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In operating a rotating-analyzer ellipsometer one must know the plane of incidence accurately. We present a new
calibration method, phase calibration, which is complementary to residue calibration Phase calibration is shown
to be superior to the residue method for A < /6 or A > 57/6.

1. INTRODUCTION

One of the main sources of errors in ellipsometry is inaccu-
rate calibration; if the plane of incidence is not known cor-
rectly, all azimuthal angles of the optical components in-
volved, such as the polarizer, the analyzer, and sometimes
the compensator, contain errors. Thus calibration errors
proliferate, leading ultimately to errors in the measured
quantities Aand ¥. Not withstanding the fact that the final
errors in A and ¥ can be eliminated in first order in a two-
zone measurement,l? it is obvious that an accurate method
of calibration is desirable.

With the introduction of the rotating-analyzer ellipsom-
eter (REA), an appropriate measuring technique for this
type of ellipsometer was developed.33 First, the plane of
incidence is determined by a technique that we shall call
residue calibration, a method similar to the calibration
methods used earlier in nulling ellipsometers.® Second,
once the plane of incidence is known, the signal-detection
system can be calibrated. Finally, A and ¥ can be obtained
from a single measurement and the previously determined
calibration parameters. In this way, the complete measure-
ment consists of two parts, a calibration and the actual
measurement. That other methods are possible as well was
shown recently by Kawabata, who presented a method for a
RAE to measure A and ¥ without previous calibration (a
kind of an integral method).” In Kawabata’s method, four
quantities are measured, all of them with a finite accuracy,
from which A and ¥ as well as the calibration parameters are
obtained. Obviously, errors can cause a strong mixing of
these four quantities, and one should be alert to statistical
and systematic errors. The first method has the advantage
that, in principle, statistical errors are eliminated from the
calibration and thus do not contribute to the errors in the
two measured quantities, A and .

In practice it has been shown that residue calibration
works well on metals in general. However, when applied to
semiconductors in the visible-wavelength region or to non-
absorbing substrates, residue calibration is less useful, yield-
ing poor results. In what follows we show that residue cali-
bration becomes highly inaccurate with A approaching ei-
ther 0 or = rad. Under these circumstances, one could
perform the calibration on another sample or at another
wavelength; however, a complementary method for a direct
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approach should be desirable. Inthis paper we present such
a complementary method, which looks much like residue
calibration and which we call phase calibration.?

This paper is organized as follows. In Section 2 we
present a general description of the measuring technique
and the data handling used in the RAE. In Section 3 we
treat residue calibration, for which we derive an expression
offering the opportunity to calculate the accuracy of the
calibration directly from the calibration itself. Phase cali-
bration is presented in Section 4. It is shown that the two
methods are complementary; phase calibration is most suit-
ed for cases of A near 0 or 7 rad, and residue calibration for A
near 7/2. The paper concludes with a short discussion on
the work presented. An example is included, clearly illus-
trating the usefulness of each method under specific circum-
stances.

2. GENERAL

Concerning the RAE, we must distinguish the optical signal
detected by the detector (Iop) from the electrical signal (1),
which is measured and finally evaluated by the controlling
computer. Figure 1 shows the optical part of the RAE; the
light flux passing the analyzer thus becomes

IlrI?
(8 sin® ¥)
+ [cos 2(P — P,) — cos 2¥]cos 2(w,t — 4,)

I(t) = {{1 — cos 2(P — P,)cos 2¥]

+ [sin 2(P — P_)sin 2¥ cos A]sin 2(wst — A},
(1)

with P and wat = A, respectively, denoting the polarizer and
the analyzer azimuths relative to the plane of incidence, P,
and A, the polarizer and analyzer readings corresponding to
the plane of incidence, I, the light flux from the source, and
|r"p| the magnitude of the parallel complex reflection coeffi-
cient of the surface. Subsequently, the optical signal is
transformed into an electrical one by the detector and passes
a filter, reducing the noise but inherently introducing a fre-
quency-dependent phase shift ¢ and an amplitude attenua-
tion 7:
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Fig. 1. Schematic diagram of the RAE ellipsometer showing the
configuration of the polarizer, the sample, and the (rotating) analyz-
er. The azimuths of the polarizer and analyzer are measured rela-
tive to the plane of incidence.

