
497 © IWA Publishing 2012 Journal of Hydroinformatics | 14.2 | 2012

Downloaded from http
by guest
on 16 August 2022
Calibration of a conceptual rainfall–runoff model using

a genetic algorithm integrated with runoff estimation

sensitivity to parameters

Shiang-Jen Wu, Ho-Cheng Lien and Che-Hao Chang
ABSTRACT
This study proposes a parameter-calibration method (SA_GA) for the conceptual rainfall–runoff

model using a real-value coding genetic algorithm (GA) which takes into account runoff estimation

sensitivity to model parameters; this process is carried out using the standardized regression

equation. The proposed SA_GA method treats the standardized values of model parameters as the

real-value code and adopts a multinomial trial process with a probability of selecting genes for the

crossover and mutation resulting from the runoff estimation sensitivity to the model parameters. A

19-parameter conceptual rainfall–runoff model, Sacramento Soil Moisture Accounting (SAC-SMA)

model, and seven rainstorm events recorded in the Baj-Hang River watershed of South Taiwan are

applied in the model development and validation. The results indicate that SA_GA is superior to a simple

genetic algorithm (SGA) as regards the calculation of fitness values associated with the optimal

parameters under various GA operators. In addition, by comparing the performance indices of estimated

runoff with the calibrated optimal parameters by SA_GA and SGAwith the different number of calibration

rainstorm events, SA_GA can provide efficient and robust optimal parameters. These parameters not

only estimate reliable and accurate runoff, but also capture the varying trends of discharge in time.
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INTRODUCTION
Conceptual rainfall–runoff models have extensive par-

ameters that are not directly measurable and must be

estimated through model calibration by fitting the estimated

outputs of the model to the observed data (Abdulla & AL-

Badranih ). The genetic algorithm (GA) has been suc-

cessful in the contexts of searching, optimization and

teaching (Goldberg ) and can also be applied to the

parameter calibration of conceptual rainfall–runoff models

(e.g. Wang , ; Franchini , Franchini & Galeati

, Franchini et al. ; Seibert ; Madsen et al.

; Agrawal & Singh ; Jain & Srinivasulu ;

Siriwardene & Perera ). The simple GA (SGA) consists

of four steps: fitness, reproduction, crossover and mutation

steps. These steps allow for flexibility, but make it difficult
to obtain the optimal model parameters. Additionally, they

require more computation time in a complicated system

associated with a number of parameters. Numerous investi-

gations are proposed to modify GA in order to fast yield

a more accurate optimum solution. For example, Krishna-

kumar () proposed a micro-genetic algorithm(μMA),

which begins with a small population (generally 5–50), and

concluded that as compared with the simple GA, the micro-

genetic algorithm is suitable for the parameter calibration of

a complex rainfall–runoff model. Wang (, ) devel-

oped a GA which, combined with a standard local search

method, can provide an efficient and robust method for

calibrating conceptual rainfall–runoff models using

hypothetical examples and real data. Franchini ()
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unitized the sequential quadratic programming to calibrate

parameters of conceptual rainfall–runoff models with the

starting points of parameters resulting from the optimal par-

ameters obtained by Wang’s GA. Franchini and co-workers

(, ) compared the pattern search (PS) method with

GA by using an 11-parameter conceptual rainfall–runoff

model, a distributed model (ADM), and concluded that PS

elicits a slightly superior performance to GA. Furthermore,

they proposed a modified GA integrated with the Sequential

Quadratic Programming (SQP), named GA-SQP, and com-

pared it with the PS-SQP, which is the PS combined with

SQP, as well as the shuffled complex evolution (SCE-UA)

using theoretical and real-world cases. Their results indi-

cated that the SCE-UA is better than GA-SQP and PS-SQP

in the theoretical cases; however, in practical applications,

the associated optimal model parameters are limited by the

boundary of their own range. Notably, Ndiritu & Daniell

() calibrated conceptual rainfall–runoff by using a modi-

fied traditional binary-code with three strategies pertaining

to automatic search space, the fine-turning, hill climbing

and independent subpopulation search shuffling. As com-

pared with the shuffled complex evolution (SCE-UA), the

improved GA elicited more efficient results. Siriwardene &

Perera () performed a sensitivity analysis for GA oper-

ators, i.e. the population size, number of generations and

number of model parameters, and summarized that the adap-

tive selection of GA operations is strongly helpful to calibrate

the parameters of urban drainage models associated with

extensive parameters. Work has also been undertaken in

the context of calibrating the model parameters using the

minimum population size (e.g. Goldberg ; Siriwardene

& Perera ). Basically, the proper population size

depends on the number of model parameters. For example,

Goldberg () suggested a population size of 25–50, but Sir-

iwardene & Perera () presented a population of 100 for

models with more than five parameters. Although increasing

the population size can result in more reliable optimal par-

ameters, this would increase computation time.

Recently, sensitivity and uncertainty analyses have

been widely employed to review the variations in model be-

haviour attributed to climate change or hydrological

uncertainties, such as spatial variability of rainfall (e.g.

