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Abstract. A considerable number of river basins around

the world lack sufficient ground observations of hydro-

meteorological data for effective water resources assessment

and management. Several approaches can be developed to

increase the quality and availability of data in these poorly

gauged or ungauged river basins; among them, the use of

Earth observations products has recently become promis-

ing. Earth observations of various environmental variables

can be used potentially to increase knowledge about the hy-

drological processes in the basin and to improve streamflow

model estimates, via assimilation or calibration. The present

study aims to calibrate the large-scale hydrological model

PCRaster GLOBal Water Balance (PCR-GLOBWB) using

satellite-based products of evapotranspiration and soil mois-

ture for the Moroccan Oum er Rbia River basin. Daily sim-

ulations at a spatial resolution of 5 × 5 arcmin are performed

with varying parameters values for the 32-year period 1979–

2010. Five different calibration scenarios are inter-compared:

(i) reference scenario using the hydrological model with

the standard parameterization, (ii) calibration using in situ-

observed discharge time series, (iii) calibration using the

Global Land Evaporation Amsterdam Model (GLEAM) ac-

tual evapotranspiration time series, (iv) calibration using

ESA Climate Change Initiative (CCI) surface soil moisture

time series and (v) step-wise calibration using GLEAM ac-

tual evapotranspiration and ESA CCI surface soil moisture

time series. The impact on discharge estimates of precipita-

tion in comparison with model parameters calibration is in-

vestigated using three global precipitation products, includ-

ing ERA-Interim (EI), WATCH Forcing methodology ap-

plied to ERA-Interim reanalysis data (WFDEI) and Multi-

Source Weighted-Ensemble Precipitation data by merging

gauge, satellite and reanalysis data (MSWEP).

Results show that GLEAM evapotranspiration and ESA

CCI soil moisture may be used for model calibration re-

sulting in reasonable discharge estimates (NSE values from

0.5 to 0.75), although better model performance is achieved

when the model is calibrated with in situ streamflow obser-

vations. Independent calibration based on only evapotranspi-

ration or soil moisture observations improves model predic-

tions to a lesser extent. Precipitation input affects discharge

estimates more than calibrating model parameters. The use

of WFDEI precipitation leads to the lowest model perfor-

mances. Apart from the in situ discharge calibration scenario,

the highest discharge improvement is obtained when EI and

MSWEP precipitation products are used in combination with

a step-wise calibration approach based on evapotranspiration

and soil moisture observations. This study opens up the pos-

sibility of using globally available Earth observations and

reanalysis products of precipitation, evapotranspiration and

soil moisture in large-scale hydrological models to estimate

discharge at a river basin scale.

1 Introduction

To assess and manage the water resources available within

a river basin, good estimates of hydro-meteorological data,

such as precipitation, temperature and streamflow, are re-

quired. However, many river basins around the world still

have a limited number of in situ observations, being ei-

ther ungauged (Sivapalan et al., 2003) or poorly gauged
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(Loukas and Vasiliades, 2014). Ungauged or poorly gauged

river basins also include those basins where data are inac-

curate, scarce, intermittent or collected at different temporal

resolutions, leading to the problem that it is not clear how

to integrate these data consistently into hydrological models

(Winsemius et al., 2009). As a result, the limited availability

and poor quality of data induces large uncertainty in model

outputs from these river basins (Seibert and Beven, 2009).

Developing novel strategies to enhance available data sets

and hydrological models is one of the key strategies when

working in ungauged basins (Hrachowitz et al., 2013).

To overcome the lack of hydro-meteorological data, a

promising approach is the use of the recently developed

global Earth observations and reanalysis products to supple-

ment the available data. In the last few decades, radar and

satellite technologies have improved and have become more

broadly available, providing diverse hydro-meteorological

data sets at finer spatial and temporal resolutions: precipita-

tion (Joyce et al., 2004; Huffman et al., 2007), soil moisture

(Njoku et al., 2003; Dorigo et al., 2015), total water storage

(Tapley et al., 2004), evapotranspiration (Bastiaanssen et al.,

1998; Nishida, 2003; Miralles et al., 2011b), etc.

Previous studies have demonstrated the possibility of us-

ing these global data sets to better understand the hydrologi-

cal processes in a river catchment (Kite and Droogers, 2000;

Vereecken et al., 2008; Seneviratne et al., 2010; Hafeez et al.,

2011) and to improve streamflow model estimates through

assimilation (Parajka et al., 2006; Roy et al., 2010; Brocca

et al., 2012; Thirel et al., 2013; López López et al., 2016)

and/or calibration techniques or a priori determination of

model parameters (Jacobs et al., 2003; Beck et al., 2009).

Calibration approaches based on multiple remotely sensed

variables have some advantages in comparison with tradi-

tional calibration approaches using only observed and mod-

elled hydrographs in a limited number of locations. Fenicia

et al. (2007) and Gupta et al. (2008) recognized that tradi-

tional calibration may lead to over-parameterization, i.e. sim-

ilar model results are obtained with a combination of mul-

tiple parameters, whereas calibrating for multiple variables

– step-wise calibration – may partly resolve the problem of

non-uniqueness and provides a better understanding of the

processes happening within the catchment.

Several studies have investigated calibration ap-

proaches based on variables different than streamflow.

Campo et al. (2006) used soil moisture information radar

images from ERS-2 sensors to parameterize the hydro-

logical model MOBIDIC (MOdello di Bilancio Idrologico

DIstribuito e Continuo). Immerzeel and Droogers (2008)

the hydrological model SWAT (Soil and Water Assessment

Tool) based on satellite evapotranspiration from MODIS

satellite images. Lo et al. (2010) improved the parameter

estimation of the Community Land Model 3.0 using GRACE

total water storage data, while Isenstein et al. (2015) cal-

ibrated the hydrological model VIC (Variable Infiltration

Capacity) using snow covered area from MODIS satellite

data. Others have combined remotely sensed variables with

in situ streamflow observations for calibration. In Rientjes

et al. (2013), the model HBV (Hydrologiska Byråns Vatten-

balansavdelning) model was calibrated with satellite-based

evapotranspiration from MODIS and streamflow. Wanders

et al. (2014) calibrated model parameters of LISFLOOD

based on discharge and soil moisture observations acquired

by the AMSR-E, SMOS and ASCAT instruments, while

Sutanudjaja et al. (2014) calibrated the large-scale model

PCR-GLOBWB using streamflow and soil water index in-

formation derived from the ERS scatterometers. At a global

scale, Beck et al. (2016) used parameter regionalization

to calibrate an HBV model. However, the simultaneous

use of more than one environmental variable different than

streamflow for calibration is rare. A calibration approach

using different variables, independently and in combination

with streamflow observations, may further improve model

performance and contribute to a better understanding of

hydrological processes. In the present study, this is tested

by comparing multiple calibration scenarios based on

evapotranspiration, soil moisture and discharge data.

The previously mentioned calibration experiments were

performed for well-studied river basins, such as the Rhine–

Meuse river basin, with good coverage of in situ hydro-

meteorological data. In the present study area, the Oum er

Rbia River basin located in Morocco, ground observations

are spatially sparse and limited in number, classifying it

as a poorly gauged river basin. The region frequently suf-

fers from water scarcity and droughts and water availability

is the main factor influencing socio-economic development,

mostly driven by agriculture (Houdret, 2008). The studies of

Tramblay et al. (2012), Tramblay et al. (2016) and Ouatiki

et al. (2017) are testimony to the relevance of this area.

Therefore, developing new strategies to model this watershed

is highly relevant to improve water management and assess-

ment of the water availability within the basin.

