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Abstract: The paper is dedicated to the numerical analysis of a single-step joint, enabling the predic-
tion of stiffness and failure modes of both single- and double-step joints. An experimental analysis
of the geometrically simplest version, the single-step joint, serves as a reference for the calibration
of the subsequent finite element model. The inhomogeneous and anisotropic properties of solid
timber make detailed modelling computationally intensive and strongly dependent on the respective
specimen. Therefore, the authors present a strategy for simplified but still appropriate modelling
for the prediction of local failure at certain load levels. The used mathematical approach is based on
the linear elasticity theory and orthotropic material properties. The finite element calculations are
performed in the environment of the software Abaqus FEA. The calibrated numerical model shows a
good conformity until first failures occur. It allows for a satisfactory quantification of the stiffness of
the connection and estimation of the force when local failure begins and is, therefore, recommended
for future, non-destructive research of timber connections of various shapes.

Keywords: timber–timber joints; single-step joint; double-step joint; resource efficient construction;
digital image correlation; finite element analysis

1. Introduction

We are currently confronted with a steadily increasing CO2 concentration in the atmo-
sphere, resulting in global warming [1]. A large part (~40%) of the global CO2 emissions is
caused by the construction industry [2]. The comparison of different construction materials
shows that timber exhibits advantageous properties with regard to these environmental
aspects, as it stores part of the CO2 absorbed during the growth phase of the trees [3].
Unfortunately, a scarcity of the raw material has been observed on the present market,
resulting in, among other things, a strong price increase. If timber is to be used in larger
quantities as a construction material, a higher degree of utilisation is, therefore, essential.

An outstanding example of efficient material use is timber truss systems which have
optimal load-bearing behaviour while highly utilising the construction material [4]. Unfor-
tunately, the high effort in design and production make the manufacturing and application
of these structures in this day and age a rarity. New, upcoming possibilities, such as digital
tools and CNC machines, enable an automation of the design and production process and
allow for the improvement of the profitability in order to, yet again, be able to compete
with other systems such as plate girders [4]. A key factor in the functionality and efficiency
of timber truss systems is the joints.

Previous research by the Institute of Structural Engineering at BOKU showed that
timber–timber step joints represent very efficient solutions for the transfer of compressive
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forces. The joints provide a ductile failure behaviour, are easy to produce and are able to
transfer comparatively high loads. In addition, no additional steel parts, which normally
have a major impact on the environmental performance and economy of such structures,
are required. A series of compression tests performed by the authors, investigating different
embodiments of step joints, as well as inaccuracies possibly caused by a change of moisture
content or production, showed the influence of the geometry on the performance (stiffness
and maximum load) [4–7].

The authors of this paper pursued two main goals while driving research forward in
this area: (1) Experimental investigation of the load-bearing behaviour of new timber step
joint designs with a set focus on maximising the performance (maximum load, stiffness
and producibility) [6] (BOKU, Institute of Structural Engineering) and (2) Development
of a modelling strategy for timber–timber joints under compression for the best possible
prediction of the load-bearing behaviour (Warsaw University of Technology, Faculty of
Civil Engineering). The basic research approaches to achieve the defined goals were the
implementation of experimental investigations on the one side and increasing sophistication
of the finite element model on the other.

A realistic prediction of the load-bearing behaviour prior to construction counts as
one of the core disciplines of structural engineering. In addition to analytical models
and empirical determined data, finite element (FE) calculations can be added to the well-
established prediction tools. However, a careful (material) model calibration based on
experimental investigations, especially for materials with a complex behaviour, such as
timber, is the basis for a reliable prediction model. The main focus of the presented paper
was the investigation of the performance and applicability of a simplified FE model based
on linear-elastic material behaviour and an orthotropic constitutive model, allowing for a
comparatively low computation effort.

After the introduction, the test setup and test specimens, as well as the results of the
performed experimental investigations on a single-step joint, are explained in Section 2.
Section 3 is dedicated to the mathematical model used to simulate the behaviour of timber
within an orthotropic constitutive model of linear elasticity used for the FE simulation
performed with the Abaqus FEA software. Subsequently, Section 4 deals with the com-
putational modelling and the calibration of the material parameters based on the results
of the experiments. In Section 5, the linear-elastic model is applied to the geometry of a
double-step joint and, again, compared with the results of experimental investigations.
Concluding remarks can be found in Section 6.

