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SUMMARY

For the problem of variable selection for the normal linear model, selection criteria
such as AIC, Cp, BIC and RIC have fixed dimensionality penalties. Such criteria are
shown to correspond to selection of maximum posterior models under implicit hy-
perparameter choices for a particular hierarchical Bayes formulation. Based on this
calibration, we propose empirical Bayes selection criteria that use hyperparameter
estimates instead of fixed choices. For obtaining these estimates, both marginal and
conditional maximum likelihood methods are considered. As opposed to traditional
fixed penalty criteria, these empirical Bayes criteria have dimensionality penalties
that depend on the data. Their performance is seen to approximate adaptively the
performance of the best fixed penalty criterion across a variety of orthogonal and
nonorthogonal set-ups, including wavelet regression. Empirical Bayes shrinkage esti-
mators of the selected coefficients are also proposed.

Some keywords: AIC; BIC; Conditional likelihood; Cp; Hierarchical models; Marginal
likelihood; Model selection; RIC; Risk; Selection bias; Shrinkage estimation; Wavelets.



1 Introduction

We consider the following canonical variable selection problem. Suppose we have n
observations on a dependent variable Y and p independent variables X = (x1, . . . , xp),
for which the familiar normal linear model holds:

Y = Xβ + ε, (1)

where ε ∼ Nn(0, σ2I) and β = (β1, . . . , βp)
′. Suppose also that only an unknown

subset of the βj coefficients are nonzero. The problem of variable selection, or subset
selection as it is often called, is to identify this unknown subset. The special case of
this problem where X = I occurs naturally in the context of wavelet regression; see
Donoho & Johnstone (1994).

A common strategy for this variable selection problem has been to select the model
that maximises a penalised sum of squares criterion. More precisely, if γ = 1, . . . , 2p

indexes all the subsets of x1, . . . , xp, let

SSγ = β̂ ′
γX

′
γXγ β̂γ, (2)

where Xγ is the n× qγ matrix whose columns are the qγ variables in the γth subset,

and β̂γ ≡ (X ′
γXγ)−1X ′

γY is the least squares estimate of the vector of coefficients βγ

for this subset. Here SSγ is just the familiar regression sum of squares for the γth
model. The typical penalised sum of squares criterion entails picking the γth model
that maximises

SSγ/σ̂
2 − F qγ, (3)

or equivalently minimises SSEγ/σ̂
2 + F qγ for SSEγ = Y ′Y − SSγ . In (3), F is a

fixed constant and σ̂2 is an estimator of σ2. F can be interpreted as a ‘dimensionality
penalty’ in the sense that (3) penalises SSγ/σ̂

2 by F times qγ , the dimension of the
γth model. Common choices for σ̂2 include (Y ′Y − SSFULL)/(n− p), the traditional
unbiased estimator based on the full model, and SSEγ/(n − qγ). In the wavelet
regression context where p = n, Donoho et al. (1995) recommend the median absolute
deviation estimator.

A number of popular criteria correspond to using (3) with different choices of
F . Perhaps the most widely used are F = 2 which yields Cp (Mallows, 1973) and,
approximately, AIC (Akaike, 1973), and F = logn which yields BIC (Schwarz, 1978).
The motivation for these choices are varied; Cp is motivated as an unbiased estimate of
predictive risk, AIC by an expected information distance, and BIC as an asymptotic
Bayes factor. A wide variety of related choices for F have been proposed by others.

A variant of the above criterion, which plays an important role in this paper, is
that with F = 2 log p. This choice was proposed by Foster & George (1994) where it
was called the Risk Inflation Criterion (RIC) because it asymptotically minimises the
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maximum predictive risk inflation due to selection when X is orthogonal. This choice
and its minimax property were also discovered independently by Donoho & Johnstone
(1994) in the wavelet regression context, where they refer to it as the universal hard
thresholding rule.

Although initially motivated by minimaxity considerations, RIC can also be mo-
tivated by its relationship to the expected size of the largest t-statistic under the null
model. More precisely, when X is orthogonal and β1 = · · · = βp = 0, it can be shown
that the expected size of the maximum squared t-statistic is approximately 2 log p
for large p. Since adding a variable to the model increases SSγ/σ̂

2 by the square
of its t-statistic, when σ̂2 ≡ s2, RIC essentially selects only those variables whose
squared t-statistics exceed the expectation of the maximum under the null model.
Although this is an intuitively reasonable adjustment for selection, this motivation
also suggests that RIC is conservative since, under the null model, we would expect
the size of the smaller squared t-statistics to be less than 2 log p. Indeed, under the
null model with orthogonal predictors, it can be shown that the expected size of the
qth largest squared t-statistic is approximately 2 log(p/q) for large p. Based on this,
one might consider the modified RIC criterion

SSγ/σ̂
2 −

qγ∑
q=1

2 log(p/q), (4)

that compares the ordered t-statistics to their expected size under the null model.
Note that both RIC and (4) exploit aspects of the expected ensemble of t-statistics.
However, in contrast to RIC and criteria of the form (3) which use a fixed penalty F ,
(4) uses the penalty 2 log(p/q) which decreases as q increases. Benjamini & Hochberg
(1995) have proposed similar modifications of the 2 log p threshold for multiple com-
parisons problems. More recently, information-theoretic motivations for such modifi-
cations have been explored by Foster & Stine (1999) and Hansen & Yu (1999).