Chaubey et al. ; Yu et al. ; Hossain et al. ; Cull-

mann et al. ). The results of the sensitivity and
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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uncertainty analyses could be helpful in deciding how the

model structure may be simplified and which parameters

may be fixed during calibration. Therefore, to calibrate

effect and robust optimal parameters, this study proposes a

parameter-calibrationmethod that integrates theGAand sen-

sitivity analysis for the calibration of the conceptual rainfall–

runoff model with a large number of parameters, i.e. the

SA_GA method.
METHODOLOGY

Genetic algorithm integrated with sensitivity analysis

Basic concept

Genetic algorithm (GA) is a widely used stochastic search

method originally developed by Holland (), and it is

more flexible than most other search methods, which

require only information concerning the quality of the sol-

ution produced by each parameter set. The simple GA

(SGA) is composed of four operations: (1) parameter rep-

resentation: encodes the model parameters or finds

specific magnitudes to represent the model parameter

values; (2) selection and reproduction: selects the fittest indi-

vidual chromosomes, which are a series of genes, to be

recombined in order to produce better off-chromosomes.

Here, a probabilistic mechanism (e.g. a roulette wheel)

is used to allocate greater survival to the best individuals;

(3) crossover: recombines (exchanges) genes from randomly

selected pairs of individuals with a certain ratio and

(4) mutation: randomly changes genes in the chromosomes

with a certain (small) ratio. These steps aim at keeping the

population diverse and take preventative measures against

premature convergence onto a local optimum.

As SGA arbitrarily selects the genes in the crossover and

mutation operators, it may take a large number of rep-

etitions to achieve the optimal values of model

parameters. Increasing the population size is useful to

obtain model parameters, but this could require lengthy

computation time. In general, model outputs must be influ-

enced by specific model parameters (Cullmann et al. ;

Castaings et al. ; Milivojevic et al. ). That is, the

model outputs are sensitive to model parameters. Therefore,
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to effectively calibrate model parameters, this study modifies

SGA by taking into account the estimated runoff sensitivity

to model parameters for the conceptual rainfall–runoff

model with a large number of parameters, defined as

SA_GA. In the proposed SA_GA method, a sensitivity

analysis for the model parameters would be carried out

using the standardized regression equation. Note that a 19-

parameter conceptual rainfall–runoff model, Sacramento

Soil Moisture Accounting (SAC-SMA) model, is adopted in

the model development and validation.

Sensitivity analysis for model parameters

As most parameters of conceptual rainfall–runoff models

are sensitive to high flow conditions regardless of time

scale and watershed (Tang et al. ), this study first per-

forms the sensitivity analysis to assess the effect of the

parameters of SAC-SMA model on the estimation of runoff

characteristics, i.e. the runoff volume, the peak discharge,

time to peak runoff and the volume at the rising and reces-

sion limbs.

Most of the sensitivity analysis methods can be grouped

into two types (Subret ): the first is a regression-based

method based on a linear regression of the model output

on the input vector, such as the standardized regression

coefficient (SRC), which is exactly the same as the corre-

lation coefficient in a linear regression. The second is the

variance-based methods in which the observed variance of

the model responses is partitioned into components induced

by the respective variables, such as the analysis of variance

(ANOVA) or Sobol indices methods. This study employs the

SRC method to explore the sensitivity of the SAC-SMA

model parameters. The standardized regression equation

can be expressed as follows (Speed & Yu ):

Y � �Y
sY

¼
Xn
i¼1

βi
Xi � �Xi

sXi

(1)

where Y and X are the model output and inputs; �Y and �X

are the mean of the model output and inputs; sY and sX
are the corresponding standard deviation; and βi denotes

the SRCs. The model output sensitivity to model inputs

can be quantified based on the SRC βi. In detail, the greater

absolute value of the coefficient has a more significant effect
://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
on the model output. If the model input has a positive coef-

ficient, this implies that the model input is directly

proportional to the model output. Eventually, the sensitive

parameters can be identified according to the associated

coefficients of the standardized regression equation.
Development of SA_GA model

Similar to the simple GA (SGA), in which parameter rep-

resentation, fitness, selection and reproduction and

crossover as well as mutation are implemented, the pro-

posed SA_GA method is introduced below:
Parameter representation

In the SGA, the first step is the parameter representation or

encoding, which can represent themodel parameters. Gener-

ally speaking, there are two types of the parameter

representation used in the GA, binary and real-value

coding. The variables are commonly encoded as the binary

representation, in which the variable would be encoded

as a series of binary digits (i.e. zero and one), called the

chromosome. Notably, binary coding only provides the

nearest defined combination of model parameters (Mayer

et al. ). However, real-value coding could efficiently

obtain more consistent and accurate results (Janikow &

Michalewicz ), and has proven to be superior to

binary coding, especially for the high-dimensional search

problem (Salomon ; Back et al. ; Wardlaw &

Sharif ; Bessaou & Siarry ; Avila et al. ;

Fang & Ball ). Although real-value coding can signifi-

cantly reduce the risk of producing strong chromosomes

(such as a large range of parameters) by generating a large

initial number of population size, this situation may result

in undesirable computation time. Therefore, to effectively

calibrate model parameters, this study proposes an alterna-

tive method to convert the model parameters into

standardized values as the real-value code through the

following equation:

zθi ¼
θi � �θi
sθi

(2)

in which zθi is the standardized value of the model par-

ameter θi, and �θi and sθi denote the mean and standard
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deviation of model parameters, respectively. Furthermore,

this study regards the standardized values of model par-

ameters as the genes, which are combined to become the

chromosomes, and which are applied in three GA operators.

