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Calibration of an IMU-Camera Cluster Using Planar

Mirror Reflection and Its Observability Analysis
Ghazaleh Panahandeh, Student Member, IEEE, Magnus Jansson, Member, IEEE,

and Peter Händel, Senior Member, IEEE

Abstract—This paper describes a novel and a low-cost calibra-
tion approach to estimate the relative transformation between
an inertial measurement unit (IMU) and a camera, which are
rigidly mounted together. The calibration is performed by fusing
the measurements from the IMU-camera rig moving in front of
a planar mirror. To construct the visual observations, we select a
set of key features attached to the visual inertial rig where the 3D
positions of the key features are unknown. During calibration, the
system is navigating in front of the planar mirror while the vision
sensor observes the reflections of the key features in the mirror,
and the inertial sensor measures the system’s linear accelerations
and rotational velocities over time. Our first contribution in
this paper is studying the observability properties of IMU-
camera calibration parameters. For this visual inertial calibration
problem, we derive its time-varying nonlinear state-space model
and study its observability properties using the Lie derivative
rank condition test. We show that the calibration parameters
and the 3D position of the key features are observable. As our
second contribution, we propose an approach for estimating the
calibration parameters along with the 3D position of the key
features and the dynamics of the analyzed system. The estimation
problem is then solved in the unscented Kalman filter framework.
We illustrate the findings of our theoretical analysis using both
simulations and experiments. The achieved performance indicates
that our proposed method can conveniently be used in consumer
products like visual inertial based applications in smartphones
for localization, 3D reconstruction, and surveillance applications.

I. INTRODUCTION

Recent improvements in inertial navigation systems allow

for the building of small, lightweight, and cheap motion

capture systems. Visual inertial navigation systems are natural

extensions of inertial navigation systems, which are common

in a variety of instrumentation and measurement applications

like vehicle and autonomous applications [1], behavioral anal-

ysis [2], and biomedical applications [3]. Of particular interest

is the fusion of an inertial measurement unit (IMU), as an

inertial sensor, with a monocular camera, as a visual sen-

sor, [4]–[6]. However, accurate information fusion between the

sensors requires sensor-to-sensor calibration [7]–[11]. That is,

estimating the 6-DoF transformation (the relative rotations and

translations) between visual and inertial coordinate frames;

disregarding such a transformation will introduce un-modeled

biases in the system that may grow over time.

The problem of visual inertial calibration has been ex-

tensively investigated during the last decade [12]–[18]. For

instance in [12], the estimation of relative rotation is performed

using a calibration target that is vertically aligned with the

direction of gravity. Then the relative translation is estimated
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Fig. 1: An illustration of a potential application of the mirror-based
IMU-camera calibration procedure for a smartphone, which has an
embedded IMU and a camera. The figure shows a smartphone (to
the right) and its mirror image (to the left). The logo of the phone
(pear) can be considered as an object whose features’ reflections in
the mirror are in the camera’s field of view.

using a turntable. In [14], the calibration is done via tracking of

feature points on a calibration target, where the positions of the

features are known. Alternative solutions are proposed in [16],

both with and without using a calibration target with known

landmarks, to estimate the 6-DoF transformation between the

sensors.

In this paper, we propose a practical visual inertial cali-

bration method, which is based on visual observations taken

in front of a planar mirror, see Fig. 1. With the smartphone

becoming a ubiquitous personal device, the need for simple yet

effective calibration schemas has increased. Using a mirror

as studied in our work is a pragmatic yet effective way to

handle the calibration. In our proposed calibration method,

the visual inertial system is navigating in front of the planar

mirror, while the camera observes a set of features’ reflections

(known as key features) in the mirror. The key features are

considered to be static with respect to the camera, and such

that their reflections can always be tracked over images. For

this nonlinear system, we derive the state-space model, and

estimate the calibration parameters along with other system

state variables using the unscented Kalman filter [19]. A

primary study of the estimation problem was given in [17],

where the results were only evaluated using simulation data.