Alternatives to criteria of the form (3) and (4) are provided by a Bayesian ap-
proach. The basic idea is to put a prior distribution on βγ and γ, and then to use
the posterior distribution p(γ | Y ) to identify models. An appealing aspect of such
an approach is that it automatically takes ensemble information into account. A key
element, of course, is the choice of the prior distribution p(βγ, γ). Although subjective
considerations can occasionally be used, see Dickey & Garthwaite (1996), the com-
plexity of required inputs often necessitate ‘default’ choices that, one hopes, lead to
posteriors that put high probability on the ‘most promising’ models. Many variants of
the Bayesian approach to variable selection have been proposed in the literature; see
Mitchell & Beauchamp (1988) and George & McCulloch (1993, 1995, 1997) for fur-
ther references. When the goal is exclusively prediction, the Bayesian approach also
provides a useful alternative to variable selection called Bayesian model averaging;
see Clyde, Desimone & Parmigiani (1996) and Raftery, Madigan & Hoeting (1997).
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Recent advances in Markov chain Monte Carlo methods for posterior computation
have led to increased interest in all of these methods.

In this paper, we propose and develop empirical Bayes alternatives to criteria of
the form (3). In § 2, we show how a popular hierarchical Bayes formulation for vari-
able selection can be calibrated by hyperparameter choices so that the ordering of
models by posterior probability corresponds exactly to the ordering of models by each
criterion of the form (3). The modal model of such a posterior will then correspond
to the model that maximises (3). In § 3, the same hierarchical formulation is used
to motivate a marginal maximum likelihood criterion that uses hyperparameter esti-
mates based on the data rather than fixed choices. In § 4, we propose an alternative
conditional maximum likelihood criterion based on maximizing rather than marginal-
ising over the model space. The rapidly computable, closed form of this criterion is
seen to provide an adaptive penalty that contains both a BIC type component that
is O(logn) and an RIC type component that is similar to the modified RIC in (4).
In § 5, we describe shrinkage estimators for the coefficients selected by our empirical
Bayes criteria. In § 6, we report on simulation evaluations of our empirical Bayes cri-
teria and compare them with AIC, Cp, BIC, RIC, modified RIC and a Cauchy prior
modification of BIC proposed by Kass & Wasserman (1995). We consider various
orthogonal and nonorthogonal set-ups, including the wavelet regression set-up where
X = I and p = n. In § 7, we conclude with a discussion of some recent related work.

2 Bayesian Calibration to Selection Criteria

We begin by showing that a particular class of priors on βγ and γ may be calibrated
so that the ordering of models by posterior probabilities p(γ | Y ) will be identical to
the ordering of models by SSγ/σ̂

2 −F qγ in (3); to obtain the desired calibration, we
treat σ as known and later set it equal to σ̂. The priors we consider are of the form
p(βγ, γ | c, w) = p(βγ | γ, c)p(γ | w), where

p(βγ | γ, c) = Nqγ{0, c σ2(X ′
γXγ)−1} (5)

for c > 0, and
p(γ | w) = wqγ(1 − w)p−qγ (6)

for w ∈ (0, 1). Through its influence on the prior covariance matrix of βγ in (5),
the hyperparameter c controls the expected size of the nonzero coefficients of β =
(β1, . . . , βp)

′. Under (6), the components of β are independently and identically
nonzero with probability w, and so the hyperparameter w controls the expected pro-
portion of such nonzero components.

An appealing aspect of (5) is its analytical tractability; it is of conjugate form,
allowing analytical integration over βγ for Bayesian marginalisation. Furthermore,
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conditional priors of the form (5) provide a coherent description of uncertainty in
the sense that they are the conditional distributions of the nonzero components of β
given γ when β ∼ Np{0, c σ2(X ′X)−1}. The joint prior p(βγ, γ | c, w) corresponds to a
reweighting of these conditional distributions according to p(γ |w) in (6). As a result
of their analytical and computational tractability, priors of the form (5) and (6) have
often been used in Bayesian variable selection problems, typically with c and w set to
fixed values. For example, this prior formulation was used by Smith & Kohn (1996)
in a variable selection problem involving splines where they set c � 100 and w = 1/2.

To reveal the connection between criteria of the form (3) and the posterior of γ
under (5) and (6), we re-express the posterior as

p(γ | Y, c, w) ∝ p(γ | w) p(Y | γ, c)
∝ wqγ(1 − w)p−qγ(1 + c)−qγ/2 exp

{
−Y

′Y − SSγ

2σ2
− SSγ

2σ2(1 + c)

}

∝ exp

[
c

2(1 + c)
{SSγ/σ

2 − F (c, w) qγ}
]
, (7)

where

F (c, w) =
1 + c

c

{
2 log

1 − w
w

+ log(1 + c)
}
. (8)

These expressions reveal that, as a function of γ for fixed Y , p(γ |Y, c, w) is increasing
in

SSγ/σ
2 − F (c, w) qγ. (9)

The following is immediate.

THEOREM 1. Under the prior obtained by (5) and (6), the posterior distribution
is calibrated to (9) in the sense that for any two models γ1 and γ2,

p(γ1 | Y, c, w) > p(γ2 | Y, c, w) if and only if

SSγ1/σ
2 − F (c, w) qγ1 > SSγ2/σ

2 − F (c, w) qγ2 ,

where F (c, w) is defined by (8). Furthermore, the posterior mode occurs at the model
γ for which (9) is maximised.