As the range of standardized variables is [�1,1], the resulting

optimal model parameters can be obtained under the con-

sideration of the reasonable mean and standard deviation

of model parameters.

Reproduction, fitness and selection

After encoding the model parameters, the next GA operator

reproduces genes. As the proposed SA_GA method is

expected to be used in the calibration of the multi-parameter

rainfall–runoff model, this study employs the multivariate

Monte Carlo simulation method (Wu et al. ) to generate

standardized values of model parameters and convert them

into real values. The runoff can be estimated by the rainfall–

runoff model with the generated model parameters and the

corresponding fitness values can be computed. Then, the

chromosome and associated genes can be selected in

the crossover and mutation according to the corresponding

fitness values. Theoretically, the chromosome associated

with the larger fitness value has a higher probability of

being used in the crossover and mutation.

In general, the optimal parameters of a rainfall–runoff

model can be determined based on the objective function.

The objective functions for the parameter calibration of

hydrologic models can be based on four criteria: (1) a

good agreement between the average simulated and

observed catchment runoff volumes; (2) a good overall

agreement of the shape of the hydrographs; (3) a good agree-

ment of the peak flow with respect to time and volumes; and

(4) a good agreement for low flows (Madsen ). Based on

the above four criteria, the objective function Fobj, the

weighted mean square error, is widely used in the parameter

calibration of hydrological models as:

Fobj(θ) ¼ Min
1
nf

Xnf

t¼1

wt(θ) × (qobs,t � qest,t(θ))
2

" #0:5
8<
:

9=
;

wt(θ) ¼
�qobs þ qobs,t

2�qobs

(3)

where nf is the runoff duration; qobs,t and qest,t(θ) are the
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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observed and estimated discharge at time t using model

parameter θ; and �qobs is the mean of observed runoff

volume. The less objective function value indicates that the

estimated runoff fits better to observed data. That is, the fit-

ness value of estimated runoff increases. As a result, the

fitness value f(θi) is negatively related to the objective func-

tion value Fobj(θi):

f(θi) ¼ 1=Fobj(θi) (4)

In general, GA selects chromosomes in which the

associated genes are used in the crossover and mutation

using various selection schemes, e.g. the roulette wheel

selection, proportionate selection (Goldberg ) or linear

ranking and tournament selection (Siriwardene & Perera

). As Goldberg & Deb () indicated that no one

selection scheme is superior to the other schemes, this

study proposes an alternative scheme, i.e. the multinomial

trial process with the probability of selecting the chromo-

some Pchrom(θi) based on the fitness value as follows:

Pchrom(θi) ¼ f(θi)Pnchrom
i¼1 f(θi)

(5)

where nchrom denotes the number of chromosomes, i.e. popu-

lation size. Referring to Equation (5), as the chromosome has

a larger Pchrom, the associated genes have a higher chance of

being used in the crossover and mutation. Notably, a multi-

nomial trial process is a sequence of independent,

identically distributed random variables X¼ (X1, X2,…,

Xk). The sequence X is formed by sampling from the

common probability density function of the trial variables.

Crossover and mutation

In SGA, the genes used in the crossover and mutation are

randomly determined in the selected chromosomes, which

probably increases the computation time and obtains

inadequate optimal parameters. The above-mentioned stan-

dardized regression equation indicates that the variables

with the larger absolute regression coefficients might con-

tribute to more effect on model outputs. Hence, this study

calculates the probability of extracting genes used in the

crossover and mutation according to the coefficients of a



Figure 1 | The graphical illustration of the crossover and mutation in the case of popu-

lation size being 5.

501 S.-J. Wu et al. | Rainfall–runoff model calibration using modified genetic algorithm Journal of Hydroinformatics | 14.2 | 2012

Downloaded from http
by guest
on 16 August 2022
standardized regression equation:

Pgene ¼ jβijPnpar

i¼1 jβij
(6)

in which βi is the regression coefficient of the ith model par-

ameter and npar is the number of model parameters. As the

gene in a chromosome selected for the crossover and

mutation has a large Pgene, it has a high likelihood of

being exchanged in the crossover or being reproduced in

the mutation.

