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Calibration-Free Augmented Reality
Kiriakos N. Kutulakos, Member, IEEE, and James R. Vallino, Student Member, IEEE

Abstract—Camera calibration and the acquisition of Euclidean 3D measurements have so far been considered necessary
requirements for overlaying three-dimensional graphical objects with live video. In this article, we describe a new approach to video-
based augmented reality that avoids both requirements: It does not use any metric information about the calibration parameters of
the camera or the 3D locations and dimensions of the environment’s objects. The only requirement is the ability to track across
frames at least four fiducial points that are specified by the user during system initialization and whose world coordinates are
unknown.

Our approach is based on the following observation: Given a set of four or more noncoplanar 3D points, the projection of all
points in the set can be computed as a linear combination of the projections of just four of the points. We exploit this observation by
1) tracking regions and color fiducial points at frame rate, and 2) representing virtual objects in a non-Euclidean, affine frame of
reference that allows their projection to be computed as a linear combination of the projection of the fiducial points. Experimental
results on two augmented reality systems, one monitor-based and one head-mounted, demonstrate that the approach is readily
implementable, imposes minimal computational and hardware requirements, and generates real-time and accurate video overlays
even when the camera parameters vary dynamically.

Index Terms—Augmented reality, real-time computer vision, calibration, registration, affine representations, feature tracking, 3D
interaction techniques.

�——————————   ✦   ——————————

�1 INTRODUCTION

�HERE has been considerable interest recently in mixing
live video from a camera with computer-generated

graphical objects that are registered in a user’s three-
dimensional environment [1]. Applications of this powerful
visualization technique include guiding trainees through
complex 3D manipulation and maintenance tasks [2], [3],
overlaying clinical 3D data with live video of patients dur-
ing surgical planning [4], [5], [6], [7], [8], as well as devel-
oping three-dimensional user interfaces [9], [10]. The re-
sulting augmented reality systems allow three-dimensional
“virtual” objects to be embedded into a user’s environment
and raise two issues unique to augmented reality:

•� Establishing 3D geometric relationships between physical
and virtual objects: The locations of virtual objects must
be initialized in the user’s environment before user
interaction can take place.

•� Rendering virtual objects: Realistic augmentation of a
3D environment can only be achieved if objects are
continuously rendered in a manner consistent with
their assigned location in 3D space and the camera’s
viewpoint.

At the heart of these issues lies the ability to register the
camera’s motion, the user’s environment and the embed-
ded virtual objects in the same frame of reference (Fig. 1).
Typical approaches use a stationary camera [10] or rely on
3D position tracking devices [11] and precise camera cali-
bration [12] to ensure that the entire sequence of transfor-
mations between the internal reference frames of the virtual

and physical objects, the camera tracking device, and the
user’s display is known exactly. In practice, camera calibra-
tion and position tracking are prone to errors which propa-
gate to the augmented display [13]. Furthermore, initializa-
tion of virtual objects requires additional calibration stages
[4], [14], and the camera must be dynamically recalibrated
whenever its position or its intrinsic parameters (e.g., focal
length) change.

This article presents a novel approach to augmented re-
ality whose goal is the development of simple and portable
video-based augmented reality systems that are easy to
initialize, impose minimal hardware requirements, and can
be moved out of the highly-controllable confines of an
augmented reality laboratory. To this end, we describe the
design and implementation of an augmented reality system
that generates fast and accurate augmented displays using
live video from one or two uncalibrated camcorders as the
only input. The key feature of the system is that it allows
operations such as virtual object placement and real-time
rendering to be performed without relying on any informa-
tion about the calibration parameters of the camera, the
camera’s motion, or the 3D locations, dimensions, and
identities of the environment’s objects. The only require-
ment is the ability to track across frames at least four fidu-
cial points that are specified by the user during system ini-
tialization and whose world coordinates are unknown.

Our work is motivated by recent approaches to video-
based augmented reality that reduce the effects of calibra-
tion errors through real-time processing of the live video
images viewed by the user [6], [14], [15], [16], [17]. These
approaches rely on tracking the projection of a physical
object or a small number of fiducial points in the user’s 3D
environment to obtain an independent estimate of the cam-
era’s position and orientation in space [18], [19], [20]. Even
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though highly-accurate video overlays have been achieved
in this manner by either complementing measurements
from a magnetic position tracker [15], [16] or by eliminating
such measurements entirely [6], [14], current approaches
require that

1)�a precise Euclidean 3D model is available for the ob-
ject or the fiducials being tracked,

2)� the camera’s calibration parameters are known at
system initialization, and

3)� the 3D world coordinates of all virtual objects are
known in advance.

As a result, camera calibration and the acquisition of 3D
measurements have so far been considered necessary re-
quirements for achieving augmented reality displays [12],
[13] and have created a need for additional equipment such
as laser range finders [14], position tracking devices [11],
and mechanical arms [16].

To eliminate these requirements, our approach uses the
following observation, pointed out by Koenderink and van
Doorn [21] and Ullman and Basri [22]: Given a set of four or
more noncoplanar 3D points, the projection of all points in
the set can be computed as a linear combination of the pro-
jections of just four of the points. We exploit this observa-
tion by

1)� tracking regions and color fiducial points at frame
rate, and

2)� representing virtual objects so that their projection can
be computed as a linear combination of the projection
of the fiducial points.

The resulting affine virtual object representation is a non-
Euclidean representation [21], [23], [24], [25] in which the
coordinates of vertices on a virtual object are relative to an
affine reference frame defined by the fiducial points (Fig. 2).

Affine object representations have been a topic of active
research in computer vision in the context of 3D recon-
struction [21], [24], [26] and recognition [27]. While our re-
sults draw heavily from this research, the use of affine ob-
ject models in the context of augmented reality has not been
previously studied. Here, we show that placement of affine

virtual objects, as well as visible-surface rendering, can be
performed efficiently using simple linear methods that oper-
ate at frame rate, do not require camera calibration or Euclid-
ean 3D measurements, and exploit the ability of the aug-
mented reality system to interact with its user [28], [29].

To our knowledge, only two systems have been reported
[6], [14] that operate without specialized camera tracking
devices and without relying on the assumption that the
camera is always fixed or perfectly calibrated. The system
of Mellor [14] is capable of overlaying 3D medical data over
live video of patients in a surgical environment. The system
tracks circular fiducials in a known 3D configuration to
invert the object-to-image transformation using a linear
method. Even though the camera does not need to be cali-
brated at all times, camera calibration is required at system

Fig. 1. Coordinate systems for augmented reality. Correct registration of graphics and video requires 1) aligning the internal coordinate systems of
the graphics and the video cameras, and 2) specifying the three transformations O, C, and P that relate the coordinate systems of the virtual ob-
jects, the environment, the video camera, and the image it produces.

Fig. 2. Example video overlays produced by our system. The virtual
wireframe object is represented in an affine reference frame defined by
the white planar region on the wall and the mousepad. These regions
were tracked at frame rate by an uncalibrated camera. The shape and
3D configuration of the regions was unknown.
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initialization time and the exact 3D location of the tracked
fiducials is recovered using a laser range finder. The most
closely related work to our own is the work of Uenohara
and Kanade [6]. Their system allows overlay of planar dia-
grams onto live video by tracking fiducial points in an un-
known configuration that lie on the same plane as the dia-
gram. Calibration is avoided by expressing diagram points
as linear combinations of the coplanar fiducial points. Their
study did not consider uncalibrated rendering or interac-
tive placement of 3D virtual objects.

