When our results
are taken together, they suggest that the calibrated bootstrap
method could be of significant utility for applied scientists in need of
better UQ. However, further work is needed to establish its
limitations, particularly for predictions on data that is far from the
domain of the training data. In addition, the specific approach here is
just one of a large family of related methods that can be generated
by considering other ensembles besides bootstrap, other uncertainty
estimators besides standard deviation (e.g, using confidence
intervals), and other calibration approaches, and further exploration
of this family of methods could yield additional useful approaches.

METHODS
Models

We used four types of machine learning models to evaluate our method:
random forest, Gaussian process regression (GPR), linear ridge regression,
and neural networks. Random forest, GPR, and linear ridge regression were
implemented using scikit-learn3. The neural networks were implemented
in Keras using the TensorFlow backend3#3*, For the scikit-learn models, all
values not specified and any explicitly referenced as default values are set
to default values used as of January 2021 in scikit-learn version 0.23.2. In
particular, all bootstrap ensembles were trained by training each individual
model to a sample of n training data points, sampled with replacement
from the training set (of size n). For random forest, we used 500 decision
trees, a max depth of 30, and default values for all other settings. For GPR,
we used as the kernel the sum of the ConstantKernel, the Matern kernel
with length scale set to 2.0 and the default value 1.5 of the smoothness
parameter nu, and the WhiteKernel with the noise level set to 1. We
set alpha, the value added to the diagonal of the kernel matrix to prevent
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numerical issues, to 1074, and the n_restarts_optimizer parameter to 30.
An ensemble of Keras neural networks was applied to the diffusion dataset
only. For this case, the individual neural networks consisted of three layers:
an input layer of 20 nodes, a hidden layer with 10 nodes, and an output
layer with a single node. The network was fully connected, used rectified
linear activation for each layer, and was optimized using the Adam
optimizer using mean squared error as the loss function. An ensemble of
these neural networks was built using the BaggingRegressor model
contained in scikit-learn, where each estimator in the BaggingRegressor
was made using the KerasRegressor method in Keras, which provides a
means to have scikit-learn-like functionality applied to Keras models. When
constructing the bootstrap ensemble of GPR models, we used 200 models
to keep the total computation time tractable. For linear ridge regression,
we used scikit-learn default values, and used 500 models to construct the
bootstrap ensembles. For neural networks, only 25 models were used to
keep the computation time tractable.

Datasets

We used ten total datasets to evaluate our methods, but the bulk of our
analysis was concentrated on just three of these datasets. Here, we provide
an overview of the three datasets which we evaluated in the most detail.
First, we used a set of synthetic data based on a method proposed by
Friedman?’. There were five features x, through x, for each point, each
drawn uniformly at random from the interval [0,0.5]. Then, y-values were
generated for each point using the function:

y = 30sin(4m X0 x1) + 20(x; — 0.5)%+10x3 + 5x4 €)

We used the above process to generate both a training set of 500 points
and a test set of 10,000 points.

Next, we used two physical datasets from the materials science
community. The first dataset (referred in this work as the diffusion
dataset) is a computed database of impurity diffusion activation energies
for 15 pure metal hosts and 408 host-impurity pairs?°. The second dataset
(referred in this work as the perovskite dataset) is a computed database of
perovskite oxide thermodynamic phase stabilities?.

In addition to the above datasets, we performed additional select tests
on seven more physical datasets from the materials science community.
These datasets consist of experimental steel yield strengths (https:/
citrination.com/datasets/153092/), experimental thermal conductivities
(https://www.citrination.com), calculated maximum piezoelectric displace-
ments®, the calculated saturation magnetization of Heusler compounds
(https://citrination.com/datasets/150561/,  http://heusleralloys.mint.ua.eduy/),
calculated bulk moduli of assorted materials®’, calculated electronic bandgaps
of double perovskite oxides®®, and experimental superconducting critical
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temperatures of a large assortment of materials®°. These datasets were chosen
because they are representative computed and experimental materials
property databases of a range of physical properties relevant to technological
applications from many subfields of materials science. They are publicly
available via repositories such as Citrination and Matminer.

Train/test splitting

For all datasets, we use a nested cross-validation approach to obtain the value
of 0. and assess the performance of our calibrated UQ models. First, each
dataset (synthetic or physical) was split into numerous train and test subsets
(we call this the level 1 split). The test data are held out until the end and used
to evaluate the performance of the calibrated UQ models. The training data
are then subsequently split into training and validation subsets (we call this
the level 2 split) and is used to assess the uncalibrated UQ models and obtain
the calibration parameters for that training dataset. For the synthetic dataset,
we trained models on the entire training set (i.e, there was no level 1 split as
test data could be readily generated), and then made predictions, along with
uncertainty estimates for those predictions on the entire test set. To obtain
calibration scaling factors (see below), we used five-fold cross-validation
repeated four times on the training set, for a total of 20 level 2 train/validation
splits. For both materials datasets, we generated multiple level 1 80%/20%
train/test splits through five-fold cross-validation, and used the predictions
accumulated over those splits to evaluate our method. For the diffusion
dataset, we used 25 level 1 train/test splits, while for the perovskite dataset,
because of its larger size, we used 10 level 1 train/test splits. The different
numbers of level 1 train/test splits were chosen to yield reasonable statistics in
and reasonable time, which led to smaller numbers of splits for the larger
datasets. Within each of the training sets, we again calculated the calibration
scaling factors using five-fold cross-validation repeated four times, for a total
of 20 level 2 train/validation splits. For interpretability on the plots (described
below), we scaled all ¢ values and residuals so that they were in units of one
standard deviation of the entire training set. After the calibration factors were
obtained through cross-validation for each training set, models were trained
on the entire training set to make test-set predictions.

r-statistic plots

To create the r-statistic plot for a given model, uncertainty-estimate method,
and dataset, we calculate the ratio of the residual and ¢ value for each
prediction. We plotted these ratios in a histogram with 30 bins, so that the
width of the bins was 1/30 of the range from the smallest (most negative)
ratio value to the largest (most positive) ratio value. For comparison, we
plotted the probability density function of a standard normal distribution
and overlaid it on the histogram. In addition, for all r-statistic plots included
in the paper, we have included Q-Q plots displaying the same data in the
Supplementary Information. In the Q-Q plots, a red line is added to indicate
the theoretical quantiles of a standard normal distribution.