This study aims to calibrate a large-scale hydrological

model, PCR-GLOBWB 2.0 (Sutanudjaja et al., 2016; Su-

tanudjaja et al., 2017), using soil moisture and evapotran-

spiration observations alone and to compare its discharge

estimates to those obtained when the model is tradition-

ally calibrated to streamflow data. We use the evapotran-

spiration product generated by an enhanced version of the

Global Land Evaporation Amsterdam Model (GLEAM v3.0;

Martens et al., 2016b) in combination with the surface soil

moisture product from the ESA Climate Change Initiative

(CCI; Dorigo et al., 2015). Both products are derived from

satellite data. Furthermore, the influence of precipitation

forcing is considered and three different global precipitation

products are used and inter-compared: ERA-Interim reanaly-

sis data (EI; Dee et al., 2011), WATCH Forcing Data method-

ology applied to ERA-Interim reanalysis data (WFDEI; Wee-

don et al., 2014) and Multi-Source Weighted-Ensemble Pre-

cipitation data by merging gauge, satellite and reanalysis data

(MSWEP; Beck et al., 2017b).
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Five different calibration approaches are performed by us-

ing five calibration scenarios that include streamflow, soil

moisture and evapotranspiration: (i) reference scenario us-

ing the hydrological model with the standard parameteriza-

tion, (ii) calibration using in situ-observed discharge time se-

ries, (iii) calibration using GLEAM actual evapotranspiration

time series, (iv) calibration using ESA CCI surface soil mois-

ture time series and (v) step-wise calibration using GLEAM

actual evapotranspiration and ESA CCI surface soil moisture

time series. The above is repeated for each of the selected

global precipitation products. A priori, it is expected that cal-

ibrating to streamflow observations yields the best discharge

estimates, and that the step-wise calibration using soil mois-

ture and evapotranspiration provides better results than the

calibration scenarios based only on soil moisture or evapo-

transpiration.

The novel aspects and new contributions of this work in-

clude the use and comparison of three different and recently

generated global precipitation products, the exploration of

calibration techniques based on Earth observations of soil

moisture and evapotranspiration and their application in a

large-scale hydrological model to provide streamflow esti-

mates in the ungauged Oum er Rbia River basin. Further-

more, understanding the potential gain of calibrating large-

scale models with remotely sensed observations may have

benefits for water resources management in data-poor river

basins globally.

This paper first describes the study area, then the method-

ology, including the hydrological model, data, calibra-

tion and validation strategy and performance metrics. Sub-

sequently, results are presented, starting with the inter-

comparison of precipitation products and following with cal-

ibration and validation results. The paper ends with discus-

sion and conclusions.

2 Study area

The study area is the Oum er Rbia River basin, which is sit-

uated in the central-western region of Morocco between the

Atlas Mountains to the south and the Mesetian zone to the

north, flowing into the Atlantic Ocean (Fig. 1). The basin’s

topography ranges from 2800 m in the southern upstream

zone to 150 m in the northern downstream zone. The Oum er

Rbia is the second largest river in Morocco with a total length

of 550 km and it drains an area of approximately 38 025 km2.

The climate in the coastal and mountainous areas is

Mediterranean, characterized with high temperatures in the

summer and warm autumn and winter months with rainfall,

and semi-arid in the central plain (Jones et al., 2013). Pre-

cipitation increases from downstream to upstream areas in

the mountains. The mean annual precipitation and tempera-

ture are 400 mm and 18 ◦C, respectively. Approximately 70

to 80 % of the annual rainfall is concentrated in the period

from October to May.

The lowlands of the basin are mainly covered with rain-

fed and irrigated agriculture fields and the upstream regions

are a combination of Mediterranean forests, woodlands and

scrub. The geology of the area is mostly composed of lime-

stone, marl and sandstone with a karst aquifer in the Atlas

Mountains and a multi-layered system of superficial and deep

aquifers in the western plains (Bouchaou et al., 2009).

3 Methodology

3.1 Large-scale hydrological model: PCR-GLOBWB

The large-scale hydrological model PCR-GLOBWB 2.0 (Su-

tanudjaja et al., 2016, 2017) was used at a spatial resolu-

tion of 5 × 5 arcmin (approximately 10 × 10 km at the equa-

tor) and at a daily temporal resolution. PCR-GLOBWB is a

leaky-bucket type of model applied on a cell-by-cell basis.

Figure 2 illustrates a schematic representation of the struc-

ture of PCR-GLOBWB model. For each grid cell and time

step, the model determines the water balance considering the

following water storage components: soil moisture, ground-

water, surface water, interception storage and snow. The

soil is divided into three vertical layers representing the top

5 cm of soil (depth Z1 ≤ 5 cm), the following 25 cm of soil

(depth Z2 ≤ 30 cm) and the remaining 120 cm of soil (depth

Z3 ≤ 150 cm), in which the stores are symbolized as S1, S2

and S3, respectively. The underlying groundwater store (S4)

consists of two layers: an active or renewable layer and a

non-active or non-renewable layer of fossil water, in which

the stores are symbolized as S4act and S4fos, respectively. The

model also includes the water exchange processes between

the top layer and the atmosphere (precipitation, evapotran-

spiration and snowmelt), among the soil layers (percolation

and capillary rise) and between the soil layers and the ac-

tive layer of the groundwater store (groundwater recharge,

discharge to baseflow and capillary rise). Each grid cell is di-

vided into sub-grids considering variations of elevation, veg-

etation, soil and land cover. Five land cover types are dis-

tinguished: irrigated paddy field, irrigated non-paddy field,

grassland (short natural vegetation), forest (tall natural vege-

tation) and open water. To compute the total runoff of every

grid cell, the model includes direct runoff (QDR), shallow

sub-surface flow from the third soil layer (QSF) and baseflow

from the active groundwater layer (QBF). The total runoff is

accumulated from all grid cells and routed along the drainage

network to obtain the river discharge (Qchannel). The PCR-

GLOBWB model version used here (Sutanudjaja et al., 2016)

simulates water availability and water abstraction, including

reservoirs and domestic, industrial, livestock and irrigational

water demands. The following subsections briefly describe

the model components and the parameters relevant for the

present calibration study. The reader is referred to Sutanud-

jaja et al. (2011) and Sutanudjaja et al. (2014) for a more

detailed explanation.
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Figure 1. Oum er Rbia River basin and its location in Morocco (the delineation of the catchment is physically based). Yellow points represent

the gauging stations and green squares represent the weather stations.

3.1.1 Direct or surface runoff

The amount of water that goes into the soil is the net pre-

cipitation (Pn) resulting from the surplus of precipitation

above the interception capacity and the excess melt water

from the snow pack. Net precipitation is partitioned into di-

rect runoff (QDR) and net infiltration to the first soil layer

(P01). The partitioning is done using the Improved Arno

Scheme (Hagemann and Gates, 2003), in which the frac-

tion of saturated soil of a cell is estimated based on the

cell-minimum capacity (Wmin), the cell-average actual stor-

age (Wact = S1 + S2 + S3) and the water capacity for the en-

tire soil profile (Wmax = SC1+ SC2+ SC3, SCn: soil water

capacity for layer n). If Wmin = 0, direct runoff always oc-

curs for a rainfall event. If Wmin > 0, an event Pn only gener-

ates runoff QDR if Wact > Wmin. Cell-minimum capacity is

therefore an important parameter which governs runoff gen-

eration response time.

