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Low-cost transporting vehicles are a crucial routine for orchards in the mountainous place. As the core component of the
mountainous orchard carrier, the wire rope is easily damaged due to frequent handling of agricultural materials. .e mechanical
model of carrier wire rope is the prerequisite for studying its damage mechanism. .is paper first analyzes the load-bearing
characteristics of the wire rope of the carrier and then uses the theory of differential geometry and the elasticity of the wire rope to
establish the mechanical model of the wire rope side strand strain ε0 and the axial load Tof the wire rope end face in the erect state
and the radial contact pressure Fa of the wire rope at the bending section and the mechanical model of the axial tension F and the
pulley diameter D of the wire rope end face. On the basis of the mechanical model and the wire rope geometric solid model, the
finite element stress analysis of the wire rope in the vertical state was carried out to verify the accuracy of the wire rope stress
model. .e results show that when the wire rope was in the vertical state, the wire-wire contact stress was linear directly
proportional to the load on the end face of the wire rope; the wire-wire contact stress between the strands was about 12 times that
within the strand; the average error between the simulated value and calculated value was about 13.6%, proving the correctness of
the established wire mechanics model. When the rope and wheel were in contact, the contact pressure of the outer wire of the side
strand was only related to the axial tension of the wire rope end face and the diameter of the pulley but not to the elasticity modulus
of the pulley.

1. Introduction

Traditional orchard planting with poor site conditions lacks
scientific and reasonable planning, and fruit trees mostly
grow in places with undeveloped transportation or even on
steep terraced fields. A variety of track transport machines
used in mountainous orchard have been developed at home
and abroad, and the traction-based dual-track carrier is one
of the representative models of this kind [1]. Wire rope
traction-based carrier used in mountainous orchard is
drawn by wire ropes, and the trolley travels along the track
with a certain slope. .e track is welded by 2 parallel tubes
and auxiliary beams, and the slope of the track is set between
10° and 40° [2–5]. Figure 1 shows the application site of the

mountain track carrier. .e driving device is placed on the
mountain peak, the track is laid along the slope in multibend
mountains, and the truck rides across the track. Power is
transmitted through ropes between the truck and the driving
device, so as to transport materials up and down the
mountain. .is carrier alleviates the labor intensity of fruit
farmers in mountainous areas and effectively meets the
delivery demand of transporting fruit and other agricultural
resources in a labor-saving manner [6].

Steel wire rope is the core component of the carrier, and
it is of great significance to study its failure behavior, and the
mathematical modeling and mechanical modeling of the
wire rope play an important role in the design and analysis.
Since wire rope has been widely used, as for wire rope
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modeling, many theoretical, analytical, and finite element
models were developed to analyze their mechanical be-
haviors under various load conditions and predict their
mechanical responses numerically [7]. Wire rope is a kind of
spiral rope twisted by a certain number of strands, and the
strands are made of multilayer wires with the rope core as
the center. It has been applied in many fields such as in-
dustrial engineering, marine engineering, and civil engi-
neering, as well as in drawbridge, crane, and elevator used
during construction and mine hoist. As wire rope is char-
acterized by advantages such as high strength, good softness,
and high stability, it is mainly used for lifting, traction,
straining, and load-bearing in material handling machinery,
thus being widely used in machinery, robot, construction,
mining, shipping, aerospace, and other fields [8, 9]. Wire
ropes are in widespread use as structural members. A wire
rope mostly consists of strands helically twisted around the
central core..e strand is constituted of many wires helically
wrapped around the inner wire. .is implies that the rope
geometry can be complicated [10]. Knapp [11] examined the
effects of core/radius variation and presented a new stiffness
matrix for straight cables subjected to tension and torsion,
which can be applied not only to soft core of wire ropes but
also to hard core structures. According to Costello [12–15]
and Phillips and Costello [16] in consideration of the effect
of Poisson’s ratio premise, each wire will be considered as a
spiral curved rod, with analysis of their mechanical struc-
tures. .ey generalized a nonlinear theory for bending and
twisting of thin helical rods applied to a layer of wound
helical wires without core. Velinskey [17, 18] extended the
theory of Costello and Phillips by analyzing the mechanical
response of multistrand structures. .e modeling procedure
was mainly based on nonlinear equations of equilibrium of a
thin helical rod and analyzed torsion and bending stiffness of
wire ropes. By studying eight different twist directions of the
wire rope, Liu et al. argued that the twist directions mainly
affected the torsion rather than the tension of the wire rope.
Both the torsion and tension were closely related to the
initial helical angle of the wire rope. .is indicated that the
overall mechanical properties of the wire rope could change
with the twist direction and the helical angle of the wire rope
[19]. Wu and Cao [20] used Frenet frame and differential

geometry to establish the mathematical model of the sec-
ondary spiral of wire rope. On this basis, the geometric
parameters of the secondary spiral of wire rope were derived.
As the equivalent mechanical model of the wire rope was
established by using the Love theory of thin elastic rod, the
calculation formulas of the equivalent elastic modulus and
equivalent shear modulus of the wire rope were derived.
Based on the geometric model of nonrotating wire rope, Pu
et al. analyzed the causes of nonrotating wire rope’s broken
wire damage and established an identification model of
nonrotating wire rope’s broken wire damage, which was
based on support vector machine (SVM). .e results show
that the model based on SVMwas suitable for identifying the
broken wire damage of nonrotating wire rope, thus pro-
viding a new effective tool for the identification of broken
wire fault of nonrotating wire rope [21].