Our approach both generalizes and extends previous
approaches in four ways.

1)�First, the embedding of affinely-represented virtual
objects into live video of a 3D environment is
achieved without using any metric information about
the objects in the camera’s field of view or the cam-
era’s calibration parameters.

2)�Second, we show that, by representing virtual objects
in an affine reference frame and by performing com-
puter graphics operations such as projection and visi-
ble-surface determination directly on affine models,
the entire video overlay process is described by a sin-
gle 4 ¥ 4 homogeneous view transformation matrix [30].
Furthermore, the elements of this matrix are simply
the image x- and y- coordinates of fiducial points.
This not only enables the efficient estimation of the
view transformation matrix but also leads to the use
of optimal estimators, such as the Kalman filter [31],
[32], [33], to track the fiducial points and to compute
the matrix.

3)�Third, the use of affine models leads to a simple
through-the-lens method [34] for interactively placing
virtual objects within the user’s 3D environment.

4)�Fourth, efficient execution of computer graphics op-
erations on affine virtual objects and real-time (30Hz)
generation of overlays are achieved by implementing
affine projection computations directly on dedicated
graphics hardware.

The affine representation of virtual objects is both pow-
erful and weak: It allows us to compute an object’s projec-
tion without requiring information about the camera’s po-
sition or calibration, or about the environment’s Euclidean
3D structure. On the other hand, this representation cap-
tures only properties of the virtual object that are main-
tained under affine transformations—metric information,
such as the distance between an object’s vertices and the
angle between object normals, is not captured by the affine
model. Nevertheless, our purpose is to show that the in-
formation that is maintained is sufficient for correctly ren-
dering virtual objects. The resulting approach provides a
simple and direct way to simultaneously handle lack of envi-
ronmental 3D models and variability or errors in the camera
calibration parameters. This is particularly useful when the
live video signal is generated by a camera whose focal length
can be changed interactively, when graphical objects are em-
bedded in concurrent live video streams from cameras whose
internal parameters are unknown and possibly distinct, or
when explicit models for the space being augmented are not
readily available (e.g., the desktop scene of Fig. 2).

The rest of the article is organized as follows. Section 2
introduces the geometry of the problem and reviews basic
results from the study of affine object representations. Sec-
tion 3 applies these results to the problem of rendering af-
finely-represented graphical objects and shows that the en-
tire projection process can be described in terms of an affine
view transformation matrix that is derived from image
measurements. Section 4 then considers how affinely-
represented objects can be “placed” in the camera’s envi-
ronment using a simple through-the-lens interactive tech-
nique, and Section 5 shows how to compute the affine view
transformation matrix by tracking uniform-intensity re-
gions and color fiducial points in the live video stream. To-
gether, Sections 3, 4, and 5 form the core of our approach
and provide a complete framework for merging graphical
objects with live video from an uncalibrated camera. The
implementation and experimental evaluation of two pro-
totype augmented reality systems that use this framework,
one monitor-based and one head-mounted, are presented in
Section 6. Section 7 then briefly outlines an application that
is particularly suited to our affine augmented reality ap-
proach and is aimed at interactively building affine object
models from live video images. Limitations of our approach
are summarized in Section 8.

2 GEOMETRICAL FOUNDATIONS

Accurate projection of a virtual object requires knowing
precisely the combined effect of the object-to-world, world-
to-camera, and camera-to-image transformations [30]. In
homogeneous coordinates, this projection is described by
the equation
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where [x y z w]
T
 is a point on the virtual object, [u v h]

T
 is its

projection, O4¥4 and C4¥4 are the matrices corresponding to
the object-to-world and world-to-camera homogeneous
transformations, respectively, and P3¥4 is the matrix mod-
eling the object’s projection onto the image plane (Fig. 1).

Equation (1) implicitly assumes that the 3D coordinate
frames corresponding to the camera, the world, and the
virtual object are not related to each other in any way. The
main idea of our approach is to represent both the object
and the camera in a single, non-Euclidean coordinate frame
defined by fiducial points that can be tracked across frames
in real time. This change of representations, which amounts
to a 4 ¥ 4 homogeneous transformation of the object and
camera coordinate frames, has two effects:

•� It simplifies the projection equation. In particular, (1)
becomes
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 are the transformed coordinates of
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T
 and P3¥4 models the combined effects

of the change in the object’s representation as well as
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the object-to-world, world-to-camera, and projection
transformations.

•� It allows the elements of the projection matrix, P3¥4, to
be simply the image coordinates of the fiducial points.
Hence, the image location of the fiducial points con-
tains all the information needed to project the virtual
object; the 3D position and calibration parameters of
the camera, as well as the 3D location of the fiducial
points, can be unknown. Furthermore, the problem of
determining the projection matrix corresponding to a
given image becomes trivial.

To achieve these two effects, we use results from the the-
ory of affine-invariant object representations which was
recently introduced in computer vision research. These rep-
resentations become important because they can be con-
structed for any virtual object without requiring informa-
tion about the object-to-world, world-to-camera, or camera-
to-image transformations. The only requirement is the abil-
ity to track across frames a few fiducial points, at least four
of which are not coplanar. The basic principles behind these
representations are briefly reviewed next. We will assume
in the following that the camera-to-image transformation
can be modeled using the weak perspective projection model
[35] (Figs. 3a and 3b).

2.1 Affine Point Representations
A basic operation in our method for computing the projec-
tion of a virtual object is that of reprojection [37], [38]: Given
the projection of a collection of 3D points at two positions
of the camera, compute the projection of these points at a
third camera position. Affine point representations allow us
to reproject points without knowing the camera’s position
and without having any metric information about the
points (e.g., 3D distances between them).

In particular, let p1, º, pn Œ ¬
3
, n ≥ 4, be a collection of

points, at least four of which are not coplanar. An affine repre-
sentation of those points is a representation that does not
change if the same non-singular linear transformation (e.g.,
translation, rotation, scaling) is applied to all the points. Af-
fine representations consist of three components: The origin,

which is one of the points p1, º, pn ; the affine basis points,

which are three points from the collection that are not copla-
nar with the origin; and the affine coordinates of the points

p1, º, pn, expressing the points pi, i = 1, º, n in terms of the

origin and affine basis points. We use the following two
properties of affine point representations [21], [24], [26] (Fig. 4):

PROPERTY 1 (Reprojection Property). When the projection of the
origin and basis points is known in an image Im, we can com-
pute the projection of a point p from its affine coordinates:
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or, equivalently,
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where u vp
m

p
m T

1  is the projection of p; b1, b2, b3 are the basis

points; u vp
m

p
m

T

o o
1  is the projection of the origin; and [x y z 1]

T

is the homogeneous vector of p’s affine coordinates.