2. Experimental Investigations

As a first basis for the FE model calibration, a single-step joint (Series A) was chosen.
Compared to joints with two (double-step joints) or a number of steps (multi-step joints) the
influence of production inaccuracies is lower within the single-step joint, making it easier
to identify the individual influencing parameters. Subsequently, the results of experiments
on double-step joints (Series B) were used to verify if the calibration could be applied to
other geometries. The experimental investigations analysing the load-bearing behaviour of
single- and double-step joints were performed in the laboratory of the Institute of Structural
Engineering at BOKU.

2.1. Test Setup and Test Specimens

The test setup, consisting of welded HEB160 steel profiles, as well as the geometry
of the test specimens (single-step joint), are pictured in Figure 1. The load was applied
using a three-axial, servo-hydraulic testing machine in a displacement-controlled manner
with a rate of 1 mm/min. A digital image correlation system (DIC-3D™ from the company
Correlated Solutions, Irmo, SC, USA) was used to measure the occurring strains on one
surface of the specimens while the loads were recorded using an electric load cell. The
areas of interest of the timber specimens were painted white and, subsequently, sprinkled
using black paint, creating appropriate reference points. Five tests were performed.
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Figure 1. (Left): Test setup [4]; (Right): Geometry of the Series A test specimens. Measurements in mm.

Laminated timber with a strength class GL24h according to ÖNORM EN 14080:2013 [8]
and a cross-section of 118 × 118 mm2 made of three spruce lamellas was chosen for the
specimens. The lamellas were arranged vertically to minimise the influence of local wood
defects. The moisture content, varying from 7.3% to 8.9%, was determined using a GANN
Hydromette BL H40/HT70 immediately after testing of each specimen. A sufficient length
of the shearing path was chosen to create failure by crushing due to compression stress and
prevent shear failure. A 30 mm deep notch was cut into the specimens 315 mm from the
joint in order to eliminate any influence of the abutment.

2.2. Results of the Experimental Invesitations

The test results of the load-bearing investigations of the five single-step joints of Series
A are summarised in Figure 2 (left). A virtual extensometer, shown in Figure 2 (right),
was used during post-processing for the determination of the displacement within the
evaluation of the tests using the software VIC-3D 9™. The results clearly show that all
specimens exhibited an almost linear-elastic behaviour throughout a specific phase of the
experiments. When evaluating the mean of all five specimens (A_MV), the linear-elastic
phase extended from 19% to 72% of the achieved ultimate force Fmax. Once the failure
occurred in a ductile manner, the tests were stopped, and the post-fractural behaviour was
observed. For the calibration of the numerical model, it was necessary to obtain data from
one individual specimen because, within VIC-3D 9™, it was not possible to create mean
values for points at the exact same location (seen in Section 4.2) for individual specimens.
Therefore, the results of one individual specimen were used. As the results of specimen
A_5, with the linear-elastic phase ranging from 24 to 82 kN, represented the mean value of
this test series best (see Figure 2 left), it was chosen for the calibration.

The DIC system measures displacements of reference points on the surface of the
specimen, with all other quantities post-processed mathematically. In Figure 3, the normal
strains eyy (in vertical direction) of the surface of specimen A_5 at different load levels are
shown to illustrate the propagation with increasing load.

The validation of the subsequently proposed numerical model was performed relying
on the displacements. Figures 4 and 5 show the distributions of displacements measured
with the DIC system for the chosen specimen A_5 at a load of 70.1 kN. This load was set
as the top calibration range for the numerical model and represents approximately 85%
of the end of the elastic phase. The figures show that, in addition to the deformations
of the specimen itself, vertical and horizontal displacements at the lower edge can be
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traced back to deflections of the steel frame. The results from the virtual extensometer,
however, indicate that these deflections of the test setup did not affect the results seen in
the force-displacement curves presented in Figure 2 (left).
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measurement) used for the determination of the displacement, as well as the orientation of the
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3. Mathematical Model of Timber with the Finite Element Implementation