RMS residual vs. ¢ plots

To create the RMS residual vs. 6 plots for a given model, uncertainty-
estimate method, and dataset, we used the residuals and & values for all
predictions, scaled by the standard deviation of the dataset as described
above. For most plots, we used 15 bins for the ¢ values, so that the width
of each bin was 1/15 of the range from the smallest & value to the largest &
value. However, to ensure that estimates were spread over multiple bins in
the range where most uncertainty estimates fell, we decreased this bin size
if necessary to ensure that the lowest 90% of the ¢ values were spread
across at least five bins.

With the G values organized into bins, we calculated the root mean
square of the residuals corresponding to the ¢ values in each bin. We
made a scatter plot with one point for each bin, where the horizontal axis
represents the 6 value and the vertical axis represents the root mean
square of the corresponding residual values. We fit a line to this scatter plot
using least-squares linear regression with scikit-learn®3, with the fit
weighted by the number of points in each bin. For comparison, we also
overlaid a line with a slope of one and a y-intercept of zero. We also
included above each of these plots a histogram of the number of data
points in each bin to enable assessment of sampling quality.

Calculating calibration factors

We calculated calibration factors to correct 6, using a method similar to
one applied by Hirschfeld et al.!, and described briefly in the introduction.
Given the set of ¢ values and residuals for the cross-validation predictions,
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we labeled each uncalibrated ¢ value as G,.(x), and sought to find the
corresponding calibrated uncertainty estimates O, (x) that accurately
predict the standard error of predictions. To do so, we assumed that the
prediction standard error was linearly related to 6,¢(x), such that for some
aand b, we have G¢,(x) = adyc(x) + b. To find appropriate values of a and
b, we found the values that minimized the sum of the negative log-
likelihoods that each residual R(x) from cross-validation predictions was
drawn from a normal distribution with a mean of 0 and a standard
deviation of ag, + b. That is, letting D, be the set of cross-validation data,
we solved the optimization problem:

R(x)?

(@G (x) + b')? @

a,b = argmin, Z In 277 + In(d' e (x) + &)+

xyeDay

To solve the above problem, we used the Nelder-Mead optimization
algorithm as implemented in scipy*. Once these optimal values of a and b
were obtained in the above manner, we used them to calibrate the 6,
values for test-set predictions by scaling as ady(x) + b.

Convergence data

For each model and dataset, we made plots to determine the number of
bootstrap models necessary for the calibration-factor calculations to converge
to a consistent value (see Supplementary Figs. 61-76). In general, the
convergence behavior will be dataset- and model-dependent. In addition, for
a given model and dataset type, the convergence behavior may also be
affected by the chosen model hyperparameters, though our own preliminary
tests show the effect of hyperparameters is very small. To calculate calibration
factors to assess convergence behavior, we did five-fold cross-validation
repeated four times with each entire dataset, and calculated calibration
factors through the log-likelihood optimization method described above. For
random forest and ridge regression models with all three datasets, we
calculated factors using 50, 100, 200, 500, and 1000 bootstrap models. We
repeated this calculation 10 times and plotted the mean and standard
deviation of these results on a scatter plot (see Supplementary Figs. 61-64,
67-70, and 73-76). Because of computational constraints, we did these
calculations for the GPR model only with 50, 100, and 200 bootstrap models,
and repeated each calculation five times. Based on the resulting convergence
plots, random forest and ridge regression models appeared to converge by
500 models, and GPR appeared to approximately converge by 100 models.
Therefore, we expect that our results from using 500 models for random
forest and ridge regression and 200 models for GPR are reasonable. Our
neural network tests used only 25 models which are likely too few for robust
convergence but were enough to show qualitatively that our approach works
well for this type of model.

Adding noise

To evaluate how our calibration method responds when dealing with noisy
data, we added varying amounts of Gaussian noise to both the training and
test sets of our synthetic dataset. We used seven different amounts of noise,
all drawn from a normal distribution with a mean of zero, but standard
deviations of 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 2.0 times the original standard
deviation of the training set. We then used the calibration method described
above and evaluated our results with the r-statistic and RMS residual vs.
0 plots.

DATA AVAILABILITY

We have made the synthetic, diffusion, and perovskite datasets we used publicly
available on GitHub (https://github.com/uw-cmg/ML-error). They can be found in the
Sl folder in this repository. We have not included the additional datasets we studied
as they were not studied as extensively here and are all readily available through the
provided references. We have also included csv files with the data from all
convergence plots, as well as all test-set residuals, 6, values, G, values, and
calibration factors we obtained and used to create the r-statistic and RMS residual vs.
6 plots.

CODE AVAILABILITY

We have made the python code used to perform all the calculations and generate all
figures publicly available on GitHub in the same repository as the data described
above (https://github.com/uw-cmg/ML-error). We have also added the methods in
this paper to the Materials Simulation Toolkit for Machine Learning (MAST-ML) toolkit
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for easy application by future users*'. The MAST-ML toolkit can be found at https:/
github.com/uw-cmg/MAST-ML.
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