If we compare (3) and (9), Theorem 1 shows that model selection via (3) with
dimensionality penalty F = F (c, w) is equivalent to model selection via posterior
probabilities under the priors (5) and (6) with σ2 = σ̂2. This correspondence between
the two seemingly different approaches to variable selection provides additional insight
and interpretability for users of either approach. In particular, when c and w are such
that F (c, w) = 2, logn or 2 log p, the highest posterior model will then correspond
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exactly to the best AIC/Cp, BIC or RIC models, respectively. Such equivalences
may be seen as a refinement of the results of Smith & Spiegelhalter (1980), who
showed an approximate correspondence between Bayes factors for nested normal-
linear models under conjugate priors, and related selection criteria including AIC and
BIC. Since posterior probabilities are monotone in (3), Theorem 1 provides additional
justification for the common practice of maximising (3) within subsets of models in
large problems where global maximisation is not computationally feasible. For such
problems, Theorem 1 also reveals that it is possible to search for large values of (3)
using Bayesian computational approaches that stochastically search for high posterior
probability models; see George & McCulloch (1997).

Since c and w control the expected size and proportion of the nonzero compo-
nents of β, the dependence of F (c, w) on c and w in Theorem 1 provides an implicit
connection between F and the profile of models for which its value may be appro-
priate. For example, F (c, w) = 2, logn and 2 log p are obtained when c � 3.92, n
and p2 and w = 1/2. Such values are also obtained by other choices for (c, w) since
F (c, w) is increasing in c but decreasing in w. Indeed, F (c, w) increases with the
expected size of the nonzero coefficients, but decreases as the expected proportion
of nonzero coefficients increases. We note in passing that F (c, w) will be negative

whenever w > {1 + (c + 1)
1
2}−1(> 1/2). In such cases, it follows from Theorem 1

that the highest posterior model will always be the full model. This corresponds to
the prior information that the nonzero coefficients are many but small. As a result of
the difficulty of distinguishing coefficients from noise in such a setting, the Bayesian
formulation suggests using the full model and avoiding selection.

3 Empirical Bayes Estimation of c and w

Theorem 1 shows how choices for F in (3) correspond to choices for c and w, which in
turn correspond to the expected size and proportion of the nonzero components of β.
If subjective prior estimates of such model characteristics were available, these could
be then used to guide the choice of c and w. For example, large c and small w would
concentrate the prior on parsimonious models with large coefficients, and small c and
large w would concentrate on saturated models with small coefficients.

In the absence of prior information, the arbitrary selection of c and w may tend to
concentrate the prior away from the true underlying model, especially when p is large.
For example, even the popular ‘noninformative’ choice w = 1/2 yielding p(γ) ≡ 2−p

will concentrate on models with close to p/2 nonzero coefficients, which could be
unsatisfactory when the true model was parsimonious or saturated. A default choice
for c is also complicated because too small a value will yield a prior dominating the
likelihood, and too large a value will tend to favour the null model. Furthermore, the
choice of c should account for the sample size n, since increasing the data with a fixed
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choice of c would decrease the prior variance on the coefficients in (5). Indeed, by
treating c explicitly as a function of n, Zellner (1986) and others have recommended
choosing c = O(n) in priors such as (5). In problems where tr(X ′

γXγ) = O(n), this
will prevent the prior from asymptotically dominating the likelihood.

When meaningful prior information about c and w is unavailable, as is usually
the case in such a complicated context, perhaps the most reasonable strategy would
be a fully Bayes approach that puts weak hyperprior distributions on c and w; for
the general case where σ is unknown, it would also be sensible to put a weak prior on
σ. Posterior computation of such a fully Bayes solution could, at least in principle,
be obtained by Markov chain Monte Carlo methods similar to those described in
George & McCulloch (1997). More precisely, one could simulate a Markov chain
(γ(1), c(1), w(1)), (γ(2), c(2), w(2)), . . . that converges in distribution to p(γ, c, w|Y ). This
could be accomplished using the Gibbs sampler or Metropolis-Hastings algorithms to
make successive transitions from γ(j) to γ(j+1), and successive substitution sampling
from p(c | Y, γ, w) and p(w | Y, γ, c). The potential drawback of this procedure is the
computational limitation of visiting only a very small portion of the posterior when
p is large. Although one might be able to use such methods to perform successfully
a stochastic search for promising models (George & McCulloch, 1993, 1995, 1997) in
such problems, it may not be feasible to get reliable estimates of c and w.

To avoid some of the difficulties of a fully Bayes approach, we propose an empirical
Bayes approximation that uses the data to estimate c and w. Although such an
approximation ignores the uncertainty of the estimates by treating them as known,
as opposed to a fully Bayes marginalisation over c and w, it at least avoids using
arbitrary choices of c and w which may be at odds with the data. Estimators of c
and w for this purpose can be obtained by maximising the marginal likelihood of c
and w under the prior (5) and (6), namely

L(c, w | Y ) ∝ ∑
γ

p(γ | w) p(Y | γ, c)

∝ ∑
γ

wqγ(1 − w)p−qγ(1 + c)−qγ/2 exp

{
c SSγ

2σ2(1 + c)

}
. (10)

Such maximum marginal likelihood estimators would correspond to posterior mode
estimators under a fully Bayes formulation with independent uniform priors on c and
w, a natural default choice.

Maximisation of (10) is, in general, computationally expensive when p is large
because of the very large number of terms that must be summed. However, (10)
simplifies considerably when X is orthogonal. In this case, if we let ti = bivi/σ where
v2

i is the ith diagonal element ofX ′X and bi is the ith component of β̂ = (X ′X)−1X ′Y ,
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(10) reduces to

L(c, w | Y ) ∝
p∏

i=1

{
(1 − w)e−t2i /2 + w(1 + c)−1/2e−t2i /2(1+c)

}
. (11)

Since only p distinct terms are involved, it can be substantially less expensive to
compute (11) than (10). Even for moderately large p, it is feasible to use numerical
methods to maximise (11).