In our previous work [20], the problem of estimating camera

intrinsic parameters together with IMU-camera calibration

parameters has been studied in a similar framework; however,

compared to the proposed method in this paper and [17], the
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positions of the key features were assumed to be a priori

known and the evaluation was performed only with simulation

data.

Unlike the current calibration approaches in [12], [14],

[15], [21], our method does not rely on a direct view of a

static calibration pattern with known feature point positions.

Arbitrary feature points are selected in the camera body

where no prior knowledge is assumed on the pose of the

feature points relative to the camera’s optical center. Moreover,

contrary to the existing approach in [22], [23], no restriction in

the IMU-camera movement is considered except the existence

of the virtual features in the recorded images.

The main contributions of this paper are summarized as

follows: First, we perform the observability analysis of the

proposed IMU-camera time-varying nonlinear system. To the

best of our knowledge, we are the first to perform such an

analysis for the mirror-based visual inertial calibration. The

analysis, although cumbersome, is important to guarantee the

feasibility of the proposed calibration procedure. Accordingly,

a major part of the results are reported in the appendices

of the paper. We perform the observability analysis for this

complex model using only two key features, and prove that

the calibration parameters, as well as the 3D positions of

the key features with respect to the camera, are observable.

This means that given sufficient measurements from the visual

and inertial sensors, we can estimate the unknown constant

parameters along with the dynamics of the system. Secondly,

for the analysed IMU-camera sensor fusion system, we de-

rive the nonlinear state-space formulation and estimate the

calibration parameters, 3D position of key features, and the

dynamics of the system using the unscented Kalman filter.

Finally, the theoretical findings of our observability analysis

and estimation approach are validated both with simulations

and experiments. We believe that the simplicity, flexibility, and

low computational cost make our proposed scheme suitable for

many different applications. The system can be conveniently

used in, e.g., smartphones, and without having access to a

calibration target.

The paper is organized as follows: Notations are given

in Section II. The general system descriptions, including

experimental setup, the process and the measurement models

are presented in Section III. Then, for the proposed system,

the nonlinear observability analysis is performed in Sec-

tion IV. The estimation framework is described in Section V.

Performance evaluation is given in Section VI. Finally, the

conclusion is presented in Section VII.

II. NOTATION

In the following sections, scalars are denoted by lowercase

letters (s), vectors by bold letters (f), and matrices by bold

capitals (K). Im denotes the m × m square identity matrix

and 0m×n represents the m × n zero matrix. ei ∈ R
3 for

i ∈ {0,1,2,3} are defined as: e0 = [0 0 0]⊤, e1 = [1 0 0]⊤,

e2 = [0 1 0]⊤, and e⊤3 = [0 0 1]⊤, where the superscript ⊤
denotes matrix transpose.

ApB represents the position of coordinate frame {B} in coor-

dinate frame {A}, and AvB denotes the velocity of coordinate
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Fig. 2: Overall system architecture. The sensor module, consisting
of an IMU (three orthogonal accelerometers and three orthogonal
gyroscopes) that is rigidly mounted to a monocular camera. The
stored measurements are processed by a laptop to perform state
estimation in the processing platform.

frame {B} in coordinate frame {A}. Moreover, the 3D position

of a key feature and its corresponding reflection in the mirror

with respect to the camera frame are represented by Cp f and
Cṕ f , respectively.

Based on the Euler rotation theorem, the principle rotation

vector θ is defined as θ = αk̂ [24], where k̂ is the unit

vector along the axis and α the angle of rotation. To represent

the attitude, we use both the quaternion, q ∈ R
4×1, and the

Cayley-Gibbs-Rodrigues parameterization, s ∈ R
3×1; where

s = tan(α
2
)k̂. Then, AqB and AsB are used to denote the

orientation of the frame {B} in the frame of reference {A};

C(q) and C(s) are the rotation matrices corresponding to q

and s, respectively.

