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Maintaining multivariate calibrations is essential and involves keeping

models developed on an instrument applicable to predicting new samples

over time. Sometimes a primary instrument model is needed to predict

samples measured on secondary instruments. This situation is referred to

as calibration transfer. This paper reports on using a Tikhonov

regularization (TR) based method in both cases. A distinction of the TR

design for calibration maintenance and transfer is a defined weighting

scheme for a small set of new (transfer or standardization) samples

augmented to the full set of calibration samples. Because straight

application of basic TR theory is not always possible with calibration

maintenance and transfer, this paper develops a generic solution to always

enable application of TR. Harmonious (bias/variance tradeoff) and

parsimonious (effective rank) considerations for TR are compared with

the same TR format applied to partial least squares (PLS), showing that

both approaches are viable solutions to the calibration maintenance and

transfer problems.

Index Headings: Multivariate calibration; Calibration maintenance;

Calibration transfer; Calibration standardization; Tikhonov regulariza-

tion; Partial least squares; PLS; Augmentation.

INTRODUCTION

Multivariate calibration relates a dependent variable such as
a chemical or physical property to independent variables such
as spectroscopic measurements by

y ¼ Xbþ e ð1Þ

where y denotes an m 3 1 vector of quantitative values of the
analyte for m calibration samples, X symbolizes the m 3 n
calibration matrix of n predictor variables, and b represents the
n 3 1 vector of calibration model coefficients that must be
estimated. The m 3 1 vector e indicates normally distributed
errors with mean zero and covariance matrix r2I. Without loss
of generality, it is assumed that all data is mean centered. The
regression vector is commonly estimated by the methods of
partial least squares (PLS), ridge regression (RR), or principal
component regression (PCR). For this paper, y contains analyte
concentration information, X contains spectra measured over n
wavelengths or frequencies, and n � m. The relationship n �
m is applicable as well, and in this case, multiple linear
regression (MLR) could also be used to obtain the regression
vector. The goal in calibration is to determine an appropriate
estimate of b (b̂) in order to predict with the best accuracy
(minimum bias) and precision (minimum variance) the amount

of calibrated analyte present in a future sample x using ŷ ¼
xt b̂.1,2

Once a model is estimated, the duration of applicability of
the model becomes relevant. The current calibration can fail
due to uncalibrated spectral features appearing in new samples
at a later time; for instance, the calibrated analyte is lower or
higher than the calibration concentrations in y or new spectral
responding chemical constituents appear. Depending on the
instrument and sample type, other chemical, physical, and
environmental influences can cause new spectral features to
appear. These include changes in viscosity, particle size,
surface texture, pH, temperature, humidity, and pressure.
Instrumental effects can also cause a current calibration to fail
and these include drift and repairing the instrument with a new
source, detector, or other component. Thus, mechanisms are
needed to update the current model to include new chemical,
physical, environmental, and/or instrumental effects not in the
current calibration domain. Connected to this calibration
maintenance issue is the calibration transfer problem. Here
the concern is using a calibration model developed on a
primary instrument(s) to predict the sample composition from a
spectrum measured on a secondary instrument.

Calibration maintenance and transfer have been the subjects
of numerous studies and are well reviewed.3–6 Three general
approaches are possible. One consists of forming an initial
robust model. This approach can be accomplished by using
spectral pretreatment methods such as multiplicative scatter
correction, finite impulse response filters, derivatives, and/or
wavelength selection. An alternative mechanism to forming a
robust model is to globally calibrate the model by including all
potential chemical, physical, environmental, and/or instrumen-
tal effects in the original model through measuring spectra
under all possible future conditions. For example, samples at
different pH values and temperatures can be used if varying or
new pH values or temperatures are expected in the future.
However, a difficulty with this approach is the large number of
samples needed to span all potential future effects, and for each
sample included in X, the corresponding analyte reference
value must be determined for y. Obtaining reference values is
usually time consuming and costly. Extra columns in X could
be included with values for the different conditions, thereby
possibly limiting the total number of samples, e.g., temperature
or time for drift.7,8

A second approach to calibration maintenance and transfer is
adjusting spectra for samples measured on a primary or
secondary instrument to fit the original calibration model
determined on the primary instrument(s). These methods
generally fit under the basic framework of the statistical
method known as Procrustes analysis. The general approach of
Procrustes analysis is to determine transformation parameters

Received 17 December 2008; accepted 8 April 2009.
* Author to whom correspondence should be sent. E-mail: kalijohn@isu.
edu.

� Current address: Department of Mathematics, Central New Mexico
Community College, Albuquerque, NM 87106.

800 Volume 63, Number 7, 2009 APPLIED SPECTROSCOPY
0003-7028/09/6307-0800$2.00/0

� 2009 Society for Applied Spectroscopy



that map spectra measured on one instrument to match spectra
measured for the same samples on another instrument over the
same or different wavelength ranges.9 One of the more popular
methods is piecewise direct standardization (PDS).10 In this
case, a small set of samples (standardization set) must have
been measured on a primary instrument at the same time that
the calibration samples were measured. Procrustes analysis
determines the proper rotation, dilation, and translation to
accomplish transformation of the standardization samples. New
samples are then transformed and predicted by the primary
calibration model. In order to avoid measuring the same
samples on the primary and secondary instruments, the mean
primary calibration spectrum can be used as the transformation
target. In this case, primary calibration samples need to also be
transformed to the mean spectrum before forming the primary
calibration model and the number of wavelengths measured for
samples must be the same for the primary and secondary
instruments.