Property 1 tells us that the projection process for any
camera position is completely determined by the projection
matrices collecting the image coordinates of the affine basis

            

             (a)           (b)                              (c)

Fig. 3. Projection models and camera reference frames. (a) Orthographic projection. The image projection of a world point p is given by [p
T
X p

T
Y]

T
,

where X and Y are the unit directions of the rows and columns of the camera, respectively, in the world reference frame. The camera’s internal
reference frame is given by the vectors X and Y as well as the camera’s viewing direction, Z, which is orthogonal to the image plane. (b) Weak

perspective projection. Points p1, p2 are first projected orthographically onto the image plane and then the entire image is scaled by f /zavg, where

f is the camera’s focal length and zavg is the average distance of the object’s points from the image plane. Image scaling is used to model the
effect of object-to-camera distance on the object’s projection; it is a good approximation to perspective projection when the camera’s distance to

the object is much larger than the size of the object itself [36]. (c) The image projection of an affinely-represented point p is given by [p
T
c p

T
y]

T
,

where c and y are the directions of the rows and columns of the camera, respectively, in the reference frame of the affine basis points. The cam-

era’s internal reference frame is defined by the vectors c and y as well as the camera’s viewing direction, z. These vectors will, in general, not
form an orthonormal reference frame in (Euclidean) 3D space.
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points in (3) and (4). These equations, which make precise
(2), imply that if the affine coordinates of a virtual object are
known, the object’s projection can be trivially computed by
tracking the affine basis points. The following property
suggests that it is possible, in principle, to extract the affine
coordinates of an object without having any 3D information
about the position of the camera or the affine basis points:

PROPERTY 2 (Affine Reconstruction Property). The affine co-
ordinates of p1, º, pn can be computed using (4) when
their projection along two viewing directions is known.

Intuitively, Property 2 shows that this process can be
inverted if at least four noncoplanar 3D points can be
tracked across frames as the camera moves. More pre-
cisely, given two images I1, I2, the affine coordinates of a
point p can be recovered by solving an overdetermined
system of equations
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In Section 4, we consider how this property can be ex-
ploited to interactively “position” a virtual object within an
environment in which four fiducial points can be identified
and tracked.

2.2 The Affine Camera Coordinate Frame
The projection of a set of affinely-represented points can be
thought of as a more general transformation that maps
these points to an affine 3D coordinate frame attached to
the camera. The three vectors defining this frame are de-
rived directly from the projection matrix P2¥3 in (3) and ex-
tend to the uncalibrated case the familiar notions of an “im-
age plane” and a “viewing direction” (Fig. 3c):

PROPERTY 3 (Affine Image Plane). Let c and y be the vectors
corresponding to the first and second row of P2¥3, respec-
tively.

1)�The vectors c and y are the directions of the rows and

columns of the camera, respectively, expressed in the co-
ordinate frame of the affine basis points.

2)�The affine image plane of the camera is the plane
spanned by the vectors c and y.

The viewing direction of a camera under orthographic
or weak perspective projection is defined to be the unique
direction in space along which all points project to a sin-
gle pixel in the image. In the affine case, this direction is
expressed mathematically as the null-space of the matrix
P2¥3:

PROPERTY 4 (Affine Viewing Direction). When expressed in the
coordinate frame of the affine basis points, the viewing di-
rection, z, of the camera is given by the cross product

z = c ¥ y.                                     (6)

Property 4 guarantees that the set of points {p + tz, t Œ ¬}
that defines the line of sight of a point p will project to a
single pixel under (4).

Together, the affine row, column, and viewing direction
vectors define an affine 3D coordinate frame that describes
the orientation of the camera and is completely determined
by the projection of the basis points.

3 OBJECT RENDERING

The previous section suggests that once the affine coordi-
nates of points on a virtual object are determined relative
to four fiducials in the environment, the points’ projection
becomes trivial to compute. The central idea in our ap-
proach is to ignore the original representation of the object
altogether and perform all graphics operations with the
new, affine representation of the object. This representa-
tion is related to the original object-centered representa-

tion by a homogeneous transformation: if p1, p2, p3, p4 are

the coordinates of four noncoplanar points on the virtual
object expressed in the object’s coordinate frame and

¢ ¢ ¢ ¢p p p p1 2 3 4, , ,  are their corresponding coordinates in the

affine frame, the two frames are related by an invertible,
homogeneous object-to-affine transformation A such that

          

        (a)                 (b)          (c)

Fig. 4. Properties of affine point representations. The red fiducials p , p , p , po b b b1 2 3
 define an affine coordinate frame within which all world points

can be represented: Point po is the origin, and points p , p , pb b b1 2 3
 are the basis points. The affine coordinates of a fifth point, p, are computed

from its projection in images (a) and (b) using Property 2. p’s projection in image (c) can then be computed from the projections of the four basis
points using Property 1.
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¢ ¢ ¢ ¢ =p p p p p p p p1 2 3 4 1 2 3 4, , , A .                     (7)

One of the key aspects of affine object representations is
that, even though they are non-Euclidean, they never-
theless allow rendering operations, such as z-buffering
and clipping [30], to be performed accurately. This is be-
cause depth order, as well as the intersection of lines and
planes, is preserved under affine transformations.

More specifically, z-buffering relies on the ability to or-
der in depth two object points that project to the same
pixel in the image. Typically, this operation is performed
by assigning to each object point a z-value which orders
the points in decreasing distance from the image plane of
the (graphics) camera. The observation we use to render
affine objects is that the actual z-value assigned to each
point is irrelevant as long as the correct ordering of points
is maintained. To achieve such an ordering, we represent
the camera’s viewing direction in the affine frame defined
by the fiducial points being tracked and we order all ob-
ject points back-to-front along this direction.

An expression for the camera’s viewing direction is pro-
vided by (6). This equation, along with Property 3, tells us

how to compute a camera’s affine viewing direction, z,
from the projection of the tracked fiducial points. To order
points along this direction we assign to each point p on

the model a z-value equal to the dot product [z
T
 0]

T
 ◊ p.

Correct back-to-front ordering of points requires that
the affine viewing direction points toward the front of the
image plane rather than behind it. Unfortunately, the
projection matrix does not provide sufficient information
to determine whether or not this condition is satisfied. We
use a simple interactive technique to fix the sign of z and
resolve this “depth reversal” ambiguity: When the first
virtual object is overlaid with the live video signal during
system initialization, the user is asked to select any two
vertices p1, p2 on the object for which the vector p2 - p1

points away from the camera. The sign of z is then chosen
to ensure that the dot product z

T
 ◊ (p2 - p1) is positive.

1

The above considerations suggest that once the sign of
the affine viewing direction is established, the entire pro-
jection process is described by a single 4 ¥ 4 homogeneous
matrix:

OBSERVATION 1 (Projection Equation). Visible surface render-
ing of a point p on an affine object can be achieved by ap-
plying the following transformation to p:
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where u and v are the image coordinates of p’s projection
and w is p’s assigned z-value.

The 4 ¥ 4 matrix in (8) is an affine generalization of the
view transformation matrix, which is commonly used in
computer graphics for describing arbitrary orthographic

1. Sign consistency across frames is maintained by requiring that succes-
sive z-vectors always have positive dot product.

and perspective projections of Euclidean objects and for
specifying clipping planes. A key practical consequence of
the similarity between the Euclidean and affine view
transformation matrices is that graphics operations on
affine objects can be performed using existing hardware
engines for real-time projection, clipping, and z-buffering.
In our experimental system, the matrix of (8) is input di-
rectly to a Silicon Graphics RealityEngine2 for imple-
menting these operations efficiently in OpenGL and
OpenInventor (Fig. 5).

4 INTERACTIVE OBJECT PLACEMENT

Before virtual objects can be overlaid with images of a
three-dimensional environment, the geometrical relation-
ship between these objects and the environment must be
established. Our approach for placing virtual objects in the
3D environment borrows from a few simple results in ste-
reo vision [25]: Given a point in space, its 3D location is
uniquely determined by the point’s projection in two im-
ages taken at different positions of the camera (Fig. 6a).
Rather than specifying the virtual objects’ affine coordinates
explicitly, the approach allows a user to interactively spec-
ify what the objects should “look like” in two images of the
environment. In practice, this involves specifying the pro-
jection of points on the virtual object in two images in
which the affine basis points are also visible. The main
questions here are:

1)�How many point projections need to be specified in
the two images,

2)�How does the user specify the projection of these
points, and

3)�How do these projections determine the objects’ affine
representation?