In summary, this study proposes a standardized-value-

based SA_GA method, which primarily adopts the multi-

nomial trial process to select the chromosome and

associated genes used in the crossover and mutation. In

detail, as two genes are identified for the crossover, the

corresponding standardized values are exchanged. Simi-

larly, in the case of the gene being extracted for the

mutation, the corresponding standardized value is gener-

ated using the multivariate Monte Carlo simulation

method. Eventually, the resulting standardized values of

model parameters are transformed into the real values

and are imported into the rainfall–runoff model. A graphi-

cal illustration of the above-mentioned crossover and

mutation process in the proposed SA_GA method is

shown in Figure 1.
Model framework

Based on the concept of the proposed SA_GA method

above, the procedure of calibrating model parameters

using SA_GA is introduced below:

Step[1]: Ensure the statistics of sensitive model par-

ameters, i.e. mean and standard deviation.

Step[2]: Identify the sensitive model parameters using the

standardized regression equation.

Step[3]: Reproduce initial k sets of standardized values of

sensitive model parameters zθi and transform them into

the real values θi ¼ zθi × sθi þ �θi.

Step[4]: Import the generated sensitive model parameters

into the rainfall–runoff model to calculate objective func-

tion values using Equation (3).

Step[5]: Check to see if the minimum of the objective func-

tion is less than the criterion. If so, the optimal model
://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
parameters can be obtained. Otherwise, continue with

the following steps.

Step[6]: Calculate the probability of selecting chromo-

somes Pchrom using Equation (5) to select the

chromosomes, in which associated genes would be used

in the crossover and mutation through the multinomial

trial process.

Step[7]: Calculate the probability of extracting genes Pgene

using Equation (6) to identify genes in the chromosomes

selected at Step [6] for the crossover and mutation

through the multinomial trial process.

Step[8]: Perform the crossover and mutation for genes

extracted at Step [7] to yield new chromosomes. Then,

the resulting standardized values θ̂i ¼ ẑθi × sθi þ �θi are

transformed into the real values ẑθi . Return to Step [4].

Note that in GA, the criteria should be given in advance

to stop the GA operators and find the optimal solution.



Figure 2 | Hypothetical hyetograph for the sensitivity analysis for SAC-SMA model

parameters.

Table 1 | Description of parameters of SAC-SMA model (Ajami et al. 2004)

Parameters Description

UZTWM Upper zone tension-water capacity (mm)

UZFWM Upper zone free-water capacity (mm)

UZK Upper zone recession coefficient

PCTIM Percent of impervious area

ADIMP Percent of additional impervious area

SARVA Fraction of segment covered by streams, lakes and
riparian vegetation

ZPERC Minimum percolation rate coefficient

REXP Percolation equation exponent

LZTWM Lower zone tension water capacity (mm)

LZFSM Lower zone supplementary free-water capacity (mm)

LZFPM Lower zone primary free-water capacity (mm)

LZSK Lower zone supplementary recession coefficient (mm)

LZPK Lower zone primary recession coefficient (mm)

PFREE Percentage percolating directly to lower zone free
water

SIDE Ratio of deep recharge water going to channel base-
flow

RESERV Percentage of lower zone free water not transferable to
lower zone tension water

SSOUT Fixed rate of discharge lost from the total channel flow
(mm/Δt)

DF_L Period of runoff distribution function

DF_P Maximum ratio of runoff distribution function
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Generally speaking, the criterion is defined as a specific

value of the objective function, i.e. the minimum value.

However, in the case of the criterion being extremely

small, it is difficult to stop the GA operators and find the

optimum. In addition to the criterion with respect to the

objective function, this study also adopts a criterion for

the number of generations of genes. That is, in cases

where the objective function values are significantly greater

than the criterion, the number of generating genes exceeds

the limitation so that the genes with the smallest objective

function value are regarded as the optimum in this study.

Sacramento soil moisture accounting (SAC-SMA) model

Description of SAC-SMA model

Recently, many rainfall–runoff models have been commonly

used to estimate runoff, for example, unit hydrograph

method, Sacramento Soil Moisture Accounting model, TOP-

MODEL. The Sacramento Soil Moisture Accounting (SAC-

SMA) model is a lumped conceptual watershed model used

for operational river forecasting (Burnash ). It was orig-

inally derived from the Stanford Watershed model, and

designed for the Sacramento River system, US. The SAC-

SMA model describes the mathematical equation that

accounts for each process with the transformation of rainfall

into outflow towards a river and it has 17 parameters, which

are defined in Table 1, and a runoff function. The runoff func-

tion is a distribution of runoff in time. The triangle runoff

function, of which the peak occurs at the middle of the

period, is adopted in this study. In summary, the runoff func-

tion has two parameters: duration and peak ratio. As a result,

the SAC-SMA model belongs to a 19-parameter conceptual

rainfall–runoff model.

