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Francesco Ricci,4 and Lukas Novotny1
1Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
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Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for
any other metrology device, the absolute measurement performance of a levitated-particle sensor is
limited by the accuracy of the calibration relating the measured signal to an absolute displacement
of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle
sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential,
as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to
a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass
temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the
optimal measurement time required to determine the said temperature. Published by AIP Publishing.
https://doi.org/10.1063/1.5017119

I. INTRODUCTION

Electromagnetic radiation is amongst the most powerful
probes in our measurement toolbox. A prominent example is
the interferometric detection of the minute distortions of space-
time by gravitational waves.1 Any probe disturbs the system it
measures, and so does light by the forces it exerts on matter.2

These optical forces can deliberately be harnessed to manipu-
late microscopic objects. For example, dielectric particles can
be trapped in a strongly focused laser beam.3–5 Besides trap-
ping the particle, the laser light is also scattered off the particle,
providing an optical signal encoding the particle’s position.
Due to its small mass, such an optically trapped particle is
an excellent model system to study thermodynamic processes
both in and out of equilibrium in the regime of strong fluc-
tuations arising due to the coupling of the particle to a heat
bath.6–10 When trapped in a liquid or a dense gas, the fluctuat-
ing forces that originate from collisions with the molecules of
the surrounding medium cause the trapped particle to undergo
overdamped Brownian motion.11 At low gas pressures, an opti-
cally trapped particle behaves like a strongly underdamped
oscillator, whose sensitivity to perturbations close to its eigen-
frequency is boosted by the quality factor of the mechani-
cal resonance.12–17 In an ultra-high vacuum, the dominant
heat bath governing the thermodynamics of an optically
trapped particle is the trapping laser and the quantum nature
of the light field manifests itself as radiation pressure shot
noise.18

An optically levitated particle can ultimately be viewed
as an extremely sensitive sensor.15,19,20 A force acting on the
particle gives rise to a displacement, which can be measured by

a)URL: http://www.photonics.ethz.ch.

observing the optical scattering signal. Importantly, for quanti-
tative force measurements, we require a calibration that relates
the detected optical signal, typically a voltage V, to the particle
position q. For an optical signal that is linear in particle dis-
placement, we therefore need to know the calibration constant
ccalib fulfilling the relation V = ccalib · q.

The state-of-the-art calibration procedure for levitated
nanoparticles is to measure the particle’s trajectory in thermal
equilibrium and invoke equipartition of the potential energy
amongst all degrees of freedom.11,21 Three important points
need to be kept in mind when using this method. First, the bath
temperature needs to be known. Second, the trapping poten-
tial needs to be harmonic. Third, the measurement needs to be
long enough to average out the fluctuations of the thermal state.
For typical experimental conditions, however, not all of these
points are always fulfilled in particle-levitation experiments.
For example, at reduced gas pressures, the residual absorption
of the trapped particle generates a significant heating of the
particle’s internal temperature, which leads to an elevated (but
a priori unknown) effective bath temperature.22 Furthermore,
a typical optical trapping potential has significant anharmonic-
ities sampled by the particle at room temperature.23 Finally,
the question of a suitable measurement time to determine the
particle’s center-of-mass temperature in a thermal state has
not been explicitly addressed by the community of levitated
optomechanics.

In this paper, we suggest and experimentally demonstrate
calibration procedures for sensors based on optically trapped
nanoparticles. In particular, our discussion includes (1) the cal-
ibration of sensors with non-harmonic trapping potentials and
a known bath temperature, (2) the calibration for experimental
conditions with unknown effective bath temperature, and (3) a
quantitative discussion of the measurement duration required
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to determine the center-of-mass temperature of a thermal state
with a given confidence interval.

This paper is structured as follows: In Sec. II, we introduce
our experimental setup. Section III describes how to calibrate
a levitated nanoparticle sensor. After reviewing the current
state-of-the art calibration procedure, we develop calibration
strategies both for the case of a non-harmonic trapping poten-
tial, and for the situation where the effective bath temperature
is not known. Finally, in Sec. IV, we describe how to prop-
erly measure the center-of-mass temperature of an optically
trapped nanoparticle. We focus, in particular, on the measure-
ment uncertainty that is caused by the thermal fluctuations of
the energy and discuss the repercussions of inevitable drifts in
the experimental system.