Iolfpl2
(8sin® W)
+ nfcos 2(P — P,) — cos 2¥]cos 2(w4t — A, — ¢/2)

L) = {1 — cos2(P — P,)cos 2]

+ nlsin 2(P — P,)sin 2¥ cos Alsin 2(w,t — A, — ¢/2)}
(2)

If we divide this expression by its average we find the more
familiar, theoretical expression:

I™B(t) = 1+ na cos 2wyt — A, — ¢/2)
+ 1B sin 2(wyt — A, — ¢/2), (3)

a = [eos 2(P — Pc) — ¢co0s 2¥]/[1 — cos 2(P — P,)cos 2],
(3b)

B = sin 2(P — P,)sin 2 cos A/[1 — cos 2(P — P,)cos 2¥].
(3¢c)

We have added the superscript th to denote where we study
the detected sighal from the more theoretical point of view.
Note that the azimuth A. is not distinguished from the phase
retardation ¢; they can be summed and treated as a single
unknown parameter, 24, + .

The RAE samples the signal I(t) during a number of
cycles at the time points ¢;, yielding the set of data points
{I(t:)}. Subsequently the average (I) and the Fourier coef-
ficients a’ and b’ are numerically calculated from the set {I}:

(1) = Iy, (42)
@ = z () cos(2w,4t,), (4b)
b = z I,(t)sin(2 4t;). (40)

Introducing the normalized Fourier coefficients o’ = a’/{I)
and 8 = b’/(I), we can construct an experimental expression
Ip°%(t) that corresponds to its theoretical analog It?(¢) [Eq.
(3)]:

L) = 1+ o cos(2wyt) + ' sin(2w,2). )

It should be emphasized that o’ and 8’ are the only quanti-
ties actually measured.
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Equations (3) and (5) obviously have to be identical.
Studying these equations, we notice that they contain five
unknown quantities, A, ¥, P, , and the sum (24, + ¢), while
only two quantities, the Fourier coefficients o’ and 8/, are
obtained by a simple measurement. The calibration now
has to yield the quantities P, n, and (24, + ¢), enabling one
to calculate A and ¥ from one measured («/, 8’) pair. The
values of n and 24, + ¢ are easily obtained once the plane of
incidence is known.34 The problem is to obtain P, when one
is able to measure only raw Fourier coefficients o’ and 3.
Now let us first rewrite Egs. (3) and (5) for Ith and I#* into
more easily comparable forms:

L) = 1+ (% + )2 cos 2wyt — 0),

¢ = arctan(8’/a’) (6)
and

L) = 1+ n(a® + 652 cos(2w,t — 0),
= arctan(f/a) + 24, + 0. (7)

The equality of both now requires the independent equality
of the prefactors and the arguments of the cosine. For a
good understanding one should realize that, although P,, 7,
and 2A, + ¢ are unknown, this prefactor and the argument
survive the optic-electric and the Fourier transformation
surprisingly well; apart from the constants » and 24, + ¢,
they can be regarded as constants surviving all signal ma-
nipulations. From the equality of the prefactors, now, the
residue method is derived. From the second requirement,
the equality of the arguments of the cosine, another calibra-
tion method, phase calibration, can be derived.

3. RESIDUE CALIBRATION

According to the Aspnes method,? one has to measure the
residues R as a function of the polarizer angle P; the residue
is defined by
R=1-(a%+8%
=1-n*?+ 9. 8)
On substitution of the theoretical expressions for « and 8

and with some subsequent manipulations, a compact expres-
sion for the residue can be obtained:

sin(A)sin(2¥)sin[2(P — P,)]]? ©)
1 — cos(2¥)cos[2(P — P,)] )

R(P,P)=1-7*+ {n

A look at this expression shows that it is independent of 24,
+ ¢, while 7 is solely a constant that does not change the
characteristic features of R(P, P,); the plane of incidence can
be identified with the polarizer angle P at which the mini-
mum of R is found. In the vicinity of P, the residue can be
approximated by a parabolic behavior:

2 sin(A)sin{2¥)

2
RPP)=1-n'+ [71 1 — cos(2¥) ] (P=F,

|IP-PJ«1. (10)
This feature is used in the experimental technique; one mea-

sures the residue R at a number of equidistant P angles near
P,, where the parabolic behavior is expected. For A near 7/2
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the curvature will be large, enabling one to determine the
minimum of the parabola with a high degree of accuracy.
However, as ¢can be seen from Eq. (10), this minimum blurs
with diminishing A, finally obstructing the calibration for
small A or A near = rad. In what follows we present a
quantitative treatment of this problem, from which we ob-
tain some preliminary criteria for the application of the
residue method.