A third general approach, and the focus of this paper, is to
update (rebuild) the primary calibration model to properly
predict new sample spectra measured on primary or secondary
instruments. Having detected an unmodeled source of variance
within new samples, one method is to directly add to each
spectrum of the primary calibration spectra in X, pure
component spectral shapes of the unmodeled effects not
present in X (such as drift, chemical substances, or tempera-
ture).11 A regression method is then used to estimate the new
updated model. A related design used synthetic spectra for the
primary calibration X that were based on a mathematical
description of light propagation in skin tissue. To each of these
synthetic spectra, a spectrum of a human subject was added and
a model was formed to predict glucose for future spectra
measured from the same subject.12 This approach of adding a
spectrum of the new condition to each of the calibration
primary spectra requires a reference determination for only the
one sample in the new condition that is being added. If the new
sample does not contain the analyte, e.g., a drift correction,
then no reference analysis is needed.

Rather than adding spectra under the new condition to each
existing spectrum in the primary calibration set (real or
simulated), an alternative to forming an updated model is to
augment the original calibration set of X and y with additional
calibration samples containing the new variance. In this case,
Eq. 1 is written as (ignoring the e term):

y
yL

� �
¼ X

L

� �
b ð2Þ

where L represents an l 3 n matrix of spectra measured for l
samples in the new conditions or on the secondary instrument
and yL denotes respective concentrations. The updated or new
regression vector is obtained by applying a regression method
to Eq. 2. A problem with augmenting the original calibration
set is that usually many samples are needed for L and this can
become time consuming and costly, especially when complex
reference methods are needed to form yL.

Using only a few samples for L to characterize the new
conditions has been proposed and studied.13,14 The selection of
samples for the small standardization set is critical to all
calibration maintenance and transfer approaches.15 The goal is
to form a standardization set with as few samples as possible
and still fully span the new situation, thereby adequately
accounting for the new variance(s).

If the standardization set can be measured when the original
primary calibration model is formed and also under the new
conditions, then spectral differences can be used for L with yL

¼ 0.13 Using spectral differences eliminates the need to use a
reference method to obtain values for yL. However, long-term
stability is required for the standardization set. Another
possibility is to use samples without the analyte for L with
yL¼ 0. Such an approach was used with blanks for L measured
on the primary instrument during warm-up to adjust for a new
instrumental profile and correct for any instrumental drift that
may have occurred.16

One application of Eq. 2 consisted of using in X spectra
measured on laboratory prepared solutions and for L, a small
number of samples measured in the new conditions in which
the model will subsequently be used.17 By using a well-
designed set of laboratory samples, the model could better
characterize the analyte-dependent information and L allowed
the regression method to correct for the new conditions, which
in this case was a culture medium. Augmenting simulated pure
component spectra in X with real spectra for L has also been
used for calibration transfer with Eq. 2.18

The concept of augmenting original calibration samples with
information spanning the new conditions has been alternatively
applied to calibration maintenance and transfer by using
prediction augmented hybrid methods.19,20 Characterization of
the new conditions occurred by repeatedly measuring the
spectrum of a single sample selected from the center of the
concentration space. With such an approach, the reference
value for yL must only be determined once. Because the analyte
concentration is constant, the eigenvectors from the singular
value decomposition (SVD) of the repeat spectra could be used
in L.

Other possible spectral artifacts to place in L to desensitize a
primary model include mathematical representation of drift,
known spectral interferences, a solvent peak, or background
such as fluorescence in Raman spectroscopy. However, a
problem with Eq. 2 is that if the standardization set is small,
then too much emphasis may be applied to the larger original
calibration set X. Thus, a weighting scheme was proposed by
modifying Eq. 2 to

y
kyL

� �
¼ X

kL

� �
b ð3Þ

where k symbolizes a weight value.21 Using the regression
methods of PLS, PCR, or MLR to estimate b for Eq. 3 requires
determination of the respective meta-parameters. Without
augmentation (Eq. 1) the meta-parameter for PLS and PCR is
the number of basis vectors (latent vectors, factors) and for
MLR it is the number and location of wavelengths. With Eq. 3,
there is now the additional weight meta-parameter k. Thus, a
problem with Eq. 3 is the lack of an obvious methodology to
determine proper weights. To date, selection of a weight value
has been based on replication of samples in the standardization
set.15,21 For example, if k ¼ 1, then no replication of the
standardization set is used, if k ¼ 2 then duplicates are
augmented, etc. This approach has not always proved
satisfactory.

Rather than using multiple L arrays of exact duplicates as a
way to set k (whether L is a single spectrum or a collection of
spectra), perturbations of the original primary calibration
samples (or a standardization set) with random noise in various
combinations were augmented to X with one L or multiple Ls

APPLIED SPECTROSCOPY 801



for different perturbations.22 Spectra measured under different
temperatures were also perturbed and used in L. This approach
of augmenting X with multiple L arrays composed of noise
perturbations of samples from X can be thought of as an
ensemble method.23 With this ensemble method, there is no k
and Eq. 2 is used with a regression method to estimate b.
Decisions needed for this ensemble method are the number of
noisy spectra to augment with and how spectra should be
perturbed. The closer the noise structure in L mimics the noise
structure in X, the more desensitized the model should be to the
noise. For example, in recent work, X was measured at 36 8C
and the mean difference spectrum between spectra at 38 and 34
8C were randomly added to the spectra at 36 8C to form
multiple L arrays.24

Equation 3 is actually a representation of Tikhonov
regularization (TR) and is fully developed in the next section.
Thus, by using a TR approach for calibration maintenance and
transfer, the idea of weighting samples in L is now put on a
firm theoretical foundation and logical criteria to select the
weight are developed.