II. EXPERIMENTAL SETUP

We experimentally demonstrate all suggested calibration
procedures using the system shown in Fig. 1(a). A spherical
silica nanoparticle (nominal radius r = 68 nm) is trapped in a
strongly focused laser beam (wavelength λ = 1064 nm, power
P = 80 mW).13 The trap is placed inside a vacuum chamber,
which allows us to control the gas damping rate that the levi-
tated particle experiences. We collect the light scattered from
the particle with a lens and send it to a balanced photo detector
to measure the particle displacement. This detected signal V is
directly proportional to the particle’s displacement q for parti-
cle displacements typically encountered when the oscillator is

FIG. 1. Optically levitated oscillator system: (a) Experimental setup for opti-
cal trapping of a nanoparticle in a vacuum. A laser is focused with an objective
to form the optical trap for the particle. The light scattered by the particle is
collected with a lens and detected with a balanced detector. The detector sig-
nal is recorded with a data acquisition (DAQ) card. (b) Calculated potential
along the y axis for a strongly focused beam with focal power 80 mW and
numerical aperture NA = 0.8 (solid orange line). The harmonic component
of the potential is shown as the dashed black line. (c) Part of the recorded
detector signal time trace representing the thermally driven particle motion
along the y direction at a pressure of 10(1) mbar (black dots). (d) The power
spectral density of the detector signal. The dashed black line is a fit of Eq. (2)
to the data.

at room temperature. We note that the center-of-mass motion
of a trapped particle has three degrees of freedom. Since our
discussion is valid for any degree of freedom, it is formulated
for a single degree of freedom for clarity.

III. CALIBRATION OF DETECTOR SIGNAL

Any strategy to calibrate the measured displacement sig-
nal relies on measuring the oscillator’s response to a known
force. For calibration, we consider two different types of
forces. First, there are fluctuating forces stemming from the
coupling to a thermal bath. Although random, these forces
fulfill certain statistical properties that can be harnessed for cal-
ibration, as discussed in Sec. III A. The second types of forces
we consider are harmonic driving forces with well-defined
amplitude, frequency, and phase. We harness such single-tone
forces for calibration in Sec. III B.

Let us start our discussion by considering the classical
equation of motion for the position q of a thermally and
harmonically driven, damped oscillator

mq̈ + mγq̇=Fre(q) + Fdr(t) + Ffluct(t), (1)

where γ is the damping rate, Fre is a general restoring force,
Fdr is a harmonic driving force, m is the mass of the oscillator,
and q̇ and q̈ denote the first and second time derivatives of q,
respectively. The fluctuating force Ffluct fulfills the fluctuation-
dissipation theorem 〈Ffluct(t)Ffluct(t + τ)〉 = 2mγkBTbδ(τ) with
the Boltzmann constant kB and the Dirac distribution δ.24 In
thermal equilibrium, the fluctuating force and the damping
balance out, leading to a steady state of the oscillator motion
characterized by the bath temperature Tb. This fact can be used
for calibration given that the system is in equilibrium with a
bath of known temperature.21,25

A. Calibration using fluctuating forces

We first turn our attention to reviewing the state-of-the-
art calibration technique that relies on the fluctuating forces
stemming from a thermal bath acting on a harmonic oscillator
in Sec. III A 1, before providing a calibration strategy for
anharmonic potentials in Sec. III A 2.