The global, IMU, and the camera frames are denoted by

{G}, {I}, and {C}, respectively.

The skew-symmetric matrix of vector a is represented by

⌊a⌋, and the following properties of the cross product skew-

symmetric matrix are used: a× b = ⌊a⌋b = −⌊b⌋a, ⌊a⌋a =
03×1, ⌊a⌋⌊b⌋= ba⊤−(a⊤b)I3, ⌊Ab⌋=A⌊b⌋A⊤, b⊤⌊a⌋b= 0,

∀ A ∈ R
3×3 and ∀ {a,b} ∈ R

3×1.

III. SYSTEM DESCRIPTION

In this section, we present the general system description.

First, the experimental setup is introduced. Then, the IMU-

camera process model and the camera measurement model

are described. These models are later used for analyzing

the observability properties and for state estimation of the

calibration parameters in the proposed system.

A. Experimental setup

The hardware of our visual inertial system consists of

a monocular camera—as a vision sensor—that is rigidly

mounted on an IMU—as an inertial sensor.

For the experiments, we used a MicroStrain 3DMGX2 IMU

with sampling rate of 250 Hz, which was rigidly mounted on



PANAHANDEH et al.: CALIBRATION OF AN IMU-CAMERA CLUSTER USING PLANAR MIRROR REFLECTION AND ITS OBSERVABILITY ANALYSIS 3

an internally calibrated AVT Guppy monocular camera with a

resolution of 752×480 pixels and a sampling rate of 10 Hz.

Fig. 2 provides a general overview of the system architec-

ture. The IMU sensor unit and the camera are shown on the

left-hand side. The sensor module is directly connected to a

laptop via a USB port. The measurements are first stored in the

processing platform, and then the estimation is done off-line

in MATLAB.

For estimating the 6-DoF rigid body transformation between

the camera and the IMU, we propose an approach based

on an IMU-camera ego-motion estimation method. During

calibration, we assume that the IMU-camera is navigating in

front of a planar mirror, which is horizontally or vertically

aligned. We formulate the problem in a state-space model and

use an unscented Kalman filter for state estimation. In the

model, the IMU measurements (linear acceleration and rota-

tional velocity) with higher rates are used for state propagation,

and the camera measurements with lower rates are used for

state correction. The visual corrections are obtained from the

positions of the key features’ reflections in the 2D image plane,

which are tracked between image frames. The key features are

located arbitrarily (without any prior assumption on their 3D

positions with respect to the camera) on the camera body, such

that their reflections in the mirror are in the camera’s field of

view. Fig. 1 illustrates a potential application of the mirror-

based IMU-camera calibration procedure for a smartphone.

The logo of the phone can be considered as an object whose

features’ reflections in the mirror are in the camera’s field of

view.

B. Propagation model

We solve the problem of IMU-camera calibration through a

navigation system in which the camera observes the reflections

of a set of key features in the mirror. Thus, we consider the

system state variables to be:1 1) motion parameters of the

sensors (rotation, velocity, position) in the global reference

frame, 2) IMU-camera calibration parameters, 3) the 3D

positions of the key features with respect to the camera2. The

total system state vector is

x =
[

IsG
⊤ GvI

⊤ GpI
⊤ CsI

⊤ IpC
⊤ Cp f1

⊤ · · · Cp fM
⊤
]⊤

, (1)

where IsG represents the orientation of the global frame {G}
in the IMU’s frame of reference {I}, GvI and GpI denote the

velocity and position of {I} in {G}, respectively; CsI represents

the rotation of the IMU in the camera frame, IpC is the position

of {C} in {I}, and Cp fk for k ∈ {1, ...,M} is the position of

the k-th key feature in the camera’s frame of reference.

The following describes the time evolution of our visual

1For the sake of simplicity, we ignore the biases in the IMU measurement
for our analysis. However, they are considered for the state estimation in
Section V.