The number of point correspondences required to de-
termine the position and shape of a virtual object is equal to
the number of points that uniquely determine the object-to-
affine transformation. This affine transformation is
uniquely determined by specifying the 3D location of four
noncoplanar points on the virtual object that are selected
interactively (7).

To fix the location of a selected point p on the virtual
object, the point’s projection in two images taken at dis-
tinct camera positions is specified interactively, using a
mouse. The process is akin to stereo triangulation: By se-
lecting interactively the projections, q

L
, q

R
, of p in two im-

ages in which the projection of the affine basis points is
known, p’s affine coordinates can be recovered using the
Affine Reconstruction Property. Once the projections of a
point on a virtual object are specified in the two images,
the point’s affine coordinates can be determined by solv-
ing the linear system in (5). This solves the placement
problem for virtual objects.

The two projections of point p cannot be selected in an
arbitrary fashion. The constraints that govern this selection
limit the user degrees of freedom during the interactive
placement of virtual objects. Below we consider two con-
straints that, when combined, guarantee a physically-valid
placement of virtual objects.
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         (a)         (b)

    

               (c)         (d)

Fig. 5. Visible-surface rendering of texture-mapped affine virtual objects. The virtual towers were represented in OpenInventor
TM

. Affine basis
points were defined by the centers of the four green dots. The virtual towers were defined with respect to those points (see Section 4). (a) Initial aug-
mented view. (b) Augmented view after a clockwise rotation of the object containing the affine basis points. (c) Hidden-surface elimination occurs
only between virtual objects; correct occlusion resolution between physical and virtual objects requires information about the geometric relations
between them [11]. (d) Real-time visible surface rendering with occlusion resolution between virtual and real objects. Visibility interactions be-
tween the virtual towers and the L-shaped object were resolved by first constructing an affine graphical model for the object. By painting the entire
model a fixed background color and treating it as an additional virtual object, occlusions between that object and all other virtual objects are re-
solved via chroma- or intensity-keying. Such affine models of real objects can be constructed using the “3D stenciling” technique of Section 7.

               

 (a)                 (b)

Fig. 6. Positioning virtual objects in a 3D environment. (a) Any 3D point is uniquely specified by its projection in two images along distinct viewing

directions. The point is the intersection of the two visual rays, z L, z R that are parallel to the camera’s viewing direction and pass through the
point’s projections. (b) In general, a pair of arbitrary points in two images does not specify two intersecting visual rays. A necessary and sufficient
condition is to require the point in the second image to lie on the epipolar line, i.e., on the projection of the first visual ray in the second image.
This line is determined by the affine view transformation matrix.
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4.1 Epipolar Constraints
In general, the correspondence induced by q

L
 and q

R
 may

not define a physical point in space (Fig. 6b). Once p’s pro-
jection is specified in one image, its projection in the second
image must lie on a line satisfying the epipolar constraint
[35]. This line is computed automatically and is used to
constrain the user’s selection of q

R
 in the second image. In

particular, if P
L
, P

R
 are the upper 2 ¥ 3 blocks of the affine

view transformation matrices associated with the first and
second image, respectively, and z

 L
, z

 R
 are the correspond-

ing viewing directions defined by (6), the epipolar line can
be parameterized by the set

2
 [39]

2. We use the notation P
Le j

-1

 to denote the pseudo-inverse of the on-

square matrix P
L

. The set P
L L L

q t te j
-

+ Œ
RST

UVW
1

z R  therefore corresponds

to the ray of all affinely-represented points projecting to q
L

.

{P
R
[(P

L
)
-1

q
L
 + tz

 L
] | t Œ ¬}.                         (9)

In practice, the position of q
R
 is specified by interactively

dragging a pointer along the epipolar line of q
L
. The entire

process is shown in Fig. 7.

4.2 Object Snapping Constraints
Affine object representations lead naturally to a through-
the-lens method [28], [34], [40] for further constraining the
interactive placement of virtual objects. We call the result-
ing constraints object snapping constraints because they allow
a user to interactively position virtual objects relative to
physical objects in the camera’s view volume. Two such
constraints are used in our approach:

•� Point Collinearity Constraint: Suppose p is a virtual
object point projecting to q

L
 and l is a physical line

whose projection can be identified in the image. The

      

      (a)                     (b)              (c)

Fig. 7. Steps in placing a virtual parallelepiped on top of a workstation. (a) The mouse is used to select four points in the image at the position
where four of the object’s vertices should project. In this example, the goal is to align the object’s corner with the right corner of the workstation.
(b) The camera is moved to a new position and the epipolar line corresponding to each of the points selected in the first image is computed auto-
matically. The epipolar line corresponding to the lower right corner of the object is drawn solid. Crosses represent the points selected by the user.
(c) View of the object from a new position of the camera, overlaid with live video. The affine frame was defined by the workstation’s vertices, which
were tracked at frame rate. No information about the camera’s position or the Euclidean shape of the workstation is used in the above steps.

     

          (a)        (b)

Fig. 8. Object placement constraints. (a) Enforcing the Point Collinearity Constraint. The projection q
R

 of p in a second image is the intersection of

l ’s projection, l 
R

, and the epipolar line E corresponding to q
L
. (b) Enforcing the Point Coplanarity Constraint. Since r1, r2, r3, and p are coplanar, p

can be written in the form ar1 + br2 + gr3 (i.e., the points r1, r2, r3 constitute a 2D affine basis that can be used to describe point p). The coefficients

a, b, g  are computed from q
L
 and the projections of r1, r2, r3 in the first image. Once computed, these coefficients determine q

R
 uniquely.
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constraint that p lies on l uniquely determines p’s
projection, q

R
, in any other image in which l’s projec-

tion can also be identified (Fig. 8a).
3

•� Point Coplanarity Constraint: Suppose p is a virtual
object point projecting to q

L
 and r1, r2, r3 are three

points on a physical plane in the camera’s view vol-
ume. The constraint that p lies on the plane of r1, r2, r3

uniquely determines the projection q
R
 of p in any other

image in which r1, r2, r3 can be identified (Fig. 8b).
4

The collinearity and coplanarity constraints allow vir-
tual objects to be “snapped” to physical objects and inter-
actively “dragged” over their surface by forcing one or
more points on a virtual object to lie on lines or planes in
the environment that are selected interactively. Similar
constraints can be used to enforce parallelism between
planes on a virtual object and lines or planes in the user’s
environment (Fig. 9).

The above considerations lead to the following interac-
tive algorithm for placing virtual objects using a stereo pair
of uncalibrated cameras:

4.2.1 Interactive Object Placement Algorithm
Step 1: (User action) Select four or more corresponding fi-

ducial points in the stereo image pair to establish the
affine basis.

Step 2: Use (8) and (6) to compute the matrices P
L
, P

R
 and

the viewing directions, z
 L

, z
 R

 associated with the left
and right camera, respectively.

Step 3: (User action) Select four noncoplanar vertices p1, º,
p4 on the 3D model of the virtual object.

Step 4: (User action) Specify the projections of p1, º, p4 in
the left image.

3. The Point Collinearity Constraint is degenerate when the projection of l
is parallel to the epipolar lines. This degeneracy can be avoided by simply
moving the camera manually to a new position where the degeneracy does
not occur. Since no information about the camera’s 3D position is required
to achieve correct video overlays, this manual repositioning of the camera
does not impose additional computational or calibration steps.