.e orthotropic sheet model was first applied to cable
modeling by Raoof and Kraincanic. .is model is especially
appropriate for multilayered strands and can be applied to
theoretical analysis of large-diameter wire ropes [22]. Xue
et al. [23] put forward two simplified cable calculation
models based on the split-slip theory. With the suspension
bridge of the Lijiang Railway in Yunnan as the background,
they conducted fatigue test on the suspension cable with self-
developed test devices. Wahid et al. [24] used steel strands,
which were fractured in different percentages to constitute
the outer strand of the wire rope, to characterize the me-
chanical behavior of the wire rope in service. Wang et al. [25]
studied the stress and slip characteristics of elliptic and
triangular strands. .e variation range of maximum contact
pressure of triangular steel strand was larger than that of the
elliptic one. .e maximum relative slip of triangular steel
strand was much larger than that of the elliptic one, indi-
cating that triangular steel strand was more prone to fric-
tional fatigue damage.

According to the national standard GB/T5972-2009
“Cranes-Wire ropes-Care and maintenance, inspection and
discard” and local engineering standard DG/T 211-2021
“Orchard Rail Transporter,” Guangdong local standard
DB44/T 1993-2017 “Dural Rail Transporting Machine for
Mountainous Orchard,” mountainous track carrier is dif-
ferent from traditional vertical hoist used in port, elevator
used during construction, mine hoist, and aerial cable
tramway, because its wire rope is affected by factors in
traditional traction equipment such as long distance, high
tension, multilayer winding and extrusion, and high cor-
rosion, as well as new factors such as real-time variable
tension, rotary torque, extrusion of restraining mechanism,
and track vibration transformation. Studies have shown that
the conveyor wire ropes are mainly subjected to loads such
as axial tension, bending, and contact stress under normal
service conditions [26]. .e experimental and demonstra-
tion application results of orchard double-track conveyor
show that the main forms of wire rope damage are wire
breakage, wear, rust, and corrosion, among which wire
breakage is the most obvious [27]. Meanwhile, wire ropes
applied in different situations have different geometric
model, mechanical model, stress, and strain, but for traction
wire rope of mountainous track carrier, its mechanics

Figure 1: Application site of mountain track carrier.
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performance analysis is not yet clear. .erefore, this paper
established a wire rope model to derive and predict its
performance. In the previous work, this paper established
the spatial geometric mathematical model of the carrier wire
rope [28]. On this basis, taking the carrier wire rope in
operation as the research object, using differential geometry
and the theory of wire rope elasticity, a force model of the
wire rope in the upright and bending state suitable for
mountain orchard carriers is established. At the same time,
the correctness of the mechanical model was verified by
finite element analysis and experiments, thus providing
theoretical basis for the optimization of the key components
in mountainous carrier, the optimization of wire rope
structure in complex mountainous environment, and the
formulation of the criterion for rope replacement of cor-
responding equipment. .e model also helps reduce ex-
pensive tests under different parameters and operating
conditions.

2. Mechanics Modeling of the Carrier’s Wire
Rope in the Vertical State

2.1. Simplified Route of Carrier Wire Rope Traction System.
.e traction system of carrier used in mountainous orchard
is a complex mechanical and electrical system. When the
carrier is in operation, the motor, according to a certain
speed curve, drives the rotating drum to rotate and wind the
wire rope after passing the coupling, the electromagnetic
brake, and the reduction gearbox. .e driving force of the
truck is provided by the driving drum, and the truck pro-
vides tension to the wire rope. .e idler is used to avoid
sliding friction between the wire rope and the rail beam and
the ground; the constraint wheel ensures that the wire rope
always runs along the track changing direction; the pulley is
used for load-bearing and to change the moving direction of

wire rope. In the practical application of carrier, the track
covers straight-line sections and bending sections, dem-
onstrating that the carrier track is a space curve with many
variations. When the carrier is in operation, the tension of
the wire rope is always in a time-varying state due to the
frequent handling of agricultural materials. When the wire
rope is in the vertical state, the main damage is caused by
“pull-pull fatigue”; in the bending state, the load of the wire
rope is always changed by the way of “load in the straight-
line section”–“load in the bending section”–“load in the
straight-line section”, which causes “bending fatigue”
damage of the wire. For the convenience of analysis, this
paper mainly considered horizontal and vertical turnings. As
shown in Figure 2, a simplified schematic diagram of ver-
tical/turning transport aircraft was established. .ere were
one concave arc (A), two convex arcs (B/C), uphill, hori-
zontal slopes, and downhill in the track.

2.2. Finite Element Model Construction of the Carrier’s Wire
Rope. .e spatial geometric characteristics of wire rope
serve as the research basis of the mechanical model and
failure behavior of wire rope and the key to explore the
damage mechanism of the carrier’s wire rope. .erefore, in
order to know more intuitively the structure of traction wire
rope of track carrier used in mountainous orchard, this
section established wire rope 3D solid model. .is was based
on the spatial mathematical model expressions (i.e., equa-
tions (1) and (2)) [28] established by the researches men-
tioned before. MATLAB parameterization function,
SolidWorks curve, scanning and solid array, and other
functions were adopted to build such model.