The estimators ĉ and ŵ which maximise the marginal likelihood L in (10) or (11)
can be used as prior inputs for an empirical Bayesian analysis with the priors (5)
and (6). In particular, Theorem 1 shows that the model maximising the posterior
p(γ | Y, ĉ, ŵ) based on these inputs is the γ that maximises

CMML = SSγ/σ
2 − F (ĉ, ŵ) qγ , (12)

where

F (ĉ, ŵ) =
1 + ĉ

ĉ

{
2 log

1 − ŵ
ŵ

+ log(1 + ĉ)

}
. (13)

Thus, empirical Bayes selection is obtained by selecting the γ that maximises CMML,
which we refer to as the marginal maximum likelihood criterion. When σ2 is unknown,
as is usually the case in practise, we simply replace σ2 in CMML by an estimator σ̂2

such as one of those mentioned in § 1.
In contrast to criteria of the form (3), which penalise SSγ/σ̂

2 by Fqγ , with F
constant, CMML uses an adaptive penalty F (ĉ, ŵ) that is implicitly based on the es-
timated distribution of the regression coefficients. Thus, CMML may be preferable to
using (3) with an arbitrary choice of F when little is known about c and w. This
is supported by the simulation evaluations in § 6, which suggest that, compared to
fixed choices of (3), selection using CMML delivers excellent performance over a much
wider portion of the model space.

4 A Conditional Empirical Bayes Approach

Although empirical Bayes selection using CMML may be computationally more at-
tractive than a fully Bayes approach, it can still be computationally overwhelming,
especially when X is not orthogonal. Furthermore, neither CMML nor fully Bayes
solutions can be expressed in closed form, making it difficult to understand their re-
lationship to alternative criteria. We now consider a further approximation to the
fully Bayes solution; one that can be computed quickly and lends itself to revealing
interpretation.

The idea behind our empirical Bayes derivation of CMML was to approximate a
fully Bayes solution by maximising L(c, w | Y ) rather than marginalising over c and
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w. We now take this approximation one step further by eliminating the intermediate
marginalisation over γ, and instead maximise the conditional ‘likelihood’

L∗(c, w, γ | Y ) ∝ p(γ | w)p(Y | γ, c)
∝ wqγ(1 − w)p−qγ(1 + c)−qγ/2 exp

{
c SSγ

2σ2(1 + c)

}
, (14)

which is also proportional to the posterior (7). Strictly speaking, L∗ is not a likelihood
because γ is an unknown intermediate quantity that is more like a missing value than
a parameter. Although marginalisation is preferable to maximisation, we shall see
that considerable insight and computational simplicity is obtained by this conditional
empirical Bayes approach.

Before proceeding, we remark that maximising L∗(c, w, γ | Y ) is equivalent to
maximising the largest component of L(c, w|Y ), so that, when L is strongly dominated
by a single component, the conditional and marginal empirical Bayes approaches
should yield similar answers. The nature of this approximation is further revealed by
noting that, when X is orthogonal, L∗ can be reexpressed as

L∗(c, w, γ | Y ) =



∏

xi /∈γ

(1 − w)e−t2i /2





∏

xi∈γ

w(1 + c)−1/2e−t2i /2(1+c)


 . (15)

In this case, maximising L∗ will be equivalent to maximising the dominant part of
each term of L in (11).

Conditionally on γ, the estimators of c and w that maximise L∗ are easily seen to
be

ĉγ =
(
SSγ/σ

2qγ − 1
)

+
, (16)

where (·)+ is the positive-part function, and

ŵγ = qγ/p . (17)

Inserting these into the posterior (7), or equivalently into L∗, and taking the loga-
rithm, shows that the posterior p(γ | Y, ĉγ, ŵγ) is maximised by the γ that maximises

CCML = SSγ/σ
2 −B(SSγ/σ

2) − R(qγ) (18)

where
B(SSγ/σ

2) = qγ
{
1 + log+(SSγ/σ

2qγ)
}
, (19)

log+(·) is the positive part of log(·), and

R(qγ) = −2 {(p− qγ) log(p− qγ) + qγ log qγ} . (20)
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Thus, selecting the γ that maximises CCML, which we refer to as the conditional
maximum likelihood criterion, provides an approximate empirical Bayes alternative
to selection based on CMML. As with CMML, when σ2 is unknown, we simply replace
σ2 in CCML by an estimator σ̂2 such as one of those mentioned in § 1.

In contrast to the adaptive penalty of CMML, CCML has an adaptive penalty that
can be expressed in closed form and is rapidly computable, even when X is not
orthogonal. We have purposely expressed this penalty as the sum of two components
B(SSγ/σ

2) +R(qγ) to highlight its interesting interpretability. As we now show, this
penalty acts like a combination of a modified BIC penalty F = log n and a modified
RIC penalty F = 2 log p. Insofar as maximising CCML approximates maximising CMML,
as is supported by the simulations in § 6, these interpretations should at least roughly
explain the behaviour of the CMML penalty F (ĉ, ŵ) in (13).