4. The simultaneous enforcement of the coplanarity and epipolar con-
straints leads to an overdetermined system of equations that can be solved
using a least squares technique [35].

Step 5: Use (9) to compute the epipolar lines corresponding
to the points p1, º, p4, given P

L
, P

R
, z

 L
, and z

 R
. Over-

lay the computed epipolar lines with the right image.
Step 6: (Optional user action) Specify Point Collinearity and

Coplanarity Constraints for one or more of the verti-
ces p1, º, p4.

Step 7: Specifying the projections of p1, º, p4 in the right
image:

a. For every p1, º, p4 satisfying a collinearity or co-
planarity constraint, compute automatically the
vertice’s position in the right image by enforcing
the specified constraint.

b. For every p1, º, p4 that does not satisfy any colline-
arity or coplanarity constraints, allow the user to
choose interactively the vertice’s projection along
its epipolar line.

Step 8: Compute the affine coordinates of p1, º, p4 using (5).
Step 9: Use (7) to compute the affine coordinates of all points

on the virtual object from the affine coordinates of
p1, º, p4.

5 TRACKING AND PROJECTION UPDATE

The ability to track the projection of 3D points undergoing
rigid transformations with respect to the camera becomes
crucial in any method that relies on image information to
represent the position and orientation of the camera [6],
[14], [15], [29]. Real-time tracking of image features has
been the subject of extensive research in computer vision
(e.g., see [17], [18], [41], [42], [43], [44]). Here, we describe a
simple approach that exploits the existence of more than the
minimum number of fiducial points to increase robustness
and automatically provides an updated affine view trans-
formation matrix for rendering virtual objects.

The approach is based on the following observation:
Suppose the affine coordinates of a collection of n nonco-
planar fiducial points is known. Then, changes in the view
transformation matrix caused by a change in the camera’s
position, orientation, or calibration parameters can be mod-
eled by the equation

    

                     (a)    (b)                 (c)

Fig. 9. Aligning a virtual parallelepiped with a mousepad. Crosses show the points selected in each image. Dotted lines in (b) show the epipolars
associated with the points selected in (a). The constraints provided by the epipolars, the planar contact of the object with the table, as well as the
parallelism of the object’s sides with the side of the workstation allows points on the virtual object to be specified interactively even though no
fiducial points exist at any four of the object’s vertices. (c) Real-time overlay of the virtual object.
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DI = DP2¥ 4 M,                                  (10)

where DI is the change in the image position of the fidu-
cial points, DP2¥4 is the change in the upper two rows of
the view transformation matrix, and M is the matrix
holding the affine coordinates of the fiducial points.

Equation (10) leads directly to a Kalman filter-based
method both for tracking fiducial points (i.e., predicting
their image position across frames) and for continuously
updating the view transformation matrix. We use two in-
dependent constant velocity Kalman filters [31] whose
states consist of the first and second row of the matrix P2¥4,
respectively, as well as their time derivatives. The filters’
measurement equations are given by (10). Interpreted as
physical systems, these filters estimate the motion of the
coordinate frame of the affine camera (Section 2.2). Fur-
thermore, since the matrix P2¥4 holds the projections of
the four points defining the affine basis, these filters can
also be thought of as estimating the image position and
velocity of these projections. During the tracking phase,
the first two rows of the affine view transformation matrix
are contained in the state of the Kalman filters. The third
row of the matrix is computed from (6).

Equation (10) reduces the problem of updating the view
transformation matrix to the problems of tracking the im-
age trajectories of fiducial points in real time and of as-
signing affine coordinates to these points. Affine basis
tracking relies on real-time algorithms for tracking uniform-
intensity planar polygonal regions within the camera’s
view volume and for tracking color “blobs.” Affine coordi-
nate computations are performed during system initializa-
tion. We consider each of these steps below.

5.1 Tracking Polygonal Regions
The vertices of uniform-intensity planar polygonal regions
constitute a set of fiducial points that can be easily and effi-
ciently tracked in a live video stream. Our region tracking
algorithm proceeds in three steps:

1)� searching for points on the boundary of the region’s
projection in the current image,

2)�grouping the localized boundary points into linear
segments using the polyline curve approximation al-
gorithm [45], and

3)� fitting lines to the grouped points using least squares
in order to construct a polygonal representation of the
region’s projection in the current image.

Efficient search for region boundary points is achieved
through a radially-expanding, coarse-to-fine search that ex-
ploits the region’s uniform intensity and starts from a “seed”
point that can be positioned anywhere within the region.
Once the boundary points are detected and grouped, the re-
gion’s vertices are localized with subpixel accuracy by inter-
secting the lines fitted to adjacent point groups.

Region tracking is bootstrapped during system initializa-
tion by interactively selecting a seed point within two or more
uniform-intensity image regions. These seed points are sub-
sequently repositioned at the predicted center of the regions
being tracked (Fig. 10a). Since the only requirement for con-
sistent region tracking is that the seed points lie within the
regions’ projection in the next frame, region-based tracking
leads to accurate and efficient location of fiducial points while
also being able to withstand large interframe camera motions.

5.2 Tracking Color Blobs
Polygonal region tracking is limited by the requirement that
large polygonal regions must lie in the camera’s field of

     
        (a)         (b)

Fig. 10. Real-time affine basis tracking. (a) Tracking uniform-intensity regions. In this example, two regions are being simultaneously tracked, the
dark region on the wall and the workstation’s screen. The centers of each detected region are marked by a red cross. Also shown are the direc-
tions of lines connecting these centers to two of the detected region vertices. (b) Updating the view transformation matrix. The affine frame is
defined by the eight vertices of the dark regions being tracked. Once the affine coordinates of these vertices are computed using (11), (12), and
(13), the view transformation matrix is continuously updated using (10). The projection of the affine basis points corresponding to the current esti-
mate of matrix P2¥4 is overlaid with the image and shown in red: The projection of the frame origin, po, is given by the last column of P2¥4; the
projection of the three basis points, b1, b2, b3 is given by the first, second, and third column of P2¥4, respectively. The affine coordinates of all
region vertices are computed relative to this affine frame. Note that, even though this frame is defined by four physical points in space that remain
fixed when the camera moves, the points themselves are only indirectly defined—they coincide with the center of mass and principal components
of the 3D point set containing the vertices of the regions being tracked.
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view. To overcome this restriction, we also employ an alter-
native algorithm that exploits the availability of a dedicated
Datacube MV200 color video processor to track small col-
ored markers. Such markers can be easily placed on objects
in the environment, are not restricted to a single color, and
can occupy small portions of a camera’s visual field.

Tracking is achieved by detecting connected groups of
pixels of one or more a priori-specified colors. Each con-
nected group of pixels constitutes a “blob” feature whose
location is defined by the pixels’ centroid. Blob detection
proceeds by

1)�digitizing the video stream in a hue-saturation-value
(HSV) color space,

2)�using a lookup table to map every pixel in the image
to a binary value that indicates whether or not the
pixel’s hue and saturation are close to those of one of
the a priori-specified marker colors, and

3)� computing the connected components in the resulting
binary image [45].

Because these steps are performed by the video processor at
a rate of 30Hz, accurate localization of multiple color blobs
as small as 8 ¥ 8 pixels is accomplished in each frame inde-
pendently. This capability ensures that small color markers
are localized and tracked even if their projected position
changes significantly between images (e.g., due to a rapid
rotation of the camera). It also allows marker tracking to
resume after temporary occlusions caused by a hand mov-
ing in front of the camera or a marker that temporarily exits
the field of view.