In the equation of the k outer layer wire, the i strand of
the straight-line section in wire rope is as follows:

OBxik �

r0 cos θi + αa( ) + r2 cos β0 sin θi + αa( )sin θk − e2αa( ) − cos θi + αa( )cos θk − e2αa( )[ ]
r0 sin θi + αa( ) + r2 − cos β0 cos θi + αa( )sin θk − e2αa( ) − sin θi + αa( )cos θk − e2αa( )[ ]

r0αa
tan β0

+ r2 sin β0 sin θk − e2αa( )




. (1)

In the equation of the k outer layer wire, the i strand of
the bending section in wire rope is as follows:

O′Blik �
sin θi + αa( ) r0 − r1 cos θk − e2αa( )[ ] − r1 cos β0 cos θi + αa( )sin θk − e2αa( )

r3 cos e3αa − cos e3αa cos θi + αa( ) r0 + r1 cos θk − e2αa( )[ ] − r1 sin θk − e2αa( ) cos β0 cos e3αa sin θi + αa( ) − sin β0 sin e3αa[ ]
r3 sin e3αa − sin e3αa cos θi + αa( ) r0 + r1 cos θk − e2αa( )[ ] − r1 sin θk − e2αa( ) cos β0 sin e3αa sin θi + αa( ) + sin β0 cos e3αa[ ]


.
(2)
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SolidWorks curve and scanning functions were used to
establish the core wire of the side strand in wire rope, whose
secondary spiral reference point coordinates then were
obtained through MATLAB. .ese coordinates were made
into TXT file, as shown in Table 1, which were the series
coordinates of the reference point, the 18th wire (of the first
strand). .en the SolidWorks “XYZ curve” function was
adopted to import the prepared coordinate file in the pa-
rameter input settings. Finally, SolidWorks scanning, as-
sembly, and solid array functions were used to build the 3D
geometric model of the whole wire rope. Figures 3–5, re-
spectively, show the 3D geometric models of single wire,
wire-wire winding, the vertical section, and rope-wheel
contact section [28].

2.3. Solution of theWire’s Internal Stress. Compared with the
side strand wire, the force on the fiber core could be ignored,
and the force on the whole rope was loaded into the side
strand wire by default. .erefore, the stress characteristics of
the side strand served as the key to analyzing the whole rope.
.e force on the side strand of the wire rope in the vertical
state is shown in Figure 6. In order to deduce the force
equation of each wire, in this paper, subscript 0 represented
the side strand or its center wire, subscript 1 represented the
inner wire of the side strand, and subscript 2 represented the
outer wire of the side strand.

According to the mechanical equilibrium conditions and
the relationship between the wire’s bearing capacity and
deformation, the following relational expressions could be
obtained (Costello et al. [12–15, 29, 30]):

T � 6 × T0 cos β0 +N
b
0 sin β0( ),

T0 �
π

4
E0D

2
0ε0,

Nb
0 � H0k0 − G

b
0τ0′,

H0 �
π

32
C0D

4
0Δτ0,

Gb0 �
π

64
E0D

4
0Δk0.



(3)

In the formula, T is the axial load resultant force of whole
rope (N). T0 is the tangential n-axis tension of side strand
centerline (N). N0

b is the normal shear force of side strand
center line (N). H0 is the wire rope strand torque (N.m). G0

b

is the bending moment of the stock center line from the
normal direction. E0 is the modulus of elasticity of side
strand monofilament of steel wire rope (MPa). C0 is the
shear modulus of wire rope side strand monofilament
(MPa). k0 is the predeformation curvature of rope strand
(m− 1). τ0’ is the deflection rate of rope strand after defor-
mation. △k0 is the curvature deformation before and after

V1 R1

O

A

B C

V

β1

1 2 3 4

5

6

1. Wire rope tensioning device 2. Drive drum 3. Wire rope 4. Constraint wheel 5. Load pulley 6. Load trolley 

(R1. Turning radius β1. Turning angle V. Running direction of load trolley V1. Wire rope tensioning direction)

Figure 2: Simplified schematic diagram of a turn conveyor.

Table 1: Reference point coordinate of first share eighteenth wire.

Serial number of the reference point X-axis coordinate Y-axis coordinate Z-axis coordinate

1 1.8017 0.4896 − 0.0824
2 1.3254 3.0106 6.9692
3 − 0.3422 3.3943 14.5669
4 − 1.5710 1.2844 21.7153
5 − 1.3648 − 1.6788 28.3998
6 0.1395 − 3.4792 35.6185
7 1.6916 − 2.6984 43.2033
8 1.7732 − 0.0522 50.1870
9 0.3201 2.4891 56.9145
10 − 1.6804 3.1664 64.2900
11 − 2.4863 1.4726 71.8032
12 − 1.2831 − 1.0666 78.6432
13 1.0580 − 2.6482 85.4687
14 2.8853 − 2.1368 92.9700
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deformation. △τ0 is the flexural deformation before and
after deformation. ε0 is the strain of wire rope strand. D0 is
the single-strand diameter (mm).