3.1.2 Vertical water exchanges between soil and

groundwater stores and shallow sub-surface flow

Net infiltration water into the first soil layer (P01) is trans-

ferred through the remaining soil layers. Vertical water ex-

changes occur between the first and the second layers (P12),

between the second and the third layers (P23) and between

the third soil layer and the active layer of the groundwa-

ter store (P34). Layers P12, P23 and P34 consist of down-

ward percolation and upward capillary rise, which depend

on the degree of saturation (s1 = S1/SC1, s2 = S2/SC2 and

s3 = S3/SC3) and the unsaturated hydraulic conductivity of

each soil layer (Ksat1, Ksat2 and Ksat3). If s1 > s2 , perco-

lation is equal to Ksat1, whereas if s2 > s1, capillary rise is

equal to Ksat2 × (1 − s1), with 1 − s1 the moisture deficit in

the first soil layer. Layers Ksat1, Ksat2 and Ksat3 controls the

vertical fluxes between the soil layers and the groundwater

store which affect significantly to the ground water recharge.

Moreover, Ksat3 influences the shallow sub-surface flow from

the third soil layer (QIF).

3.1.3 Baseflow

The last component that contributes to the total runoff for

each grid cell is the baseflow from the active groundwater

layer (QBF). This is calculated as QBF = S4act × J , where

J is the baseflow recession coefficient and depends on the

aquifer transmissivity and the aquifer specific yield. There-

fore, J controls the direct contribution of groundwater store

to the total runoff and hence to the river discharge.

3.1.4 Evapotranspiration

Actual evapotranspiration consist of transpiration (Et), bare

soil evaporation from the top soil layer (Eb), open-water

evaporation (Ew), interception loss (Ei) and evaporation

from the melt water store in the snow pack (Es). Each evap-

otranspiration component is calculated based on the refer-

ence potential evapotranspiration (Ep,0) and the correspond-

ing factor coefficients related to vegetation cover fraction,

crop and land cover type, surface water bodies, water stress

and the interception flux.

3.2 Data

3.2.1 Meteorological data

The meteorological data required to force PCR-GLOBWB

are air temperature, precipitation and reference potential

evapotranspiration. Air temperature and precipitation were

obtained from the WATCH Forcing Data methodology ap-

plied to ERA-Interim reanalysis data (WFDEI) at an original

spatial resolution of 0.5◦ × 0.5◦ (Weedon et al., 2014). Ref-

erence potential evapotranspiration was obtained through the

obtained through the FAO (Food and Agriculture Organiza-

tion) Penman–Monteith equation. Precipitation, air temper-

ature and reference potential evapotranspiration were down-
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Figure 2. PCR-GLOBWB model structure, adapted from van Beek

et al. (2011).

scaled from the original spatial resolution to a 0.08◦ × 0.08◦

grid. Precipitation and air temperature were downscaled us-

ing precipitation and temperature lapse rates derived from

the 10’ CRU-CL2.0 data (New et al., 2002) through lin-

ear regression analysis (Sutanudjaja et al., 2011). Reference

potential evapotranspiration was downscaled using the E2O

(eartH2Observe) downscaling tools (Weiland et al., 2015;

Schellekens and Weiland, 2017).

To test model sensitivity to precipitation, air tempera-

ture and reference potential evapotranspiration were fixed

and two additional global precipitation products were used:

(i) ERA-Interim reanalysis data (EI) from the European

Centre for Medium-range Weather Forecasts (ECMWF) at

the original spatial resolution of 0.5◦ × 0.5◦ (Dee et al.,

2011) and (ii) Multi-Source Weighted-Ensemble Precipita-

tion data (MSWEP) by merging gauge, satellite and reanal-

ysis data at the original spatial resolution of 0.25◦ × 0.25◦

(Beck et al., 2017b).

The three global precipitation products were inter-

compared and interpolated to the two weather station loca-

tions found inside the Oum er Rbia basin (http://www.wmo.

int/pages/themes/climate/): Beni Mellal and Kasba Tadla

(Fig. 1). Kling–Gupta efficiency (KGE), Nash–Sutcliffe ef-

ficiency (NSE), Pearson’s correlation coefficient (r) and per-

cent bias (PBias) between the interpolated and in situ ground

daily data were calculated. A description of the performance

metrics with their mathematical formulation is included in

Sect. 3.4. These metrics were selected in order to have

detailed information about differences among precipitation

products.

3.2.2 Discharge data

Daily river gauge data were obtained from the Oum er Rbia

Hydraulic Agency (ABHOER). Gauge measurements from

two gauges in the western region of the basin were used in

this study: Ait Ouchene and Mechra Eddahk (Fig. 1). Table 1

summarizes some key hydrological data.

3.2.3 Evapotranspiration data

The GLEAM (Global Land Evaporation Amsterdam Model

– http://www.gleam.eu/) evapotranspiration product version

3.0a (GLEAM_v3.0a), generated by VU Amsterdam in col-

laboration with Ghent University (Miralles et al., 2011a,

b; Martens et al., 2016b), was used to calibrate PCR-

GLOBWB. The product consists of a global data set based

on reanalysis net radiation and air temperature, satellite- and

gauged-based precipitation, vegetation optical depth (VOD)

and snow water equivalents spanning the 35-year period

1980–2014. To generate the GLEAM evapotranspiration

product, the GLEAM model separately estimates the dif-

ferent components of terrestrial evaporation, including tran-

spiration, interception loss, bare-soil evaporation, snow sub-

limation and open-water evaporation. To this end, it con-

sists of four modules: evaporation, stress, soil–water balance

and rainfall interception (Martens et al., 2016a). GLEAM

(0.25◦ × 0.25◦) was interpolated with distance-weighted av-

erage remapping to a 0.08◦ × 0.08◦ grid for the period 1980–

2010. GLEAM actual evapotranspiration thus obtained was

subsequently compared to simulated actual evapotranspira-

tion by PCR-GLOBWB.

3.2.4 Soil moisture data

The ESA CCI surface soil moisture combined product ver-

sion 2.2 (ESA CCI SM v02.2 CP) was generated as part

of the European Space Agency (ESA) soil moisture Cli-

mate Change Initiative (CCI) project by the Vienna Univer-

sity of Technology (http://www.esa-soilmoisture-cci.org/).

A data set for the 35-year period 1980–2014 of surface

soil moisture was produced using C-band scatterometer data

(ERS-1/2 AMI scatterometer, MetOp Advanced Scatterom-

eter – ASCAT) and multi-frequency radiometer data (from

the SMMR, SSM/I, TMI, AMSR-E, Windsat and AMSR2

instruments). Soil moisture retrieved using satellite active

microwave data and satellite microwave radiometry were

merged to make best use of soil moisture data from the dif-

ferent available satellites and sensors (Liu et al., 2011, 2012;

Dorigo et al., 2015). ESA CCI surface soil moisture com-

bined product represents approximately a top soil layer depth

of 0.5–2 cm. Similarly to GLEAM evapotranspiration, ESA

CCI soil moisture product at an original spatial resolution

of 0.25◦ × 0.25◦ was interpolated with distance-weighted av-
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Table 1. Hydrological and geographical information of the analysed catchments at the Oum er Rbia basin.

Station name River Upstream basin Outlet location Elevation

area (km2) Longitude Latitude (m)

Ait Ouchene El Abid 2350 6◦10′48′′ W 32◦13′30′′ N 1070

Mechra Eddahk Oum er Rbia 6555 6◦31′12′′ W 32◦26′6′′ N 406

Table 2. Calibration scenarios.