TIKHONOV REGULARIZATION AND
VARIATIONS

The most general formulation of TR is expressed as
identifying the model coefficients that

min jjXb� yjja
a
þ k2jjLðb� b�Þjjb

b

� �
ð4Þ

where ||�||p signifies the regression vector p-norm, e.g., p¼ 2 is
the 2-norm or Euclidean norm, a and b represent the same or
different norms in the range 1 � a, b , ‘, L denotes a
regulation operator that enforces the estimate of b to belong to
the corresponding subspace, b* designates the true model
coefficients for the analyte, and k symbolizes the regularization
meta-parameter controlling the weight given to the second
term.25–27 For the calibration maintenance and transfer
problems, L denotes spectra or artifact representations at the
new conditions or for the secondary instrument as discussed in
the Introduction section. The left term has been labeled a bias
(accuracy) indicator and the right term reflects the model size
and hence, when b ¼ 2, the 2-norm acts as a variance
(precision) measure.28

Choices for a and b are varied. When a¼ b¼ 2, the solution
to Expression 4 is

b̂ ¼ ðXtXþ k2LtLÞ�1ðXtyþ k2LtLb�Þ ð5Þ

which is also the solution to

y
kLb�

� �
¼ X

kL

� �
b ð6Þ

Often b* is not known and in the case of spectroscopic analysis
where L is composed of spectra, then yL ’ Lb* and Expression
4 reduces to

min jjXb� yjj2
2
þ k2jjLb� yLjj

2

2

� �
ð7Þ

In this case, Eq. 6 becomes Eq. 3 with the solution

b̂ ¼ ðXtXþ k2LtLÞ�1ðXtyþ k2LtyLÞ ð8Þ

Thus, the weight value empirically set in Eq. 3 in previous
work is actually the normal meta-parameter in TR and good
mechanisms exists for determining k.25,26,28,29 A solution to
Eq. 3 can also be obtained by PLS, PCR, etc. This paper also
looks at using PLS with Eq. 3 to obtain an estimate of b.

Calibration Maintenance and Transfer with a Tikhonov
Regularization Approach. For calibration maintenance, the
goal is updating an existing model to new conditions such as
new spectrally responding species or replacement of the
instrument source. In this situation, L contains spectra under
the new conditions. When spectra in L contain the analyte, then
reference values of the analyte are needed for yL. The TR
approach estimates b to be orthogonal to the new interfering
spectral artifacts in L that are confounding an accurate
prediction of the analyte. Thus, the model is desensitized to
the interfering spectral artifacts. Simultaneously, the regression
vector usually needs to accurately predict the original
calibration samples that do not have the new condition present
as well as keeping the size of the regression vector from being
too large. Too large a regression vector increases the chance of
forming an over-fitted model and prediction variances can
escalate.

If a representative subset of samples from the original
calibration is available, these samples can be measured under
the new condition and difference spectra would be used in L
and the yL values would not be needed. In this case, Expression
7 and Eqs. 3 and 8 become, respectively,

minðjjXb� yjj2
2
þ k2jjLbjj2

2
Þ ð9Þ

y
0

� �
¼ X

kL

� �
b ð10Þ

and

b̂ ¼ ðXtXþ k2LtLÞ�1Xty ð11Þ

As described in the following section, these two equations and
this expression also define RR when L¼ I. If samples without
the analyte are used for L, e.g., matrix-matched blanks, the
solvent, background, or pure-component spectra of new
artifacts, then Expression 9 and Eqs. 10 and 11 are also
applicable. For drift, it should be possible to use generic
pseudo-spectra in L. For example, drift pseudo-spectra in L
could be formed as a constant, linear, and/or parabolic as well
as cubic or higher order wavelength functions. Using drift
pseudo-spectra has been implemented with PCR where the drift
pseudo-spectra acted as pseudo-principal components in the
augmented eigenvector set.30,31 Similarly, key eigenvectors
from the SVD of L with samples containing constant or no
analyte, such as spectra from repeatedly measuring the
spectrum of a single sample,19,20 could be used for L with yL

¼ 0.
As with any regression method, the desired regression vector

needs to be orthogonal to non-analyte information in X. From
Expression 9 and Eq. 10 it is easy to observe that the desired
regression vector also needs to be orthogonal to the new
chemical, physical, environmental, and/or instrumental condi-
tions characterized in L. The goal is to try to do this with as
few spectra as possible in L.

Similar points described about L and yL for calibration
maintenance are applicable to calibration transfer. Additional-

802 Volume 63, Number 7, 2009



ly, the augmented set in L can be spectra from multiple
instruments to form a model applicable to more than two
instruments.

Harmony as the Bias/Variance Tradeoff. When L¼ I and
a¼ b¼ 2, TR is said to be in standard form and is also known
as RR with the solution

b̂ ¼ ðXtXþ k2IÞ�1Xty ð12Þ

for the equation

y
0

� �
¼ X

kI

� �
b ð13Þ

or the expression

minðjjXb� yjj2
2
þ k2jjbjj2

2
Þ ð14Þ

Thus, calibration and transfer in the augmented format is a
form of RR and methods used to determine k for RR should be
useful here. It has been shown that the regression vector 2-
norm ||b̂||2 in Expression 14 is proportional to the prediction
variance.28,32–35 Therefore, in the case of TR in standard form,
optimization of Expression 14 is concerned with simultaneous
minimization of bias and variance indicators. Such an
optimization seeks the most harmonious model: one that is
the most Pareto (closest to the origin) in an L-curve plot. The
L-curve plot is obtained by plotting for each k the
corresponding regression vector 2-norm against the root mean
square error of calibration (RMSEC). That is, in order to select
the right k value in Expression 14, a host of models are formed
by varying k and plotting the respective regression vector 2-
norms against RMSEC. In such a plot, an L-shaped curve
results and the optimal model (k) is in the corner of the L-curve
near the origin.25,29 This model represents the best compromise
for the bias/variance tradeoff, i.e., the most harmonious model.
The L-curve (harmonious, Pareto) plot is also applicable to
selecting other model meta-parameters such as the number of
factors for PCR or PLS. In general, RR L-curves and
regression vectors are commonly similar to those for PCR
and PLS.28