Various experimental tests of timber joints show a strong dependence of the results
on the inhomogeneous material properties of the sample, in particular the arrangement
and twist of the fibres, as well as the presence of knots [9,10]. Furthermore, the results are
dependent on the chosen geometry of the joint and the accuracy of craftsmanship in regard
to the execution [7]. A precise prediction of the load-bearing behaviour considering the
inhomogeneity of the material, as well as the damage and the accompanying redistribution
of forces in certain areas, requires a detailed analysis of the properties of each sample. A
very detailed modelling and subsequent numerical analysis in terms of non-linear-elastic,
elastic-plastic, visco-plastic or fracture mechanics are, therefore, necessary to identify the
propagation of the failure. Another approach is to use novel hysteretic models, which
are capable of simulating the complex, non-linear behaviour of materials [11–13]. In
order to obtain a first assessment of a joint without complicated calculations, the authors
proposed to simplify the numerical analysis to a linear-elastic model. Subsequently, it was
investigated whether the simplified model allowed for an assessment of the local failure
modes, an estimation of the stiffness of the connection (force-displacement relationship)
and a prediction of the load at which the onset of failure is to be expected.

In a linear-elastic model, the constitutive relations have the following form [14]:

Sij = DijlkEkl (1)

with Sij being the components of the stress tensor, Ekl the components of the strain tensor
and Dijlk the components of the elasticity tensor. In the orthotropic model, non-zero com-
ponents of elasticity tensor can be expressed by nine independent technical coefficients [14]:
three Young’s moduli E1, E2, E3, three Kirchhoff’s moduli G12, G13, G23 and three inde-
pendent Poisson’s ratios selected from six: ν12, ν13, ν23, ν21, ν31, ν32, with dependencies as
follows:

ν12

E2
=

ν21

E1
,

ν13

E3
=

ν31

E1
,

ν23

E3
=

ν32

E2
(2)

The directions are defined as parallel to the grain (direction 1), perpendicular to the
grain (direction 2) and circumferential (direction 3). The technical coefficients are usually
determined based on experimental research published in literature or taken from the design
standards [15]. In the case of the presented model, the technical coefficients, listed in
Section 4.1, were calibrated based on the previously described experimental research.

A theoretical analysis of timber joints within the framework of the theory of elasticity
is possible with the use of FE modelling (e.g., [16–18]). Even though only a certain range of
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the structural response to the load (linear-elastic phase) is covered by this type of modelling,
it is expected that the linear range allows for the determination of the onset of local failure
and failure mode. As described in [19], 3D modelling is not always necessary, with 2D
models often being sufficient for orthotropic materials [20–22], resulting in simulation time
reduction and, therefore, a cost reduction within the assessment process. Since no signifi-
cant, out-of-plane deformations were observed during the experimental investigations, the
use of a 2D model for the presented numerical calculations seemed justified.

A detailed comparison of the modelling results with the results of the experimental
investigations is presented in the following sections.

4. Numerical Calculations
4.1. First Step—Numerical Simulation Using Material Properties According to EN 14080

The simulation, based on a geometrical model with dimensions of specimen A_5
(Figure 1) was carried out in Abaqus FEA software. The model itself consisted of two
unconnected parts, namely the upper and lower beam. The contact zone of both beams
was modelled in terms of unilateral constraints that activate as soon as the elements are
pressed against each other, with the possibility of sliding with friction, in accordance with
the procedures of Abaqus [23]. In the contact area, surface-to-surface contact was assumed
in the initial step, with the option Adjust only to remove overclosure. The contact interaction
property included “Hard” Contact Normal behaviour, with permission for separation after
contact and Tangential behaviour with the friction coefficient µ. With this model, the contact
areas could be calculated frictionlessly when µ = 0.

