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Abstract: The wave data measured by CFOSAT (China France Oceanography Satellite) have been
validated mainly based on numerical model outputs and altimetry products on a global scale. It
is still necessary to further calibrate the data for specific regions, e.g., the southern South China
Sea. This study analyses the practicability of calibrating the dominant wavelength by using artificial
neural networks and mean impact value analysis based on two sets of buoy data with a 2-year
observation period and contemporaneous ERA5 reanalysis data. The artificial neural network
modeling experiments are repeated 1000 times randomly by Monte Carlo methods to avoid sampling
uncertainty. Both experimental results based on the random sampling method and chronological
sampling method are performed. Independent buoy observations are used to validate the calibration
model. The results show that although there are obvious differences between the CFOSAT wavelength
data and the field observations, the parameters observed by the satellite itself can effectively calibrate
the data. In addition to the wavelength, nadir significant wave height, nadir wind speed, and
the distance between the calibration point and satellite observation point are the most important
parameters for the calibration. Accurate data from other sources, such as ERA5, would be helpful to
further improve the calibration results. The variable contributing the most to the calibration effect
is the mean wave period, which virtually provides relatively accurate wavelength information for
the calibration network. These results verify the possibility of synchronous self-calibration for the
CFOSAT wavelength data and provide a reference for the further calibration of the satellite products
in other regions.

Keywords: CFOSAT; wavelength; artificial neural network; calibration experiment; South China Sea

1. Introduction

The South China Sea (SCS) (Figure 1), the second-largest marginal sea in the Northwest
Pacific, is one of the busiest shipping routes in the world and connects the Pacific Ocean and
the Indian Ocean. Wave parameters are of great significance to marine engineering, marine
transportation, fishing, renewable wave energy harvesting, typhoon disaster prevention,
and military activities in the SCS. Many satellites have been widely applied in ocean
wave observations [1]. Among them, wavelength (or wave period) parameters can be
retrieved from altimetry wave height and wind speed parameters by empirical models
with artificial neural network (NN), e.g., [2,3]. Since the launch of CFOSAT (China France
Oceanography Satellite) on 29 October 2018, it provides a new source to obtain global wave

Remote Sens. 2022, 14, 773. https://doi.org/10.3390/rs14030773 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14030773
https://doi.org/10.3390/rs14030773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9373-1122
https://doi.org/10.3390/rs14030773
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14030773?type=check_update&version=2


Remote Sens. 2022, 14, 773 2 of 23

information. CFOSAT can not only sample wave height data such as standard altimeters
but also measure the wave spectrum by off-nadir spectrometer SWIM (Surface Investigation
and Monitoring) to obtain information on the wavelength and propagation direction [4–7].
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The performance of CFOSAT data has been examined mainly by comparing it with the
ECMWF (the European Centre for Medium-Range Weather Forecasts) Ocean Wave Model
(ECWAM) and altimetry products (Jason-3, AkltiKa) on a global scale [4–6,8]. The results
have shown that the wind and wave parameters retrieved from the nadir beam exhibit an
accuracy similar to standard altimeter missions. However, SWIM spectra are perturbed
by the speckle noise problem; thus, work is in progress to mitigate this effect [4,5]. It is
also worth noting that few available in situ observations have been employed for data
calibration, specifically for some local areas such as the SCS, especially for the wavelength
parameters extracted directly from satellite observed spectra.

The wavelength information in the southern SCS (SSCS) is difficult to precisely cap-
ture by the satellite due to the complex topography of numerous reefs (Figure 1). Swell
is the dominant component of waves in the SCS, although the propagation direction
is affected by the monsoon [9]. The waves’ components in the SSCS include not only
swell propagated from open seas but also wave affected by local factors such as scat-
tered islands and reefs [10–12]. However, the resolution of the CFOSAT wave spectra is
70 km × 90 km [4,6–8], which is much larger than the size of most reefs. The wave parame-
ters are retrieved from the box of such a big size, so that it may not be able to identify the
local variations impacted by reefs. Moreover, only wavelengths in the range of 70 to 500 m
are measurable by SWIM, among which the measured value of short wavelengths (e.g., 70
to 150 m) would be systematically larger than the true value, according to the product
specifications [4]. Field observation is urgently needed to validate and calibrate the SWIM
spectra here.

Much work has been done to calibrate satellite wave data against synchronous buoy
observations, other satellite measurements, or reanalysis data combined with numer-
ical models, e.g., [1,8,13,14]. The most common method is to establish the (multiple)
linear regression relationship between the measured values and the corrected values,
e.g., [15,16]. Recently, with the progress of artificial intelligence technology, the NN method
has gradually become an important means to calibrate ocean observation and simulation
results [17–20]. However, most of the existing studies focus on the calibration of wave
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height, e.g., [15,16,19,20], and studies on using other synchronous parameters to calibrate
wavelength information would be eagerly anticipated.

It is necessary to know whether self-calibration can be completed effectively by using
the observation data of the satellite itself. If so, the observation information would be of
great benefit to disaster early warning, maritime search and rescue, and other tasks with
high timeliness. In contrast, if the calibration needs accurate data from other sources, the
corrected information would be delayed. In addition, to calibrate the wavelength data
of CFOSAT in the SSCS using the NN method, it is necessary to determine the critical
parameters for the calibration. It is important to ascertain which parameters should be
included in the calibration model. Usually, inputting more parameters can improve the
effectiveness of the NN model [20–22]. However, if the input parameters are too many, it
will inevitably increase the difficulty of data acquisition and data processing. It is necessary
to extract the critical parameters used to calibrate to improve the computational efficiency
of the model [20,23]. Therefore, preprocessing technologies, such as the clustering method
and principal component analysis (PCA), were introduced to narrow down or reduce the
sample space before applying an NN [21,24]. One can evaluate the impact degree of input
neurons on the output in a network [25], and the critical input parameters can be extracted
by mean impact value (MIV) analysis [26,27]. MIV analysis based on a well-trained NN
model is theoretically capable of selecting the critical parameters [26]. The combination of
dimension reduction and MIV analysis of the input variables would be beneficial to the
acceleration and optimization of the NN calibrating the wavelength of CFOSAT.