Modifying Tikhonov Regularization for Calibration
Maintenance and Transfer. For calibration maintenance and
transfer, L 6¼ I and the structures of X and L can have a
disruptive impact in Eqs. 8 and 11. Specifically, the inverse
operation is not stable and is poorly defined if spectra in X and
L are collinear and/or m , n (X and L are nearly singular
defined as the determinate of XtX, or LtL is nearly zero or the
condition number is large and, hence, poorly conditioned).36

The method of RR expressed in Eq. 12 provides a mechanism
for forcing XtX to be full rank by adding a small number to the
diagonal of XtX, thereby stabilizing the inverse operation.37 As
long as k is nonzero, the last n rows of the augmented matrix in
Eq. 13 are linearly independent, making the augmented matrix
full rank. The greater the value of k, the greater the degree of
orthogonality (or equivalently, the greater the degree of
nonsingularity). Because L 6¼ I with calibration maintenance
and transfer, the structure of L has a significant impact on the
inverse operation.

In order to stabilize TR for calibration maintenance and
transfer, an additional regularization meta-parameter will
generally be needed. To accomplish this, Expression 7 and
Eqs. 3 and 8 are respectively written as

min jjXb� yjj2
2
þ sjjbjj2

2
þ k2jjLb� yLjj

2

2

� �
ð15Þ

y
0

kyL

0
@

1
A ¼ X

sI
kL

0
@

1
Ab ð16Þ

and

b̂ ¼ ðXtXþ s2Iþ k2LtLÞ�1ðXtyþ k2LtyLÞ ð17Þ

where s denotes the stabilizing meta-parameter to enhance the
degree of nonsingularity for the covariance matrix in the
inverse operation. Rather than using TR and requiring the
second meta-parameter, PLS or PCR could be directly applied
to Eqs. 3 or 10. However, two meta-parameters (factors and k)
are still required.

Inspection of Expressions 7, 9, 14, and 15 provides further
understanding of the situation. Because L is composed of
spectra, the physical meaning of the product Lb results in the
last terms of Expressions 7 and 9 actually being prediction
errors and, hence, there is no explicit direct minimization of the
size of the regression vector as in Expressions 14 and 15. Using
the second meta-parameter s reinforces the direct minimization
of the regression vector size.

When yL ¼ 0, Expression 9 and Eqs. 10 and 11 would be
adjusted accordingly to account for the second meta-parameter.
However, in this situation, a different approach not requiring
the second meta-parameter is possible. The process consists of
transforming the general form of TR in Expression 9 to a
format such as that in Expression 14.25 The regression vector is
now obtained using a standard RR algorithm (or PLS, PCR,
etc.)38 and then back-transformed to the general form. The
back-transformed regression vector desensitized to the artifacts
in L can now be used to predict samples. This paper reports on
only using the second meta-parameter incorporated into
Expression 9 and Eqs. 10 and 11.

Summarizing, when L ¼ I for RR, the inverse operation is
stabilized with k. As soon as spectra are used in L, the second
regularization meta-parameter s will usually become necessary.
As X and L approach full rank matrices, s becomes smaller,
and in the limit, as LtL approaches I, the value of s approaches
zero. While additional regularization with s is not needed with
the methods of PLS, PCR, or MLR when using Eqs. 3 and 10,
other method dependent stabilizing meta-parameters are still
needed.

Determining s, Factors, and k. The first meta-parameter to
optimize for TR is s. Because the first two terms on the right
side of the equality sign in Eq. 17 are similar to RR, the same
procedure used with RR will be tested in this paper. The proper
s value is expected to be that in the corner region of the L-
curve from a plot of ||b̂||2 against RMSEC. This is the s that
provides a good regression vector to predict the calibration
data. For PLS, the same plot is used but the number of factors
is determined instead of s. Once s has been ascertained, the
focus now is to establish the k value providing simultaneous
acceptable predictions of the information in L and X. Noting
that ||Lb� yL||2 is proportional to the root mean square error of
L (RMSEL) and as shown in the Results and Discussion
section, the appropriate L-curve capturing this tradeoff is
obtained by plotting RMSEL against RMSEC. To better
visually characterize the L-curve, log values are plotted.25
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Further Generalization of Tikhonov Regularization for
Calibration Maintenance and Transfer. In recent work, a
generalization of TR was proposed for desensitizing models to
anticipated spectral artifacts.39,40 The generalization consists of
using a unique weight for each artifact in L that the model is
being updated for (desensitized to). In this case, Eq. 3 is
written as

y
KyL

� �
¼ X

KL

� �
b ð18Þ

where K represents an l 3 l diagonal matrix of weights ki for
each artifact in L. This desensitization adaptation of TR is
applicable to calibration maintenance and transfer. Not realized
was recognition of requiring additional regularization of X due
to the potential instability with solving Eq. 18 depending on the
structure of X and L (the matrices may not be full rank). When
the term KyL ¼ 0 and L ¼ I, Eq. 18 represents generalized
RR.37 Determining individual weights was not attempted in
this study. That is, only one weight is used to characterize a
global correction for all new chemical, physical, environmen-
tal, and/or instrumental effects in L.

If unique correction is needed for multiple individual
artifacts, such as drift, new chemical component, or temper-
ature, then L would have to be composed of spectra uniquely
characterizing each specific artifact and Eq. 18 could be used.
Two difficulties with Eq. 18 are the necessity of a protocol to
determine each ki in K and the necessity of obtaining spectra
uniquely characterizing each artifact. It may be that all artifacts
in the new samples can be corrected with one k value
representing a compromise or average weight for the artifacts,
much like the selection of PCR or PLS factors with a Y matrix
for multiple analytes.

A multiple weighting scheme could also be used for the
ensemble method noted previously in which groups of spectra
are uniquely perturbed.24 Each group of spectra would be
weighted separately.