As we have said, at a number () of equidistant polarizer
angles P; the residues R; are measured, constituting the set S
={P;,R}. Subsequently, the minimum is obtained by fitting
a parabola

R(P) = Cy+ C,P + C,P? (11)

totheset S. The fitting can be accomplished by means of a
least-squares fitting procedure for parabolas, for which ex-
plicit formulas do exist*:

N
Co=(ND)™ " {(pop4s ~ p5) + (0305 — P1py)P;
i=1
+ (pp3 — pzz)PiziRi, (12a)
N
Cy = (ND)™" 3" (0o = pipa) + (Pops = PAP;
i=1

+ (p1py — Pop2)PAR,, (12b)

N
Cy = (ND)™ > {(p1p3 = Py?) + (p1p3 = Popy)P;

i=1

+ (pop, — PPAR, (12¢)
with
N
pr=N"> pt (12d)
i=1
and

D = pypopy +2p1PoP3 ~ Py’ = Poby” — P’y (120)
The minimum of the parabola [Eq. (11)] now is found at
P, =—C,/(2C). (13)

Next we direct our attention to the accuracy with which P,
is obtained; we can derive a coarse criterion for the applica-
tion of the residue method from it. Statistical errors do
occur in any residue of the set S that; ultimately, cause a
random error in P.. Systematic errors are present, too; e.g.,
optical activity of polarizers and windows will probably also
shift P..3 However, these problems are beyond the scope of
the present paper. Ambient light, as long as it is unpolar-
ized, and the detector dark current have no influence on the
determination of the plane of incidence because they only
increase the unmodulated part in a P-independent way.
This could cause a slight raising or lowering of the total
residue curve, but the actual shape of the curve and the
position of its mihimum are not affected.

Let us assume that we have not chosen P too far from P,,
so we may be assured of the proper parabolic behavior of the
residue without any third- or higher-order contributions to
it. Inthat case all residues R; lie along the parabola but are
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randomly distributed. Their standard deviation oz can be
estimated from

N
og?= N1 z (Cy+ C,P; + C,P% — R)% (14)
i=1
The polarizer is rotated by some mechanical means, for
which reason we assume random errors in the settings of P;
to be negligible. Thus random errors in the coefficients C,
Cy, and C; are introduced solely by the finite accuracy with
which the residues are measured. Now, if we call the stan-
dard deviation of the individual residues op, the standard
deviations gy, ¢1, and a9 of the coefficients Cy, C1, and C; can
be derived from Egs. (12):

op \2 X
002 = (N—Rﬁ) Zl {(popy — P32) + (P2p3 - p1p4)Pi
+ (pp3 — AP, (15a)
ap 2 N 9
"12 = (E) ; {(pops = P1py) + (Popy — PP,
+ (p1P2 - popg)P,-2}2, (15b)
2 op | < 2
2 =\~p ZI: {(p1p3 — Po*) + (P1Py — PoP3)P;

+ (POP2 - P12)Pi2}2, (15¢) -

and, when we use Eq. (13), the standard deviation op of the
azimuth P, becomes

2 — 1 2 + & : (16)
9= (202 “1) 2c,2 2]

The first term contributing to op is the main one; the second
term may well be omitted for C; = 0 in the present situation.
The expression states that the uncertainty in P, increases
with decreasing curvature Cs of the patrabola or that the
residue method becomes less accurate with A approaching 0

Delta [deg]
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Fig. 2. Curves of constant curvature C; of the residue depicted in
the (A, ¥) plane. For C; < 1 the residue calibration becomes highly
inaccurate.
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Fig. 3. Three typical examples of residue calibration, where we
have plotted the residues and the best fits as functions of the polar-
izer azimuth P. The curves are shifted upward or downward to
permit them to be distinguished better. Calibrations 1 and 2 are
performed on the same clean c¢-Si sample, calibration 3 on a stain-
less-steel sample. The figure shows clearly that the method is less
suitable for cases 1 and 2 than for case 3. More information on these
calibrations can be found in Table 1.