2 In Section IV-B1, we prove that the IMU-camera’s external calibration
parameters are observable using only two features. But for now, we consider
M key features in the state vector.
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z 
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Fig. 3: Geometrical relation between the IMU, camera, and global
coordinate frames and the position of a key feature fk and its reflec-
tion in the mirror. The relative IMU-camera rotation and translation
are denoted as C(CsI) and IpC, respectively. Feature fk is assumed to
be rigidly attached to the IMU and camera frame of reference where
its reflection in the mirror is in the camera’s field of view. er is the
normal of the mirror.

inertial system:

I ṡG(t) =
1

2
D Iω(t),

Gv̇I(t) =
Ga(t) = Gg+C(IsG(t))

⊤Ia(t),
GṗI(t) =

GvI(t),
C ṡI(t) = 03×1,

IṗC(t) = 03×1,
Cṗ fk(t) = 03×1 for k ∈ {1, ...,M}, (2)

where 1
2
D ,

∂ IsG

∂ Iθ G
= 1

2
(I3 + ⌊IsG⌋ + IsG

IsG
⊤), and where

Iω(t) =
[
ω1 ω2 ω3

]⊤
and Ia(t) =

[
a1 a2 a3

]⊤
are the

rotational velocities and linear accelerations, respectively, ex-

pressed in {I}; Gg =
[
0 0 g

]⊤
is the gravitational accel-

eration, and C(IsG(t)) is the rotation matrix corresponding to
IsG.

C. Measurement model

The camera measures the perspective projection of 3D

points, expressed in the camera coordinate frame, onto the

image plane. In our setup, the camera captures images in front

of a planar mirror and we are only interested in the perspective

projection of virtual features (the reflection of real features in

the mirror) in the image. More specifically, we consider a set

of key features rigidly attached to the IMU-camera body, and

track their corresponding virtual features in the images.

Assuming a calibrated pinhole camera, the camera measure-

ments from the virtual features in normalized pixel coordinates

can be expressed as

zk =





uk

vk

1



=
1

e⊤3
Cṕ fk

Cṕ fk , (3)

where Cṕ fk represents the 3D position of the k-th virtual feature

with respect to the camera.

Lemma 1. Let us consider a planar mirror, which is horizon-

tally or vertically aligned with respect to the global coordinate
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frame. This implies that the normal of the mirror plane is er

where, depending on the mirror’s alignment, r ∈{1,2,3}. Then

the 3D position of the virtual key feature fk in the camera

coordinate frame, Cṕ fk , as a function of the state variables,

can be described as

Cṕ fk =
Cp fk −2CCCere

⊤
r

(

C⊤C⊤
C

Cp fk +
GpI +C⊤IpC

)

, (4)

where C , C(IsG) and CC , C(CsI).

Proof: Depending on the alignment of the mirror (hori-

zontally or vertically), we define the reflection matrix Ar that

relates the 3D coordinates of the real and virtual features in

the global frame as

Gṕ fk = Ar
Gp fk , (5)

where

Ar = I3 −2ere
⊤
r , (6)

and where Gp fk and Gṕ fk are the positions of the k-th real and

virtual features in the global frame of reference, respectively;

see Fig. 3. er is the normal of the mirror in the global frame of

reference. That is, depending on the alignment of the mirror it

can be e1, e2, or e3. The geometrical relation between different

coordinate frames and the position vectors are presented in

Fig. 3.

Moreover, the geometric relation between Cṕ fk and Gṕ fk (as

follows from Fig. 3) is described as

Cṕ fk = CCCGṕ fk +
CpG, (7)

where

CpG =−CCCGpI −Cc
IpC. (8)

Accordingly, Cp fk and Gp fk are related by

Cp fk = CCCGp fk +
CpG, (9)

⇒ Gp fk = C⊤C⊤
C

(
Cp fk −CpG

)
. (10)

By substituting (10) and (5) in (7), we have

Cṕ fk = CCCAC⊤C⊤
C

(
Cp fk −CpG

)
+CpG (11)

= Cp fk −2CCCere
⊤
r

Cp fk+
(

−CCCAC⊤C⊤
C + I3

)
CpG

= Cp fk −2CCCere
⊤
r C⊤C⊤

C
Cp fk+

2CCCere
⊤
r C⊤C⊤

C
CpG.