Other Uses of Tikhonov Regularization. The framework
of TR expressed by Eq. 3 has found utility in various situations.
A diagonal L matrix equal to the spectral noise relative to each
wavelength was used to remove irrelevant wavelengths from
the regression vector.38,41 Because L was diagonal and hence
full rank, the second meta-parameter s was not needed. The
method of TR has been used for smoothing X as well as the
regression vector, and a TR approach was used with self-
modeling curve resolution problems.38,42,43 Replacing the 2-
norm on the regression vector with the 1-norm and setting L¼
I has been used to obtain variable (wavelength) selection and
has also become known as the least absolute shrinkage and
selection operator (LASSO).44–46 In a limited study, an
estimate of b* was set to the pure-component spectrum of the
analyte with L¼ I in Eqs. 5 and 6.47 Recently, grey component
analysis based on TR was developed for explorative data
analysis48 and TR related approaches have been used for
cancer classification with gene expression data.49

PARSIMONY BY THE EFFECTIVE RANK

The effective rank (ER) is a measure of the degrees of
freedom being used to fit the model, and hence, the smaller the
ER, the more parsimonious the model. Several measures for
ER have been proposed,25,50–54 some of which have been
evaluated in Refs. 28 and 55. One approach uses a common

basis set and the other two are independent of the basis set. The
common basis set approach defines ER as a function of filter
factors where filter factors are computed for each eigenvector
from the SVD of the calibration spectra.25 Filter factors have
been defined for PLS, PCR, and RR but not for the
modifications of TR and PLS proposed in this paper.

A method to estimate ER not dependent on a particular basis
set is based on leave-one-out cross-validation and has been
identified as pseudo-degrees of freedom.54 Another basis set
independent method, and the approach taken in this paper, uses
a Monte Carlo method and is named the generalized degrees of
freedom.53 The measure does depend on a meta-parameter that
sets the magnitude of perturbations to the calibration
concentrations in y. However, the resulting model ER is quite
invariant to the actual value of this meta-parameter, i.e., a large
range of values produce the same results.28,52,53 This ER is
defined as the sum of sensitivities for the fitted values (ŷ) from
the model relative to the perturbations in respective values of y.
The algorithm used in this paper adds to y normally distributed
noise at 1% to form respective noise-perturbed models,
followed by obtaining the corresponding ŷ vectors of fitted
values. This process is repeated 300 times. For each calibration
sample, the slope from the plot of the 300 fitted values against
the noise added is obtained and the ER is the sum of all the
slopes.

Effective ranks computed from the three methods have been
experimentally found to essentially be equivalent for PLS,
PCR, and RR.28,55 As with harmonious curves, an ER measure
provides a mechanism for impartial graphical comparison of
different modeling methods. This comparison is accomplished
by plotting a bias measure such as the error criterion RMSEC
and/or root mean square error of validation (RMSEV) against
ER. Such plots have been well described.56

EXPERIMENTAL

Software. MatLab 7 (The MathWorks, Natick, MA)
programs for TR and PLS were written by the authors.

Data Centering. When the concentrations for yL are not
zero, X, y, L, and yL are mean centered to respective means.
This local centering approach has been shown to provide
improved modeling performance.57,58 Validation samples
measured under the same conditions as L are centered to the
mean of L prior to prediction. When the concentrations for yL

are zero, only X and y are mean centered and validation
samples are mean centered relative to X before prediction.

Data Sets. Temperature. Twenty-two samples composed of
water, ethanol, and 2-propanol were measured from 590 to
1091 nm at 1 nm intervals at 30, 40, 50, 60, and 70 8C.59

Spectra from 850 to 1049 nm were used. Temperature-specific
calibration and validation sets described in Ref. 52 were used
to form the same respective 13 and 6 sample sets (pure
component samples are excluded). Results are presented for
primary calibration at 30 8C for ethanol to predict ethanol at 50
8C. To select the standardization set, the Kennard Stone
algorithm was applied to the 13-sample calibration set at 30 8C,
but measured at 50 8C. The Kennard Stone algorithm utilized
selects the first sample closest to the mean and successive
samples are furthest from this sample.

Corn. Eighty (80) samples of corn were measured from 1100
to 2498 nm at 2 nm intervals on three near-infrared (NIR)
spectrometers designated m5, mp5, and mp6.60 Reference
values are provided for oil, protein, starch, and moisture
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content, and protein is the prediction property studied in this
paper. For this study, every other wavelength was used for a
total of 350 wavelengths. Thirty samples selected using a
Kennard Stone algorithm on the 80 samples measured on
instrument m5 serve as the primary calibration set. The
validation samples are the remaining samples but measured on
instrument mp5. The standardization set consist of four
samples selected by a Kennard Stone algorithm from the same
30 calibration samples but measured on instrument mp5. Also
available with this data set are three spectra measured for a
glass standard on m5 and four spectra measured for the same
glass standard on mp5. The mean difference spectrum is used
for the standardization set.

s and k Values. Sixty s2 values were used ranging from
approximately 1 3 10�15 to 0.5 as determined from the singular
value decomposition of the primary spectral calibration
covariance matrix. Fifty k2 values were used for TR ranging
from 1 3 10�5 to 1 3 109. These same values were used for
PLS with kPLS ¼ k2

TR.

RESULTS AND DISCUSSION

This paper investigates two spectral situations for the
standardization set in L. One consists of spectra of samples
measured at the new conditions (or on a secondary instrument)
and the other is difference spectra between the same samples
measured when the original calibration model was formed and
under the new conditions. Regardless of the type of spectra,
samples can or cannot contain the analyte.