In general, an NN is usually established and trained based on a large number of
data samples [20,28]. However, CFOSAT has only been in operation for two years as of
2021, and the observation stations in the SSCS are still limited, so there are not enough
satellite observation data that can match the site-specific field observations. Therefore, it is
necessary to use appropriate methods, such as the Monte Carlo method [29], and a large
number of repeated tests were carried out by random sampling to avoid occasional errors
from individual sampling.

Therefore, this paper carries out systematic research on the practicability of calibrating
CFOSAT wavelength data, through developing a relationship between satellite measure-
ments and the accurate wavelength value by using artificial neural network methods. Two
buoys were deployed and had run for two years in the central region of the SSCS (Figure 1),
and the field-measured dominant wavelength was matched with synchronized CFOSAT
data. Based on the Monte Carlo method, through a large number of random samplings,
a set of NN model experiments for calibrating wavelength parameters were constructed.
In the experiments, the dominant wavelength measured by the satellite was calibrated
through three stages of NN models, and the key parameters needed for calibration were
obtained through MIV analysis.

2. Data Sets
2.1. SWIM Products Measured by CFOSAT

The dominant wavelength data of CFOSAT used in this paper come from the SWIM
product. SWIM is a Ku-band radar with a near-nadir scanning beam geometry. The SWIM
instrument principle uses the fact that at a low incidence angle (approximately 8◦–10◦), the
normalized radar cross-section is sensitive to the local slopes related to the tilt of long waves
but almost insensitive to small-scale roughness due to wind as well as to hydrodynamic
modulations due to the interaction of short waves and long waves [7]. The tilt modulates
the backscattering coefficient of the sea surface. The modulated Fourier spectrum is related
to the directional spectrum of sea waves and contains information about the direction and
wavelength of wave propagation [7]. Similar to standard satellite altimeter missions, the
nadir beam also allows for estimating the wave parameters [5,7].

The SWIM data are inversed by the processing chain to retrieve three main kinds of
Level 2 geophysical products, i.e., the backscattering coefficient profiles, the 2D directional
wave spectra, and the nadir altimetry-like products [7]. The products are provided to
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operational users (e.g., meteorology agencies) in nearly real-time and are available in less
than four days to the scientific community through the AVISO+ website (https://www.
aviso.altimetry.fr/en/missions/current-missions/cfosat.html, accessed on 31 December
2021) [5,7]. This paper uses the data from 29 July 2019, to 8 August 2021. To avoid the
influence of rainfall on the data quality, the data during the rainfall period were removed.

To calibrate the dominant wavelength, nine parameters measured by CFOSAT were
used (Table 1). There are physical reasons for choosing Table 1 parameters to be involved
in the calibration process. Correct wave height values may provide important information
relative to the wavelength, for example, significant wave height is often included to obtain
or retrieve wave period data, e.g., [2,30], so swhs and SWHn should be considered in the
calibration. Waves propagating to stations from different sources may experience different
wave deformation processes, so dirs is also considered an input parameter. The wind is
the main factor in wave generation, and thus Windn is also considered an input parameter.
In addition, the distance and relative azimuth between satellite and field observation
points may affect the difference between satellite and buoy measurements; therefore, the
factors related to distance and azimuth, such as dists, phases, Distn, and Phasen, should
be fully considered. The calibration process using these parameters can be carried out
synchronously with satellite observations, so it will have high timeliness.

Table 1. List of input parameters for the self-calibration of the dominant wavelength.

Symbol Meaning Unit

wavelens Dominant wavelength estimated from the spectrum by the off-nadir spectrometer m
swhs Significant wave height estimated from the spectrum by the off-nadir spectrometer m
dirs Dominant wave direction estimated from the spectrum by the off-nadir spectrometer ◦

dists Distance between calibration point and the sampling point of the off-nadir spectrometer m
phases The azimuth of sampling point of off-nadir spectrometer relative to the calibration point ◦

SWHn Significant wave height from nadir beam m
Windn Wind speed from nadir beam m/s
Distn Distance between the calibration point and the measured point of nadir beam m

Phasen The azimuth of sampling point of nadir beam relative to the calibration point ◦

2.2. Buoy Observations

There are few long-term in situ wave observation data in the SSCS. For example,
National Data Buoy Center (NDBC) has no available long-term buoy data in the SCS. To
obtain a long series of field observation data to verify the CFOSAT wave data in the SSCS,
two wave buoys were deployed in the central region (buoy A at 10.0◦ N, 115.5◦ E and buoy
B at 9.5◦ N, 113.0◦ E, Figure 1) of the SSCS. Buoys A and B were launched at a depth of
1200 m on 14 November 2018, and a depth of 1240 m on 17 October 2020, respectively. Wind
data measured by buoy A have been used for the evaluation of CFOSAT scatterometer wind
data [31]. A Triaxys wave sensor manufactured by AXYS Technologies Inc., Sidney, Canada,
was equipped in each buoy to measure wave parameters every hour by accelerometers.
Up to January 2021, more than 26 months of wave parameters were recorded by buoy A.
Buoy B collected 10 consecutive months of wave parameters and wave spectrum data from
October 2020 to August 2021. The dominant wavelength (Lp) is calculated by the peak
wave period (Tp) through the dispersion equation:

Lp =
gT2

p

2π
tanh

2πd
Lp

(1)

where d is the depth and g is the acceleration of gravity. The equation can be simplified as
Lp = gT2

p /2π in deep water.

https://www.aviso.altimetry.fr/en/missions/current-missions/cfosat.html
https://www.aviso.altimetry.fr/en/missions/current-missions/cfosat.html
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The spatial window with a radius R = 150 km and a temporal window of 1 h is used
to match the CFOSAT parameters (Table 1) with the buoy data (see Figure 2a) using the
inversed distance weighting interpolation method:

PS =
ΣPSiwi

Σwi
=

ΣPSi(1/di)

Σ(1/di)
(2)

where PS is the mean satellite parameter value matched with the buoy, i is the number of
satellite observations within the radius, PSi and wi are the relative satellite parameter and
its weight factor, respectively, and w decreases with increasing distance from the satellite
sampling point to the buoy position:

d =

{
dists

(
PS= wavelens, swhs, dirs, dists, phases

)
Distn (PS= SWHn, Windn, Distn, Phasen)

(3)

For comparisons between the buoy and satellite, a space domain of 0 to 150 km and a
time domain of 0 to 1.5 h are typically acceptable under normal circumstances [1,3,32,33].
A relatively larger space window is chosen in the present study to avoid an insufficient
number of data pairs. The comparison of the averaged SWIM data does not show a large
gap under different space windows. For instance, the RMSE (root mean square error)
between the averaged wavelength data within a space window of 150 km and 100 km is
24.5 m, which is significantly smaller than that compared to the in situ observation of buoys
(i.e., 96.11 m in Figure 2b). Consequently, a total of 166 and 58 sets of matched data were
obtained at the buoy A and buoy B stations, respectively.

As illustrated in Figure 2, the dominant wavelengths measured by CFOSAT are gener-
ally larger than those measured by buoys. The former is always no less than 100 m, while
the latter is often less than 100 m. This difference may be due to the reasons described in the
Introduction; that is, when waves pass through the SSCS, which is dotted with islands and
reefs, they are prone to deformation due to refraction, diffraction, and shallowing [10–12].
It was shown that islands and reefs would influence the wave properties and dynamics
by the shading effect [34–36]. In some harsh sea states, the islands could have a noticeable
sheltering effect felt in various directional sectors and even at large distances from the
islands [37]. Although the buoys are set in the relatively deep water, the waves here are
still remarkedly influenced by the complex topography of the nearby island groups.

However, because CFOSAT is better at observing fully developed swell whose wave-
length range is relatively long [4], and the observation resolution of the CFOSAT has
difficulty distinguishing islands and reefs [7], the measured dominant wavelengths in the
SSCS would easily deviate from the true values. For instance, the wave spectrum data
from buoy B shows a mixed wave pattern in the SSCS (Figure 3). Concerning the fact that
the SSCS is dominated by the swell in general [9], this pattern may be influenced by local
wind and also due to wave diffraction and refraction effects caused by island topography.
The topography may affect the transformation of the waves, reducing the component of
the swell and making disadvantage of the accuracy of SWIM measurement. The RMSE of
SWIM wavelength is 84.79 m when the integrated wave spectrum density of the wind sea
(0.15–0.385 Hz) is larger than that of the swell (<0.15 Hz). When conditions are opposite, the
RMSE is reduced to 47.64 m. Thus, when the swell component is high, the waves are more
fully developed, and the satellite observations are more in line with the in-situ observation
values, and vice versa.
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Figure 2. Space collocation and comparisons of the dominant wavelengths of CFOSAT and buoys;
(a) shows the spatial matching results of position information recorded by buoy A and satellite data
on 25 January 2021. The dark pentagram indicates the buoy position. The colored dots and the
red circles represent the measuring points of the wave spectrum and the nadir beam, respectively;
(b,c) show the comparison of dominant wavelengths from buoy A and CFOSAT in the forms of
scatterplots and time series, respectively. (d,e) show the comparison of dominant wavelengths from
buoy B and CFOSAT in the forms of time-series and scatterplots, respectively. The linear fitting
curve, the sequence length (N), RMSE, mean absolute error (MAE), standard deviation (STD), and
correlation coefficient (r) of the SWIM-observed dominant wavelengths are illustrated in black in (b,e).
The scatters, curves, and legends in red in (b,e) are calculated from wavelengths exceeding 100 m.
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Figure 3. Comparisons of dominant wavelengths from buoy B and CFOSAT SWIM at different sea
states; (a) shows the observed series of spectral energy of wind sea and swell, assuming 0.15 Hz is
their frequency threshold; (b,c) are the scatterplots comparisons of dominant wavelengths when
wind sea and swell dominates, respectively.

The largest differences between CFOSAT and buoy A appear in May–September 2020
(Figure 2). Such apparent errors can be further related to the sea state with low wave height
(<1 m basically) and abnormally variable wave direction (Figure 4). In the figure, ERA5
data show that the significant wave height and wind speed in May–September 2020 are
significantly lower and the dispersion of wave direction and wind direction is significantly
higher compared with May–September 2019 or other months of 2020. The SWIM measures
the wave spectrum by the modulated signals of the backscattering coefficient by sea
surface tilt [6,7]. However, the backscattering coefficient itself is related to the sea surface
roughness mainly linked to surface winds and waves [38], which is background noise for
the modulated signals of sea surface tilt. If the wave height is too weak and the wave
direction distribution is too scattered, the backscattering coefficient modulation signal of
sea surface tilt would be fuzzy, which is not conducive to the wave spectrum retrieval.
For instance, the satisfactory accuracy of the SWIM nadir significant wave height (SWH)
referring to the altimeter observation can be achieved when the SWH is above 1 m [38]. A
similar result is suggested by a comparison between the SWIM and NDBC buoy [8]. They
stated the SWH of nadir from CFOSAT shows the best accuracy in the wave height within
2–3 m. Although the reason for the special sea state from May to September 2020 is still
unclear, it indeed affected the accuracy of the retrieval accuracy of wave parameters from
satellite measurements.
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Figure 4. Comparison of the rose plot of SWH (upper panel) and wind speed (lower panel) between
different periods at buoy A station based on ERA5 data.