The B(SSγ/σ
2) component of CCML penalises the addition of a variable to the

model by 1+ log+(SSγ/σ
2qγ). Assuming the diagonal elements of X ′X are O(n), 1+

log+(SSγ/σ
2qγ) will be asymptotically equivalent to the BIC penalty logn whenever

βγ has at least one nonzero component; in such cases, SSγ = O(n) and hence 1 +
log+(SSγ/σ

2qγ) = O(logn). Furthermore, the values of CCML for such nonnull βγ will
asymptotically dominate the other values of CCML. Thus, whenever β has at least one
nonzero component, the dominant terms of CCML will asymptotically differ from BIC
only by terms of constant order, and so the model maximising CCML will be consistent
for γ as n → ∞; see Kass & Wasserman (1995). These statements also remain true
when σ2 has been replaced by a consistent estimator σ̂2. It is interesting to note that
for such nonnull β, the implicit conditional maximum likelihood estimator of c in
(16) is O(n), thereby preventing the implicitly estimated prior from asymptotically
dominating the likelihood as discussed early in § 3.

When β ≡ 0, the distribution of values of CCML will not depend on n, and although
the model maximising CCML will be small with substantial probability, it will also
always have a positive probability of being incorrect. In spite of the consistency of
the least squares coefficient estimators, this behaviour reflects the fact that for any n
there will always be a neighbourhood of nonzero β components that are difficult to
distinguish from zero. Thus, in the spirit of the recommendation of Mallows (1973)
for Cp, one could treat CCML as a diagnostic tool which either picks up a strong signal
or reflects the fact that the data are inconclusive. In the latter case, one could simply
decide to choose the null model on the basis of practical considerations. An automatic
implementation that tends to accomplish this is proposed below.

The R(qγ) component of CCML is proportional to the entropy of a Bernoulli dis-
tribution with π = qγ/p. It penalises the addition of a variable to the model by
approximately

2 log
p− qγ + 1

qγ
; (21)
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this follows from the approximation R(q)−R(q− 1) � 2 log{(p− q+ 1)/q}, which is
obtained using log x+1 � x log x−(x−1) log(x−1). The quantity in (21) is identical
to the RIC penalty when qγ = 1, which corresponds to the addition of a variable to
the null model. However, in contrast to RIC, the incremental penalty (21) decreases
as more variables are added. The adjustment is similar to the incremental penalty
2 log(p/qγ) in (4), which is approximately the expected size of the qth largest squared
t-statistic under the null model. However, (21) is less than 2 log(p/qγ), especially
for qγ large. In fact, after p/2 variables have been included, (21) becomes negative.
When this happens and SSγ/qγ is small enough, the total penalty B(SSγ/σ

2)+R(qγ)
will actually reward, rather than penalise, the inclusion of more variables. Although
surprising at first, this behaviour corresponds to the behaviour of the posterior (7)
when F (c, w) is negative, as discussed at the end of § 2. Indeed, when the data
suggest that the nonzero coefficients are many but small, CCML will favour including
them. Such behaviour will also occur with CMML when its penalty F (ĉ, ŵ) in (13) is
negative. As is borne out by the simulations in § 6, this behaviour allows both CMML

and CCML to perform very well when the true qγ is large.
Since it so easily computed, CCML is an attractive alternative to CMML for practical

implementation. For this purpose, however, we have found that one can do better than
simply choosing the maximum CCML model. Our preliminary simulation investigations
revealed that, unless the true coefficients are large, CCML often tends to be bimodal
over the model space, with one mode closer to the true model and the other at the
completely saturated model, unless the true model happens to be the saturated model.
A direct consequence of the bimodal R(qγ) penalty, this behaviour stems from the fact
that the likelihood does not distinguish well between models with small c and small
w and models with even smaller c but large w. Since the largest mode will sometimes
occur at the incorrect saturated model, the remedy we propose is simply to choose the
more parsimonious of the modal models. This modification requires little additional
computational effort and appears to improve performance substantially with respect
to predictive loss (26) when β is equal or close to zero.

As with criteria of the form (3), full implementation of selection using CCML re-
quires exhaustive computation of all values of SSγ; branch and bound strategies
(Furnival & Wilson 1974) may help to lessen this burden. However, when p is so
large that exhaustive computation is not feasible, CCML can still be useful because it
will at least identify local posterior modes within restricted subsets of models. Indeed,
CCML can still be effective with heuristic strategies such as stepwise search, as is borne
out by the simulations in § 6.3. It may also be fruitful to use Bayesian stochastic
search methods to identify promising subsets of models for consideration; see George
& McCulloch (1997).
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5 Estimating βγ After Selection

After a model has been selected by either CMML or CCML, it will generally be of
interest to estimate the values of the selected coefficients. A common, but often
inferior, strategy is to ignore the fact that selection was used and simply estimate
the selected coefficients by least squares. Such a strategy ignores selection bias and
leads to overestimates. Alternatives that moderate this bias arise naturally from our
Bayesian formulation.

Under the priors (5) and (6), the conditional Bayes estimator of βγ given γ is

E(βγ | Y, c, γ) =
c

1 + c
β̂γ , (22)

where β̂γ ≡ (X ′
γXγ)−1X ′

γY . Thus, after γ has been selected by either CMML or CCML,
the corresponding estimator of βγ is obtained by substituting the appropriate estimate
of c. The conditional estimator based on CMML substitutes the numerically computed
maximum marginal likelihood estimator ĉ to yield

β̂MML

γ =
ĉ

1 + ĉ
β̂γ . (23)

The conditional estimator based on CCML substitutes the estimator ĉγ in (16) to yield
the Stein-like estimator (Stein, 1981)

β̂CML

γ =

(
1 − σ2qγ

SSγ

)
+

β̂γ . (24)

When σ2 is unknown, we simply replace σ2 in (24) by the same estimator σ̂2 used in
CCML. It is trivial to compute β̂MML

γ or β̂CML
γ once γ has been selected. Although neither

of these estimators will be minimax under predictive loss, the simulation results in §
6 reveal that they obtain consistent improvements over the use of selection followed
by least squares estimation.