When the standardization set is composed of samples
containing the analyte, a better representation of the analyte-
matrix-effected spectra for the new condition will be captured
compared to using standardization samples without the analyte.
Varying degrees of the new matrix effects will be represented
depending on the level of matrix matching between the
standardization samples and future samples. The more analyte-
matrix-effecting aspects missing from the standardization set,
the more ineffective the standardization set becomes. These
statements are true whether spectral differences or spectra at the
new conditions are used. Thus, the general focus in this study is
using samples with the analyte present in the standardization
set. However, when the Kennard Stone algorithm was used to
select the standardization set for the temperature data, one of
the four samples has no analyte (ethanol). Another exception is
the corn data when the glass standards are used. Studies were
performed (not reported) with the temperature data where all
samples in the standardization set contained no analyte and
inferior results were obtained.

Calibration Maintenance.. The temperature data represents
the situation in which a primary model is formed under one
condition and has to be updated to handle new conditions. The
first situation discussed is when measured spectra are used for
the standardization set in L and, hence, reference ethanol
concentrations are needed for yL.

The first task is to select an appropriate value for s. Plotted in
Fig. 1 is the L-curve to accomplish this selection. Each gray
scale represents a different s value and the þ symbol denotes
the range of k values for each respective s value. There are
only a few possibilities for suitable models in the corner region
of the L-curve. As long as the selected s value is in close
proximity to the corner region, the exact value of s is not
critical, as final RMSEV values are not appreciably different.
The s value selected for this data set is not only in the corner

region of Fig. 1 but is also the point at which the RMSEC
values decrease as ki converges to zero. A good model is when
the weight on spectra and concentration values for the new
conditions decreases, so does the prediction error of the
calibration set. From Fig. 1, it can be seen that in the smaller
regression vector 2-norm region and corresponding larger
RMSEC portion, the RMSEC values actually increase as less
weight is given to the new condition. This trend is exemplified
in the second expansion plot and was observed for other
situations. The point in the corner portion where the correct
RMSEC trend occurs assists in pinpointing the proper corner
region of the L-curve. For consistency, this same approach was
used to identify the number of factors to use with PLS. Other
methods could be used to determine s values or the number of
factors such as a cross-validation process, but these were not
studied in this paper. The focus of this work is not determining
the best method for meta-parameter selection, but to show the
applicability of using a TR approach for calibration mainte-
nance and transfer.

Once a reasonable value for s or the number of PLS factors
has been established, the next meta-parameter value to
determine is k. An L-curve approach is again used by plotting
log(RMSEL) against log(RMSEC) and is shown in Fig. 2.
Models in the corner region represent those with a reasonable
tradeoff between predicting calibration samples and the
standardization set with low errors. As k values decrease in
magnitude from the corner, the RMSEC values decrease
because the models are evolving to better fit and hence better
predict the calibration set. At k39 in Fig. 2, there is essentially
convergence to the model best for X and the regression vector
shape and size are essentially unchanged as k values further
decrease towards k50 equal to zero. Conversely, as k values
increase in magnitude from the corner, the RMSEL values
decrease because the model is evolving to better to predict the
standardization set. At k27 in Fig. 2, there is essentially
convergence to the model best for L and the regression vector is
again essentially unchanged in shape and size as k values further
increase towards k1 equal to 109. In the corner regions, these

FIG. 1. The temperature data TR L-curve for selecting k where the
standardization data set has spectra and respective ethanol concentrations.
Each gray scale represents a different s value and the þ symbol denotes the
range of k values for each respective s value. Numbers correspond to k
endpoint indices where k1 ¼ 3.16 3 104 and k50 ¼ 0. See text for further
description.
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models are reasonably orthogonal to spectral artifacts charac-
terized in the calibration and standardization sets. The approach
used in this study was to select the k value for TR or PLS closest
to the corner. However, the approach of just setting k to some
large number for TR or augmented PLS (APLS) could be used.
That is, when the emphasis is on the new conditions, setting the
value of k is not critical as long as it is large enough to be in the
corner region or beyond with larger values.

Listed in Table I are the RMSEV values describing how well
TR and PLS perform. A base value for comparison is using
PLS without a standardization set, i.e., no calibration
maintenance. To distinguish between the two PLS variations,
APLS is used to differentiate from base PLS without any
augmentation. As expected, performing no maintenance
provides poor predictability at the new temperature. Improved
results are obtained with TR and four standardization samples.
Prediction error also improves with APLS, but TR appears to
provide lower prediction errors at a cost to potential inflated
prediction variance due to the larger regression vector 2-norm.
Another base value for comparison is how TR and APLS
perform compared to the PLS model at 50 8C, i.e., no
calibration maintenance is needed as the model is built with a
full recalibration using only data at the new condition. In this
case, both TR and APLS perform worse than the full
recalibration. However, this model can only be used to predict
samples at 50 8C and not at the original temperature of 30 8C.
Additionally, full recalibration requires more samples.

With fewer samples in the standardization set (two samples),
the TR RMSEV value degrades. It is generally accepted that
only a few representative samples are needed and four samples

provides acceptable results. The key point in forming the
standardization set is to properly span the new condition. In
this study (not fully reported) random two, three, and four
sample selection was performed several times and the mean
RMSEV trend is that three samples are significantly better than
two. When four samples are used, there is only a small
improvement over three. For a fixed number of samples, some
random sample selections showed marked improvements in
RMSEV values compared to another random selection. This
further confirms the importance of the standardization set
properly spanning the new conditions.15

When spectral differences are used for L, the values for yL

are all zero and Table I shows improved results compared to
using spectra with reference values. With spectral difference,
TR and APLS perform similarly. Both also perform similarly to
full recalibration at the new temperature, although the
regression vector norms and ER are greater for TR and APLS
implying that greater prediction uncertainties are possible. By
augmenting with only a few standardization samples, differ-
ence spectra provide an efficient process for updating a primary
calibration model to a new condition. Difference spectra allow
TR and APLS to better determine a regression vector with
improved orthogonality to the new conditions because there is
only non-analyte information in L. Using spectra with
reference values requires TR and APLS to determine what
part of L is due to the analyte and, simultaneously, what part of
L is relevant to the non-analyte information.