Furtherly, the accuracy of the SWIM wavelength determined by SWH ranges is eval-
uated throughout the whole period of buoy employment. Both at the stations of buoys
A and B, the SWIM wavelengths perform a significantly smaller RMSE when the wave
height is within 2–3 m than when the wave height is below 2 m. That is, a more satisfactory
correlation between SWIM and buoy wavelength is obtained after taking out all the data
with low SWH. The accuracy of SWIM wavelength when the SWH exceeds 3 m is not
evaluated because there are few samples in this range. Although the above differences in
dominant wavelengths between the satellite observations and the buoy measured values
are apparent, there is a clear correlation between them, especially when the in-situ observed
wavelength is greater than 100 m (red circles in Figure 2b,e). Therefore, it is still possible
to calibrate the wavelength data by using appropriate methods, such as NN models, to
develop a relationship between SWIM measurement and the wavelength.

2.3. Reanalysis Data

To test the effect of additional input of other external data on the calibration of the
dominant wavelength, this study further supplemented the European Center for Medium-
Range Weather Forecasts (ECMWF) data. In the data correction and verification carried
out by the CFOSAT research group, the wind and wave parameters outputted from the
numerical model ECMWF are used to analyze the SWIM data [4,6]. ERA5 is the fifth
generation ECMWF atmospheric reanalysis product of the global climate [39]. The data
were obtained from the Climate Data Store of Copernicus Climate Change Service (https://
cds.climate.copernicus.eu, 31 December 2021). Considering the close relationship between
sea surface wind and waves, a total of six parameters (Table 2) of wave properties and wind
fields were obtained. Similar to the buoy observations, the hourly ERA5 data at 10.0◦ N,
115.5◦ E and 9.5◦ N, 113.0◦ E were interpolated to match the SWIM measurement.

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
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Table 2. List of external source parameters for the calibration of the dominant wavelength.

Symbol Meaning Unit

swhe Significant wave height from ERA5 m
dire mean wave direction from ERA5 ◦

Tme Mean wave period from ERA5 s
u10e 10 m u-component of wind from ERA5 m/s
v10e 10 m v-component of wind from ERA5 m/s

3. Methodology
3.1. Design of Calibration Experiments with Monte Carlo Sampling

Calibration experiments combining feed-forward backpropagation NN and Monte
Carlo sampling methods are performed for the dominant wavelength. To select the critical
input parameters for calibrating the dominant wavelength, NN models were constructed in
three stages. In the first stage (denoted as NN1), all parameters were inputted to construct
the NN model, and the critical parameters and the noncritical parameters were then
selected by MIV analysis. In the second stage (denoted as NN2), the critical parameters
were inputted to build the NN model. In the third stage (denoted as NN3), the principal
components (PC) of noncritical parameters were calculated by kernel principal component
analysis (KPCA), and both the critical parameters and the PC of noncritical parameters
were inputted to construct the NN model. The overall process of the calibration experiment
is shown in Figure 5. The establishment of NN models is shown in Section 3.2, and the
MIV and KPCA methods are introduced in Section 3.3 below. To examine whether the
data acquired by CFOSAT can complete the self-calibration of the dominant wavelength,
two sets of data are used as input parameters in the experiment. The first set of input data
includes nine parameters that can be acquired by the satellite itself (Table 1). Based on the
former, the second set of input data includes external data (ERA5), with a total of fourteen
parameters (i.e., Tables 1 and 2).

Figure 5. Flow charts of the whole calibration experiments (a), artificial neural network modeling
with Monte Carlo sampling (b), and MIV analysis (c). The blue and purple borders indicate the
nesting relationship among processes.
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To avoid the uncertainty caused by insufficient data samples, the input parameters
of each stage were randomly sampled 1000 times by the Monte Carlo method, and the
calibration experiment was repeated. A total of 166 sets of data were obtained by matching
buoy A with the satellite. As shown in Figure 5b, 75% of the data (125 groups) were
randomly selected for the establishment of the wavelength calibration model, and 25% of
the data (41 groups) were used for the verification of the model. Although the accuracy
of SWIM wavelength differs according to the domination of wind sea or swell (Figure 3),
and the ranges of wave height and wavelength itself (Figures 2b,e and 4), the calibration
experiments do not separate these situations to establish calibration relationship in this
study. One cannot judge the real sea states, or whether the SWIM wavelength data belong to
a large value or a small value unless we obtain the real field observation value. So, matching
samplings at each point were treated as an entirety to establish a calibration model suitable
for a wide data range of waves. To further examine the validity and migration capability
of the calibration method, the models established based on the data samples of buoy A
were used to calibrate the wavelength data measured by the satellite at the buoy B location
(58 groups in total). It is noted that the buoy B data are independent samples that are not
involved in the model establishment process. The validation results will illustrate whether
the model based on one station can be extended to a certain region, such as the SSCS.

3.2. Artificial Neural Network for Wavelength Calibration

A multilayer feed-forward backpropagation NN is established to calibrate the domi-
nant wavelength. Although the optimum number of layers is often the subject of research, a
three-layer structure has been proven to be sufficient to approximate any practical function,
given enough neurons in the hidden layer [40]. Therefore, a network composed of an input
layer, a hidden layer, and an output layer is used in this research to form a neural model.
Such a type of NN is an efficient and mature algorithm that is widely used in the calibration,
modeling, and prediction of ocean hydrological parameters [21,23,41–43].

Bayesian regularization is adopted as a back-propagation algorithm for sample train-
ing by using the MATLAB neural network toolbox. This algorithm updates the weight and
bias values according to Levenberg–Marquardt optimization. It minimizes a combination
of squared errors and weights and then determines the correct combination to produce a
network that generalizes well [44,45].

The number of hidden layer neurons s for the neural models is determined by
s = 2n + 1, where n represents the number of nodes in the input layer, which varies with the
experimental settings. The logsig function is selected as the transfer function from the input
layer to the hidden layer of the model, and the Purelin function is selected as the transfer
function from the hidden layer to the output layer of the model. The initial learning rate is
set as 0.005, and the iterative training times are set as 5000. The output neurons depend on
the goal of the NN model, i.e., the dominant wavelength in this study.