Sensitivity analysis for SAC-SMA parameters

The sensitivity analysis for evaluating the effect of par-

ameters of the SAC-SMA model on the estimation of

runoff characteristics is carried out by using the normal

regression analysis in this study. To derive the standardized

regression equation of runoff characteristics resulting from

the SAC-SMA parameters, the hyetograph of a hypothetical

rainstorm event, the duration of which is 96 h, is applied
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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(see Figure 2), and 250 simulation sets of SAC-SMA par-

ameters are obtained by the Monte Carlo simulation

method with their assumed statistics. Following Tang et al.

(), this study refers to the above-mentioned allowance



Figure 3 | Summary of estimated runoff by using SAC-SMA model with generated

parameters.
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range to hypothesize the statistics (mean and standard devi-

ation) of the parameters as shown in Table 2.

Figure 3 presents the resulting runoff hydrograph and

the associated peak discharge that could be obtained for a

watershed, in which the corresponding area is assumed as

1 km2. Figure 4 shows the coefficients of the SAC-SMA par-

ameters. As shown in Figure 4, ten parameters, PCITEM,

ADIMP, UZTWM, UZFWM, UZK, ZPERC, REXP,

LZTWM, DF_L and DF_P, show more influence on the

runoff characteristics than the remaining parameters due

to the significantly larger absolute coefficients. For the

peak discharge, DF_L has the greatest absolute value of

the coefficient (0.33) and the LZPK has the smallest absol-

ute coefficient (0.00759). Additionally, the negative

coefficients of UZTWM, LZTWM and DF_F imply that

the peak discharge would decrease with an increase in the

above parameters. In summary, ten parameters would sig-

nificantly contribute to the uncertainty of estimated runoff

characteristics, and they are defined as sensitive model par-

ameters in this study. Therefore, in the SAC-SMAmodel, the
Table 2 | Hypothetical statistics of SAC-SMA model parameters for the sensitivity analysis

Parameters
Allowable range
(Tang et al. 2007) Mean

Standard
deviation

UZTWM 1.0–150 59.840 29.744

UZFWM 1.0–150 51.582 27.334

UZK 0.1–0.5 0.520 0.312

PCTIM 0.0–0.1 0.206 0.113

ADIMP 0.0–0.4 0.194 0.100

SARVA *** 0.010 0.005

ZPERC 1.0–250 45.987 26.496

REXP 0.0–5.0 1.490 0.798

LZTWM 1.0–500 237.242 111.061

LZFSM 1.0–1000 201.514 108.814

LZFPM 1.0–1000 58.964 32.799

LZSK 0.01–2.5 0.082 0.040

LZPK 0.0001–0.025 0.049 0.024

PFREE 0.0–0.6 0.197 0.105

SIDE *** 0.099 0.059

RESERV *** 0.304 0.157

SSOUT *** 0.001 0.000

DF_L *** 17.125 5.950

DF_P *** 0.932 0.890

***No well known allowable range.

://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
above-mentioned ten sensitive parameters should be cali-

brated and the remaining parameters could be adopted as

the mean values as shown in Table 2.

Note that Qp denotes the peak discharge and Tp stands

for the time to the peak. V, Vu and Vd are the entire runoff

volume and runoff volume at the rising as well as the reces-

sion limbs.
MODEL VALIDATION

This study primarily develops a standardized-value-basedGA

(SA_GA) method to effectively calibrate the associated opti-

mal sensitivity by integrating the genetic algorithm and

sensitivity analysis for model parameters. As compared

with SGA, in which the genes for the crossover and mutation

are randomly selected, SA_GA extracts the genes by means

of the multinomial trial process with a selection probability

Pgene calculated by Equation (6). As the adaptive GA oper-

ators (the number of generation, population size, crossover

and mutation ratios) are very useful for the parameter cali-

bration (Siriwardene & Perera ), this study compares

the proposed SA_GA method with SGA in the calculation

of fitness values associated with optimal parameters of the

SAC-SMA model mentioned above in the context of varying

GA operators. Moreover, as the outcomes of hydrological

models are sensitive to the number of rainstorm events

used in parameter calibration (Peters-Lidard et al. ),

this study also estimates runoff using the optimal SAC-SMA

parameters calibrated by SA_GA and SGA, respectively.



Figure 4 | Summary of coefficients of normal regression for SAC-SMA model parameters.
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This includes various rainstorm events and calculates the

corresponding performance indices. By comparing perform-

ance indices, SA_GA and SGA are demonstrated in the

accuracy and reliability of estimated runoff.
Performance indices

The comparison of estimated runoff is widely made using

two methods; one is graphical comparison and the other is

performance indices. The graphical comparison mainly

evaluates varying trend of runoff with respect to time. The

latter type, performance indices, assesses the difference

between the estimated and observed runoff characteristics.

This study primarily focuses on the accuracy of runoff in

time and scale. This is such that three performance indices

for the measurement of temporal varying trend and total

volume of runoff as well as the peak discharge, which are

commonly used in the evaluation of rainfall–runoff

models, are summarized below:

1. Efficiency coefficient (CE) (Nash & Sutcliffe )

CE ¼ 1�
P

(qobs(t)� qest(t))
2P

(qobs(t)� �qobs)
2 (7)
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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where �qobs represents the mean of observed discharge. If

CE approaches one, this means that the estimated runoff

model is a good fit with the observed value.