If the goal of analysis is exclusively prediction, one may prefer Bayes estimators
which are not conditional on any γ and correspond to model averaging. Under the
priors (5) and (6), the unconditional Bayes estimator of β = (β1, . . . , βp)

′ is

E(β | Y, c, w) =
∑
γ

p(γ | Y, w)E(β | Y, c, γ). (25)

The corresponding marginal or conditional maximum likelihood estimators would
then be obtained by substituting the corresponding estimators for c and w into (25).
Although such estimators are likely to provide better predictions than the conditional
estimators, they would also yield nonzero estimates of all p coefficients, regardless of
how many of them are actually zero. The attraction of the conditional estimators β̂MML

γ
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and β̂CML
γ is that they will usually provide a parsimonious representation of simple

models, thereby facilitating interpretation and understanding. They also are much
less expensive to compute, especially when p is large. However, when X is orthogonal,
estimators of the form (25) can be simplified considerably, from an average over 2p

models to p separate, rapidly computable, closed-form estimates of the individual
components; see Clyde, Parmigiani & Vidakovic (1998).

6 Simulation Evaluations

6.1 Preamble

In this section we report on simulation investigations of the performance potential
of selection using CMML in (12) and CCML in (18), and the conditional shrinkage esti-
mators β̂MML

γ in (23) and β̂CML
γ in (24). For comparison, we included the three fixed

penalty selection criteria based on (3): AIC/Cp, BIC and RIC. We also included
two additional criteria with varying penalties: modified RIC in (4), and the criterion

SSγ/σ
2 − qγ log n− log r(qγ), where r(qγ) = π

1
2/{2(p−qγ)/2Γ(p−qγ+1

2
)}, which we refer

to as Cauchy BIC. Showing that BIC is a close asymptotic Bayes factor approxima-
tion under a Normal unit information prior, Kass and Wasserman (1995) proposed
what we call Cauchy BIC as a Bayes factor approximation under a Cauchy unit in-
formation prior, thereby generalising the Cauchy default proposal of Jeffreys (1961).
Pauler (1998) discusses the close relationship between Cauchy BIC and other natural
default Bayes factor approximations such as those proposed by Zellner & Siow (1980),
O’Hagan (1995) and Berger & Pericchi (1996). For reasons of space and focus, we
did not include these criteria here, but plan to report elsewhere on comparisons with
these.

For various choices of X and β described below, we simulated data from the
regression model (1) with σ2 = 1; rather than introduce more noise through an
independent estimate of σ2, we simply assumed that σ2 = 1 was known. At each
iteration, and for each selection criterion, we summarised the disparity between the
selected model γ̂ and the correct γ underlying β by the predictive loss

L{β, β̂(γ̂)} ≡ {Xβ̂(γ̂) −Xβ}′{Xβ̂(γ̂) −Xβ} (26)

with β̂i(γ̂) equal to the least squares estimate of βi when γ̂ includes xi and 0 oth-
erwise. Although other more complicated evaluations could have been used, such as
frequencies of incorrect inclusions and exclusions, we chose (26) primarily because it
provides a natural scalar summary of the disparity between γ̂ and γ. We also used
(26) to evaluate β̂MML

γ and β̂CML
γ , with β̂i(γ̂) equal to the corresponding coordinate es-

timate when γ̂ includes xi and 0 otherwise. We then summarised overall performance,
in Figures 1 and 2 below, by the average loss over repeated iterations in each of our
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various set-ups. The numerical simulation summaries are available on the website
http://bevo2.bus.utexas.edu/GeorgeE/.

6.2 A Simple Orthogonal Set-up

Here, we let X = I, reducing (1) to Y = β + ε, so that the variable selection problem
becomes one of identifying the nonzero components of a multivariate normal mean.
Note that here p = n. This problem occurs naturally in the context of wavelet
regression; see Donoho & Johnstone (1994).

To simulate a value of Y here, we fixed values of c and q ≤ p, generated the first q
components of β as β1, . . . , βq ∼ N(0, c) independently, set βq+1, . . . , βp ≡ 0 and then
added ε ∼ Np(0, I) to β. Each selection criterion was then applied to Y , and its loss

(26) was evaluated using β̂i(γ̂) = yiI[xi ∈ γ̂], the least squares estimate of βi under
the selected model γ̂. The loss for the shrinkage estimators was evaluated by using
the shrinkage estimates instead of the least squares estimates. With p = n = 1000,
this simulation was repeated 2500 times for c = 5 and 25 and q = 0, 10, 25, 50,
100, 200, 300, 400, 500, 750 and 1000. For each pair of c and q, the loss for each
procedure was averaged over the corresponding 2500 repetitions. To help gauge these
average losses, note that here the expected loss of the full least squares estimator of
β is always p = 1000, and the expected loss of the ‘oracle’ criterion, which selects the
correct γ and then uses least squares, is q.