1. Calibration for harmonic trapping potential

For a harmonic oscillator, the restoring force is given by
Fre(q) = �kq with the spring constant k =mΩ2

0 and the natural
oscillation frequencyΩ0. Using the equation of motion Eq. (1)
with Fdr = 0, we find the single-sided power spectral density
for a harmonic oscillator12,14,21,22,26–30

Ŝqq(Ω)=
2kBTbγ/(πm)

(Ω2
0 −Ω

2)2 + γ2Ω2
. (2)

According to the Wiener-Khinchin theorem, the variance is
related to the power spectral density by the relation

〈q2〉=

∫ ∞
0

dΩ Ŝqq(Ω). (3)

Using Eq. (2), we obtain mΩ2
0〈q

2〉= kBTb. This result is equiv-
alent to the equipartition theorem, which states that the mean
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potential energy of every oscillation mode of a harmonic
oscillator in thermal equilibrium is given by

〈Epot〉=
1
2

mΩ2
0〈q

2〉=
1
2

mΩ2
0
〈V2〉

c2
calib

=
1
2

kBTb. (4)

Accordingly, if the bath temperature Tb, the mass m, and the
natural frequencyΩ0 are known, a measurement of 〈V2〉 allows
us to retrieve the calibration factor ccalib.

To summarize, for a harmonic oscillator in thermal equi-
librium, the calibration factor may be determined in two
equivalent ways:

1. Calculate the variance of the detector signal time trace
V (t) directly, or integrate over the power spectral den-
sity ŜVV (Ω) according to Eq. (3). It can be beneficial to
spectrally filter the signal by integrating the power spec-
tral density over a limited frequency band to exclude
technical noise outside that band. Then, calculate the cal-
ibration factor ccalib from Eq. (4) using the mass m, the
bath temperature Tb, and the oscillation frequencyΩ0 that
is extracted from the power spectral density.

2. Calculate the power spectral density of the detected sig-
nal ŜVV (Ω)= c2

calibŜqq(Ω), fit Eq. (2), and deduce the
calibration factor ccalib using the mass m and the bath
temperature Tb.

As an illustration, we now experimentally implement
this calibration procedure based on fluctuating forces in the
harmonic-oscillator approximation, using our experimental
setup sketched in Fig. 1(a). We plot the calculated optical
trapping potential U(q) ∝ �I(q) in Fig. 1(b), where I(q) is the
optical intensity of a strongly focused laser beam (solid orange
line).31 For comparison, we also plot the parabolic component
of the potential (dashed black line). We experimentally record
a time trace V (t) of the particle’s oscillation in the optical
potential at a gas pressure of 10(1) mbar [a short section is
shown in Fig. 1(c)] and derive the power spectral density of
the detector signal, plotted in Fig. 1(d). To determine the cali-
bration factor, we fit Eq. (2) to the power spectral density. For
a sphere in a viscous medium, we can deduce the sphere radius
from the damping rate γ retrieved from the fit.13,32 Together
with the mass density of silica ρ = 2200 kg/m3, we extract the
particle mass m = 1.6(5) fg and obtain the calibration factor
ccalib = 0.95(15) mV/nm.

2. Calibration for anharmonic trapping potential

Having discussed the calibration method using the har-
monic oscillator approximation, we provide in this section a
calibration procedure for an anharmonic trapping potential,
i.e., in the case of a general restoring force Fre(q). For an
anharmonic potential, equipartition of the potential energy in
Eq. (4) does not generally hold. In particular, if the anhar-
monic potential couples different oscillation modes, we cannot
even assign a potential energy to a single mode anymore.
Therefore, in general, the calibration technique described in
Sec. III A 1 using the potential energy is not valid for
the anharmonic potentials that every realistic oscillator sys-
tem exhibits. Nevertheless, we can calibrate the detected
signal using the kinetic energy of the oscillator, for which

equipartition amongst the different degrees of freedom still
holds in the form

〈Ekin〉=
1
2

m〈q̇2〉=
1
2

m
〈V̇2〉

c2
calib

=
1
2

kBTb, (5)

regardless of anharmonicities or coupling between modes.
To derive 〈V̇2〉, one usually cannot rely on a direct mea-

surement of V̇ , which is proportional to the velocity of the
particle. However, the variance 〈V̇2〉 can be conveniently cal-
culated by numerically integrating the power spectral density
ŜV̇ V̇ in analogy to Eq. (3). The power spectrum ŜV̇ V̇ can be
obtained (even in the case of an anharmonic oscillator with
an arbitrary potential) from the displacement power spectral
density as33,34

ŜV̇ V̇ (Ω)=Ω2ŜVV (Ω). (6)

In practice, we have to consider that at high frequencies the
integration of technical measurement noise, which is then also
multiplied by Ω2, can result in overestimating the variance
of the velocity. This effect can be reduced by limiting the
integration band to exclude high frequency noise.