2. Error of peak discharge (EQP)

EQP ¼ (qp,est � qp,obs)
qp,obs

× 100% (8)

in which qp,est and qp,obs are the estimated and observed

peak discharge, respectively. Note that EQP is probably

a negative value, which means that the estimated value

is less than the observed one.

3. Root mean square error (RMSE)

RMSE ¼ 1
nf

Xnflow

t¼1

(qobs(t)� qest(t))
2

" #0:5

(9)

in which qobs(t) and qest(t) are estimated and observed

discharge at time t, respectively.
Study area and data

In this study, the Chu-Kou sub-basin in Baj-Hang River

watershed in Taiwan (see Figure 5) is applied to the
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model development and validation. Table 3 lists the geo-

metrical information of associated rainfall and water level

gauge in the Baj-Hang River watershed. For the model vali-

dation, observed hourly rainstorm events are selected

according to two rules: one is that the runoff coefficient,

which is the runoff volume divided by the rainfall

amount, is less than or equal to one, and the other is
Figure 5 | Baj-Hang River watershed and associated discharge and rainfall gauges.

Table 3 | Discharge gauges and associated rainfall gauges in study basins

Watershed Sub-basin Gauges

Baj-Hang Chu-Kou Dischar

Area¼ 83.15 km2 Rainfall

://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
that the peak discharge is significantly greater than other

events in the same year. Based on the above rule,

Table 4 lists rainstorm events from the Chu-Kou sub-

basin of the Baj-Hang River watershed, in which the

selected rainstorm events are mostly typhoon events

recorded from 2004 to 2008 and show the peak discharge

between 200 and 1,300 m3/s.
ge Chu-Kou TM_X¼ 208946.8

TM_Y¼ 2593107.0

Da-Hu TM_X¼ 210373

TM_Y¼ 2597161

Long-Mei TM_X¼ 213633

TM_Y¼ 2590031



Table 4 | Rainstorm events recorded in study basins for the model application

Sub-basin Events Occurrence period Peak discharge (m3/s)

Chu-Kou EV1 SEPAT 20070818–20070821 643.6

EV2 WIPHA 20071006–20070920 224.5

EV3 KORSA 20071006–20071008 1276

EV4 KAMLAEGI 20080717–20080720 830.84

EV5 FONGWONG 20080728–20080730 410.6

EV6 SINLAKU 20080914–20080915 359.34

EV7 JANGMI 20080928–20080916 523.83

Figure 6 | Average fitness values corresponding to optimal parameters of SAC-SMA

model calibrated by SA_GA and SGA with various number of generation.
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Sensitivity analysis for SAC-SMA parameters

Effect of GA operators

As the proposed SA_GA method calculates the probability

of extracting genes used in the crossover and mutation

related to the sensitivity of model parameters, which

significantly differ from SGA, SA_GA and SGA should

be compared according to the fitness values associated

with the optimum under various GA operators, i.e.

the generation number, population size, crossover and

mutation ratios. In this study, the average fitness values

for the ten best chromosomes (i.e. optimal parameters)

are adopted in the model validation. Note the statistics

(the mean and standard deviation) of SAC-SMA

parameters as shown in Table 2 are adopted in the model

validation.

Number of generation

This section evaluates the change in the fitness values with

various numbers of gene-generation. The number of gene-

generation is hypothesized as 50, 100, 150, 200, 250, 300,

350, 400, 450 and 500. Other operators are assumed to

be a population size of 50 with crossover and mutation

ratios of 0.5 and 0.01, respectively. Moreover, seven rain-

storm events (see Table 4) recorded in the study area of

the Baj-Hang River watershed are applied in the calibration

of SAC-SMA parameters. Note that the criterion, the mini-

mum objective function, is assigned as 0.1. Figure 6 shows

the comparison of the calculated fitness values associated

with the optimal parameters by SA_GA and SGA with
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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the number of gene-generation, i.e. 10, 50, 100, 150, 200,

250, 300, 350, 450 and 500. It is observed that the average

fitness values increase from approximately 0.125 to 0.135

with the number of generation varying from 10 to 500. It

also can be seen that the fitness values calculated by

SA_GA are generally greater than those by SGA. On aver-

age, the calculated fitness value by SA_GA is

approximately 0.133, whereas the fitness value by SGA is

about 0.134. This implies that the proposed SA_GA

method can provide the optimal model parameters in

which the estimated runoff can fit better to the observed

data than SGA under the generation number. Moreover,

in view of Figure 6, as the number of generation increases

from 10 to 50, the average fitness value quickly rises. How-

ever, for the number of generation exceeding 50, the

average fitness value gradually increases. It can be said

that a generation of 50 is suitable for the proposed

SA_GA method, which is also regarded as the criterion

for number of generating genes.
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Population size