Because analyte concentration is zero with difference
spectra, an SVD was performed on the standardization set
and L was replaced with a varying number of eigenvectors.
Results shown in Table I reveal that using only three
eigenvectors improves prediction errors and further reduction
in prediction error is gained with two eigenvectors. It is logical
to expect some improvement to occur as using a subset of
eigenvectors filters some spectral difference noise, allowing TR
and PLS to better discern the unique non-analyte information.

With regard to parsimony determined by the ER, the general
pattern is that using difference spectra for the standardization
set provides models with smaller ERs. The anomaly to this is
using difference spectra with APLS, which has the largest ER.
This may well be due to the values used for the meta-
parameters with APLS. Because there is better representation
of the new conditions with difference spectra, the ER is
generally smaller.

Calibration Transfer. The corn data represents the situation
in which a primary model is formed on one instrument and has
to be updated to handle a new instrument. The first situation
discussed is using measured spectra for the standardization set
in L and using protein composition for yL. From values listed

FIG. 2. The temperature data TR L-curve for selecting k for the situation noted
in Fig. 1. Numbers correspond to k endpoint indices where k1¼3.16 3 104 and
k50 ¼ 0.

TABLE I. Prediction results for the temperature data using spectra and spectra differences.

Method L (No. eig.) No. samples RMSEV ||b̂|| ER s or factors k

TR Spectra 4 0.0408 10.63 5.35 1.20 3 10�2 5.11
TR Spectra 2 0.0907 11.90 5.18 9.00 3 10�3 3.65
APLS Spectra 4 0.0573 10.23 3.36 4 1.78
TR Difference 4 0.0272 16.52 3.91 5.07 3 10�3 3.65
TR Difference (3) 4 0.0304 11.90 2.97 1.20 3 10�2 0.35
TR Difference (2) 4 0.0291 15.74 4.64 5.07 3 10�3 0.49
APLS Difference 4 0.0360 10.97 8.51 4 13.33
PLS No L: Cal at 30 8C 0 0.2548 8.62 3.25 3 0
PLS No L: Cal at 50 8C 0 0.0379 8.01 3.14 3 0
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in Table II, it is observed that the RMSEV TR and APLS
values are better than not providing any calibration transfer and
predicting spectra measured on instrument mp5 with the
primary calibration model on m5. The TR approach appears to
accomplish the update better than APLS with respect to the
RMSEV values. However, in further analysis of the TR and
APLS results, it was found that as k approaches zero, forming a
smaller RMSEC value, the RMSEV is also reduced. Other
calibration transfer studies have found that just mean centering
the secondary instrument validation set to the mean of the
standardization set measured on the secondary instrument is
often enough processing to allow the primary calibration model
to be used.61,62 That is, locally centering data to the respective
instrument means brings the self-centered mp5 spectra into the
m5 self-centered calibration space sufficiently to allow
prediction of the mp5 validation samples. As k decreases, the
model is being biased towards the calibration set and when the
validation set is appropriately centered by the standardization
set, the better the model can then also fit the validation set. This
observation implies that the primary difference is instrumental
and not chemical or physical. Only local centering was
performed in this study and is identified as local PLS (LPLS)
in Table II and does indeed provide a slightly better RMSEV
value with a smaller regression vector 2-norm than TR and
greater differences with APLS. The greater difference with
APLS is conjectured to be due to the more limited number of
factors to step through compared to the unlimited number of s
values and, hence, a smoother variation in plots.

Changing the Kennard Stone algorithm to select samples
furthest from each other and not starting with the sample
closest to the mean as the first sample generates even greater
TR and APLS RMSEV values of 0.2930 and 0.554,
respectively. This observation further implies the importance
of the standardization set structure not only to properly span the
conditions, but also to capture the mean. If only local centering
is used with the temperature data, the four factor LPLS
RMSEV and regression vector 2-norm values are 0.0908 and
16.13, respectively. Centering with only the temperature data is
not enough. It may be that if a better representative center
could be identified for the temperature data, i.e., a centering
spectrum that better translates the new condition to the primary
model space, then local centering may suffice.

When spectral differences are used for L, the values for yL

are all zero and TR and APLS should now be better able to
provide a model orthogonal to the instrumental difference and
simultaneously be able to predict the calibration set on
instrument m5. Results in Table II show that improved results
are indeed obtained and comparable to LPLS as well as just

forming a calibration model on instrument mp5 to only predict
validation samples measured on mp5.

Also applied to spectral differences is the situation of using
spectral differences for a glass standard measured on both
instruments. Tabulated in Table III are the results in which it is
observed that equivalent results are obtained with TR and
APLS using spectral differences, LPLS, and full recalibration.
This is further evidence that the primary difference between
spectra measured on instruments m5 and m5p is instrumental.
If a chemical, physical, and/or environmental effect were
simultaneously occurring, then just using glass standards
would not be sufficient to completely characterize the new
conditions to provide an appropriate model update. If
instrumental changes are occurring in conjunction with
chemical, physical, or environmental changes, it is expected
that different weights would be needed for each effect as
described in Eq. 18. Alternatively, based on observations from
the temperature and corn data, it may be possible to just use
one k set to a large number.

Similar ER trends observed with the temperature data are
seen with the corn data. Except for APLS, the ER generally
reduces with difference spectra. A study was not performed to
ascertain the sensitivity of the ER relative to respective meta-
parameters.

While not studied, it is possible to use these TR and PLS
approaches to provide a model workable on multiple
instruments. In this case, the primary calibration data is
augmented with spectra measured on different instruments. If
the degree of differences between the secondary instruments
and the primary instrument is small, one k value should suffice.
If respective differences are unique, it is expected that
individual k values would be required for each secondary
instrument to determine a model. Again, it may be possible to
just use one k set to a large number.