In the example of Fig. 1(d), we find the displacement cal-
ibration factor ccalib = 0.92(15) mV/nm using the approach via
the kinetic energy in Eqs. (5) and (6). This calibration fac-
tor is 3% smaller than the one derived in Sec. III A 1, where
we assumed our trapping potential to be strictly harmonic.
This means that using the harmonic oscillator approximation
from Sec. III A 1 results in the energy being underestimated
by 6% (cf. Sec. IV). Naturally, it depends on the required
measurement precision whether this calibration error is per-
missible. However, we stress that the calibration strategy using
Eqs. (5) and (6) is always preferred over that detailed in
Sec. III A 1 since it is correct both in the presence and absence
of anharmonicities in the trapping potential while requiring no
additional measurement effort.

B. Calibration using a harmonic driving force

So far, we considered a spectrally white thermal force
acting on the oscillator arising from a coupling to a bath
of known temperature. Unfortunately, however, this effective
bath temperature is frequently not known. In particular, levi-
tated nanoparticles have been shown to acquire a considerable
internal temperature at reduced pressure, where convective
cooling by the surrounding bath ceases to be efficient.22 The
internally hot particle heats the residual gas around it, creating
an effective thermal bath at a temperature different from that of
the vacuum chamber. This means that at the reduced pressures
where levitated optomechanical sensors typically operate a
calibration against a thermal bath is not feasible. In this section,
we eliminate this problem by performing a calibration using a
harmonic driving force.19,35 In contrast to a calibration proce-
dure recently demonstrated for levitated microspheres, where
a harmonic driving force is applied far below resonance,36

we operate close to the mechanical resonance of the levitated
nanoparticle. We note that this calibration method requires the
trapping potential to be harmonic, at least in the region sam-
pled by the particle during its motion. Fortunately, feedback
cooling of optically levitated nanoparticles is well-established
as a means to reduce the effective temperature of the particle’s
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center-of-mass motion to a regime, where the particle does not
sample the anharmonicities of the potential.12–14,16,17 Under
suitable feedback cooling, the trapped particle can be viewed
as a harmonic oscillator, whose damping rate is dominated by
the feedback.18 Accordingly, for strongly anharmonic poten-
tials, the calibration procedure discussed in this section can be
applied to a particle under feedback.

Our calibration strategy relies on applying a harmonic
driving force Fdr(t) = F0 sin(Ωdrt) at a frequency Ωdr to the
oscillator governed by the equation of motion Eq. (1). Assum-
ing a restoring force Fre(q) = �kq and using a harmonic ansatz
for Eq. (1), the variance of the oscillator’s displacement in
response to the force Fdr is

〈q2〉=
〈V2〉

c2
calib

=
F2

0/(2m2)

(Ω2
0 −Ω

2
dr)

2 + γ2Ω2
dr

. (7)

Accordingly, we can extract the calibration factor ccalib using
the mass m and the amplitude of the force F0, requiring no prior
knowledge of the effective bath temperature Tb. The center
frequency Ω0 and the damping rate γ are extracted from a fit
of Eq. (2) to the power spectral density.

1. Example: Coulomb force on levitated nanoparticles

To implement a harmonic driving force, and to demon-
strate the corresponding calibration protocol, we make use
of the fact that the levitated particle can be controllably
charged.15,37 As sketched in Fig. 1(a), we use the objective
and the holder of the collection lens to form a capacitor
around the particle and apply a Coulomb force of the type
Fdr(t)=QE0 sin(Ωdrt) to our oscillator, where Q is the parti-
cle’s charge and E0 is the electric field along the oscillation
direction.19 We prepare a charge of |Q| = 10 Qe on the par-
ticle, where Qe is the elementary charge, and apply an elec-
tric field along the z direction with amplitude E0 = 360 V/m.
The simultaneous use of three drive tones at 25, 45, and
50 kHz allows us to increase our measurement precision by
averaging.