Scenario Description

identifier

S0 Reference scenario

S1 Calibration using in situ-observed discharge time series

S2 Calibration using GLEAM actual evapotranspiration times series

S3 Calibration using ESA CCI surface soil moisture time series

S4 Step-wise calibration: using GLEAM actual evapotranspiration

and ESA CCI surface soil moisture time series

erage remapping to 0.08◦ × 0.08◦ grid for the period 1980–

2010.

ESA CCI surface soil moisture observations were com-

pared to simulated soil moisture of the first of the three ver-

tical soil layers in PCR-GLOBWB (top 5 cm of soil). Due to

differences in layer depth and/or data characteristics, system-

atic biases between modelled and observed soil moisture may

exist (Reichle and Koster, 2004). To overcome this expected

discrepancy and match the remotely sensed observations to

the statistics of corresponding hydrological model simula-

tions, mean–standard deviation (µ − σ ) matching (Draper

et al., 2009) was used. This technique was implemented to

rescale simulated soil moisture against ESA CCI surface soil

moisture time series to have the same mean and variance.

The adjusted simulated surface soil moisture values θ ′
sim

were calculated as

θ ′
sim =

σθobs

σθsim

× (θsim − θsim) + θobs, (1)

where θsim represents the simulated soil moisture values, θobs

the ESA CCI soil moisture observations, σθsim and σθobs are

the standard deviations of the simulated and observed soil

moisture values and θobs and θobs are the means of the simu-

lated and observed soil moisture values.

When comparing the original and the rescaled soil mois-

ture, it is observed that the mean–standard deviation tech-

nique effectively removes the biases between the simulated

and observed soil moisture time series (see Fig. S1 of the

Supplement).

3.3 Calibration and validation strategy

Alternative single objective calibration approaches based on

discharge, actual evapotranspiration and surface soil mois-

ture and a multi-objective calibration approach based on ac-

tual evapotranspiration and surface soil moisture were inter-

compared. Five different calibration scenarios were carried

out. Calibration scenario S0 represents the reference calibra-

tion scenario, which was not locally calibrated for the Oum er

Rbia basin, but uses a priori model parameters derived from

vegetation, soil properties and geological information at a

global scale (latest model version of PCR-GLOBWB). Cali-

bration scenario S1 aims to calibrate the hydrological model

using in situ discharge observations, following the traditional

calibration approach. Calibration scenarios S2 and S3 use

GLEAM actual evapotranspiration and ESA CCI surface soil

moisture time series for calibration, respectively. Calibra-

tion scenario S4 represents the multi-objective calibration ap-

proach and it consists of a step-wise calibration scheme that

attempts to combine the strengths of calibration scenarios S2

and S3. The first step is simply scenario S2, where all the

model parameters can be adjusted based on GLEAM actual

evapotranspiration. In the second step, those parameters that

are clearly identified by calibration scenario S2 are held con-

stant and the remaining parameters can be adjusted according

to ESA CCI surface soil moisture, calibration scenario S3.

The five calibration scenarios were analysed for each of

the three global precipitation products to study their impact

on model parameters calibration and model performance.

The calibration scenarios are described in Table 2, including

the scenario identifier.

For the calibration using in situ-observed discharge time

series (S1), two river gauge observation time series were used

(Sect. 3.2.2). The objective function to maximize for the cal-

ibration scenarios was KGE, instead of the traditional mean

squared error (MSE) or NSE to avoid underestimating the

variability of values (Gupta et al., 2009). The mathematical

formulation and description of the used objective function

are included in Sect. 3.4.
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To calibrate PCR-GLOBWB for each of the three precipi-

tation products, 81 runs with different parameter values were

simulated: minimum soil water capacity (Wmin), soil satu-

rated hydraulic conductivities (Ksat1, Ksat2 and Ksat3) and

baseflow recession coefficient (J ). These model parameters,

which vary spatially over the basin, influence different model

parts of the model behaviour, as explained in Sect. 3.1. For

the variation of the parameter values, spatially uniform pre-

factors were used: fw, fK and fj (Table 3). The remaining

model parameters were kept fixed.

The pre-factors to vary model parameter values were re-

ferred to as the parameters of the S0 calibration scenario. The

spatial distribution of the parameters Wmin, Ksat and J used

in the S0 scenario can be found in Fig. A1 of Appendix A.

Furthermore, the uncertainty of reference potential evap-

otranspiration (Ep,0ref ) was also investigated using a correc-

tion pre-factor, fe, to this model variable. Considered values

for fe pre-factor are included with the previously mentioned

ones in Table 3.

As a reference calibration scenario, S0 pre-factors are:

fw = 1, fK = 0, fj = 1 and fe = 1. The model perfor-

mances of all the simulations were evaluated for each of the

five calibration scenarios to identify the best pre-factor sets

as the calibrated pre-factor sets.

All the simulations were performed at a daily temporal res-

olution for the 32-year period 1979–2010. The 2-year period

1979–1980 was used to spin up the hydrological model un-

til reaching a dynamically steady state. The model was cal-

ibrated based on monthly values of discharge, actual evapo-

transpiration and surface soil moisture. Validation was also

carried out at a monthly temporal resolution but exclusively

for streamflow, aiming to analyse if similar discharge esti-

mates may be obtained with a calibrated model based on re-

motely sensed observations (S2, S3 and S4), in comparison

with a model traditionally calibrated to in situ discharge data

(S1). The 13-year period 1981–1993 was used for model cali-

bration, and during the 17-year period 1994–2010, the model

was validated.

3.4 Performance metrics

To inter-compare the three global precipitation products, six

metrics were used: NSE, KGE, r and PBias. Moreover, one

of those metrics, KGE, was chosen as an objective function

to calibrate and validate model performance for each calibra-

tion scenario. NSE, PBias and r were also used as additional

assessment measurements in the validation procedure.

Nash–Sutcliffe efficiency (Nash and Sutcliffe, 1970),

NSE, is defined as

NSE = 1 −

∑n
t=1[x(t) − y(t)]2

∑n
t=1[y(t) − y]2

, (2)

where x(t) and y(t) are the modelled and observed variable

at t time step (months), y is the mean of observed data and n

is the total number of observations. NSE is widely used for

calibrating and validating hydrological models in terms of

discharge. NSE varies from −∞ to 1. If NSE = 0, modelled

values perform as well as the mean of the observations. If

NSE < 0, modelled values perform worse than the mean of

the observations.

Gupta et al. (2009) analysed various decompositions of

NSE and proposed an alternative model performance criteria,

KGE, to avoid the problems that can be derived from using

the NSE criterion (e.g. high sensitivity to extreme values and

bias). KGE is given as

KGE = 1 −

√

(r − 1)2 + (α − 1)2 + (β − 1)2, (3)

where r represents Pearson’s correlation coefficient, α is the

ratio between the variance of the modelled variable and the

variance of the observed variable and β is the ratio between

the mean of the modelled variable and the mean of the ob-

served variable, i.e. β represents the bias. Analogous to NSE,

KGE ranges from −∞ to 1 with an ideal value of 1. KGE

measures simultaneously bias, variability and correlation.

Pearson’s correlation coefficient (Pearson, 1896) measures

the degree of linear association between modelled and ob-

served values and it is defined as

r =

∑n
t=1(x(t) − x)(y(t) − y)

√

∑n
t=1(x(t) − x)2

√

∑n
t=1(y(t) − y)2

, (4)

where x(t) and y(t) are the modelled and observed variable

at t time step (months), y is the mean of observed data, x is

the mean of modelled data and n is the total number of obser-

vations. Pearson’s correlation coefficient, r , varies within the

interval [−1,1]. This coefficient is mainly used in hydrologi-

cal modelling to evaluate the timing of modelled to observed

time series.