5.3 Affine Coordinate Computation
The entries of the affine view transformation matrix can, in
principle, be updated by tracking just four non-coplanar
fiducials in the video stream. In order to increase resistance
to noise due to image localization errors, we use all de-
tected fiducial points to define the affine basis and to up-
date the matrix. We employ a variant of Tomasi and
Kanade’s factorization method [26], [46] that only allows
the matrix M of affine coordinates of n ≥ 4 fiducial points in
(10) to be recovered from m ≥ 2 views of the points. The
only input to the computation is a centered measurement ma-
trix that collects the image coordinates of the n fiducial
points at m unknown camera positions, centered by the
points’ center of mass in each frame. This matrix, which is of
rank three under noise-free conditions, is constructed by
tracking the selected fiducials while the camera is reposi-
tioned manually.

As shown in [26], [46], the rank-three property of the
measurement matrix allows us to assign a set of affine co-
ordinates to each fiducial point and a view transformation
matrix to each of the m views through a singular-value de-
composition of the matrix:
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where pi, i = 1, º, n are the detected fiducials and [uc vc]
T
 is

the center of mass of their projection. Specifically, if Um¥3,
S3¥3, and Vn¥3 are the upper m ¥ 3, 3 ¥ 3, and n ¥ 3 blocks of
U, S, and V, respectively, the first two rows of the view
transformation matrix in the jth image are defined by (12)
and (13) (Fig. 10b):
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Furthermore, the affine coordinates of the fiducials are
given by
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Intuitively, this decomposition of the measurement matrix
simply corresponds to a multiple-point, multiple-view gen-
eralization of the Affine Reconstruction Property and of (5).

6 IMPLEMENTATION AND RESULTS

To demonstrate the effectiveness of our approach we im-
plemented two prototype augmented reality systems: a
monitor-based system that relies on polygonal region
tracking to maintain correct registration of graphics and
live video, and a system that is based on a head-mounted
display (HMD) and relies on a dedicated video processor
and color blob tracking to track the affine basis points. Both
systems are briefly described below.

6.1 Monitor-Based System
The configuration of our monitor-based augmented reality
system is shown in Fig. 11. The system consists of two sub-
systems. A graphics subsystem, consisting of a Silicon
Graphics RealityEngine2 that handles all graphics opera-
tions using the OpenGL and OpenInventor graphics librar-
ies, and a tracking subsystem that runs on a Sun SPARC-
server2000. Video input is provided by two consumer-
grade Sony TR CCD-3000 camcorders and is digitized by a
Datacube MaxVideo 10 board that is used only for frame
grabbing. The position and intrinsic camera parameters
were not computed. Video output is generated by merging
the analog video signal from one of the cameras with the
output of the graphics subsystem. This merging operation
is performed in hardware using a Celect Translator lumi-
nance keyer [47]. Operation of the system involves four
steps:

1)�alignment of the graphics frame buffer with the digi-
tizer frame buffer,

2)� initialization of the affine basis,
3)�virtual object placement, and
4)�affine basis tracking and projection update.
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Alignment of the graphics and digitizer frame buffers
ensures that pixels with the same coordinates in the two
buffers map to the same position in the video signal. This
step is necessary for ensuring that the graphics output sig-
nal and the live video signal are correctly aligned before
video merging takes place. The step amounts to computing
the 2D affine transformation that maps pixels in one frame
buffer to pixels in the other. This graphics-to-video transfor-
mation is described by a 2 ¥ 3 matrix and can be computed if
correspondences between three points in the two buffers
are available. The procedure is a generalization of the Im-

age Calibration Procedure detailed in [12] and is outlined in
Fig. 12a. The recovered transformation is subsequently ap-
plied to all images generated by the graphics subsystem
(Fig. 12b).

Initialization of the affine basis establishes the frame in
which all virtual objects will be represented during a run of
the system. Basis points are initialized as vertices of uni-
form-intensity regions that are selected interactively in the
initial view of the environment. Virtual object initialization
follows the steps of the Interactive Object Placement Algo-
rithm, as illustrated in Fig. 7. Once the affine coordinates of

Fig. 11. Configuration of our monitor-based augmented reality system.

(a)

(b)

Fig. 12. Augmented reality display generation. (a) Aligning the graphics and live video signals. During system initialization, a known test pattern
consisting of three crosses is generated by the graphics subsystem and merged with the live video signal. The merged video signal is then digit-
ized and the three crosses in the digitized image are located manually. The image coordinates of the localized crosses together with their graphics
frame buffer coordinates allow us to compute the 2D transformation mapping graphics frame buffer coordinates to pixel coordinates in the merged
and digitized video image. (b) Coordinate systems involved in rendering affine virtual objects.
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all points on a virtual object are computed, the affine object
models are transmitted to the graphics subsystem where
they are treated as if they were defined in a Euclidean
frame of reference.

Upon initialization of the affine basis, the fiducial points
defining the basis are tracked automatically. Region track-
ing uses the (monochrome) intensity signal of the video
stream, runs on a single processor at rates between 30Hz
and 60Hz for simultaneous tracking of two regions, and
provides updated Kalman filter estimates for the elements
of the affine view transformation matrix [31]. Conceptually,
the tracking subsystem can be thought of as an “affine cam-
era position tracker” that returns the current affine view
transformation matrix asynchronously upon request. This
matrix is sent to the graphics subsystem. System delays
consist of a 30msec delay due to region tracking and an
average 90msec delay due to Ethernet-based communica-
tion between the two subsystems. Fig. 13 shows snapshots
from example runs of our system. The image overlay was
initialized by applying the Interactive Object Placement
Algorithm to two viewpoints close to the view in Fig. 13a.
The objects were then rotated together through the se-
quence of views in Figs. 13b, 13c, 13d, and 13e while track-
ing was maintained on the two black regions. More exam-
ples are shown in Fig. 14.

The accuracy of the image overlays is limited by radial
distortions of the camera [15], [48] and the affine approxi-
mation to perspective projection. Radial distortions are not
currently taken into account. In order to assess the limita-
tions resulting from the affine approximation to perspective
we computed misregistration errors as follows: We used the
image projection of vertices on a physical object in the envi-
ronment to serve as ground truth (the box of Fig. 2) and
compared these projections at multiple camera positions to
those computed by our system and predicted by the affine
representation. The image points corresponding to the pro-
jection of the affine basis in each image were not tracked
automatically but were hand-selected on four of the box
corners to establish a best-case tracking scenario for affine-
based image overlay.

5
 These points were used to define the

affine view transformation matrix. The affine coordinates of
the remaining vertices on the box were then computed using
the Affine Reconstruction Property, and their projection was
computed for roughly 50 positions of the camera. As the
camera’s distance to the object increased, the camera zoom
was also increased in order to keep the object’s size constant
and the misregistration errors comparable. Results are shown
in Figs. 15 and 16. While errors remain within 15 pixels for
the range of motions we considered (in a 640 ¥ 480 image),

5. As a result, misregistration errors reported in Fig. 16 include the effects
of small inaccuracies due to manual corner localization.