We apply this calibration procedure at pressures below
10�3 mbar and under feedback cooling, where a calibra-
tion against the thermal fluctuating force is not possible due
to a lack of knowledge of the effective bath temperature.
Before moving to lower pressures, as a cross-check, we first
benchmark the harmonic-driving-force calibration against the
fluctuating-force calibration from Sec. III A. To do so, at a
pressure of 10(1) mbar, we record a 15 s time trace of the detec-
tor signal V (t) and plot the power spectral density ŜVV (Ω) in
Fig. 2(a). From a fit of Eq. (2) (the dashed black line), we find
the center frequency Ω0 = 2π × 41 kHz and the linewidth γ =
2π × 7.7 kHz. From the linewidth, we derive the particle mass
m = 3.2(10) fg using the gas law, as explained before.13,32

The presence of the harmonic Coulomb force at three drive
frequencies acting on the particle gives rise to the sharp sig-
natures in the power spectrum marked with dotted gray lines
in Fig. 2. We integrate the detector signal in a narrow band of
20 Hz around the driving frequencies and obtain a signal vari-
ance 〈V2〉 at each of the three frequencies. Using Eq. (7), we
finally extract a calibration factor of ccalib = 1.05(32) mV/nm
(averaged over the three drive tones).

FIG. 2. Calibration using a harmonic Coulomb force: (a) Power spectral
density (PSD) at 10(1) mbar showing the thermally driven resonance of
the uncooled oscillator [fit of Eq. (2) as the dashed black line] with the
response to the monochromatic driving force (dotted gray lines). (b) PSD
of the feedback-cooled oscillator at a pressure of 1.0(2) × 10�3 mbar.

This result is in good agreement with the calibration using
fluctuating forces and the kinetic energy proportional to 〈V̇2〉

following Sec. III A 2, which yields ccalib = 1.07(17) mV/nm
for the power spectral density in Fig. 2(a). The small discrep-
ancy can be explained by the fact that for this cross-check we
had to assume a harmonic trapping potential for the calibration
using a Coulomb force, an assumption that is not strictly valid
for our experimental system at room temperature, as is shown
in Secs. III A 1 and III A 2.

Having established that the calibration obtained using a
harmonic driving force is in agreement with our previous cal-
ibrations, we now reduce the pressure to 1.0(2) × 10�3 mbar
and activate parametric feedback cooling to reduce the oscilla-
tion amplitude.13 Accordingly, the effective bath temperature
Tb, which is reduced due to the feedback, is not known and a
calibration against the fluctuating forces is therefore not possi-
ble. Under these conditions, the influence of the nonlinearities
is small enough to be neglected and we can safely assume a
harmonic oscillator. To calibrate using the harmonic Coulomb
force, we record a 15 s time trace using the same harmonic driv-
ing force at three tones as before. The measured power spectral
density is plotted in Fig. 2(b). As the oscillator linewidth at this
pressure with activated feedback is only γ ≈ 2π × 20 Hz and
the center frequency is drifting on the same scale due to fluc-
tuations in the trapping laser power, pointing direction, and
polarization, we split the long time trace into 20 sections and
determine a calibration factor ccalib for each section, following
the procedure established at high pressure. Averaging the cali-
bration factors for all sections and the three driving frequencies
yields ccalib = 0.66(20) mV/nm. This calibration factor is a
factor 1.6 smaller than the calibration factor at high pressure.
This is an important finding. It means that in our experimen-
tal system the calibration factor, relating the detector signal to
the particle’s displacement, changes when the pressure in the
vacuum chamber is reduced. This observation underlines the
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need to calibrate any sensor under the final operating condi-
tions. Currently, we can only speculate that this change in the
calibration factor is related to a change of the internal particle
temperature modifying the particle’s optical properties22 or a
deformation of the optical components when reducing the gas
pressure. To confirm this conjecture, independent control of
both the internal particle temperature and the temperature of
the optical elements would be necessary.