Percent bias indicates the average tendency of the mod-

elled values to over- or underestimate the observations, and

it is calculated in percentage terms as

PBias = 100 ×

∑n
t=1(x(t) − y(t))

∑n
t=1y(t)

. (5)

The optimal value of PBias is 0.

When the performance metrics were calculated between

simulated and observed soil moisture estimates, the sub-

script sm was added to the metric, i.e. NSEsm, KGEsm, rsm

and PBiassm. Similarly, when comparing actual evapotran-

spiration estimates, precipitation and discharge, the added

subscripts were evap, precip and q , respectively.

4 Results

4.1 Inter-comparison of precipitation products

To inter-compare the precipitation products, the annual mean

precipitation for the study time period (1979–2010) for each
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Table 3. Parameter values used in the calibration processes.

Parameters Description Pre-factors Parameter values

ID

Wmin Minimum soil water capacity fw ∈ {0.75,1,1.25} Wmin = fw · Wmax

Ksat1 Saturated hydraulic conductivity of first soil layer fk ∈ {−0.25,0,0.25} log(Ksat1) = fk + log(Ksat1ref
)

Ksat2 Saturated hydraulic conductivity of second soil layer fk ∈ {−0.25,0,0.25} log(Ksat2) = fk + log(Ksat2ref
)

Ksat3 Saturated hydraulic conductivity of third soil layer fk ∈ {−0.25,0,0.25} log(Ksat3) = fk + log(Ksat3ref
)

J Baseflow recession coefficient fj ∈ {−0.5,0,0.5} log(J ) = fj + log(Jref)

Ep,0 Reference potential evapotranspiration fe ∈ {0.75,1,1.25} Ep,0 = fe · Ep,0ref

Figure 3. (a) EI annual mean precipitation, (b) WFDEI annual mean precipitation and (c) MSWEP annual mean precipitation for 1979–2010

time period and (d) climatology of EI, WFDEI and MSWEP precipitation products.

forcing data set was calculated (Fig. 3a, b and c). In addition

to the spatial resolution difference, MSWEP was able to cap-

ture the rainfall pattern over the Atlas Mountains rather well,

which was only roughly distinguished by WFDEI and unrec-

ognized by EI. The finer spatial resolution and the combina-

tion of reanalysis, satellite and in situ data are probably the

reasons for its more plausible spatial pattern. Furthermore,

climatology of precipitation products was analysed (Fig. 3d).

WFDEI ranged from 4.5 mm in July to 57 mm in February,

whereas EI and MSWEP showed a lesser variability with

precipitation values from 10.5 mm in July to 42.6 mm in

November. Smaller differences between WFDEI and EI and

MSWEP were observed during the summer months. EI and

MSWEP showed similar temporal precipitation patterns. An-

nual mean precipitation over the entire basin obtained with

MSWEP (355.15 mm) was approximately 80 mm higher than

with EI (276.67 mm). Similar annual median values were ob-

tained with the three global precipitation products, although

the distribution of WFDEI highly differed from the other two

products.
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Figure 4. Performance metrics of daily EI, WFDEI and MSWEP

precipitation products at Beni Mellal and Kasba Tadla weather sta-

tions, including KGE, NSE, r and PBias.

Moreover, various performance metrics between the inter-

polated and in situ ground data were calculated and shown

in Fig. 4. Overall, EI and MSWEP provided a better fit to

the station data compared to WFDEI, with higher KGEprecip,

NSEprecip and rprecip than WFDEI. When comparing EI

with MSWEP, similar values of KGEprecip and NSEprecip

were found, whereas higher differences existed in rprecip and

PBiasprecip. In terms of correlation MSWEP showed the best

performance, but EI showed the lowest PBias at both weather

stations, with a value of less than 10 %. Only two weather sta-

tions were found within the basin for the previous analysis.

These measurements were considered too scarce to cover the

basin and to discard the precipitation product with the worst

performance (WFDEI). Therefore, the three global precipi-

tation products were used to calibrate PCR-GLOBWB under

the five calibration scenarios.

4.2 Calibration results

Model parameters were calibrated using discharge, evapo-

transpiration and soil moisture observations through five dif-

ferent calibration scenarios for the time period 1981–1993.

Figure 5 shows results of all runs produced in this study for

different calibration scenarios based on in situ discharge ob-

servations (S1) at Ait Ouchene (Fig. 5a) and Mechra Eddahk

(Fig. 5b), GLEAM actual evapotranspiration (S2, Fig. 5c)

and ESA CCI surface soil moisture (S3, Fig. 5d). For each

panel in Fig. 5, KGE results (y axis) of using the three precip-

itation products were plotted in different rows (top, EI; mid-

dle, WFDEI; bottom, MSWEP) and pre-factor values were

plotted in different columns (x axis: first column, fe; sec-

ond column, fj ; third column, fk; fourth column, fw). Each

scatter plot contains 81 dots representing each run with a dif-

ferent combination of parameter values. This means that the

KGE values are the same in the four scatter plots of a row

(y axis), but in each of these scatter plots, they were plotted

against a different pre-factor (x axis). With Fig. 5, pre-factor

ranges (and therefore parameter ranges) leading to better and

worse performances could be distinguished, as well as their

global optimal values. If no optimal value could be inferred,

pre-factors from the calibration scenario S0 were maintained

(fe = 1, fj = 0, fk = 0 and fw = 1).

Once the best runs for each calibration scenario were iden-

tified, their discharge performance was checked at the two

gauging stations: Mechra Eddahk, in Fig. 6, and Ait Ouch-

ene, in Fig. S2. Observed discharge (y axis) and estimated

discharge (x axis) were plotted in Fig. 6 for the five cali-

bration scenarios. Different rows in Fig. 6 indicate the three

global precipitation products (top, EI; middle, WFDEI; bot-

tom, MSWEP) and different columns indicate the five cali-

bration scenarios (first column, S0; second column, S1; third

column, S2; fourth column, S3; fifth column, S4). The per-

formance indicators NSE and KGE for discharge were in-

cluded in every scatter plot in Fig. 6 (NSEq and KGEq ).

To summarize results shown in Figs. 5 and 6, Table 4 in-

cludes for each calibration scenario the identified optimal

parameters values and the KGEq performance values at Ait

Ouchene and Mechra Eddahk.

4.2.1 Calibration using in situ-observed discharge time

series (S1)

Figure 5a and b (calibration scenario S1) are similar. From

these panels, fe (first column) and fw (fourth column) were

well identified by discharge calibration at both gauging sta-

tions when forced with any of the three precipitation prod-

ucts. Pre-factors of fe = 1.25 and fw = 1.25 led to the high-

est KGEq values. However, it was not possible to identify

the best pre-factors of fj (second column) and fk (third col-

umn). There were no clear or distinct maximum values in the

scatter plots of these panels; hence fj = 0 and fk = 0 were

used.

From Fig. 6 (second column), the highest discharge per-

formance was obtained when the model was calibrated with

in situ discharge observations (S1).

For all the calibration scenarios, a few general observa-

tions could be made. Scatter plots (Fig. 6) highlighted an

overall better agreement and a lower bias between discharge

observations and estimates for the Ait Ouchene (see Fig. S2)

than for Mechra Eddahk station. KGEq values at Ait Ouch-

ene station for calibration scenario S0 were lower than for

Mechra Eddahk station. This may be due to their differ-

ent locations within the basin, the former being situated in

the Atlas Mountains, where precipitation estimates can be
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Table 4. Parameter identifiability values and optimal values for each calibration scenario.