.e spatial spiral equation, curvature, and torsion
change rules of wire rope are the basis of studying the 3D
solid modeling and mechanical model of the whole wire
rope. Curvature is the extent to which a curve at a certain
point bends, and torsion is the extent to which a space curve
departs from being planar. .ere are definite curvature and

torsion at any point on the spatial spiral curve of the wire
rope, and the curvature and torsion of the whole rope have
certain change rules. .e concept and properties of differ-
ential geometry are based on the Frenet coordinate system.
.e relationship between wire rope’s curvature k, torsion τ,
and spatial spiral curve Eq. f(αa) is as follows (Costello and
Knapp et al. [11–15, 31]):

k �
f αa( )′ × f αa( )′′





 







f αa( )′



 



3 �

�����������������������������������������
y′z″ − z′y″( )2 + z′x″ − x′z″( )2 + x′y″ − y′x″( )2√

x′( )2 + y′( )2 + z′( )2( )3/2 , (4)

τ �
f αa( )′, f αa( )′′, f αa( )′′′( )
f αa( )′ × f αa( )′′



 



2 �

x′y″z‴ + x‴y″z′ + x″y‴z′ − x‴y″z′ − x′y‴z″ − x″y′z‴

y′z″ − z′y″( )2 + z′x″ − x′z″( )2 + x′y″ − y′x″( )2 . (5)

Substituting known parameters into equations (4) and
(5), the simplified expressions of curvature and torsion can
be obtained:

k0 �
fOA αa( )′ × fOA αa( )″



 





fOA′ αa( )



 



3 �
sin2β0
r0

, (6)

τ0 �
fOA αa( )′, fOA αa( )″, fOA αa( )′′′( )

fOA αa( )′ × fOA αa( )″



 



2 � sin2β0 cos β0.

(7)
After the deformation of the side strands of the wire

rope, the helix radius r0’ of the strand is as shown in equation
(8):

r0′ � r0 − μ r0 −
D0

2
( )ε +D0

2
ε0[ ]. (8)

From equations (6)–(8), the curvature k0′ and deflection
τ0′ of the steel wire after deformation can be obtained, as
shown in equations (9) and (10). In the equation, △β0 is the
strand before and after the twist angle deformation in the
whole rope the amount of deformation.

k0′ �
2 sin2 β0 + Δβ0( )

2r0 − μ 2r0 − D0( )ε +D0ε0[ ], (9)

τ0′ � sin2 β0 + Δβ0( )cos β0 + Δβ0( ). (10)

According to equations (6), (7), (9), and (10), the cur-
vature and deflection deformation of the steel wire can be

Figure 3: Winding geometry entity between single wire and single wire.

Figure 4: .ree-dimensional entity model of upright wire rope.
Figure 5: .ree-dimensional entity model of bending section wire
rope.
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obtained, as shown in equations (11) and (12), where τ0 is the
deflection rate of the strand before deformation.

Δk0 � k0 − k0′ �
sin2β0
r0

−
2 sin2 β0 + Δβ0( )

2r0 − μ 2r0 − D0( )ε +D0ε0[ ],
(11)

Δτ0 � τ0 − τ0′ � sin2β0 cos β0 − sin2 β0 + Δβ0( )cos β0 + Δβ0( ).
(12)

In Figure 7, P0 is the wire rope side strand lay length. Ss is
the strand length in twist pitch. αs is the angle that the wire
rope strands have turned (at this time the value is 360°).

From the geometric relationship of the side strands of
the wire rope after expansion in Figure 7, the strain ε of the
whole rope can be obtained as

ε �
Ss + Ssε0( )cos β0 + Δβ0( ) − Ss cos β0

Ss cos β0
. (13)

Since △β0 is extremely small, it can be considered that
(Costello and Knapp et al. [11–15, 31])

sin Δβ0 ≈ Δβ0, (14)

cos Δβ0 ≈ 1. (15)

Bringing equations (14) and (15) into equation (13) gives

Δβ0 �
ε − ε0

1 + ε0( )tan β0
. (16)

.e process of calculating the relationship between the
strain ε of the whole rope and the strain ε0 of the lateral
strand is as “Appendix A”.

.e wire rope of single-strand elastic modulus E0 and
shear modulus C0 is as follows (the calculation process of
single-strand elastic modulus E0 and shear modulus C0 is as
“Appendix B”):

E0 � e8E, (17)

C0 �
19d2

D2
0

C � e7C. (18)

In summary, the functional relationship between the
strand strain and the resultant force on the wire rope can be
expressed as

ε0 � fε(T). (19)

According to equation (19), if the axial load of the end
face of the wire rope was known, the relevant mechanical
parameters of the rope strand and wire could be obtained.
However, it would be too complex to simplify and express
the process if the above derivation process was adopted to
directly solve the relationship between the wire rope strain
and the load in the vertical state. In this paper, MATLABwas
used for calculation to establish the relational diagram be-
tween wire rope’s strain and load, as shown in Figure 8. It
could be seen from the diagram that the side strand strain of
the wire rope was linear directly proportional to the axial
load on the end face of the wire rope.