IV. MODE-TEMPERATURE MEASUREMENT

In numerous deployments, a levitated-nanoparticle sen-
sor is used to probe a thermal state, often while working
toward the goal of bringing a levitated nanoparticle into the
quantum ground state of motion.13,14,16–18 For any experiment
involving the cooling of the levitated particle’s center-of-mass
motion, an accurate and precise measurement of the temper-
ature characterizing the particle’s thermal state is essential.
This temperature measurement is challenging for two rea-
sons. For a harmonic oscillator, the mode temperature T is
linked to the mean total oscillation energy 〈E〉 in the form
T = 〈E〉/kB. However, in the case of an anharmonic oscilla-
tor, this simple relation does not hold anymore. In addition,
for an oscillator in a thermal state, we are confronted with an
oscillator energy that fluctuates over time. Therefore, it is not
straight forward to determine a temperature from a position
measurement.

In this section, we first discuss the calculation of the mode
temperature from a recorded time trace V (t). We then turn
our attention to the uncertainty in the mode-temperature mea-
surement. As the energy is a fluctuating quantity, it does not
only exhibit statistical and systematic errors, but also uncer-
tainties that originate from the limited duration, for which we
observe the thermal state. Therefore, we discuss, in particular,
the influence of the measurement time on the precision of the
mode-temperature measurement.

A. Mode temperature of anharmonic oscillator

We are interested in calculating the temperature T of the
oscillation mode from the measured displacement time trace
V (t). If the potential is harmonic, we can express the mode
temperature using the potential energy

T =
2〈Epot〉

kB
=mΩ2

0
〈V2〉

kBc2
calib

. (8)

However, as discussed in Sec. III A 2, for anharmonic
potentials, Eq. (8) is not generally valid anymore and we have
to use the kinetic energy for deriving the mode temperature

T =
2〈Ekin〉

kB
=m

〈V̇2〉

kBc2
calib

. (9)

For deriving 〈V̇2〉, we can again integrate the velocity power
spectral density ŜV̇ V̇ following Eq. (6).

The systematic error of the temperature measurement is
given by the errors in the mass m and the calibration factor
ccalib. Importantly, the calibration against a fluctuating force
using Eqs. (4) and (5) allows us to define an energy calibration
factor Ccalib = c2

calib/m such that T = 〈V̇2〉/(kBCcalib), providing

the advantage that the knowledge of the mass is not required.
By contrast, the calibration using a harmonic driving force and
a subsequent mode-temperature measurement always require
the knowledge of the mass and any uncertainty of the mass
reflects in the uncertainty of the measured energy.

We again stress the advantage of using the kinetic
energy in thermal equilibrium for calibration as detailed in
Sec. III A 2. When using the potential energy Eq. (8) for
calibration as reviewed in Sec. III A 1, any error in the measure-
ment of the frequency Ω0 enters the uncertainty of the mode
temperature. This error can be significant in the presence of
anharmonicities of the trapping potential, which leads to an
amplitude dependent shift of the oscillation frequency.38

B. Temperature uncertainty due to thermal fluctuations

The uncertainty associated with a measurement of the
mode temperature is not only set by the error in the calibration
factor and the mass, but also by the length τ of the measured
time trace V (t). This is the case because in a thermal state the
energy is a fluctuating quantity due to the fluctuating forces
that act on the oscillator. Therefore, even for an ideal measure-
ment in the absence of measurement noise, we can regard the
variance V2 of a time trace V (t) of finite length τ only as an
estimate for the corresponding expectation value 〈V2〉. In this
section, we answer the following question: How long do we
need to observe the oscillator’s motion in order to determine
the mode temperature T with a particular relative standard
deviation σT /T? In our treatment, we first focus exclusively
on the fundamental measurement uncertainties arising from
the fluctuations of the energy in a thermal state before turning
to limitations imposed by experimental difficulties.

We start by providing a theoretical treatment of the uncer-
tainty of a temperature measurement. In general, for any
mechanical oscillator, we can derive the relative standard devi-
ation of the mode temperature from stochastic arguments,
considering that the energy of a thermal state is Boltzmann
distributed. If we calculate the mode temperature from a time
trace of length τ at a damping rate γ, the relative standard
deviation is given by39

σT

T
=
σ

V2

V2
=

√
2
γτ

. (10)

This equation takes into account that consecutive measure-
ments are correlated over a time 1/γ, leading to an effectively
smaller sample size. From Eq. (10), the measurement time
τ that is required to determine the mode temperature with a
desired error σT /T at a damping rate γ can be calculated. The
relative standard deviation only contains the product γτ, which
illustrates that the time scale of the energy fluctuations is set by
the damping rate γ. As an example, to reach a relative standard
deviation for the mode-temperature measurement of below 1%
at a damping rate of γ = 2π × 1 kHz, a time trace of at least
3 s is required.