Calibration fe fj fk fw KGE (Ait Ouchene) KGE (Mechra Eddahk)

scenario

S0 1 0 0 1 0.470/ − 1.906/ − 0.5422 0.607/0.325/0.561

S1 1.25 NI1 NI 1.25 0.510/ − 0.494/0.520 0.688/0.439/0.703

S2 1.25 NI NI NI 0.508/ − 0.580/0.342 0.602/0.423/0.693

S3 NI NI 0.25 1.25 0.487/ − 0.607/0.331 0.634/0.369/0.613

S4 1.25 NI 0.25 1.25 0.478/ − 0.768/0.271 0.522/0.328/0.573

1 NI indicates that the parameter was not identifiable. 2 KGE values are obtained from observed and simulated discharge when
PCR-GLOBWB is forced with EI/WFDEI/MSWEP.

Figure 5. Scatter plots of discharge performance indicator KGE based on the monthly observations versus pre-factors fe, fj , fk and fw for

the calibration scenarios S1 ((a) Ait Ouchene (b) Mechra Eddahk), S2 (c) and S3 (d). In each panel, columns indicate the different calibrated

pre-factors and rows indicate the three global precipitation products used as model forcing. Different colours and dot shapes indicate different

fw values.
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Figure 6. Scatter plots of monthly estimated discharge (x axis) and observed discharge (y axis) at Mechra Eddahk. Rows indicate the three

global precipitation products and columns indicate the five calibration scenarios.

less accurate, and in a tributary of the Oum er Rbia River,

whose representation in PCR-GLOBWB can be limited by

the model spatial resolution.

Scatter plots (Fig. 6) also showed that estimated discharges

were closer to observed discharges at both gauging sta-

tions when PCR-GLOBWB was forced with EI precipita-

tion. Moreover, scatter plots indicated a worse agreement

and a tendency to overestimate discharge when WFDEI and

MSWEP were used. KGEq values for the reference calibra-

tion scenario S0 at Mechra Eddahk were 0.607, 0.325 and

0.561 when EI, WFDEI and MSWEP were used as forcing

data, respectively. These performance discrepancies were re-

lated to the differences between EI, WFDEI and MSWEP

precipitation products discussed in Sect. 4.1. The lower qual-

ity of WFDEI in this region compared with the other pre-

cipitation data sets may be a possible reason for the lower

discharge performance. When MSWEP was compared with

in situ precipitation data, performance in terms of correlation

was higher than EI. However, EI showed less bias. The higher

performance of discharge estimates when PCR-GLOBWB

was forced with EI may be due to this bias difference and

that the validation was carried out at a monthly temporal res-

olution, reducing the impact of correlation.

4.2.2 Calibration using GLEAM actual

evapotranspiration time series (S2)

Figure 5c (calibration scenario S2) indicated that only pre-

factor fe (first column) could be clearly identified (the high-

est KGEevap values were obtained with fe = 1.25), whereas

the remainder of the pre-factors (fj , fw and fk) were non

identifiable, suggesting that evapotranspiration-based cali-

bration may be unreliable in their identification. Therefore,

the model run with pre-factors fe = 1.25, fj = 0, fk = 0 and

fw = 1 was considered as the calibrated run based on the

evapotranspiration performance.

From Fig. 6 (third column), results indicated an increase of

KGEq and NSEq values when GLEAM evapotranspiration

was used for model calibration compared to the reference

scenario (S0, first column of Fig. 6). However, higher model

performance values were obtained when calibrating based on

in situ discharge observations (S1, second column of Fig. 6).

4.2.3 Calibration using ESA CCI surface soil moisture

time series (S3)

Figure 5d (calibration scenario S3) indicated that pre-factors

fk (third column) and fw (fourth column) could be identi-

fied, fw = 1.25 and fk = 0.25. There was a clear maximum

value of KGEsm with these pre-factors values. Pre-factors fe
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(first column) and fj (second column) were not identifiable

when soil moisture was used for calibration. Therefore, the

calibrated run based on soil moisture performance was the

model run with pre-factors fe = 1, fj = 0, fk = 0.25 and

fw = 1.25. This implies that ESA CCI soil moisture may be

used to indirectly tune groundwater recharge by calibrating

the upper soil saturated hydraulic conductivities, Ksat.

From Fig. 6 (fourth column), scatter plots indicated an im-

provement in the correspondence between observed and es-

timated discharge compared to the non-calibrated scenario

(S0, first column of Fig. 6). Similarly to calibration scenario

S2 (third column of Fig. 6), this improvement was lower than

when the model was calibrated based on ground discharge

observations (S1, second column of Fig. 6).

The calibrated runs based on evapotranspiration (S2, third

column of Fig. 6) and soil moisture (S3, fourth column of

Fig. 6) resulted in lower discharge performances compared to

the reference scenario (S0) in some cases (e.g. when EI pre-

cipitation was used at Mechra Eddahk location: KGEq(S0) =

0.607, KGEq(S2) = 0.534 and KGEq(S3) = 0.522.)

4.2.4 Step-wise calibration using GLEAM actual

evapotranspiration and ESA CCI surface soil

moisture time series (S4)

Calibration scenario S4 attempted to combine the strengths

of scenarios S2 and S3. In the first step, the model was cali-

brated using GLEAM evapotranspiration (S2, Fig. 5c). From

Fig. 5c, only fe pre-factor was well identified (the highest

KGEevap value was obtained with fe = 1.25). In the sec-

ond step, fe pre-factor that had been identified was held

constant and the remaining three pre-factors were allowed

to be calibrated according to ESA CCI soil moisture (S3,

Fig. 5d). From Fig. 5d, fw and fk were identifiable (the

highest KGEsm values were obtained with fw = 1.25 and

fk = 0.25). As a result, for calibration scenario S4, the pre-

factors identified were fe = 1.25 during the evapotranspira-

tion calibration (S2) and fw = 1.25 and fk = 0.25 during the

soil moisture calibration (S3). This step-wise calibration ap-

proach using multiple system variables allowed us to identify

more parameters than when those variables were separately

used. Nonetheless, neither of the steps in calibration scenario

S4 allowed the clear identification of fj , so its value for the

calibration scenario S0 was used, fj = 0.

From Fig. 6 (fifth column), calibration using GLEAM

evapotranspiration and ESA CCI soil moisture led to fur-

ther improvements than when these observations were sep-

arately used. For example, when MSWEP precipitation was

used to model discharge at Mechra Eddahk station, KGEq

varied among 0.703, 0.693, 0.613 and 0.573 for calibration

scenarios S1, S4, S2 and S3, respectively (KGEq = 0.561

for the reference scenario S0). At Ait Ouchene station (see

Fig. S2), KGEq varied among 0.520, 0.342, 0.331 and 0.271

for calibration scenarios S1, S4, S2 and S3, respectively

(KGEq = −0.542 for the reference scenario S0).

4.3 Validation results

Once the model had been calibrated for each calibration sce-

nario and each precipitation product, comparisons between

estimates (before and after the calibration) and observations

of actual evapotranspiration, surface soil moisture and dis-

charge were carried out for the validation time period (1994–

2011). To perform the analysis of these results, time series

plots were included in Figs. 7 and 8.

In Fig. 7a, simulated actual evapotranspiration time series

of the reference run (S0, red dashed line) and the step-wise

calibrated run (S4, purple dashed line) were plotted against

GLEAM actual evapotranspiration observations (black line).

Similarly, in Fig. 7b shows simulated surface soil moisture

of the reference run (S0, red dashed line) and the step-

wise calibrated run (S4, purple dashed line) plotted against

ESA CCI surface soil moisture time series (black line). The

rescaled soil moisture time series (after mean–standard devi-

ation matching technique applied; see Sect. 3.2.4) are shown.