3.3. Mean Impact Value Analysis and Kernel Principal Component Analysis

In the structural design of the NN network, taking all parameters as the input layer will
consume many computer resources, and the introduction of nonimportant parameters will
lead to overfitting or non-convergence of the model. Therefore, MIV analysis and KPCA
are used to screen the key parameters and reduce the dimension of inputs in this study.

The impact of input neurons on the output neurons can be obtained by examining the
internal weight matrix value [25]. Following this concept, MIV is introduced to evaluate
the importance of input parameters to output in a neural network [26,27]. As illustrated
in Figure 5c, the procedures of MIV analysis are as follows: First, a well-trained NN
model is established using training dataset P. Subsequently, each input parameter i in P
increases and decreases by a small percentage of q (equal to 10% in the present study) to
create two new datasets P1i and P2i, which are later imported into the trained NN model
to produce the simulated outputs A1i and A2i (as a sequence). The difference between
A1i and A2i is the impact value (IVi). The average value of IVi is denoted by MIVi. A
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positive (negative) value of MIV indicates a direct (inverse) relationship between the results
(dominant wavelength) and the input parameters. The contribution proportion is calculated
according to PMIVi = |MIVi|/Σ|MIVi|, and the input parameters are ranked according to
PMIVi. The parameters ahead that contribute more than 90% cumulatively are regarded as
critical parameters, and the rest are noncritical parameters.

For the noncritical parameters, one important multivariate analysis to reduce the data
dimension is PCA, which is a kind of “linear” method based on the linear or approximate
linear structure in high-dimensional space. However, wave variation and its interactions
with different hydrological and meteorological parameters are typically nonlinear pro-
cesses. Therefore, normal PCA may not be able to capture nonlinear features from various
responses in wave dynamics. As a result, the present study adopted KPCA to realize
nonlinear dimension reduction of noncritical parameters. KPCA is an enhanced PCA that
incorporates a kernel function, thereby facilitating the solution of nonlinear problems [24].
By the use of integral operator kernel functions, one can efficiently extract PC in high-
dimensional feature spaces related to input space by a nonlinear map [46]. In this research,
the Gauss function is selected as the kernel function.

4. Results
4.1. Overall Results of the Calibration Experiments with Monte Carlo Sampling

The calibration experiment shown in Figure 5 was carried out. To reduce the consump-
tion of computer resources and avoid the negative impact of unimportant parameters on
the performance of NN models, the models were established in three stages (NN1, NN2,
and NN3), and the critical parameters influenced the calibration results were obtained. In
the experiments, two sets of input parameters (i.e., Tables 1 and 2) were used to test their
effects on the calibration of the dominant wavelength.

The MIV analysis and the statistical indexes of the 1000 NN models with only input
CFOSAT parameters (Table 1) are shown in Figures 6 and 7, respectively. By calculating the
MIV and PMIV of the input parameters, the critical parameters that affect the performance
of the calibration model can be extracted. As shown in Figure 6, MIV analysis of NN1
results shows that PMIV of five parameters, dominant wavelength (wavelens), the distance
of the off-nadir sampling point from the calibration point (dists), the distance of the nadir
sampling point from the calibration point (Distn), significant wave height from nadir beam
(SWHn), and wind speed from nadir beam (Windn) accounts for 93.12% contribution in total
absolute MIV. Both distance-related parameters, dists, and Distn, contribute significantly to
MIV. However, considering that the two parameters have similar meanings (see Figure 2a),
if they are selected as critical parameters at the same time, the weight of the distance factor
in the calibration process may be too high. Therefore, only the first parameter (dists) is
selected as a critical parameter. Then, the critical parameters were used as input parameters
to establish model NN2, and the relative MIV and PMIV were calculated again. The order
of the four critical parameters can be further determined as follows: SWHn, Windn, dists,
and wavelens. Finally, these critical parameters and the first two PCs (accounting for more
than 66.01%) of the noncritical parameters were used as inputs to construct the NN3 model.
After calculating MIV and PMIV again. The results of NN3 confirm that the noncritical
parameters can be ignored, considering their low PMIV values.

For the verification results of each sampling, RMSE, MAE, STD, and r were calculated.
Therefore, a total of 1000 groups of RMSE, MAE, STD, and r can be obtained. Figure 7
can be summarized by further counting these statistics. As shown in the figure, when
only the parameters obtained from CFOSAT are used for calibration, the RMSE decreases
from 80–110 m to 40–50 m, the MAE decreases from 60–70 m to 30–40 m, the r increases
significantly from 0–0.2 to 0.5–0.7, and the STD is closer to the buoy-observed STD. The
calibration performance of the model with critical parameters (NN2) is better than that of
the model with all parameters (NN1) and the model with critical parameters and the PCs of
noncritical parameters (NN3). The RMSE and MAE of NN2 are approximately 4 m lower
than those of NN1, and r is approximately 0.05 higher than those of NN1 (Table 3). By
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extracting the critical parameters and using the critical parameters to build the calibration
model, both the calculation efficiency and calibration performance can be improved.

Table 3. Median RMSE, MAE, r, and STD of the dominant wavelength from the SWIM and NN
models based on different input parameters.

Buoy SWIM
CFOSAT Parameters Only CFOSAT + ERA5 Parameters

NN1 NN2 NN3 NN1 NN2 NN3

RMSE (m) 0 94.54 48.23 44.35 46.88 36.00 32.24 33.33
MAE (m) 0 63.58 36.55 33.78 35.49 26.63 23.47 24.35

r 1 0.08 0.59 0.64 0.61 0.78 0.83 0.82
STD (m) 56.02 66.41 47.94 44.20 47.84 50.01 50.14 49.55

For the NN models that both CFOSAT and ERA5 parameters are input (Tables 1 and 2),
five key parameters affecting the calibration performance can be obtained (see Figure 8). In
addition to SWHn, Windn, dists, and wavelens, based on MIV analysis of NN1, the mean
wave period from ERA5 (Tme) was also included as a critical parameter. It is worth noting
that in the MIV analysis of NN2, Tme has a great influence on the calibration performance,
and its PMIV contribution is 76%, while the total contribution of the other four parameters
is only 24%. The critical parameters and the first two PCs of noncritical parameters were
input to construct the NN3 model. The calculated MIV and PMIV also indicate that the
noncritical parameters contribute little to the model output, which is similar to the results
in which only CFOSAT parameters are included (Figure 6).