CONCLUSION

Results were only compared to APLS, but other methods
such as an augmented PCR could be used. This study
demonstrates that the TR approach to calibration maintenance
and transfer provides the flexibility needed to desensitize a

TABLE II. Prediction results for the corn data using spectra and spectra differences.

Method L No. samples RMSEV ||b̂|| ER s or factors k

TR Spectra 4 0.1881 57.46 10.39 1.35 3 10�2 7.15
APLS Spectra 4 0.3165 40.71 6.22 4 6.81
TR Difference 4 0.1744 57.09 7.41 1.35 3 10�1 14.00
TR Difference 1 0.1807 54.45 8.98 1.35 3 10�2 2.61
APLS Difference 4 0.2825 40.52 10.13 6 26.10
APLS Difference 1 0.2253 52.94 8.92 6 1.78
LPLSa Spectra 4 0.1776 55.68 9.45 6 0
PLS No L: Cal on m5 0 0.7570 55.68 9.45 6 0
PLS No L: Cal on mp5 0 0.1893 64.79 9.01 6 0

a LPLS¼mp5 validation samples are mean centered to the four mp5 samples in L and prediction is by PLS based on the m5 calibration samples (local center for
validation).

TABLE III. Prediction results for the corn data using glass standards.

Method RMSEV ||b̂|| ER s or factors k

TR 0.2277 55.40 9.07 1.35 3 10�2 1.87
APLS 0.1838 54.40 9.25 6 1.78

APPLIED SPECTROSCOPY 807



primary model to new conditions once it has been determined
that new samples are essentially outliers to the current
calibration model. While not part of this paper, methods exist
to determine oultiers1,2 and indeed represent a critical aspect of
calibration maintenance and transfer.63

It has been shown that only a few samples are needed to
update the model but these samples should be selected (if
possible) based on a selection strategy that maximizes the
ability of the standardization set to properly span the new
conditions. With a standardization set properly spanning the
new situation or secondary instrument, improved results should
be obtainable compared to a random selection of samples for
the standardization set. The better L focuses on what the
updated regression vectors need to be desensitized (orthogo-
nalized) to, the more accurate the predictions will be.

When instrument differences are the correction focus, simple
local centering can often suffice. Using difference spectra
provided equivalent results to simple local mean centering.
When model updating is for a new chemical, physical, or
environmental effect, TR and APLS performed better than just
mean centering.

This work reported on a methodology that selects a weight
value for k that compromises prediction of the original full
calibration data and the data used for updating. If artifacts in
the new conditions are the emphasis, the weight should be set
to a large number and no optimization of the weight is needed.

It may be possible to dispense with meta-parameters
altogether by using a target optimization scheme as outlined
in Refs. 41, 46, and 64. Such an approach would also be useful
to determine individual weights in Eq. 18 for respective spectra
in L uniquely characterizing each spectral artifact such as drift,
new chemical component, and temperature. The target
approach could also be applied to weighting subsets of
samples, e.g., a set of samples spanning the drift variance, a
set of samples spanning the temperature effect, etc. Determin-
ing multiple weights for samples in L is akin to generalized RR
in which a meta-parameter is sought for each variable. The
target approach applied to generalized RR should be applicable
here and is currently under study. As noted in the Results and
Discussion section, it may be that one weight value set to a
large number could be used.

In the work presented in this study, a model desensitized to
new spectral artifacts over the complete spectral range was
sought using TR or APLS. Under current study is calibration
transfer and maintenance where key wavelengths are simulta-
neously sought as part of the model updating process.
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Ferré, Chemom. Intell. Lab. Syst. 64, 181 (2002).

6. R. P. Cogdill, C. A. Anderson, and J. K. Drennen III, AAPS PharmSciTech
6, E284 (2005).

7. J. H. Kalivas and B. R. Kowalski, Anal. Chem. 54, 560 (1982).
8. F. Wülfert, W. T. Kok, O. E. de Noord, and A. K. Smilde, Chemom. Intell.

Lab. Syst. 51, 189 (2000).
9. C. E. Anderson and J. H. Kalivas, Appl. Spectrosc. 53, 1268 (1999).

10. Z. Y. Wang, T. Dean, and B. R. Kowalski, Anal. Chem. 67, 2379 (1995).
11. D. M. Haaland, Appl. Spectrosc. 54, 246 (2000).
12. K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Hayakawa,

M. Tamura, Y. Ozaki, and Y. Yamada, Appl. Spectrosc. 60, 1423 (2006).
13. M. O. Westerhaus, ‘‘Improving Repeatability of NIR Calibrations Across

Instruments’’, in Proceedings of the Third International Near Infrared
Spectroscopy Conference, R. Biston and N. Bartiaux-Thill, Eds.
(Agriculture Research Centre Publishing, Gembloux, Belgium, 1991), p.
671.

14. Y. Wang, D. J. Veltkamp, and B. R. Kowalski, Anal. Chem. 63, 2750
(1991).

15. X. Capron, B. Walczak, O. E. de Noord, and D. L. Massart, Chemom.
Intell. Lab. Syst. 76, 205 (2005).

16. K. E. Kramer and G. W. Small, Appl. Spectrosc. 61, 497 (2007).
17. M. R. Riley, M. A. Arnold, and D. W. Murhammer, Appl. Spectrosc. 52,

1339 (1998).
18. Y. Sulub and G. W. Small, Appl. Spectrosc. 61, 406 (2007).
19. C. M. Wehlburg, D. M. Haaland, D. K. Melgaard, and L. E. Martin, Appl.

Spectrosc. 56, 605 (2002).
20. C. M. Wehlburg, D. M. Haaland, and D. K. Melgaard, Appl. Spectrosc. 56,

877 (2002).
21. C. L. Stork and B. R. Kowalski, Chemom. Intell. Lab. Syst. 48, 151

(1999).
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