As a linear-elastic approach was chosen to model the experiment, a 29.6 kN increment
between 40.5 kN and 70.1 kN was chosen according to the linear-elastic phase of the
results of specimen A_5 (see Figure 6). The increment value was based on the choice of
the authors to work within the linear-elastic phase in combination with the available data
from the DIC measurements. The resulting linear-elastic model allowed for easy scaling
of the results and, therefore, an easy comparison with experimental results taken from
different load ranges. In the area of the force application, a rigid body, loaded with a
concentrated force F = 29.6 kN, modelled the behaviour of the testing machine. A vertical
displacement uV = 0.211 mm was imposed at the bottom edge of the lower beam, while
a horizontal displacement uH = 0.361 mm was assumed at the right edge to account for
the displacements of the steel frame during the experimental investigations within the
investigated load range. The geometrical data and the designation of the contact areas, as
well as the boundary conditions for the supports, are pictured in Figure 7.
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the orientation parallel to the grain.

For the 2D plane stress model, with a thickness of 118 mm, 124,538 square elements
with linear shape functions and reduced integration (CPS4R) were used. Additionally,
249 triangular elements CPS3 were applied in the areas of less regular mesh. The total
number of Gauss points in the model was 124,787. The mesh size of the finite elements was
set to approximately 3 mm in general areas and 1 mm close to the contact area in order to
provide higher precision of the results. The mesh was generated by Abaqus algorithm with
seeding conditions provided by the authors.

The orthotropic properties in the computational model were oriented according to the
arrangement of the fibres of the upper and lower member (axis 1 according to Figure 7). In
the first step of the analysis, the material properties were orthotropic with the mean value
parameters taken from the design standard [8] for timber class GL24h: E1 = 11, 500 MPa,
E2 = E3 = 300 MPa, ν12 = ν13 = ν23 = 0.35 and G12 = G13 = G23 = 650 MPa. The
coefficient of friction µ was assumed to be 0 and, thus, frictionless. The force-displacement
relation of the experiments showed non-linear behaviour at the beginning of the tests. Once
the initial phase [6,7] was overcome, the connection could be seen as a perfect fit, resulting
in a linear-elastic phase until a load of approximately 83 kN, corresponding to 72% of the
averaged ultimate load. Subsequently, a loss of stiffness was noticeable until the ultimate load
was reached, and the load began to drop. As mentioned before, a linear computational model
only leads to a linear response of the structure, and progressive damage cannot be reproduced.
Therefore, the numerical calculation was done for a 29.6 kN increment. Figures 8 and 9 show
displacement fields obtained from the numerical analysis at a force of 29.6 kN.

The stiffness k of the numerical model, defined as the ratio of 29.6 kN to the relative
displacement of the extensometer points (see Figure 2 (right)), was equal to 90.08 kN/mm.
This value indicated a poor approximation of the experimental results, of 72.1 kN/mm
for specimen A_5 (the mean stiffness of the test series was 68.2 kN/mm), resulting in the
decision of the authors to further calibrate the model using the results of the experiments.
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4.2. Calibration of the Numerical Model According to the Results of the Experimental Investiagions

The following material parameters were re-evaluated during the calibration of the
linear-elastic model, with the parameters taken as variable: Young’s modulus, both in the
longitudinal (E1) and transversal (E2) direction, Kirchhoff’s modulus G12 and the friction
factor µ. It was assumed that the geometry of the joint was modelled accurately and,
therefore, geometrical factors were not used as calibration candidates. As already described
in the previous section and clearly displayed in Figure 6, a load increment of 29.6 kN was
chosen for the linear-elastic modelling, starting from a load of 40.5 kN up to a load of
70.1 kN. The vertical and horizontal displacements of 150 inspect points placed in the DIC
post-processing, pictured in Figure 10, were used as reference points for the calibration.
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Figure 10. A total of 150 inspect points placed on the surface in the DIC post-processing to extract
the displacements for the calibration of the numerical model.

During the calibration, with the process illustrated in Figure 11, 850 numerical models
incorporating different parameters were automatically generated using Python and, subse-
quently, calculated using Abaqus. The displacement values of the defined inspect points
were then evaluated using the previously programmed Python code with the implemented
coordinates (see Figure 10) before being automatically transferred to an Excel file. In order
to determine the most adequate parameters, resulting in a model matching the experimen-
tal results, a verification equation (Equation (3)) comparing the displacement fields was
defined as:

‖x‖:X, Y → R, ‖x‖ =
√

n

∑
i=1

(Yi − Xi)
2 (3)

where X is a set of 150 values taken from numerical model, and Y is the set of 150 values
taken from the same places but from the experimental results seen in Figure 10. The
calculation of the verification equation, Equation (3), was carried out automatically. With
the calculation time of one FEA simulation equalling 84 s, the authors will consider using
a more time-efficient approach in future works, for example, the Newton method or a
meta-heuristic approach to reduce simulation time [12].
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Figure 11. Flowchart of the calibration process.