After theoretically answering the question of how long we
have to measure to achieve a given temperature uncertainty,
we experimentally determine the relative standard deviation
of the mode-temperature measurement in our levitated parti-
cle system. To this end, we record N time traces of length τ,
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calculate the estimate for the mode temperature from each time
trace, and then derive the standard deviation of these temper-
ature measurements. For practical reasons, we record a single
18 s-long time trace and split it into N blocks of length τ. For
each of these blocks, we compute the mode temperature T i

according to Eq. (9). The standard deviation σT of N mea-
surements of the mode temperature T i, normalized by their
mean value T =

∑
iT i/N, then gives the relative standard devi-

ation of the mode-temperature. In Fig. 3(a),σT /T is plotted for
different values of the measurement time τ and gas pressure
pgas, which is proportional to the damping rate γ. We find that
the measurement uncertainty decreases when either the mea-
surement time τ or the damping rate γ is increased. In Fig. 3(a),
we mark with white lines the experimentally measured mode
temperature uncertainty of 1% (solid), 5% (dashed), and 20%
(dotted). For comparison, we plot in gray the expected rela-
tive standard deviations calculated from Eq. (10), which are in
good agreement with the measured results.

C. Practical limitations and optimal measurement time

According to our considerations in Sec. IV B, longer
observation of a thermal state will always lead to a more
precise measurement of its temperature. In practice, however,

FIG. 3. Uncertainty of the mode-temperature measurement: (a) Relative stan-
dard deviation of the center-of-mass temperature of a levitated particle derived
from measurements of duration τ of the particle displacement using Eq. (8).
This standard deviation reduces for increasing gas pressure pgas and measure-
ment time τ. Marked in white are the measured temperature uncertainties of
1% (solid), 5% (dashed), and 20% (dotted). For comparison, calculated uncer-
tainties according to Eq. (10) are plotted in gray (no fit). (b) The two-sample
deviation of the mode-temperature measurement calculated from a 4 h time
trace. For short measurement times, the two-sample deviation follows Eq. (10)
(the dashed black line). For measurement times longer than 1 s, σ̂T (τ) deviates
from the τ�1/2 trend, which indicates drifts in the experimental setup.

the temperature measurement is also affected by drifts in the
experimental apparatus. These include drifts that impact the
oscillator directly and drifts in the measurement system. A
common way to quantify drifts in the frequency of an oscil-
lator is the Allan variance or two-sample variance.40 Here,
we apply the same concept to the mode-temperature measure-
ment.41 We write the two-sample variance of the temperature
as

σ̂2
T (τ)=

1
N − 1

N−1∑
k=1

1
2

[
T (τ)

k+1 − T (τ)
k

]2
, (11)

where T (τ)
k is the estimate of the mode temperature in a section

t ∈ [kτ � τ, kτ) of a long measurement time trace, where τ is
the length of each of the N sections. The two-sample variance
for various measurement times τ can help in identifying drifts
in the experimental setup and reveals the optimal measurement
time that yields the smallest measurement uncertainty.

As an example, we record a continuous time trace of the
detector signal V (t) for each degree of freedom (x, y, z) of
our levitated nanoparticle, with a length of 4 h at a pressure of
20 mbar (corresponding to γ = 2π × 19 kHz). We split this time
trace into sections of length τ and calculate the mode temper-
ature of every section according to Eq. (9). Then, we compute
the two-sample variance of the resulting temperature time trace
and plot it in Fig. 3(b). For short measurement times, the tem-
perature uncertainty is described by Eq. (10) (dashed black
line, no fit), which means that the measurement uncertainty is
limited by the thermal fluctuations of the oscillation energy.
For measurement times longer than 1 s, the uncertainty starts
to deviate from the τ�1/2 trend, which indicates drifts of our
experimental apparatus on a time scale of seconds. These drifts
have their origin in the stability of our trapping laser’s pointing
direction, power, and polarization. We find the optimal dura-
tion of a mode-temperature measurement at a measurement
time of 10–20 s for our experimental setup.