    

                                               (a) (b)  (c)

  

                (d)  (e)

Fig. 13. Experimental runs of the system. (a) View from the position where the virtual object was interactively placed over the image of the box.
The affine basis points were defined by tracking the two black polygonal regions. The shape, dimensions, and 3D configuration of the regions was
unknown. (b)-(d) Image overlays after a combined rotation of the box and the object defining the affine basis. (e) Limitations of the approach due
to tracking errors. Since the only information used to determine the affine view transformation matrix comes from tracking the basis points, track-
ing errors inevitably lead to wrong overlays. In this example, the extreme foreshortening of the top region led to inaccurate tracking of the affine
basis points.
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the results show that, as expected, the affine approximation
to perspective leads to errors as the distance to the object de-
creases [36], [49]. These effects suggest the utility of projec-
tively-invariant representations for representing virtual ob-
jects when the object-camera distance is small.

The accuracy of the real-time video overlays generated
by our system was measured as follows. A pair of region
trackers was used to track the outline of the two black re-
gions on the frame shown in Fig. 17. The affine coordinates
of a white dot on the tip of a nail attached to this frame
were then computed. These coordinates were sent to the
graphics subsystem and used to display in real time a small
“virtual dot” at the predicted position of the real dot. Two
correlation-based trackers were used to track the position of
the real dot in the live video signal as well as the position of
the virtual dot in the video signal generated by the graphics
subsystem. These trackers operated independently and pro-
vided an on-line estimate of the ground truth (i.e., the posi-
tion of the real dot) as well as the position of the overlay im-
age. Fig. 18 shows results from one run of the error meas-
urement process in which the frame was manually lifted and
rotated in an arbitrary fashion for approximately 90 seconds.
The mean absolute overlay error in the vertical and horizon-
tal image directions was 1.74 and 3.47 pixels, respectively.

6.2 HMD-Based System
The configuration of our HMD-based system is shown in
Fig. 19. Stereo views of the environment are provided by
two miniature Panasonic color CCD cameras. The cameras
are mounted on a Virtual Research VR4 head-mounted dis-
play and are equipped with 7.5mm lenses. Since neither the
3D position nor the intrinsic camera parameters are re-
quired in our approach, the HMD-based system is just as
easy to set up and initialize as the monitor-based system;
the only additional initialization step is a manual adjust-
ment of the cameras’ position for each user to aid fusion of
the left and right video streams.

Fig. 15. Camera positions used for computing misregistration errors.
The camera was moved manually on a horizontal plane. Because the
camera’s position was computed in an affine reference frame, the plot
and its units of measurement correspond to an affine distortion of the
Euclidean plane on which the camera was moved. The camera’s actual
path followed a roughly circular course around the box at distances
ranging up to approximately 5m. The same four noncoplanar vertices
of the box defined the affine frame throughout the measurements. The
affine coordinates of all visible vertices of the box were computed from

two views near position (-1.5 ¥ 10
4
, 0.5 ¥ 10

4
).

    
           (a)                      (b)

    
            (c)      (d)

Fig. 14. Overlaying a virtual teapot with live video. The virtual teapot is represented in an affine reference frame defined by the corners of the two
black polygonal regions. (a)-(c) Snapshots of the merged live video signal while the object defining the affine frame is being rotated manually. The
update rate of the augmented display is approximately 30 Hz. (d) Since no information about camera calibration is used by the system, the cam-
era’s position and zoom setting can be changed interactively during a live session.
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The ability to correctly update the affine view transfor-
mation matrix even under rapid and frequent head rota-
tions becomes critical for any augmented reality system that
employs a head-mounted display [16]. Camera rotations
induced by such head motions can cause a significant shift
in the projection of individual affine basis points and can
cause one or more of these points to leave the field of view.
In order to overcome these difficulties, our system employs
the color blob tracking algorithm of Section 5.2, which runs
at a rate of 30Hz. Because the algorithm does not impose
restrictions on the magnitude of interframe motion of image
features, the projection of virtual objects can be updated

even in the presence of large interframe motions as long as
the tracked fiducials remain visible. In the event of a tem-
porary fiducial occlusion, tracking and projection update
resume when the occluded fiducials become visible again.
With the exception of affine basis tracking, all other com-
putational components of the HMD-based system are identi-
cal to our monitor-based system. Overall performance, both
in terms of overlay accuracy and in terms of lag, are also
comparable to the monitor-based system.

Fig. 18. Real-time measurement of overlay errors. Solid lines corre-
spond to the white dot tracked in the live video signal and dotted lines
to the generated overlay. The plot shows that a significant component
of the overlay error is due to a lag between the actual position of the
dot and the generated overlay [13]. This lag is due to Ethernet-related
communication delays between the tracking and graphics subsystems
and the fact that no effort was put into synchronizing the graphics and
live video streams.

Fig. 16. Misregistration errors. The errors are averaged over three vertices on the box shown in Fig. 2 that are not participating in the affine basis.
The line style of the plots corresponds to the camera paths shown in Fig. 15.

Fig. 17. Experimental setup for measuring the accuracy of image
overlays. Affine basis points were defined by the corners of the two
black regions. The affine coordinates for the tip of a nail rigidly at-
tached to the object were computed and were subsequently used to
generate the overlay. Overlay accuracy was measured by independ-
ently tracking the nail tip and the generated overlay using correlation-
based trackers.
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The HMD-based system is presently capable of merging
graphics with only one live video stream due to hardware
limitations. As a result, video overlays can be viewed by
either the left or the right eye, but not by both. Interestingly,
we have observed during informal tests in our laboratory
that when the video overlays were projected to the users’
dominant eye, this limitation was not noticed: Users be-
came aware that they were viewing the augmented envi-
ronment with just their dominant eye only after being in-
structed to close that eye. The perceptual implications of
these tests are currently under investigation.

7 AN EXAMPLE APPLICATION: 3D STENCILING

The ability to merge affinely-represented virtual objects
with live video raises the question of how such objects can
be constructed in the first place. While considerable prog-
ress has been achieved in the fields of image-based shape
recovery [25], [46] and active range sensing [50], currently,
no general purpose systems exist that can rely on one or
more cameras to autonomously construct accurate 3D mod-
els of objects that are physically present in a user’s envi-
ronment. This is because the unknown geometry of an ob-
ject’s surface, its unknown texture and reflectance proper-
ties, self-occlusions, as well as the existence of shadows and
lighting variations, raise a host of research challenges in
computer vision that are not yet overcome. Interactive
video-based modeling offers a complementary and much
simpler approach: By exploiting a user’s ability to interact
with the modeling system [51], [52], [53], [54] and with the
physical object being modeled, we can avoid many of the
hard problems in autonomous video-based modeling. Be-
low, we outline a simple interactive approach for building
affinely-represented virtual objects that employs the aug-
mented reality system described in the previous sections to

interface with the user. We call the approach 3D stenciling
because the physical object being modeled is treated as a
three-dimensional analog of a stencil.

In 3D stenciling, an ordinary pen or a hand-held pointer
plays the role of a 3D digitizer [30], [55]: The user moves
the pointer over the object being modeled while constantly
maintaining contact between the pointer’s tip and the sur-
face of the object (Fig. 20a). Rather than directly processing
the object’s live image to recover shape, the stenciling sys-
tem simply tracks the tip of the pointer with a pair of un-
calibrated cameras to recover the tip’s 3D affine coordinates
at every frame (Fig. 20b). User feedback is provided by
overlaying the triangulated tip positions with live video of
the object (Figs. 20c, 20d, and 20e).