Table 1. Calibrations Performed on the Same
Samples and under Exactly the Same Circumstances
Using the Residue Technique and the Phase

Technique?
) Calibration
1 2 3

Sample c-Si c-Si M alloy
Wavelength (nm) 545 365 365
Delta (deg) 170 158 87
Psi (deg) 16 28 32
Residue calibration

P, 4.86 6.74 6.37

op 7 1.0 0.1
Phase calibration

P, 6.36 6.42 12.6

@ Relevant information on the samples and the results obtained are given.
The calibration angle P, must be near 6.36 deg. It can be seen that phase
calibration is preferred for the Si sample (A near =), while residue calibration
must be used in case of the stainless-steel sample (A near 7/2). The data
correspond with Figs. 3 and 4.

or w rad. In Fig. 2 we have plotted the curves of constant
curvature Cs in the (A, ¥) plane, calculated from Eq. (10)
with n = 1, clearly showing the behavior expected. The
minimum curvature at which the residue method can still be
used can be estimated as follows. The polarizer angle P
should not be chosen out of the range of 0.10 rad; otherwise
higher-order terms perturb the parabolic behavior of the
residue. A typical accuracy op for a residue is 1074, and
consequently the increase of the residue should be of the
order of 1073 at the edge of the interval in which P is chosen,
to permit a good fitting of the parabola. In this way, one
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obtains Co = 10 as a coarse criterion for the applicability of
the residue method. The corresponding region in the (A, ¥)
plane can be found in Fig. 2.

Note that the estimation presented above is a rough one,
and probably the residue method can be used up to Cs = 1.
Formally, it is required that a criterion be derived for the
application of the residue method from Eq. (16). The rea-
son why we have deviated from this approach is that it is
impossible to obtain proper estimations for ¢, and o3, which
must be obtained from the Egs. (15). However, Eqgs. (14-16)
are easily implemented on the controlling computer, thus
offering a check on the accuracy of the calibration, directly
obtained from the calibration itself.

Some typical examples of the residue calibration are
shown in Fig. 3. A summary of the results of these calibra-
tions can be found in Table 1. The three calibrations pre-
sented are all performed on the same ellipsometer with a 70-
deg angle of incidence. Calibrations 1 and 2 are performed
on a clean ¢-Sisample (A near 7 rad) at \; = 545 nm and A\g =
365 nm, respectively. Without any changes in the align-
ment, we have calibrated a stainless-steel sample (calibra-
tion 3, A = 7/2) at A3 = 365 nm. In Fig. 3 and Table 1 it is
shown clearly that calibration 1 is useless, calibration 3 is a
good one, while calibration 2 should not be trusted too much.

As is shown, the residue method becomes less useful with
A approaching 0 or = rad, and for that situation a comple-
mentary method is desired. In Section 4 we present such a
method, phase calibration, which is as easy to implement as
the residue method on the controlling microcomputer.

4. PHASE CALIBRATION

Phase calibration is derived from the equality of the phases
in Eqgs. (6) and (7):

0’ = arctan(8’/a’)
= arctan(B8/a) + 24, + ¢. amn
Making use of Egs. (3b) and (3c), we obtain

sin 2V sin 2(P — P,)cos A
cos 2(P — P,) — cos 2¥

0 = arctan[ :I +24,+¢. (18)

This phase, 6/, does not show any particular feature, mainly
because of the unknown term 24, + ¢. By measuring ©’ at P
and P + #/2 and subtracting them, we obtain the phase
difference ®:

&(P) = 0/(P + 7/2), (19)
from which 24, + ¢ is eliminated:
— sin 2(P — P,)sin 4¥ cos A

t. ®(P)] = )
an[#(P)] sin? 2¥ — (1 — sin® 2¥ cos? A)sin® 2(P — P,)
(20a)
Ksin2(P—P
sin2(P ~ ) (20b)

" L+Msin?2(P—-P)

We have introduced K(A, ¥), L(A, ¥), and M(A, ¥) to stress
the dependence of tan ® on P — P,. The plane of incidence
is obtained directly from the zero point of tan ® at P = P,.
In practice one has to measure tan ® at a number of different
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azimuths P, P chosen near P,, yielding a function linear in P,

which is shown from the first-order approximation of Egs.
(20):

— 4 cos A cos 2V

P(P) ~
®) sin 2¥

(P-P), |IP-PJ«x1. (21)

The plane of incidence is then to be identified with the
azimuth P at which ®(P) has its zero point. The advantage
of this method shows when the method is applied on a
surface with small or even zero A; in these cases phase cali-
bration yields good results, while residue calibration be-
comes much less accurate.

Apart from calibrating on the zero point of relation (21),
another option exists: Eq. (20b) exhibits an extremum at
P — P; = x/4. This extremum can be found by measuring
tan ® as a function of the polarizer azimuth P near P = =/4.
Subsequently its position is found by fitting a parabola to
the measured values of tan ®.