Figure 6. Proportions of PMIV with the median RMSE (upper panels) and boxplots of the MIV were
calculated from the three stages NN modeling results (NN1, NN2, and NN3) with 1000 samples
from the CFOSAT parameters (Table 1) (lower panels). PC1 and PC2 are the first two PC of the
non-critical parameters. Points in red “+” are drawn as outliers if they are larger than the maximum
(Q3 + 1.5 × (Q3 − Q1)) or smaller than the minimum (Q1 − 1.5 × (Q3 − Q1)), where Q1 and Q3 are
the 25th and 75th percentiles, respectively.



Remote Sens. 2022, 14, 773 13 of 23

Figure 7. Boxplots of the RMSE, MAE, STD, and r of the SWIM observed dominant wavelengths
and the validation results in the three-stage NN models (NN1, NN2, and NN3) based on self-
calibration in which only CFOSAT parameters (Table 1) were used. Points in red “+” are drawn as
outliers if they are larger than the maximum (Q3 + 1.5 × (Q3 − Q1)) or smaller than the minimum
(Q1 − 1.5 × (Q3 − Q1)), where Q1 and Q3 are the 25th and 75th percentiles, respectively.

Compared to the calibration results based only on the parameters obtained from
CFOSAT (Figure 7), if the ERA5 parameter is supplemented, the performance will be
further improved (Figure 9). The RMSE will be reduced to 30–40 m, the MAE will be
reduced to 20–30 m, r will be increased to 0.7–0.9, and the STD will be closer to the buoy-
observed STD. By comparing the results of the three modeling stages, the models with
critical parameters (NN2) are better than those with all parameters (NN1) or with critical
parameters and the PC of noncritical parameters (NN3). As shown in Figure 9 and Table 3,
the RMSE and MAE of NN2 are approximately 4 m lower than those of NN1, and r is
approximately 0.05 higher than those of NN1. It can also be seen that selecting critical
parameters to actuate an NN model can greatly accelerate the calculation efficiency with a
more optimized result.
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Figure 8. Similar to Figure 6 but for CFOSAT + ERA5 parameters (Tables 1 and 2) are included in
the NN modeling. Points in red “+” are drawn as outliers if they are larger than the maximum
(Q3 + 1.5 × (Q3 − Q1)) or smaller than the minimum (Q1 − 1.5 × (Q3 − Q1)), where Q1 and Q3 are
the 25th and 75th percentiles, respectively.

Among the 1000 models based on random samples, the model in which the RMSE
of validation sample of the SWIM wavelength is closest to median was selected as a
representative for analysis. As shown in Figure 10, even if samples are randomly divided
for calibration and verification, different NN models are capable of calibrating the SWIM
wavelengths. In this sampling scheme, the RMSE for the validation samples is 94.6 m
(corresponding to the red line of SWIM boxplot in the upper-left panels of Figures 7 and 9),
and the RMSE for the calibration samples is 100.0 m. In the calibration phase, the NN2
models based on CFOSAT self-calibration and adding ERA5 parameters reduced RMSE
to 34.0 m and 21.0 m, respectively, with other indexes also improved. In the validation
phase, the NN2 models based on CFOSAT self-calibration and adding ERA5 parameters
reduced RMSE to 33.5 m and 31.0 m, MAE to 27.5 m and 20.2 m, with r rising to 0.77 and
0.82, respectively.

4.2. Typical Calibration Results in the Chronological Order

In the above section, model experiments were randomly sampled by the Monte Carlo
method, and the critical parameters of the model were selected from the statistical point
of view, which verified the feasibility of using the NN model to calibrate the CFOSAT
dominant wavelength. However, in the practical application of model calibration param-
eters, the periods of modeling and application are not randomly distributed but usually
use available data to establish a model and then apply the model to an unknown period.
To consider this situation, the present section adopts the corresponding sampling method;
that is, the former 75% of the data sequence (late July 2019 to early September 2020) is
used for model training (calibration), and then the remaining 25% (mid-September 2020 to
January 2021) is used for model validation. We repeat the above three stages of NN model
experiments. Considering that the effect of NN modeling also has randomness, we use the
same sample and parameter settings to model 20 times and take the group of results with
RMSE as the median for analysis.
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Taylor diagrams of models are shown in Figure 11. It can be seen from the figure
that the accuracy of the satellite observed wavelength can be greatly improved by using
NN models with different input parameters in each stage. In the calibration period, the
centered pattern root-mean-square difference (RMSD) is reduced from more than 80 m to
20–40 m, and r is increased from 0 to 0.6–0.9. In the verification period, the RMSD decreases
from 70 m to 30–50 m, r increases from 0.4 to 0.5–0.8, and the STD difference also decreases.
Furthermore, it is found that the performance of the model based on the combination of
CFOSAT and ERA5 parameters is better than that based only on the CFOSAT parameters.
Moreover, comparing the NN models in the three stages, it is found that the performance
of the NN2 model is relatively better. This shows that the effect of the calibration model
with critical parameters is better than that with all parameters.

Figure 9. Same as Figure 7 but for external-source calibration, ERA5 parameters are also included
(i.e., Tables 1 and 2) in the NN models. Points in red “+” are drawn as outliers if they are larger than
the maximum (Q3 + 1.5 × (Q3 − Q1)) or smaller than the minimum (Q1 − 1.5 × (Q3 − Q1)), where
Q1 and Q3 are the 25th and 75th percentiles, respectively.
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Figure 10. Typical calibration (left part, (a–c)) and validation (right part, (d–f)) example of the NN2
model in which the RMSE of validation sample of the SWIM wavelength is closest to median out of
1000 samplings (i.e., the red lines of the SWIM boxplots in the upper-left panels of Figures 7 and 9);
(a,d) are the comparisons of wavelengths by buoy A and SWIM in scatters; (b,e) and (c,f) are the
scattering comparisons of wavelengths from buoy A and NN2 model with CFOSAT parameters and
CFOSAT + ERA5 parameters, respectively.