2.4. Solution of Contact Stress between Upright Wires. .e
contact between the steel wires of the upright steel wire rope
includes two kinds of steel wire axes crossing each other and
parallel, as shown in Figure 9, φ in Figure 9(a) represents the
crossing angle between the steel wires, and the value is 40°.
According to the Hertz contact theory, the contact area of the
wire rope strands is elliptical. If the wire axes cross, the contact
surfaces of the two wires are elliptical; if the wire axes are
parallel, the contact surfaces of the two wires are rectangular.

.e normal load X01 between the inner layer wires of the
straight wire strands is related to the axial tensile force T1 of
the inner layer wire and the twist angle β1, and the normal
load X12 between the outer layer wires is related to the axial
tensile force T2 of the outer layer wire and the twist angle β2

N
b

G
b

Z T

H

X

Y

Figure 6: Force diagram of the side strand of wire rope in the
vertical state.

β0

r0αs

P0

Ss

Figure 7: Expansion diagram of wire rope side femoral.
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[32], as shown in equations (20) and (21). T1 is not much
different from T2, and β2 is greater than β1, so X12 is nu-
merically greater than X01. When calculating the maximum
contact stress inside the wire rope, only X12 needs to be
calculated.

X01 � 0.5T1 sin 2β1( ), (20)

X12 � 0.5T2 sin 2β2( ). (21)

.e contact load X22 of the interstrand contact wire
method is shown in equation (22), and the contact stress σ of
the steel wire is calculated as shown in equation (23), where c
is the loose twist angle, and its value is equal to the strand
twist angle β0 Relevant, when β0≤ 6°, c takes 60°; when
6°< β0≤12°, c takes 50°; when β0> 12°, c takes 40°. a, b are the
long axis and short axis length of the contact area between
the steel wires, mm.

X22 � T0 sin c, (22)

σ �
3X

4πab
. (23)

When calculating the contact stress σ12 between the
wires in the strand, take a� P0, b� d/8, P0 is the twisting
length of the wire in the strand, so

σ12 �
6X12

πP0d
. (24)

When calculating the wire contact stress σ22 between
strands, take a� d/sinφ, b� d/3, so

σ22 �
9X22 sin ϕ

4πd2
. (25)

3. Mechanics Modeling of the Carrier’s Wire
Rope in the Bending State

3.1. Bending Stress of Wire Rope in the Bending Section.
.e bending section of orchard carrier’s wire rope was re-
flected in the contact between the wire rope and the con-
straint wheel, pulley, and drum, as shown in Figure 10 [28].
.e wear of the outer strand surface of the wire rope is
caused by the friction between it and the pulley or the groove
of the drum under the action of pressure. .is wear was
especially obvious at the place where the wire rope and the
pulley touch when the suspension was accelerated or de-
celerated and reflected by the fact that external wire rope was
ground into a plane shape. Insufficient or incorrect lubri-
cation and the presence of dust and gravel could exacerbate
the wear. When the rope and wheel were in contact, the
bending stress and contact stress of the wire inside the rope
changed greatly.

A certain wire of the rope was taken as the research
object. According to the material mechanics, relevant ex-
pressions are as follows:

50000 10000

Axial load of steel rope end face (N)
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Figure 8: Relationship curve between wire rope end load and single-strand strain.

φ
=
4
0
°

(a) (b)

Figure 9: Contact diagram between wires and wires. (a).e wire axes of the strands cross each other (the angle φ� 40° is the angle made by
the tangents to the ropes middle line at the cross point). (b) .e steel wire axes in the strands are parallel to each other.
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X22 � T0 sin c,

Ml
�
EI

rl
� EIkl,

Δσ �
Ml

− Mx( )d
I

� E d kl − kx( ),
σll � σxl + Δσl,

σlX � T
l
l + σ

l
l.

(26)

In the formula, rx is the curvature radius of vertical steel
wire (mm). I is the inertia moment of steel wire section to
neutral axis (mm). rl is the radius of curvature of the wire
rope bending section (mm).Mx is the wire bending moment
of the vertical section of the wire rope (N.m). Ml is the wire
bending moment of wire rope bending section (N.m). kx is
the steel wire curvature of the upright section of the wire
rope (mm− 1). kl is the steel wire curvature of the bending
section of the wire rope (mm− 1). E is the elastic modulus of
steel wire (MPa). d is the diameter of steel wire (mm).△σ is
the moment the wire rope enters the bending section from
the straight section, the maximum bending stress increase of
any steel wire in the rope. σl

x is the bending stress of steel
wire in the vertical section of steel wire rope (MPa). σl

l is the
maximum bending stress of steel wire in bending section of
wire rope (MPa). △σl is the bending stress increment. σX

l is
the maximum normal stress of wire rope side wire in
bending section (MPa). T1

l is the axial tensile stress of steel
wire in inner layer of bending section of steel wire rope
(MPa). T2

l is the axial tensile stress of the steel wire in the
outer layer of the bending section of the wire rope (MPa).

3.2. Contact Stress of Wire Rope in the Bending Section.
When the rope is being coiled onto the wheel, if the contact
between the wire rope and the side wall of the rope groove is
not considered, the wear between the rope and the pulley is
mainly caused by the contact stress between the two. .e
contact between the rope and wheel is actually the contact
between the outer wire and the pulley groove’s surface, but it
is converted to dense point contact by the spiral structure of
the wire rope..e schematic diagram of the contact between
the wire rope and the pulley is shown in Figure 11.