Phase calibration requires, as we have said, the measure-
ment of the phase difference ®(P) at a number (IN) of equi-
distant polarizer azimuths P in the vicinity of P,, yielding
the set {P;, ®). Figure 4 is a typical example of such a
measurement on a clean c¢-Si surface. This time, a linear-
regression method is used to determine the zero point from
the set of data points. If we denote the straight line that has
to be fitted to the set {P;, ®;} by

®(P) =C, + C,P, (22)
the zero point is found at
P.=-C,/C,. (23)

The coefficients Cy and C are obtained from

Polarizer [deg.]
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0.50 ; . 0.50
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v 0 o pheeel 40 L2 ]
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-0.50 1 1 -0.50
2.5 S.0 7.5 10.0
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Fig.4. Three typical examples of phase calibration, where we have
plotted the measured phase differences ®(P) as a function of the
polarizer azimuth P. Calibrations 1 and 2 are performed on the
same clean c-Si sample, calibration 3 on a stainless-steel sample.
More information on these calibrations can be found in Table 1.
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Fig. 5. Curves of constant slope C; of the phase difference ®(P)
depicted in the (A, ¥) plane. This method can be applied when |C;]
> 1.

N
Cy=(ND)™ > (Bi—p)%; (24a)
=1
N
Co=N"> &-Cp, (24b)
=1

with p;, defined by Eq. (12d) and D redefined:
D =p,—p2 (24c)

We have repeated the same three calibrations that we pre-
sented in Section 3, but now we have used the technique of
phase calibration instead of residue calibration. The results
of these calibrations can also be found in Table 1. The table
shows that phase calibration works well in the cases of the
clean c¢-Si samples, where the measured phase differences
®(P) clearly cut the line ® = 0 (Fig. 4), but that it is of no use
for calibrating the stainless-steel sample (calibration 3).

We could proceed by discussing the standard deviation of
the finally obtained value of P.. This property, however, is
small under all circumstances; this is clearly shown in Fig. 4.
None of these calibrations shows any sign of a statistical
error. This lack of statistical error in the phase difference
deprives us of a check on the reliability of the calibration as
it is seen for the residue calibration. Since the statistical
errors are negligible, the systematic errors caused by the
component imperfections determine the final error in the
calibration. An accurate phase calibration thus requires a
phase effect, dominating the possible effects caused by com-
ponent imperfections, which can be translated to a mini-
mum slope C; for the phase difference as a function of P.
We have calculated this slope C; from Eqs. (20). The results
are depicted in Fig. 5, which shows the lines of constant slope
in the A-¥ plane. A critical value can be obtained from Fig.
4, assuming that phase calibration 2 is still acceptable, an
assumption corresponding to the existence of a critical slope
Cy ~ 1. Inspecting Fig. 5, one notes that this technique of
phase calibration works satisfactorily for A < =/3 rad or A >
27/3 rad and ¥ < 7/6 rad, while it becomes superior to
residue calibration for A < /6 or A > 57/6.
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In conclusion, we can state that the two methods, residue
calibration and phase calibration, are complementary.

5. DISCUSSION

In the present paper we have discussed the familiar residue
calibration method, deriving a rough criterion for its suc-
cessful application. We have shown that the method be-
comes less attractive with A approaching 0 or 7 rad, because
then random errors in the residues measured will obstruct
the determination of the actual position of the minimum.
However, tacitly we have assumed that one knows roughly
the location of the plane of incidence, allowing one to choose
the range of P in order to have P, in the center. In this case
the accuracy can be determined by the curvature of the
parabola, and Eq. (16) can be applied to obtain the standard
deviation of P., which is a good measure of the accuracy.
However, if P, does not lie near the center of the initial
choice of the range P, the parabola will be asymmetric, or
even third-order contributions will perturb the curvature of
the residue; this in cases of small Cs, can introduce large
errors. Here, too, calculating op as prescribed by Eq. (16)
will provide us a check: if the third-order contribution
becomes perturbing, o will increase significantly, resulting
in a oplarger then usual. This shows that the residue meth-
od becomes less useful with diminishing sin(A). Conse-
quently one desires another, complementary method, which
works well in the cases when the residue method does not.
Phase calibration is such a method; it is suitable for accom-
plishing calibration under these circumstances. This meth-
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od, too, is easily implemented on the controlling computer.
The disadvantage of phase calibration is its lack of a direct
check on the accuracy of the result. The only assurance of
accuracy that one can obtain is by calculating the slope of
®(P), which should be at least 1. In general, phase calibra-
tion should be preferred to residue calibration for A < «/6 or
A > 5x/6.
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