In Fig. 7c, estimated discharge of the reference run (S0,

red dashed line) and the step-wise calibrated run (S4, pur-

ple dashed line) were plotted against discharge observations

(black line) at Mechra Eddahk. KGE values for actual evap-

otranspiration, surface soil moisture and discharge were in-

cluded in Fig. 7a, b and c. For the sake of simplicity, only

results from when the model was forced with MSWEP pre-

cipitation are shown.

Similarly to Fig. 7, Fig. 8 shows simulated evapotranspi-

ration (Fig. 8a), surface soil moisture (Fig. 8b) and discharge

(Fig. 8c) against observations. However, in Fig. 8, estimates

of the discharge-calibrated run (S1, red dashed line) and the

step-wise calibrated run (S4, purple dashed line) were plot-

ted against observations (black line). With Fig. 8, the impact

on calibration of using in situ discharge and remotely sensed

evapotranspiration and soil moisture observations could be

compared.

Reference run (S0) provided evapotranspiration (Fig. 7a)

and soil moisture (Fig. 7b) estimates fairly close to ob-

servations with KGEevap = 0.586 and KGEsm = 0.828. Dis-

charge estimates of calibration scenario S0 performed well

at Mechra Eddahk (Fig. 7c). Discharge performance of the

reference run (S0) was lower at Ait Ouchene. From Fig. 7a,

the calibration procedure based on GLEAM evapotranspira-

tion and ESA CCI soil moisture (S4) produced an increase of

18 % in KGEevap compared to the reference run (S0). From

Fig. 7b, estimated and observed surface soil moisture time

series showed good correspondence. KGEsm difference of

0.028 was found between the reference (S0) and the step-

wise (S4) calibration scenarios. From Fig. 7c, the step-wise

calibrated run (S4) reproduced the monthly observed dis-

charge well, except some simulated extreme peaks which

were not observed, e.g. January and June in 2002 and some

which were not simulated properly, e.g. January and May

in 1996 and 1997. This lack of fit may be due to errors in

the precipitation data, because higher discharge differences
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Figure 7. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual evapotranspiration (red and purple) time series over

the entire Oum er Rbia basin. (b) Monthly ESA CCI soil moisture (black) and estimated soil moisture (red and purple) time series over the

entire Oum er Rbia basin. (c) Monthly observed discharge (black) and estimated discharge (red and purple) time series at Mechra Eddahk.

The red dashed lines represent estimates from calibration scenario S0 (reference scenario). The purple dashed lines represent the calibrated

time series from calibration scenario S4 which are taken from the runs that yield the best simulations. Estimated time series over the entire

Oum er Rbia basin for the validation time period obtained with MSWEP precipitation are shown.

were shown when WFDEI and MSWEP products were used

in comparison to the EI product. Other possible reasons may

be related to model structural deficiencies. When compar-

ing discharge time series (Fig. 7c), calibration scenario S4

slightly improved KGEq compared to calibration scenario

S0, with KGEq values varying from 0.648 to 0.710.

From Fig. 8a, an increase of 14 % in KGEevap was pro-

duced when the discharge calibration scenario (S1) was

used compared to the reference run (S0). This improve-

ment in evapotranspiration estimates was higher when cal-

ibrating the model using GLEAM evapotranspiration and

ESA CCI soil moisture (S4, KGEevap = 0.689) than when

calibrating it only for ground discharge (S1, KGEevap =

0.666). Similarly to Fig. 8a showing the evapotranspiration

comparison, Fig. 8b indicated that a higher KGEsm value

was obtained when using GLEAM and ESA CCI observa-

tions for calibration (S4, KGEsm = 0.856) than when cal-

ibration was based on in situ discharge observations (S1,

KGEsm = 0.834). From Fig. 8c comparing discharge time se-

ries at Mechra Eddahk, step-wise calibration scenario S4 led

to an increase of 10 % in KGEq , compared to the increase

of 5 % obtained when discharge observations were used for

calibration (S1). However, at Ait Ouchene the discharge per-

formance improvement was lower when evapotranspiration

and soil moisture observations (S4) were used for calibration

than when in situ discharge measurements were used (S1).

This may be due to the lower performance of the reference

run (S0) at Ait Ouchene.

To further understand the added value of using GLEAM

evapotranspiration and ESA CCI soil moisture data for

model calibration and inter-compare the impact of the cal-

ibration scenarios, the variations of KGEq , NSEq , rq and

PBiasq between each calibration scenario (S1, S2, S3 and

S4) and the reference calibration scenario (S0) were calcu-

lated and plotted for the validation time period in Fig. 9.

Rows indicate the three global precipitation products and

columns indicate the performance indicators. The variations

of the performance metrics are shown with bar plots for the

two gauging stations, Ait Ouchene and Mechra Eddahk. At

each location, a positive value of KGEq , NSEq , PBiasq and

rq means that either S1, S2, S3 or S4 scenario obtained a

higher skill score than S0, whereas a negative value means

that those scores decreased after calibration.

Figure 9 showed that variations of the performance indi-

cators were lower when EI precipitation product was used.

The highest differences among the calibration scenarios were

obtained when the model was forced with WFDEI precipi-

tation. In the inter-comparison of the calibration scenarios,

the calibration scenario using in situ-observed discharge data

(S1) obtained overall the highest increase of KGEq , NSEq

and rq and the highest reduction of PBiasq when any of

the precipitation products were used, as expected. Similar
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Figure 8. (a) Monthly GLEAM actual evapotranspiration (black) and estimated actual evapotranspiration (red and purple) time series over

the entire Oum er Rbia basin. (b) Monthly ESA CCI soil moisture (black) and estimated soil moisture (red and purple) time series over the

entire Oum er Rbia basin. (c) Monthly observed discharge (black) and estimated discharge (red and purple) time series at Mechra Eddahk.

The red dashed lines represent estimates from calibration scenario S1. The purple dashed lines represent the calibrated time series from

calibration scenario S4 which are taken from the runs that yield the best simulations. Estimated time series over the entire Oum er Rbia basin

for the validation time period obtained with MSWEP precipitation are shown.

KGEq and NSEq increases and PBiasq decreases were ob-

tained when the model was calibrated using only soil mois-

ture (S3) and using the combination of evapotranspiration

and soil moisture (S4), but larger improvements in rq were

obtained with the step-wise calibration scenario (S4). The

gains in KGEq , NSEq and rq when comparing calibration

scenarios S2 and S0 were positive, but of a lower magnitude

than when the model was calibrated in scenarios S3 and S4.

The higher performance of scenario S4 may be due to the fact

that this calibration approach used multiple system variables

providing more hydrological information and allowing the

identification of more parameters than when those variables

were separately used.

In each bar plot of Fig. 9, metrics improvements were

larger at Ait Ouchene station than at Mechra Eddahk sta-

tion. This is due to the lower discharge performance for the

reference calibration scenario S0 at the former gauging lo-

cation. Note that in some cases the change in KGEq was

negative (e.g. when EI precipitation was used at Ait Ouch-

ene station) because although there was an improvement in

the KGEq performance indicator during the calibration time

period, when calculating it for the validation time period, it

is possible that the metric slightly worsened. Note that some

variations in NSEq , PBiasq and rq were small or close to

0 because its calibration was optimized for KGEq and not

for those particular metrics in terms of discharge. A possi-

ble route to overcome this problem may be to use different

performance indicators (for example, KGE, NSE, PBias and

r) as objective functions to optimize in each calibration sce-

nario, instead of using a single one. This multi-objective cal-

ibration approach may further improve discharge model esti-

mates.