It is assumed that the total length of the rope-wheel
contact is L; the twist length of the side strand in the rope is S;

and the twist length of the outer wire in the side strand is Pn;
the wire rope is composed of Nw outer strands, and each
share has Nc side wires; the twist angle of the side strand in
the rope is β0; the depth of the wire rope embedded in the
groove of the pulley wheel is half of the outer diameter of the
wire rope. According to the above-given data, the actual
number of rope-wheel contact points could be calculated as
Nm:

Nm �
SNc

2 sin β0Pn

LNw

S
�

LNcNw

2 sin β0Pn
. (27)

According to the geometric relationship in Figure 11, the
length of the rope-wheel contact section is shown in
equation (28), where θ is the contact angle between the rope
and wheel; d andD are the diameters of the wire rope and the
pulley, respectively.

L �
(D + d)θ

2
. (28)

As equation (28) was substituted into equation (27), it
could be obtained that the number of contact points between
the wire rope and the wheel groove is

Nm �
(D + d)θNcNw

4 sin β0Pn
. (29)

.e rope-wheel contact stress was evenly distributed.
Microsegment of the wire rope with a central angle of △θ
was selected for stress analysis, as shown in Figure 12.

Figure 10: .e wire rope is in contact with the restraining wheel, pulley, and drum.

F

F

D

Figure 11: Contact diagram between wire rope and pulley.
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When the carrier was in operation, a certain micro-
segment of wire rope was in instantaneous contact with the
wheel groove. It could be approximately considered that the
axial tension F at any position within the wire rope where the
rope and wheel contact was all the same. .e tension was
tangent to the central axis of the wire rope, and the contact
pressure FN between the wire rope and the pulley groove
always followed the normal direction of the pulley groove’s
arc surface. According to the force balance of the wire rope
in the microsegment, the contact pressure between the wire
rope and the pulley groove is as follows:

FN � 2F sin
Δθ
2

( ). (30)

According to equation (30), when △θ was extremely
small, it could be considered that sin (△θ/2)�△θ/2, so the
sum of FN’s values in the range of θ (contact wrap angle
between the wire rope and the pulley) could be expressed as
follows:

∑N
i�1

FN � ∑N
i�1

2F sin
Δθi
2

( ) �∑N
i�1

FΔθi � ∫θ

0
Fdθ � Fθ. (31)

In conclusion, the radial average pressure Fa (borne by
each contact point between the wire rope and the pulley
groove) is shown in equation (32). In the equation, r0 is the
spiral radius (twisting radius) of the strand in the rope and
αa refers to the angle the strand in the rope covers when the
rope is twisted.

Fa �
∑Ni�1 FN
Nm

�
4F sin β0Pn
(D + d)NwNc

�
4FPnr0αα

(D + d)NwNc

�������
2
S + r

2
0α

2
α

√ .

(32)
According to equation (32), when the type and diameter

of the wire rope were determined, the contact pressure of the
side strand wire where the rope and wheel contact was only
related to the axial tension of the wire rope’s end face F and
the pulley’s diameter D. .e pressure was also directly
proportional to the axial tension of the wire rope, was in-
versely proportional to the pulley diameter, and had nothing
to do with the pulley’s elastic modulus. To reduce the rolling
friction force between the pulley and the wire rope, the

material with small friction coefficient and large strength
should be used to make the pulley.

4. FiniteElementModelConstructionandForce
Analysis of Wire Rope

4.1. Finite ElementModel Construction of the Conveyor’sWire
Rope. 3D solid model of wire rope was imported into
ANSYS Workbench. In the previous research [28], we
established the space spiral equation of the carrier wire rope
in the upright and bent state and obtained the obvious
periodic change law of the curvature and deflection of the
straight and curved sections of this kind of wire rope
through the mathematical model. As the symmetric char-
acteristics of the wire rope structure were considered, 1/6-
twist-length wire rope was selected as the research object to
shorten the simulation time, as shown in Figure 13. .e
elastic modulus Ewas tested to be 74GPa, and the tensile test
site is shown in Figure 14; the test data are shown in Table 2;
Poisson’s ratio was 0.3 [15, 16]. Mesh division was con-
ducted on the wire rope by “mesh” command, and solid45
unit was selected to discrete the structure. .e finite element
model of the wire rope after mesh division is shown in
Figure 15. .e total unit number of finite element mesh is
613,858, and the total number of nodes is 2,941,946. Each
node contains 3 degrees of freedom.

4.2. Finite Element Force Analysis ofWire Rope in the Vertical
Section. .e results of the steel wire failure test show that the
axial force damage is the largest [27]. An end face of the wire
rope was selected as the target face, to which displacement
constraints in X, Y, and Z directions were applied. .en axial
tensile load was applied to the other end face of the wire rope.
Finally, the solution was made..e stress results for each node
could be referred to in the ANSYS Workbench postprocessor.
When the tensile load on the end face was 8000N, the stress
cloud map of each wire in the rope is shown in Figure 16.
Similarly, the stress cloudmap of the wire inside the rope could
also be analyzed when the axial tension of the end face was
ranging from 1000N to 7000N. As the simulated values and
calculated values of the maximum wire contact force reflected
in the stress cloud diagram above were summarized, their
comparison results when the wire rope was under different

θΔ

F

F

FN

Figure 12: Microsection wire rope contacting force diagram between pulley and wire rope.
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coaxial tension could be obtained, as shown in Table 3. Data in
Table 3 weremade into a curve diagram, as shown in Figure 17.