This section discusses the effect of population size on the fit-

ness value resulting from SA_GA and SGA. Using the

various population sizes, including 10, 50, 100, 150, 200,

250, 300, 350 and 400, the fitness values associated with

optimal parameters are calculated by SA_GA and SGA

with the generation number of 50, mutation ratio of 0.5

and crossover ratio of 0.05 as shown in Figure 7. Figure 7

shows that the average fitness values are positively related

to the population size, in which the value approximately

increases from 0.125 to 0.135. It also can be seen that as

the population size exceeds 50, the average fitness value

approaches a constant 0.35 (SA_GA) and 0.32 (SGA). More-

over, it is observed that the fitness values from SA_GA are

greater than ones from SGA using various population

sizes. Similar to the generation number, the optimal par-

ameters calibrated by SA_GA can produce reliable runoff

in which the corresponding difference from the observed

data is less than those with the optimal parameters deter-

mined by SGA. In summary, a population size of 50 could

provide a stable and reliable result for the parameter cali-

bration in the proposed SA_GA model. As a result, a

population size of 50 would be adopted in the proposed

SA_GA method.

Crossover ratio

Similar to the number of generation and population size, the

average fitness value would be calculated by SA_GA and
Figure 7 | Average fitness values corresponding to optimal parameters of SAC-SMA

model calibrated by SA_GA and SGA with various population sizes.

://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
GA with varying crossover ratios, i.e. 0.1, 0.2,…, 0.8. The

remaining GA operators are hypothesized as the generation

number of 50, population size of 50 and mutation ratio of

0.5. Figure 8 shows the comparison of the average fitness

values calculated by SA_GA and SGA with various cross-

over ratios. It is observed that the change in the average

fitness value is dissimilar to the results from the number of

generation and population size. That is, the average fitness

value oscillates between 0.13 and 0.135 (on average 0.132)

under the consideration of varying crossover ratios. As the

average fitness values calculated by SA_GA are generally

greater than ones by SGA, this indicates that the difference

of estimated runoff from the observed data with the cali-

brated parameters by SA_GA is significantly less than

those by SGA. In addition, referring to Figure 8, in the

case of the crossover ratio being 0.5, the average fitness

value is approximately 0.1325, which approaches the

mean. Therefore, this study adopts the crossover ratio of

0.5 in the proposed SA_GA method.

Mutation ratio

As mentioned previously, this section evaluates the effect of

mutation ratio on the fitness value with a generation number

of 50, population size of 50 and crossover ratio of 0.05.

Figure 9 shows the change in the average fitness values cal-

culated by SA_GA and SGA under various mutation ratios,

including 0.01, 0.02,…, 0.1. In Figure 9, similar to the results

from the crossover ratio mentioned above, the average fit-

ness also oscillates between 0.13 and 0.135 (on average
Figure 8 | Average fitness values corresponding to optimal parameters of SAC-SMA

model calibrated by SA_GA and SGA with various crossover ratios.



Figure 9 | Average fitness values corresponding to optimal parameters of SAC-SMA

model calibrated by SA_GA and SGA with various mutation ratios.
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0.132), and the average fitness values calculated by SA_GA

are generally greater than ones by SGA. This provides evi-

dence that SA_GA can calibrate the optimal parameters in

which the corresponding difference of estimated runoff to

the observed data is less than those for SGA for various

mutation ratios. Moreover, the proposed SA_GA adopts a

mutation ratio of 0.05, in which the associated fitness

value approaches the mean value 0.132.

Specifically, the proposed SA_GA method can provide

the optimal parameters that can produce runoff associated

with a better fitness to the observed data than those by

SGA under various GA operators. Also, the GA operators,

i.e. a generation number of 50, population size of 50, and

crossover and mutation ratios of 0.5 and 0.05, are suggested

to be adopted in the proposed SA_GA model.
Effect of number of rainstorm events calibrated

Basic concept

The results mentioned previously focus on comparison

between SA_GA and SGA in the parameter calibration of

SAC-SMA model in which the fitness values associated

with optimal parameters are calculated for varying GA oper-

ators. This section primarily compares SA_GA and SGA in

the estimation of runoff using the optimal SAC-SMA par-

ameters calibrated using different numbers of rainstorm

events, which are defined as calibration events. In detail,

this study estimates runoff using the optimal SAC-SMA
om http://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
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parameters calibrated by SA_GA and SGA, respectively.

This is performed with various numbers of calibration

events and calculates the corresponding performance indi-

ces for the comparison of SA_GA and SGA in the

estimation of runoff. As seven rainstorm events recorded

in the study area of the Baj-Hang River (see Table 4) are

adopted, the number of calibration events considered is 1,

2, 3, 4, 5 and 6 events. In other words, the corresponding

6, 5, 4, 3, 2 and 1 rainstorm events, which are defined as

the validation events, should be used in the estimation of

runoff and calculation of performance indices.