Figure 11. Taylor diagrams of the calibration (a) and validation (b) results for the three-stage NN
models (NN1, NN2, and NN3) using the typical sampling method (former 75% for calibration
and latter 25% for validation); squares represent the results in which only CFOSAT parameters
(Table 1) were used, while circles represent the results in which ERA5 parameters (Tables 1 and 2)
were additionally included. RMSD in the Taylor diagram indicates the centered pattern root-mean-
square difference.



Remote Sens. 2022, 14, 773 17 of 23

Specifically, the NN2 model is further analyzed, and the results of the model built
with the CFOSAT parameters and the CFOSAT + ERA5 parameters are shown in Figure 12.
From the comparison of time series and scatter points, it can be found that the NN2 model
can effectively calibrate the satellite-observed results of the dominant wavelength. In the
calibration period, more than one year of data is used, among which the wavelength obser-
vation errors in summer and autumn are large. The calibration model can be effectively
corrected to improve many model indexes. Although the verification period is in winter
and spring when the satellite observation errors are relatively small, the model results can
still bring the dominant wavelength closer to the observation values. In the scatterplots
where calibrated wavelengths are compared with observations, most of the matching points
are not far from either side of the 1:1 line, and the fitting lines almost coincide with the 1:1
line. Under this sample division scheme, the performance of using the CFOSAT + ERA5
parameters to build the model is also better than using the CFOSAT parameters only, and
the matching point is closer to the 1:1 line.

Figure 12. Validation results of the NN2 model with a typical sampling method (former 75% for
calibration and latter 25% for validation); (a) comparisons of wavelengths by SWIM, NN2 model,
and buoy A in time series; (b) comparisons of wavelengths by SWIM and buoy A in scatters;
(c,d) scattering comparisons of wavelengths from buoy A and NN2 model with CFOSAT parameters
and CFOSAT + ERA5 parameters, respectively.

4.3. Validation Results against an Independent Buoy Dataset

The above section shows the calibration and verification results of SWIM data at buoy
A station. As mentioned, this study collected buoy observations at buoy B for 10 months
and compared satellite results. Due to a small number of matching data (58 groups),
independent modeling was not possible. Using buoy B data, the model established based
on the samples of buoy A was validated at a different site. The results showed that all
the statistics improved significantly based on different modeling schemes (Figure 13).
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The results not only further prove the validity of the proposed calibration model for the
wavelength data of satellite measurements at specific stations but also prove that the
calibration method has good migration capability.

Figure 13. Boxplots of the RMSE, MAE, STD, and r of the SWIM dominant wavelengths and the
validation results of the NN2 models at buoy B. The upper panels show the self-calibration results
with CFOSAT parameters, and the lower panels show external-source calibration in which both
CFOSAT and ERA5 parameters are included. The NN2 models are established by the Monte Carlo
experiments based on the data at buoy A. Points in red “+” are drawn as outliers if they are larger
than the maximum (Q3 + 1.5 × (Q3 − Q1)) or smaller than the minimum (Q1 − 1.5 × (Q3 − Q1)),
where Q1 and Q3 are the 25th and 75th percentiles, respectively.

It is worth noting that the improved indicators of different models for the verification
sample at buoy B show a very discrete pattern. For the statistics of 1000 groups of model
samples, there are many outliers with poor verification effect, indicating the random
instability generated by the model in migration (Figure 13). For example, according to the
RMSE of 1000 calibration models that both CFOSAT and ERA5 parameters are input, there
are 36 models are zoned as outliers with red “+”, so they are classified as abnormal models,
and the remaining 964 models are classified as normal models.

By tracing the source of the two types of models, their improvement effect on the
sample at buoy A can be reanalyzed. For example, the lower-left panel in Figure 14 shows
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that the median declines in RMSE of 36 abnormal models and 964 normal models based on
CFOSAT + ERA5 parameters are 52.52 m (cyan blue arrow) and 62.64 m (orange arrow),
respectively. The improvement range of the SWIM wavelength of the normal model is better.
By comparing the error indexes of normal models and abnormal models, we can find that
except for MEA of the self-calibration model based on CFOSAT parameters (upper middle
panel in Figure 14), the improvement of other indexes of the normal models is better than
that of abnormal models. This reveals that models with better local calibration performances
are more suitable and stable to calibrate the SWIM wavelength for neighboring locations
and thus have higher promotion and application ability.

Figure 14. Boxplot comparison of validation results between the abnormal (left in each subplot)
and normal (right in each subplot) NN2 models at buoy A. The abnormal and normal models are
corresponding to the outlier samples (in red “+”) and remaining samples in Figure 13, respectively.
The upper panels show the self-calibration results with CFOSAT parameters, and the lower panels
show external-source calibration in which both CFOSAT and ERA5 parameters are included.

5. Discussion
5.1. Self-Calibration Ability of the Dominant Wavelength of CFOSAT

Satellite remote sensing is an effective means to realize large-area wave observations,
e.g., [1,13,14]. Traditional satellites only use altimeters to measure wave height, due to
the new type of off-nadir spectrometer SWIMcarried by CFOSAT, it is possible to directly
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obtain the wavelength information [4–7]. However, in certain local sea areas, such as the
SSCS, the results of satellite measurements are susceptible to multiple islands or reefs due
to the complexity of terrain and environment [10–12]. Therefore, the wavelength of satellite
measurements can easily deviate from field observations (Figure 2).