To compare the investigated models, three values were calculated for each: the hori-
zontal (‖xH‖) and vertical (‖xV‖) displacement field according to the verification equation,
Equation (3), and the stiffness k of the numerical model defined as the ratio of 29.6 kN to
the relative displacement of the extensometer points (see Figure 2 (right)). The ranges of
the parameter values, considered within the calibration, are listed in Table 1.
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Table 1. Range of parameter values E1, E2, G12 and µ.

Parameter Min Max

E1 [MPa] 100 12,650
E2 [MPa] 10 400

G12 [MPa] 50 1000
µ [-] 0.0 0.4

The calibration showed that the set of parameters which provided the best agreement
of the numerical results and the laboratory test was: E1 = 10, 350 MPa, E2 = 196 MPa,
ν12 = 0.35, G12 = 728 MPa and µ = 0.0. This model was characterised by the values
‖xH‖ = 0.77753, ‖xV‖ = 0.77752 and k = 72.11 kN/mm. A very good compliance
of the stiffness values from the numerical analysis (72.11 kN/mm) and the laboratory
test (72.10 kN/mm) was achieved. Furthermore, it should be noted that, in the chosen
model, very similar results from Equation (3), calculated for both directions, were obtained.
Considering all results, the numerical modelling in the linear-elastic range using the
orthotropic model showed an acceptable agreement with the experimental results in the
linear-elastic range. The correspondence is clearly visible in Figures 12 and 13, where the
displacement fields obtained for the selected model are visualised and juxtaposed with
those of the experiment. It should be emphasised that the surface conditions of the contact
surface are to be seen as stochastic, as they are highly dependent on the accuracy of the
samples and the material heterogeneity (e.g., twist of the fibres or small local knots in
the timber).
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Figure 12. (Left): Horizontal displacements of the numerical model at a load of 29.6 kN; (Right):
DIC-horizontal displacements on the surface of specimen A_5 at 70.1 kN with the initial picture at
40.5 kN (representing a load step of approximately 29.6 kN).

The compliance of the experimental and numerical results obtained for the single-step
joint in terms of stiffness and the verification equation, Equation (3), entitled the authors
to conduct further computational simulations. In a subsequent step, a stress analysis was
performed on the numerical model to determine possible forms of joint failure. A quanti-
tative analysis of the calculated stresses was performed with the following mean values
of strength parameters for spruce: tension parallel to the grain 30.00 MPa, compression
parallel to the grain 32.00 MPa [24], compression perpendicular to the grain 3.57 MPa and
shear 3.85 MPa [25]. The local failure mode was defined as a deformation associated with
exceeding related strength parameters in the simulation. The linear computational model
only allowed for the indication of the load at which the standard maximum stresses are
exceeded. This state can be identified as the beginning of local failure, yet it does not
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necessarily lead to a load drop. Due to the assumptions made within the numerical model,
progressive damage could not be considered.
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Figure 13. (Left): Vertical displacements of the numerical model at a load of 29.6 kN; (Right): DIC-
vertical displacements on the surface of specimen A_5 at 70.1 kN with the initial picture at 40.5 kN
(representing a load step of approximately 29.6 kN).

With the numerical model being linear, it was possible to determine the load value at
which a specified stress value exceeded the material strength. The determined load values
indicating the location of extreme stress are listed in Table 2. The analysis thereof showed
that the first to reach its maximum was shear (load approximately at 50 kN). If the load
further increased to 52 kN in the numerical model, compressive failure perpendicular to
the grain followed.

Table 2. Location and values of extreme values of stresses in single-step joint with the information of
load at which those values reach respective limits.