Comparison of performance indices

Figure 10 shows the average performance indices for esti-

mated runoff of validation events using the SAC-SMA

model with optimal parameters calibrated by SA_GA and

SGA using various number of calibration events. As

shown in Figure 10(a), it is observed that the efficiency of

coefficient (CE) increases from approximately 0.5 to 0.6 in

relation to the number of calibration events. As CE

measures the fitness of estimated runoff to the observed

data, the calibrated optimal parameters using more cali-

bration events can produce runoff, which better fits to the

varying trend of runoff in time. In addition, the average

CE of estimated runoff with optimal parameters calibrated

by SA_GA is greater than SGA with different numbers of

calibration events (except for 1 and 2 calibration events).

It can be said that the proposed SA_GA method can provide

the optimal parameters that have a higher likelihood of cap-

turing the temporal behaviour of runoff.

The error of peak discharge (EQP) of estimated runoff is

shown in Figure 10(b). The average EQP is negatively pro-

portional to the number of calibration events.

Furthermore, the average EQP for SA_GA decreases from

about 18 to 5% with the increase of calibration events,

whereas the average EQP for SGA decreases from approxi-

mately 18 to 10%. That is, the EQP values of estimated

runoff with the calibrated optimal parameters by SA_GA

are less than those by SGA. This implies that the calibrated

optimal parameters by SA_GA can estimate the peak dis-

charge in such a way that the corresponding accuracy and

reliability is influenced less by the number of calibration

events with SGA.



Figure 10 | Average performance indices of estimated runoff by SAC-SMA model with

optimal parameters calibrated by SA_GA and SGA. (a) Coefficient of efficiency

CE, (b) Error of peak discharge EQP, (c) Root mean square of error RMSE.
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In addition to the performance indices CE and EQP,

this study compares SA_GA with SGA using the RMSE of

estimated runoff. Figure 10(c) presents the comparison of

the average RMSE of estimated runoff by SAC-SMA model

with the calibrated optimal parameters by SA_GA and

SGA under various numbers of calibration events. The aver-

age RMSE decreases with the number of calibration events

in cases where the number of calibration events is less

than 3. However, when using 4, 5 and 6 calibration
://iwaponline.com/jh/article-pdf/14/2/497/386722/497.pdf
events, the average RMSE rises. As such, there is an

increased ratio of RMSE for SGA from 10.2 to 10.85 m3/s

that is greater than one for SA_GA from 10 m3/s to

10.3 mmm3/s. Notably, the average values of RMSE for

SA_GA are significantly less than those for SGA. In sum-

mary, SA_GA can obtain the optimal parameters that

produce more accurate and reliable runoff volume than

SGA.

Specifically, the proposed SA_GA method can be

applied in the estimation of runoff by means of providing

the optimal parameters of the conceptual rainfall–runoff

model. This system can capture the change in runoff with

respect to time and more accurately estimate runoff,

especially for the peak discharge.
CONCLUSIONS

This study proposes a parameter-calibrationmethod (SA_GA)

for the conceptual rainfall–runoff model based on the GA by

taking into account runoff estimation sensitivity to model par-

ameters carried out by the standardized regression equation.

As comparedwith the simple genetic algorithm (SGA), thepro-

posed SA_GA method adopts the multinomial trial process

with a probability of gene calculated from the sensitivity to

model parameters (see Equation (6)) to identify the genes

that are exchanged in the crossover and are reproduced in

the mutation.

To compare the proposed SA_GA method with SGA in

the parameter calibration of the conceptual rainfall model, a

19-parameter Sacramento Soil Moisture Accounting (SAC-

SMA) model is adopted. Additionally, seven rainstorm

events recorded in the Baj-Hang River watershed of South

Taiwan are used in the model validation. According to the

results from an evaluation of effect of GA operators, i.e.

the number of generation, population size and crossover

and mutation ratios, the proposed SA_GA method can pro-

vide the optimal parameters that are associated with better

fitness to the observed data than SGA. Moreover, as com-

pared with SGA in the estimation of runoff with optimal

parameters using various numbers of calibration events,

the proposed SA_GA method can provide the optimal par-

ameters that can capture the change in runoff, especially

for the peak discharge.



510 S.-J. Wu et al. | Rainfall–runoff model calibration using modified genetic algorithm Journal of Hydroinformatics | 14.2 | 2012

Downloaded fr
by guest
on 16 August 2
In addition to the SAC-SMA model, the proposed

SA_GA method could be applied in other hydrological

models associated with large numbers of parameters. More-

over, in SA_GA, the standardized values of model

parameters are hypothesized as the non-correlated vari-

ables. However, some correlation should exist among

standardized values of model parameters. Therefore,

SA_GA could be improved by taking into account the corre-

lation between model parameters. Also, as the single

objective function Equation (3) adopted in this study focuses

on the difference between estimated and observed runoff,

especially for high observed runoff, the corresponding opti-

mal parameters may ignore the effect of low runoff, such as

base-flow. To remedy this omission, the multi-objective func-

tion (e.g. Madsen ; Seibert ) would be adopted in

the proposed SA_GA method.
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