One of the main results of this study is that the wavelength measurement deviation
of CFOSAT can be corrected effectively by other parameters measured by the satellite.
Both the results of 1000 calibration experiments with random sampling and the results
of specific sampling methods with the earlier 75% data for calibration followed by 25%
data for validation show that the model established by CFOSAT parameters can effectively
reduce the RMSE and MAE of the dominant wavelength of satellite measurement, improve
r and make the STD closer to the observed values (Figures 7, 11 and 12). This result is
further confirmed by verification against independent buoy samples (Figure 13).

The reason why this calibration can be effective is that several critical parameters
(Table 1 and Figure 6) obtained by the satellite provide relatively accurate information to
establish the relationship between satellite measurements and the accurate wavelength
value. Previous studies have retrieved wave period parameters from altimetry wave height
and wind speed parameters based on analytical equations with artificial neural networks,
e.g., [2,3]. However, in this study, we use NN models rather than analytical equations
to directly describe this correlation, to introduce more information (parameters) into the
correlation. For example, if the nine factors in Table 1 are introduced to structure a fixed
equation, the equation will be complicated to establish. Using a neural network model can
effectively solve this problem. For example, the recent research of Wang et al. [20,30,38]
used NN models to calibrate and reconstruct the wave parameters (including wave period)
of CFOSAT and achieved good results.

The dominant wavelength data measured by satellites can play an important role
in engineering applications and scientific research. For disaster early warning, military
activities, and other applications that require high timeliness of data, satellites must syn-
chronously calibrate the data with other parameters measured by themselves. The results
of this study confirm that CFOSAT has the potential to complete such synchronization
calibration of the dominant wavelength (Figures 7 and 12). In addition, for applications
requiring high data quality, such as scientific research using satellite data, it is necessary
to further improve the wavelength data by using external-source parameters. The results
show that supplementary input of ERA5 data can indeed further optimize the dominant
wavelength data (Figures 8, 9 and 12), mainly through providing relatively accurate wave-
length (wave period) information. However, due to the difficulty of synchronizing the data
from other sources with satellite data, such as ERA5, which needs to be reanalyzed through
model calculation [39], the timeliness of the generated data inevitably lags.

5.2. Critical Parameters for the Calibration of Dominant Wavelength of CFOSAT

Research in different fields has shown that the selection of appropriate input param-
eters has an important influence on the effectiveness of NN models [20,21]. The input of
irrelevant parameters may not improve the NN model but may even worsen the model [23].
The results of this paper also show that using critical parameters to build the NN model
(NN2) requires fewer computing resources and is more accurate than using all parameters
to build the NN model (NN1) and even adding kernel principal components of noncritical
parameters (NN3) (Figures 7, 9 and 11). This is probably because avoiding input of informa-
tion that is not closely related to wavelength calibration can avoid the misleading effect of
those factors on NN, thus allowing NN to focus more on the relationship between closely
related parameters and wavelength in the modeling process and achieve better results.

In this study, by carrying out systematic modeling experiments, the critical parameters
of calibrating the CFOSAT dominant wavelength by the NN model were extracted, includ-
ing the distance of the off-nadir sampling point from the calibration point (dists), nadir
significant wave height (SWHn), nadir wind speed (Windn), and the dominant wavelength
(wavelens) itself observed by the satellite (Figure 6). When these four parameters were
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used for the calibration, the dominant wavelength would become much more closed to the
reference values observed by buoys, with the indexes of RMSE, MAE, r, and STD signifi-
cantly improved (e.g., Figures 7, 10e and 12c). The identification of the four parameters as
the critical parameters is consistent with existing knowledge. For example, by providing
accurate wave height information, a relatively accurate scale of wave sizes can be indicated
to the calibration model. Moreover, the wind is closely related to the development degree of
the wave [9], so providing accurate wind speed information can make the model realize the
real development degree of the wave and then adjust the proportion relationship between
wave height and wavelength. Previous studies have also pointed out that wind speed
and significant wave height are also parameters that need to be input for the wave period
retrieval of altimeter data [2,3].

It is also worth noting that the contribution of the wave period (Tme) is more than
3/4, much larger than the total influence of the other four critical parameters (Figure 8).
Therefore, if external data are to be used, the most effective way is to provide a promis-
ing reference value of the wavelength (or the wave period according to the dispersion
relationship), which is more meaningful than supplementing other parameter information.

6. Conclusions

The off-nadir spectrometer SWIM (Surface Investigation and Monitoring) of CFOSAT
(China France Oceanography Satellite) can obtain the directional spectrum in the global
ocean scale, to provide wavelength data. Although the data quality of the satellite has
been widely recognized in most open oceans, there will inevitably be a shortage in the
data quality in some sea areas, such as the southern South China Sea (SSCS), because
the environmental conditions may be inconsistent with the open sea area. In this paper,
the practicability of calibrating CFOSAT wavelength data against in situ observations in
the SSCS by using artificial neural network (NN) models is systematically analyzed. To
avoid the uncertainty caused by insufficient data, the Monte Carlo method was used to
conduct random sampling, and a large number of repeated experiments were carried out.
For each group of sampling data, NN model construction and mean impact value (MIV)
analysis are carried out. The results show that the NN model based on the parameters
measured by CFOSAT can greatly reduce the error of the SWIM dominant wavelength
(e.g., Figures 7 and 10–13).

This study mainly contributes to two aspects. Firstly, the feasibility of self-calibration
of the dominant wavelength by using CFOSAT measurements is verified. In addition, the
critical parameters to realize the calibration are obtained. Besides the dominant wave-
length itself, parameters such as the distance of the sampling point from the calibration
point, the nadir significant wave height, and the nadir wind speed are also important for
the calibration.

This study may provide reference and technical support for the application of CFOSAT
data in local sea areas. In future research, it is still necessary to further calibrate and verify
the wave data observed by CFOSAT using multichannel data in more sea areas to further
optimize the satellite algorithm. Improving the quality of data, such as the dominant
wavelength of satellite measurement, is important for providing better service of satellite
data in engineering applications and scientific research.
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