The key requirement in 3D stenciling is that registration
of the partially-reconstructed model with the physical ob-
ject is maintained at all times during the stenciling opera-
tion. The user can, therefore, freely rotate the object in front
of the cameras, e.g., to force the visibility of parts of the ob-
ject that are obstructed from the cameras’ initial viewpoint
(Fig. 20f, 20g, and 20h). As a result, the augmented reality
system guides the user by providing direct visual feedback
about the accuracy of the partially-reconstructed model,
about the parts of the object that are not currently recon-
structed, and about those reconstructed parts that require
further refinement. In effect, 3D stenciling allows the user
to cover the object being modeled with a form of “virtual
3D paint” [56]; the affine model of a physical object is com-
plete when the object’s entire surface is painted.

From a technical point of view, the theoretical underpin-
nings of the 3D affine reconstruction and overlay genera-
tion operations for 3D stenciling are completely described
in Sections 2 and 3. In particular, once an affine frame is
established and affine view transformation matrices are

Fig. 19. Configuration of our HMD-based augmented reality system. The affine basis in the example images was defined by the four green circular
markers, which were tracked in real time. The markers were manually attached to objects in the environment and their 3D configuration was
unknown.
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assigned to each camera in a stereo pair, the affine coordi-
nates of the pointer’s tip can be computed using the Affine
Reconstruction Property. Since the reconstructed coordi-
nates are relative to the same affine reference frame that is
used to define the view transformation matrices for ren-
dering, overlay generation simply requires transforming
the affinely-reconstructed tip positions according to (8).

In order to understand the issues involved in 3D sten-
ciling, we have developed a preliminary real-time 3D sten-
ciling system. System initialization follows the steps out-
lined in Section 6. The only exception is the Interactive Ob-
ject Placement step, which is not required to achieve 3D
stenciling. In its present form, the system uses normalized
correlation [45] to track the tip of a hand-held pointer in
two live video streams at frame rate. Once the affine coordi-
nates of the pointer’s tip are computed by the tracking sub-
system, they are transmitted to the graphics subsystem in
order to generate the video overlay. MPEG video sequences
demonstrating the system in operation can be found in [57].

We believe that the application of our affine augmented
reality approach to tasks such as 3D stenciling offers a great
deal of versatility: The user can simply point two uncali-
brated camcorders toward a physical 3D object, select a few
easily-distinguishable landmarks in the workspace around
the object or on the object itself, pick up a pen, and literally
start “painting” the object’s surface. Key questions that we
are currently considering and that are beyond the scope of
this article are:

1)�What real-time incremental triangulation algorithms
are most useful for incrementally modeling the object,

2)�How can we use the sequential information available
in the pointer’s trace to increase modeling accuracy,

3)�What surface representations are appropriate for sup-
porting interactive growth, display and refinement of
the reconstructed model, and

4)�How can we accurately texture map in real time the in-
crementally-constructed model from the object’s live
image [16]?

    
               (a)   (b)

        
            (c)  (d)      (e)

        
             (f)  (g)     (h)

Fig. 20. A 3D stenciling example. Live video is provided by two camcorders whose position and intrinsic parameters were neither known in ad-
vance nor estimated. (a) An easily-distinguishable hand-held pointer is moved over the surface of an industrial part. (b) Tracking operations during
3D stenciling. The dark polygonal regions are tracked to establish the affine basis frame. The regions were only employed to simplify tracking and
their Euclidean world coordinates were unknown. The green square is centered on the tip of the pointer, also tracked in real time. Tracking takes
place simultaneously in two live video streams. (c)-(e) Visualizing the progress of 3D stenciling. The augmented display shows the user drawing a
virtual curve on the object’s surface in real time. For illustration purposes, the reconstructed tip positions are rendered as small green spheres in the
merged live video signal (real-time triangulation is not currently supported). (f)-(h) When the object is manually rotated in front of the two cameras, the
reconstructed points appear “locked” on the object’s surface, as though the curve traced by the pointer was actually drawn on the object.
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8 LIMITATIONS

The use of an affine framework for formulating the video
overlay problem is both a strength and a limitation of our
calibration-free augmented reality approach. On one hand,
the approach suggests that real-time tracking of fiducial
points in an unknown 3D configuration contains all the
information needed for interactive placement and correct
overlay of graphical 3D objects onto live video. Hence, the
need for camera position measurements and for informa-
tion about the sizes and identities of objects in the camera’s
environment is avoided. On the other hand, the approach
relies on an affine approximation to perspective projection,
ignores radial camera distortions, uses purely nonmetric
quantities to render virtual objects, and relies on point
tracking to generate the live video overlays.

The affine approximation to perspective projection can
introduce errors in the reprojection process and restricts
system operation to relatively large object-to-camera dis-
tances (greater than 10 times the object’s size

6
 [36]). This

restriction can be overcome by formulating the video over-
lay process within a more general projective framework; the
analysis presented in this article can be directly generalized
to account for the perspective projection model by repre-
senting virtual objects in a projective frame of reference
defined by five fiducial points [24], [59]. Similarly, radial
camera distortions can be corrected by automatically com-
puting an image warp that maps lines in space to lines in
the image [60].

The use of non-Euclidean models for representing vir-
tual objects implies that only rendering operations that rely
on nonmetric information can be implemented directly. As
a result, while projection computations, texture-mapping,
and visible surface determination can be performed by re-
lying on affine or projective object representations, render-
ing techniques that require metric information (e.g., angle
measurements for lighting calculations) are not directly
supported. In principle, image-based methods for shading
affine virtual objects can provide a solution to this problem
by linearly combining multiple a priori-stored shaded im-
ages of these objects [61], [62], [63].

Complete reliance on the live video stream to extract the
information required for merging graphics and video implies
that the approach is inherently limited by the accuracy,
speed, and robustness of point and region tracking [16]. Sig-
nificant changes in the camera’s position inevitably lead to
tracking errors or occlusions of one or more of the tracked
fiducial points. In addition, unless real-time video processing
hardware is available, fast rotational motions of the camera
will make tracking particularly difficult due to large fiducial
point displacements across frames. Both difficulties can be
overcome by using recursive estimation techniques that ex-
plicitly take into account fiducial occlusions and reappear-
ances [64], by processing images in a coarse-to-fine fashion,
and by using fiducials that can be efficiently identified and
accurately localized in each frame [6], [14], [65].

6. The approximation is not only valid at such large object-to-camera
distances, but has been shown to yield more accurate results in structure-
from-motion computations [49], [58].

Limitations of our specific implementation are 1) the ex-
istence of a four to five frame lag in the re-projection of
virtual objects due to communication delays between the
tracking and graphics subsystems, 2) the ability to overlay
graphics with only one live video stream in the HMD-based
system, and 3) the need for easily-identifiable markers or
regions in the scene to aid tracking. We are currently plan-
ning to enhance our computational and network resources
to reduce communication delays and allow simultaneous
merging of two live video streams. We are also investigat-
ing the use of efficient and general purpose correlation-
based trackers [44], [46] to improve tracking accuracy and
versatility.

9 CONCLUDING REMARKS

We have demonstrated that fast and accurate merging of
graphics and live video can be achieved using a simple ap-
proach that requires no metric information about the cam-
era’s calibration parameters or about the 3D locations and
dimensions of the environment’s objects. The augmented
reality systems we developed show that the approach leads
to algorithms that are readily implementable, are suitable
for a real-time implementation, and impose minimal hard-
ware requirements.

Our current efforts are centered on the problem of
merging graphics with live video from an “omni-
directional” camera [67]. These cameras provide a 360 de-
gree field of view, enable the use of simple and efficient
algorithms for handling rotational camera motions, and
promise the development of new, image-based techniques
that establish a camera’s position in a Euclidean, affine, or
projective frame without explicitly identifying or tracking
features in the live video stream.
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