Stress Value for
30 kN [MPa] Strength [MPa] Limit Load

[kN]
Location: Point

(Beam) Figure

parallel to the grain
tension 4.900 30.00 183.7 1 (lower) Figure 14

compression 11.000 32.00 87.3 2 (upper) Figure 14

perpendicular to the
grain

tension 0.024 0.50 625.0 3 (upper) Figure 15

compression 2.060 3.57 52.0 4 (upper) Figure 15

shear
positive 2.310 3.85 50.0 5 (lower) Figure 16

negative 2.380 3.85 48.5 6 (upper) Figure 16

The stress distributions at a load of 29.6 kN are shown in Figures 14–16. For the
extreme values occurring in places of stress concentrations, the data were not extracted
directly from that location but at a distance of 8 mm, allowing for reliable values close
enough to the concentration point yet not obscured by the modelling.

Even though the linear model did not allow for the analysis of damage propagation,
and the indicated values did not coincide with load-bearing capacity obtained during
experimental results, comparing load values taken from the numerical model with those
from the experiments showed that an exceedance of the strength values is not necessarily
accompanied by a decrease in the joints’ stiffness, as seen in Figure 6. In order to cor-
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rectly represent the load-bearing capacity, a failure criterion had to be introduced to the
numerical model.

When looking at the connection itself, Figure 17 shows a comparison of the joint post
loading for both the simulation and the experiment. The upper beam layers separated
and shifted relative to each other at the connection point, indicating that the allowable
shear stress had been exceeded. In addition, a bending of the aforementioned fibres was
noticeable, most likely caused by exceeding the allowable compressive stresses along the
fibres. The numerical model indicated that the latter occurs at a load force of 87 kN. The
value varied from the actual results due to possible redistributions associated with earlier
strength attainment in other directions. Even though the exact failure load could not be
calculated using the model, valuable insights regarding failure type could be derived, as is
clearly visible in Figure 17, where the joint deformation in both physical and numerical
models were in good compliance.
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5. Application of the Calibrated Numerical Model on a Double-Step Joint

The main goal of the authors for the computational analysis was to create a model
that could also be applied to other geometries. The results of experimental investigations
of double-step joints (Series B) were used to validate the calibrated model, to predict the
stiffness and indicate the possible failure mode of the new connection. The geometry of the
joint, load introduction point and the geometrical boundary conditions are presented in
Figure 18 and can also be found in [1].
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The results of the experimental investigation of Series B are presented in Figure 19
in form of a force-displacement diagram, serving as a reference for the validation of
the predicted stiffness. The test series consisted of three specimens tested under the same
conditions as Series A. Furthermore, the specimens were produced out of the same material.
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Figure 19. Force-displacement curves of all three single-step specimens, as well as the mean value
MV of the three specimens.

The results of the calculations in form of stress distribution and the location where
stress equalled material strength (according to Table 3 for the double-step joints) can be seen
in Figure 20 (normal stress parallel to the grain), Figure 21 (normal stress perpendicular to
the grain) and Figure 22 (shear stress).
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Table 3. Stress values and location at a load of 29.6 kN for the double-step joint including the
calculation of the limit load for the individual stress (considering the linear progression).

Stress Value for 29.6
kN [MPa]

Strength
[MPa]

Limit Load
[kN]

Location: Point
(Beam) Figure

parallel to the grain
tension 4.00 30.00 225.0 1 (lower) Figure 20

compression 13.49 32.00 71.2 2 (upper) Figure 20

perpendicular to the grain
tension 0.33 0.50 45.5 3 (lower) Figure 21

compression 1.86 3.57 57.6 4 (lower) Figure 21

shear
positive 1.73 3.85 66.8 5 (lower) Figure 22

negative 1.71 3.85 67.5 6 (upper) Figure 22
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Figure 22. Double-step joint FEM modelling—shear stress [MPa]. Force 30 kN.

The stress values at a load of 29.6 kN, as well as the locations and load values at which
the material properties were exceeded, are listed in Table 3 for the double-step joint.