It should be mentioned that the orthogonality of X was crucial for the compu-
tational feasibility of these simulations. It allowed us to avoid evaluation of all 21000

models, and instead restrict attention to a sequence of 1000 easily computed SSγ val-
ues. It also allowed us to calculate CMML by numerical maximisation of the simplified
likelihood (11). This maximisation was performed with the constrained maximisation
routine CONSTR in Matlab; to improve numerical stability over so many repetitions,
we imposed the additional constraint c ≥ 0.5.

Figures 1(a) and 1(b) present the results when c = 25. If we focus first on the fixed
penalty criteria AIC/Cp, BIC and RIC, which here use penalties of F = 2, log 1000
� 6.9 , and 2 log 1000 � 13.8, the performance of each of these criteria deteriorates
linearly as q increases. The larger penalty values yield much better performance when
q is small, but then deteriorate much more rapidly as q increases, resulting in a relative
performance reversal when q is large. Turning to the other criteria, we see that the
performance of Cauchy BIC is nearly identical to that of RIC, being very good for
small q but very poor for large q. Apparently variation of its penalty function does
not have much of an effect. In contrast to this, variation of the modified RIC penalty
has a much more pronounced effect; like RIC, its performance is also very good
when q is small, but deteriorates much more slowly and nonlinearly as q increases.
However, the most striking performance is that of CMML which appears to emulate
adaptively the performance of the best fixed penalty criterion for each q. Indeed,
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CMML appears to dominate all the other criteria at every value of q. Apparently,
its adaptive dimensionality penalty adapts very effectively to the model information
contained in the data. Although CCML did not perform quite as well for all q, it was
excellent for small values of q, and offered similar adaptive advantages over the fixed
penalty rules. Note that modified RIC, CMML and CCML all delivered nearly perfect
performance when q = 1000, in sharp contrast to the other criteria.

Figure 1(c) presents the performance results when c = 5, which reduced the stan-
dard deviation of the coefficient distribution from 5 above to about 2.24. The only
substantial changes in relative performance among the selection criteria occurred with
modified RIC and CCML. The performance of modified RIC became much closer to
that of CMML, which was still dominant. However, the performance of CCML was not
quite as good, and it seemed to deteriorate somewhat for larger values of q. This may
in part be an effect of our strategy, discussed towards the end of § 4, of choosing the
more parsimonious modal CCML model in the presence of bimodality.

Finally, for every pair of c and q considered above, both β̂MML
γ and β̂CML

γ provided
improved performance over their corresponding CMML and CCML least squares estima-
tors. It was interesting that the β̂MML

γ improvements were always greater than the

β̂CML
γ improvements, even though the CMML performance was better to begin with.

The median improvements by β̂MML
γ and β̂CML

γ were 3.4 % and 2.1 % when c = 25 and
were 15.8 % and 3.4 % when c = 5. The largest improvements occurred when q = 0
and were 53.8 % by β̂MML

γ and 10.0 % by β̂CML
γ .

6.3 Correlated Predictors and Fixed β Values

We next compared the performance of the various criteria in problems with correlated
predictors for fixed values of β. Aspects of the following set-up were motivated by the
simulation set-up in Breiman (1992). The n rows of X were independently simulated
from a Np(0,Σ) distribution where the ijth element of Σ was ρ|i−j|. We carried this
out with n = 200, p = 50 and ρ = −0.5, 0.0, 0.5. We considered 11 choices for β, each
consisting of five replications of (β1, . . . , β10)

′, i.e. βi = βi−10 for i = 11, . . . , 50. For
k = 0, 1, . . . , 10, our kth choice of (β1, . . . , β10) consisted of k adjacent values of Bk

centred around β5 and zeroes otherwise. This led to 11 choices of β, each consisting
of 0, 5, ..., 45 and 50 nonzero components respectively. Except for k = 0, the values
of Bk were then chosen to yield a theoretical R2 = β ′X ′Xβ/(β ′X ′Xβ+ 200) equal to
0.75. Note that Bk decreases as k increases. For each choice of ρ, X was held fixed
while Y was simulated from Y = Xβ + ε where ε ∼ N200(0, I), for each of the 11
choices of β.

Since X was not orthogonal, because of both sampling variation and ρ, it was
impractical to evaluate SSγ for all 250 models. This ruled out not only consideration
of CMML but also evaluation of the other criteria over the entire model space. Instead,
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we considered the common practice of applying the selection criteria to the subset
of models obtained by a stepwise method. For each simulated Y , we simply used
each criterion to select a model from one of the 51 models, 50 plus the null model,
visited by forward selection. For each pair of ρ and β, this simulation was repeated
2500 times and the loss (26) for each procedure was averaged over the repetitions. To
help gauge the average loss values, note that here the expected loss of the full least
squares estimator of β is always p = 50, and the expected loss of the ‘oracle’ criterion,
which selects the correct γ and then uses least squares, is 5k, the number of nonzero
components of our kth choice of β.

Figure 2(a) presents the results when ρ = 0.0. The first thing to note is that,
overall, the results are qualitatively very similar to those in the previous simulations.
The performances of AIC/Cp, BIC and RIC, which here use penalties of F = 2, log
200 � 5.3 and 2 log 50 � 7.8, again deteriorate as 5k increases. The larger penalty
values yield much better performance when 5k is small, but then deteriorate much
more rapidly, resulting in a relative performance reversal when 5k is large. The
nonlinearity of the deterioration here is apparently caused by the decreasing size Bk

of the coefficients. Cauchy BIC is again very similar to RIC in performance. Modified
RIC again performs very well when 5k = 0, deteriorating rapidly then slowly, levelling
off to an average loss of 50 when 5k = 35. CCML is once again excellent for small and
large values of 5k, and only slightly worse than the performance of the best criteria
at intermediate values.