5 Discussion and conclusions

This study investigated alternative routes to calibrate the

large-scale hydrological model PCR-GLOBWB using Earth

observations globally available for the data-poor river basin

of Oum er Rbia in Morocco. Three global precipitation prod-

ucts, EI, WFDEI and MSWEP, were inter-compared and ap-

plied to force PCR-GLOBWB. Five different calibration sce-

narios were followed where GLEAM actual evapotranspira-

tion and ESA CCI surface soil moisture data were used to

identify model parameters with the aim to improve discharge

estimates. In situ discharge observations were also used for

calibration, as they are traditionally used to calibrate hydro-

logical models.
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Figure 9. KGE, NSE, r and PBias variations comparing monthly discharge estimates of calibration scenarios S1, S2, S3 and S4 with S0.

Rows indicate the three global precipitation products and columns indicate the performance metrics.

Results showed that GLEAM actual evapotranspiration

and ESA CCI soil moisture observations may be used

to calibrate determined PCR-GLOBWB model parameters.

GLEAM actual evapotranspiration was used to calibrate the

reference potential evapotranspiration (fe) as expected, af-

fecting the water exchange between the top soil layer and the

atmosphere and hence the soil water balance. ESA CCI soil

moisture data was used to calibrate the minimum soil water

capacity (fw) and the saturated hydraulic conductivities of

the soil layers (fk), determining the surface runoff genera-

tion response, the shallow sub-surface flow and the ground-

water recharge. However, calibration using only GLEAM

evapotranspiration or only ESA CCI soil moisture data can

result in multiple parameter combinations being optimal

in terms of discharge (over-parametrization or equifinality

problem). To overcome this problem, a step-wise calibra-

tion scenario based on both observations, evapotranspira-

tion and soil moisture was necessary to identify the optimal

values of reference potential evapotranspiration (fe), runoff-

infiltration partitioning parameters (fw) and the soil saturated

hydraulic conductivity (fk). Nonetheless, neither of these ob-

servations were used to calibrate the baseflow from the active

groundwater layer (fj ). To identify baseflow recession coef-

ficient parameter (fj ), a multi-objective calibration approach

to streamflow observations could be followed. Similarly to

Fenicia et al. (2007), multiple objective functions may be

optimized in sequential steps for high flows, low flows and

timing.

Spatially uniform pre-factors for the entire Oum er Rbia

basin were used for the variation of the parameter values in

this study. Developing novel calibration strategies where pre-

factors, and thus model parameters, vary with soil type, land

use, elevation and/or other characteristics within the basin

would be a promising research route to investigate. Further-

more, the present work inter-compares five calibration sce-

narios using a brute force method, where several combina-

tions of parameters values were tested and the best perform-

ing was selected. For these combinations, and due to com-

putational limitations, only four pre-factors were considered

leading to 81 model runs per precipitation product. Using

more pre-factor values and therefore, more runs may im-

prove the estimation of the optimal parameters set for each

calibration scenario. A suggestion for future studies is to

use an ensemble Kalman filter to calibrate the hydrologi-

cal model, as previously presented in literature (Moradkhani

et al., 2005; Wanders et al., 2014). Furthermore, the valida-

tion of this study was carried out exclusively on streamflow.

Other validation approaches, including the empirical orthog-

onal functions, wavelet analysis or their combination, may be

another promising way towards a more in-depth validation of

distributed hydrological models (Mascaro et al., 2015; Koch

et al., 2015; Fang et al., 2015).
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A step-wise calibration approach based on GLEAM ac-

tual evapotranspiration and ESA CCI soil moisture resulted

in discharge estimates of acceptable accuracy (Moriasi et al.,

2007), compared to discharge estimates derived from a

model that was calibrated to in situ discharge measurements.

Traditional calibration to in situ discharge measurements

resulted in the highest model performance. A model cali-

brated only on evapotranspiration or soil moisture observa-

tions achieved a lower discharge performance than when they

were used together.

In the inter-comparison among the three global precip-

itation products, WFDEI showed the worst performance,

whereas EI and MSWEP performed quite well. Apart from

the in situ discharge calibration scenario, the highest dis-

charge improvement was obtained when the two latter forc-

ing data were used in combination with a step-wise calibra-

tion approach based on evapotranspiration and soil moisture

observations.

Results indicated that the precipitation impact on stream-

flow estimates was more significant than the one derived

from calibrating model parameters; thus, the lower quality

of WFDEI compared to EI and MSWEP decreased model

performance and calibration was biased in order to compen-

sate precipitation errors. Further investigation of the effect of

precipitation errors on model efficiency, and also on model

parameters estimation may be an interesting route for hy-

drological research (Andréassian et al., 2004; Looper et al.,

2012).

Although there is still room for further research, this study

showed that globally available Earth observations, such as

evapotranspiration or soil moisture, can be used to further

parameterize large-scale hydrological models providing rea-

sonable discharge estimates at the regional or basin scales.

In principle, these calibration approaches can be applied and

investigated in other basins without or with limited in situ

ground hydro-meteorological data (ungauged basins), to not

only estimate discharge, but also to improve the understand-

ing of the hydrological processes in the basin. Results sug-

gested the potential of using other satellite products for hy-

drological modelling studies, including soil moisture prod-

ucts such as AMSR-E (Njoku et al., 2003) and SMOS (Kerr

et al., 2001), evapotranspiration products such as SEBAL

(Bastiaanssen et al., 1998) and MOD16 (Nishida, 2003), total

water storage products such as GRACE (Tapley et al., 2004),

etc. The spatial information of these satellite-based products

could be used in a different way than the one explained in

this study. For example, a calibration scenario based on a

pixel-by-pixel, instead of basin-average, comparison of sur-

face soil moisture and actual evapotranspiration model esti-

mates and observations could further improve discharge es-

timates. This calibration approach would have to take into

account the spatial variability of the variables over the basin.

Previous studies investigated how to incorporate spatial in-

formation into hydrological models using innovative spatial

performance metrics to analyse the spatial sensitivity of sim-

ulated land-surface patterns (Koch et al., 2017).

Future studies may investigate step-wise calibration ap-

proaches using the combined information from multiple hy-

drological system variables. By incorporating several data

products, different parts or components of the model can be

optimized to increase the overall model performance. An-

other approach could be to calibrate the model to different

variables with multiple objective functions – multi-objective

calibration (Gupta et al., 1998; Khu and Madsen, 2005; Feni-

cia et al., 2007). Alternatively, these hydro-meteorological

data which are globally available may be used to iden-

tify and develop relationships between different basins

using similarities, classification and scaling frameworks,

as presented in previous studies (Samaniego et al., 2010;

Kumar et al., 2013).

Data availability. The location and availability of all the data (me-

teorological forcing, satellite-based soil moisture and evapotran-

spiration and ground discharge) and assets (PCR-GLOBWB – Su-

tanudjaja et al., 2016, 2017; E2O downscaling tools – Schellekens

and Weiland, 2017) used for this research are indicated in the paper,

including references and links to repositories.
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Appendix A

Figure A1. Initial model parameter values for the S0 calibration scenario (reference): (a) total soil water storage capacity (Wmax = SC1 +

SC2 +SC3), (b) saturated hydraulic conductivity of the first and second soil layers (Ksat1 and Ksat2), (c) saturated hydraulic conductivity of

third soil layer (Ksat3) and (d) baseflow recession coefficient (J ).
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The Supplement related to this article is available
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