It could be seen from the stress cloud diagram of wire-
wire contact shown in Figure 16 and Table 3 that the
maximum contact stress occurred in the contact wire be-
tween strands when the wire rope was in the vertical state. As
the wire-wire contact stress within the strand was compared
with that between strands, it was found that the latter was
much greater than that of the former. .e contact stress
between strands was about 12 times that within the strand. It
could be seen from Figure 17 that the contact stress between
the wire rope in the vertical state was linear, directly

proportional to the load on the end face of the wire rope..e
average error between the simulated value and the calculated
value was about 13.6%, proving that the established equation
of the wire rope’s stress was correct.

In Table 3, as the contact stress equation only calcu-
lated the contact stress between wires without considering
the bending stress, etc., the calculated value was relatively
small compared with the simulated value. .ere was a big
difference between the calculated value and the simulated
value of the wire-wire contact stress between strands. .e
reason was that the equation of the contact stress between
the wires only took into account the axial tension of the
wire when the wire was wound into strands, without
taking into account the influence of factors, such as the
shear stress between the wires. In conclusion, when the
wire rope in the vertical state had borne axial tension, the
contact area between the strands of the wire rope should
be the focus of study, because the area was very likely to
suffer fretting wear between the wires.

5. Discussion

In the previous work, we established the spatial geometric
mathematical model of the carrier wire rope. On this basis,
taking the carrier wire rope in operation as the research object,
using differential geometry and the theory of wire rope

Figure 13: .ree-dimensional model of wire rope.

1

2

3

4

Figure 14: Wire elastic modulus test scene. 1. Wire clamp 2. Steel wire 3. Precision electronic universal material testing machine 4.
Computer.

Table 2: Material tensile test data of wire rope.

Tensile stress (MPa) Plastic strain (mm)

1121.02 2.0
1121.02 1.6
1121.02 1.5
1579.62 2.1
1426.75 1.7
815.29 1.3
1273.89 1.4
1070.06 1.2
866.24 1.0
866.24 1.7
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elasticity, a force model of the wire rope in the upright and
bending state suitable for mountain orchard carriers is
established.

However, this article also has obvious shortcomings.
.is article does not verify the response of the wire rope
under the bending state. .e response of a wire rope in a

bending state in a real environment is a dynamic nonlinear
problem. Due to the limited experimental conditions, we
cannot verify the response of the wire rope in the bending
state through experiments. .is article only verifies
whether the simulation model in the bending state is re-
liable. .is shortcoming also provides a research direction

Figure 15: ANSYS Workbench mesh map.
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Figure 16: Wire rope simulation result at axial tension 8000N under ANSYS Workbench.

Table 3: Maximum contact stress simulation and calculation results by different wire rope end load.

Axial load of the wire rope (N)

Wire-wire contact stress within the strand
(MPa)

Wire-wire contact stress between strands
(MPa)

Calculated value Simulated value Calculated value Simulated value

1000 0.2918 47.197 492.3 569.6
2000 0.5835 94.394 984.5 1139.2
3000 0.8753 141.591 1476.8 1708.8
4000 1.1671 188.788 1969.1 2278.4
5000 1.4588 235.985 2462.2 2848
6000 1.7506 283.182 2953.6 3417.6
7000 2.0424 330.379 3445.9 3987.2
8000 2.3342 377.576 3938.1 4556.8
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for our future work. .e test demonstration application
effect of the orchard double-track conveyor shows that
broken wires, abrasion, rust, and corrosion are the main
manifestations of wire rope damage, and the broken wires
are the most obvious. On the other hand, considering that
the operating environment of the steel wire rope of the
carrier is complicated, the most contact with it during
operation is the grease. For this reason, in the next work, we
will analyze the external factors that affect the damage of
the wire rope: the influence of grease stain on the damage of
the wire rope. Including the formation mechanism of
grease stain and the characteristics of grease stain abrasives,
it is concluded that the grease stain causes fatigue, wear,
and corrosion of the steel wire rope and other compre-
hensive damage problems. It provides a theoretical basis for
the optimization of the key components of the mountain
carrier, the optimization of the steel wire rope structure in
the complex environment of the mountain, and the es-
tablishment of the rope replacement guidelines for the
corresponding equipment.

6. Conclusions

(1) .is article describes the predictive trend model.
Under normal operating conditions of the carrier,
the model can predict the stress characteristics of the
wire rope. After the load-bearing characteristics of
the carrier’s wire rope were analyzed, the stress
models of 6×19 + FC wire rope in both the vertical
and bending states were established. Based on the
built mechanical model, MATLAB was used to
calculate and analyze the wire-wire contact stress
between the strands and within the strand, as well as
the contact stress between the outer wire of the side
strand and the pulley.