Figure 2(b) presents the results when ρ = 0.5, inducing positive correlation be-
tween the predictors. With the exception of CCML, the relative performances of the
criteria remained the same, although the performance deterioration occured more
rapidly with performance reversals occuring at smaller values of 5k. Although CCML

was still excellent for small 5k, its performance deteriorated more rapidly, levelling off
at a larger average loss. However, it was only worse than AIC/Cp and modified RIC
at large 5k, both of which it dominated substantially at small 5k. Note that, when
predictors with nonzero coefficients are left out of the model, the effect of the positive
correlation is to inflate the coefficients of the remaining predictors. As a result, all
the criteria will tend to bias selection towards parsimonious models because of their
increased explanatory power. This may also lead stepwise selection to mistake noise
for signal when including variables, further exacerbating this bias. Apparently this
bias has a more severe effect on the performance of CCML.

Figure 2(c) presents the results when ρ = -0.5, inducing negative correlation be-
tween the predictors. The relative performance of the fixed penalty criteria and
Cauchy BIC again remained the same except that here performance deterioration
occured more slowly, resulting in performance reversals at larger values of 5k. The
negative correlation here has the opposite effect to that of positive correlation, tending
to bias selection towards saturated models. Surprisingly, the performance of modified
RIC and CCML was very similar to their performance in the ρ = 0.0 case. CCML was
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again superior at the small and large values of 5k, but because of the relatively slow
deterioration, was modestly worse than the fixed penalty criteria and Cauchy BIC at
intermediate values of 5k.

Finally, for every pair of ρ and β considered above, β̂CML
γ provided improved per-

formance over the CCML least squares estimator. The median improvements were 6.8
%, 3.7 % and 6.9 % for ρ = 0.0, 0.5 and −0.5, respectively. The largest improvements
occurred when β ≡ 0 and were 15.4 %, 20.5% and 21.0 % for ρ = 0.0, 0.5 and −0.5,
respectively.

7 Some Recent Related Work

During the course of revising this article, some related work appeared in the context
of orthogonal nonparametric wavelet regression, namely a University of Bristol tech-
nical report by I. M. Johnstone and B. W. Silverman and Clyde & George (1999,
2000). These articles provide further results concerning the marginal and conditional
maximum likelihood methods, and were motivated in part by a preliminary version
of this article which appeared as George & Foster (1998).

Johnstone and Silverman proposed an effective EM algorithm for computing mar-
ginal maximum likelihood hyperparameter estimates, and showed that posterior me-
dian estimators based on these and on MAD estimates of σ2, compare favourably
with the BayesThresh method of Abramovich, Sapatinas & Silverman (1998). Noting
that such hyperparameter estimates are consistent by classical maximum likelihood
theory, they also showed that conditional maximum likelihood estimates of c and w
are asymptotically biased, and that this bias can be severe when w is small.

The two articles by Clyde and George compared the performance of conditional
and unconditional shrinkage estimators based on marginal and conditional maximum
likelihood using MAD estimators of σ2, and using marginal maximum likelihood esti-
mates of σ2 obtained by an EM algorithm. The performance of these empirical Bayes
shrinkage estimators was seen to compare favourably with alternative fixed penalty
methods. Although the bias of the conditional maximum likelihood hyperparameter
estimators was also noted, the effect of this bias did not appear to denigrate seriously
performance. This may be partially explained by the fact that the biases, c high and
w low, have an offsetting effect in the posterior as revealed by the fact that F (c, w) in
(8) is increasing in c but decreasing in w. Examples of explicit graphical comparisons
that reveal similarities between the marginal and conditional likelihoods were also
presented by Clyde & George (1999). The marginal maximum likelihood approach
was also extended to models with heavy tailed error distributions by Clyde & George
(2000).
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Figure 1(a).  The average loss of the selection procedures when c = 25 and the number of nonzero components q = 
0,10,25,50,100,200, 300, 400, 500, 750, 1000.  We denote CMML by MML, CCML by CML, Cauchy BIC by CBIC and modified RIC 
by MRIC. 
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Figure 1(b).  The average loss of the selection procedures when c = 25 and the number of nonzero components q = 0,10,25,50,100.  
We denote CMML by MML, CCML by CML, Cauchy BIC by CBIC and modified RIC by MRIC.  RIC and CBIC are virtually identical 
here and so have been plotted together. 
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Figure 1(c).  The average loss of the selection procedures when c = 5 and the number of nonzero components q = 0,10,25,50,100,200, 
300, 400, 500, 750, 1000.  We denote CMML by MML, CCML by CML, Cauchy BIC by CBIC and modified RIC by MRIC. 
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Figure 2(a).  The average loss of the selection procedures when ρ = 0.0 for 11 choices of β with 0, 5, 10,...,50 nonzero components, 
respectively.  We denote CCML by CML, Cauchy BIC by CBIC and modified RIC by MRIC. 
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Figure 2(b).  The average loss of the selection procedures when ρ = 0.5 for 11 choices of β with 0, 5, 10,...,50 nonzero components, 
respectively.  We denote CCML by CML, Cauchy BIC by CBIC and modified RIC by MRIC. 
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Figure 2(c).  The average loss of the selection procedures when ρ = -0.5 for 11 choices of β with 0, 5, 10,...,50 nonzero components, 
respectively  We denote CCML by CML, Cauchy BIC by CBIC and modified RIC by MRIC. 
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