V. CONCLUSION

We have discussed different strategies to calibrate the dis-
placement of a levitated-nanoparticle sensor. We conclude that
for a calibration using the fluctuating forces arising from a ther-
mal bath, it is essential to apply the equipartition principle to
the particle’s kinetic energy. Importantly, this procedure yields
correct results also in the presence of anharmonicities in the
trapping potential, in contrast to calibrations invoking equipar-
tition of the potential energy. Furthermore, we have demon-
strated an alternative calibration method using an externally
applied harmonic driving force acting on the levitated particle.
This method is favorable under conditions where the effective
bath temperature is not known. Notably, we found that for our
experimental setup the displacement calibration changes when
reducing the operating pressure of the sensor. We therefore
stress the importance of gauging levitated-nanoparticle sen-
sors in their operating conditions for measurements requiring
absolute precision. Finally, we have discussed measurements
of the mode temperature of a levitated nanoparticle in thermal
equilibrium. The precision of such a measurement is limited
by drifts of the measurement apparatus and by thermal fluctu-
ations of the oscillation energy. For the latter contribution, we
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provided a rule for the measurement time required to resolve
the mode temperature with a given uncertainty. Note that our
conclusions are not specific to a levitated nanoparticle but
apply to any oscillator that is subject to nonlinearities and
variable operating conditions.
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35P. Bushev, G. Hétet, L. Slodička, D. Rotter, M. A. Wilson, F. Schmidt-Kaler,
J. Eschner, and R. Blatt, Phys. Rev. Lett. 110, 133602 (2013).

36A. D. Rider, C. P. Blakemore, G. Gratta, and D. C. Moore, Phys. Rev. A 97,
013842 (2018).

37M. Frimmer, K. Luszcz, S. Ferreiro, V. Jain, E. Hebestreit, and L. Novotny,
Phys. Rev. A 95, 061801 (2017).

38R. Lifshitz and M. C. Cross, in Reviews of Nonlinear Dynamics and
Complexity, edited by H. G. Schuster (Wiley-VCH, 2009).

39D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic
Press, 2001).

40D. Allan, Proc. IEEE 54, 221 (1966).
41T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, Science 356,

1265 (2017).

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1063/1.89335
https://doi.org/10.1063/1.1785844
https://doi.org/10.1126/science.1189403
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nnano.2014.40
https://doi.org/10.1038/nphys3518
https://doi.org/10.1039/c6sm00923a
https://doi.org/10.1063/1.1645654
https://doi.org/10.1038/nphys1952
https://doi.org/10.1103/physrevlett.109.103603
https://doi.org/10.1073/pnas.1309167110
https://doi.org/10.1103/physrevlett.113.251801
https://doi.org/10.1103/physrevlett.114.123602
https://doi.org/10.1364/josab.34.001421
https://doi.org/10.1103/physrevlett.116.243601
https://doi.org/10.1103/physreva.91.051805
https://doi.org/10.1103/physreva.93.053801
https://doi.org/10.1016/j.aop.2013.08.003
https://doi.org/10.1038/nnano.2014.82
https://doi.org/10.1038/nphys2798
https://doi.org/10.1063/1.1143970
https://arxiv.org/abs/1608.04724
https://doi.org/10.1103/physrevlett.117.173602
https://doi.org/10.1038/nnano.2017.198
https://doi.org/10.1017/s0022112090003007
https://doi.org/10.1088/1367-2630/10/9/095015
https://doi.org/10.1038/ncomms1723
https://doi.org/10.1103/physrevlett.110.133602
https://doi.org/10.1103/PhysRevA.97.013842
https://doi.org/10.1103/physreva.95.061801
https://doi.org/10.1109/proc.1966.4634
https://doi.org/10.1126/science.aag1407