(2) Solid model of the wire rope was imported into
ANSYS Workbench for finite element force analysis.
.e results show that when the wire rope was in the
vertical state, the wire-wire contact stress was in
linear proportion to the load on the end face of the
wire rope; the wire-wire contact stress between the

strands was much larger than and was 12 times that
within the strand; the average error between the
simulated value and the calculated value was about
13.6%, proving that the established wire mechanical
model was correct.

(3) When the rope and wheel were in contact, the
bending stress and contact stress of the wire inside the
rope changed greatly. It can be known from the
established mechanical model that the contact pres-
sure of the outer wire of the side strand was only
related to the axial tension of the wire rope end face
and the diameter of the pulley. .is contact stress was
directly proportional to the axial tension of the wire
rope end face and inversely proportional to the di-
ameter of the pulley but had nothing to do with the
elasticity modulus of the pulley. To reduce the rolling
friction force between the pulley and the wire rope,
the material with a small friction coefficient and large
strength should be used to make the pulley.

Appendix

A. The Relationship between the Strain ε of the
Whole Rope and the Strain ε0 of the
Lateral Strand

.eprocess of calculating the relationship between the strain
ε of the whole rope and the strain ε0 of the lateral strand is as
follows:

According to the Pythagorean theorem in Figure 7:

Ss P0, αs, r0( ) � ��������
P2
0 + r

2
0α

2
s

√
. (A.1)

Differentiating the function of equation appendix A.1
gives

ΔSs �
P0ΔP0��������
P2
0 + r

2
0α

2
s

√ +
r0α

2
sΔr0��������

P2
0 + r

2
0α

2
s

√ +
r20αsΔαs��������
P2
0 + r

2
0α

2
s

√ . (A.2)
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Figure 17: Maximum contact stress relationship curve by different wire rope end load. (a) In-strand wire and wire contact stress. (b) Wire-
to-wire contact stress between strands of steel wire rope.
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For the two ends of equation appendix A.2, the division
of Ss can obtain the strain ε0 as

ε0 �
P2
0ε

S2s
+
r0α

2
sμ 2r0 − D0( )ε − D0ε0[ ]

2S2s
+
r20αsΔαs
S2s

. (A.3)

Ignoring the torque during the stress of the wire rope,
that is, △αs� 0, the relationship between ε and ε0 can be
obtained as

ε �
2r0 + μD0sin

2β0

2r0cos
2β0 + μ 2r0 − D0( )sin2β0

ε0. (A.4)

Let
e4 � ((2r0 + μD0sin

2β0)/(2r0cos
2β0 + μ(2r0 − D0)sin

2β0))
get

ε � e4ε0. (A.5)

B. The Relationship between the Elastic
Modulus of Single Strand E0 and the Elastic
Modulus of Monofilament E

In a single strand, according to the relationship between wire
force and deformation:

T0 �
π

4
Ed2ε0 + 6 × T1 cos β1 +N

b
1 sin β1( ) + 12 × T2 cos β2 +N

b
2 sin β2( ), (B.1)

T1 �
π

4
Ed2ε1

Nb
1 � H1k1 − G

b
1τ1′

H1 �
π

32
Cd4Δτ1

Gb1 �
π

64
Ed4Δk1



T2 �
π

4
Ed2ε2

Nb
2 � H2k2 − G

b
2τ2′

H2 �
π

32
Cd4Δτ2

Gb2 �
π

64
Ed4Δk2



(B.2)

In the same way as formulas (6)–(16) and Appendix A,
the expressions of related mechanical parameters of inner
layer filament and outer layer filament can be derived:

ε1 � e5ε0 �
2r1cos

2β1 + μ 2r1 − d( )sin2β1

2r1 + μ d sin2β1
ε0

Δβ1 �
1 − e5

1 + e5ε0( )tan β1
ε0

Δk1 � k1 − k1′ �
sin2β1
r1

−
2 sin2 β1 + Δβ1( )

2r1 − μ 2r1 − d + e5d( )ε0
Δτ1 � τ1 − τ1′ � sin2β1 cos β1 − sin2 β1 + Δβ1( )cos β1 + Δβ1( )



,

ε2 � e6ε0 �
2r2cos

2β2 + μ 2r2 − d( )sin2β2

2r2 + μ d sin2β2
ε0

Δβ2 �
1 − e6

1 + e6ε0( )tan β2
ε0

Δk2 � k2 − k2′ �
sin2β2
r2

−
sin2 β2 + Δβ2( )

r2 − μ r2 − (d/2) +(d/2)e6( )ε0
Δτ2 � τ2 − τ2′ � sin2β2 cos β2 − sin2 β2 + Δβ2( )cos β2 + Δβ2( )

.



(B.3)
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.e relationship between the single-strand elastic
modulus C0 and the monofilament elastic modulus C is
shown in equation appendix B.4, where e7 is a constant.

C0 �
19d2

D2
0

C � e7C. (B.4)

Simultaneous (3) and appendix B.1 can get

π

4
E0D

2
0ε0 � T0 �

π

4
Ed2ε0 + 6 × T1 cos β1 +N

b
1 sin β1( ) + 12 × T2 cos β2 +N

b
2 sin β2( ). (B.5)

According to equation appendix B.5, the relationship
between the elastic modulus of single strand E0 and the
elastic modulus of monofilament E is as follows, where e8 is a
constant.

E0 � e8E. (B.6)
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