The analysis of Figure 20 through Figure 22 and Table 3 allowed for the prediction
of possible local failure modes. Based on the calculations of the single-step joint, the
numerical model for the double-step joint was loaded with 29.6 kN. This assumption can
be considered correct as the linear range of the specimens starting at 12 kN and ending at
79 kN, as pictured in Figure 19. According to the linear model, the first stress limit reached
was that of tensile strength perpendicular to the grain close to point B (see Figure 18) at a
load of 45.5 kN, followed by a failure mode related to exceeding the shear stress limit close
to point E. The last-mentioned mode is visualised in Figure 23, where the timber layers
on the right-hand side of the connection separated and moved relative to each other. The
crack visible in Figure 23 was further pre-announced by the distribution of shear stress
(shown in Figure 24), where the sign changed within the upper beam (which is related
to the change of the direction of shear deformation), suggesting the possibility of a crack
occurrence starting at point B in the upper beam.

It should be noted that, according to [6], each analysed specimen of the double-step
joint exhibited a slightly different behaviour in the experimental tests, in terms of both
the stiffness and the failure modes. During the testing of some samples, the failure modes
observed in the numerical analysis occurred nearly simultaneously within the experiments.
Furthermore, it should be highlighted that the double-step joint has a higher sensitivity
to manufacturing inaccuracies and randomness of the mechanical properties of the wood
due to its design. Even though it is not possible to create a general valid numerical model
that can accurately predict failure modes of such connections, it was shown within the
double-step joint analysis that the proposed linear model could be used to give a general
indication of possible damage modes and locations.

Moreover, the calibrated linear model allows for a quantification of the stiffness of
the double-step connection. The stiffness k, obtained from the numerical analysis, was
calculated to 86.0 kN/mm, while that of the Series B specimens equalled 87.0 kN/mm. The
good compliance of the results shows the viability of the proposed linear numerical model
in regard to first assessments of timber–timber connections.
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6. Concluding Remarks

The authors presented a simplified strategy using a linear-elastic model of an or-
thotropic body for the numerical simulation of single- and a double-step timber joints
under compression. The numerical model was calibrated using the results of experimental
investigations on a series of single-step joints. A DIC measurement system allowed for
the documentation of the displacements on the surface of the specimens, which made it
possible to quantify their rigid movement and deformation. Due to the fact that numerical
results obtained with the assumption of material parameters taken from design code did
not reflect laboratory tests to a satisfactory degree, the results obtained for the single-step
joint were used for the calibration of the FE model with the use of Abaqus software and
Python codes, resulting in a calibrated model without specified material parameters.

The presented numerical and experimental analyses were qualitatively consistent and
confirm the applicability of the approach. The applied numerical model made it possible
to satisfactorily quantify the stiffness of both connections (inclination of the linear-elastic
phase in the force-displacement diagrams) and to predict the location of local failures.
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However, in the single-step joint, the prediction was more accurate, based on the fact that
the model was calibrated for this type of joint, and the connection itself is less prone to
inaccuracies of the geometry. The possible local failure modes were identified in places
where strength limits were exceeded. However, it should be highlighted that such states do
not necessarily lead to a load drop—they only indicate that some local damages occur.

The main advantage of a linear analysis is the speed of calculation and the relative
ease of model building. However, interpretation of the results requires knowledge of the
mechanical behaviour of timber. The proposed model can be extended by introducing
failure criteria such as the Tsai–Wu criterion mentioned in [26]. This would allow for
the prediction of the load-bearing capacity of the joint and indicate the failure modes and
stiffness of the system. However, one should keep in mind the heterogeneity of the material,
which introduces uncertainty in the calculations. According to the authors, crack mechanics
modelling of the development of the destruction zone is not advisable if the modelling
and computational effort should be kept to a certain boundary due to the scattering of
wood characteristics. Inconsistencies of the samples, such as the arrangement of fibres, the
presence of small knots and heterogeneity, as well as the inevitable geometrical inaccuracies
in the fabrication of samples, should, therefore, be considered.

The proposed numerical model is recommended for future, non-destructive research of
timber connections to estimate the stiffness and the failure mode. Possible future directions
of research could be related to the analysis of various geometries of joints, including gaps
between the connected beams, and optimisation of contact geometry in order to avoid
stress concentrations and failure analysis in the frame of crack mechanics.
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