Finally, by substituting (8) in (11) we get

Cṕ fk =
Cp fk −2CCCere

⊤
r C⊤C⊤

C
Cp fk− (12)

2CCCere
⊤
r

IpG −2CCCere
⊤
r C⊤IpC

= Cp fk −2CCCere
⊤
r

(

C⊤C⊤
C

Cp fk +
GpI +C⊤IpC

)

.

Lemma 1 shows that the measurement model (3) can be

explicitly written as a nonlinear function of the state vari-

ables. Thus, the estimation of the state variables can now be

performed by using the unscented Kalman filter (Section V).

IV. NONLINEAR OBSERVABILITY ANALYSIS

Observability provides an understanding of how well states

of a system can be inferred from the system output mea-

surements. For an observable system, we can determine the

behavior of the entire system from the system measurements.

For an unobservable system, the current values of some of its

states cannot be determined from system output measurements.

The observability properties of a time invariant linear system

can be easily derived using the Kalman canonical decompo-

sition. However, the problem becomes more complex for a

nonlinear system, such as for the IMU-camera calibration. In

this case, the study of observability properties is restricted to

a local weak observability analysis [25], which focuses on

distinguishability.

One way to study the observability properties of nonlinear

systems is by analyzing the rank condition of its observability

matrix, which is constructed from the span of the system’s Lie

derivatives [25].

Similar to [14], [16], [18], our observability analysis for

the IMU-camera calibration is based on the Lie derivatives.

However, instead of using an inferred camera measurement

model or pseudo measurements like in [14] and [16], we

analyze the original system measurement equation, which is a

more difficult problem.

In the following, we first provide an overview of the ob-

servability rank condition test [25]. Then, we briefly describe

the approach in [18], which assists the process of finding

the unobservable states when using the Lie derivatives rank

condition test. Finally, we perform our analysis that is based

on [18].

A. Observability rank condition with the Lie derivative

Consider a nonlinear system
{

ẋ = f0(x)+∑
ℓ
i=1 fi(x)ui

y = h(x)
(13)

where x ∈ R
m is the state vector, u = [u1 · · ·uℓ]⊤ ∈ R

ℓ is

the system input, y ∈ R
k is the system output, and fi for

i ∈ {0, . . . , ℓ} is the process function.

For the input-linear system (13), we now provide the

required rules for calculating the Lie derivatives to construct

the observability matrix.

The zeroth order Lie derivative of a measurement function

h is the function itself, i.e.,

L
0h = h(x). (14)

For any n-th order Lie derivative, Lnh, the n+1-th order Lie

derivative L
n+1
fi

h, with respect to a process function fi can be

computed as

L
n+1
fi

h = ∇L
nh · fi, (15)

where ∇ denotes the gradient operator with respect to x and

’·’ represents the vector inner product. Similarly, mixed higher

order Lie derivatives can be defined as

L
n
fif j ...fd

h = Lfi
(Ln−1

f j ...fd
h) = ∇L

n−1
f j ...fd

h · fi, (16)

where i, j,d ∈ {0, . . . , ℓ}.
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The observability of a system is determined by calculating

the dimension of the space spanned by the gradients of

the Lie derivatives of its output functions [25]. Hence, the

observability matrix O for system (13) is defined as

O ,












∇L
0h

∇L
1
fi

h

...

∇L
n
fif j ...fd

h

...












. (17)

To prove that a system is observable, it is sufficient to show

that O is of full column rank. For an unobservable system, the

null vectors of O span the system’s unobservable subspace.

Hence, to find the unobservable subspace, we have to find

the null space of matrix O, where O may have infinitely

many rows. This can be a very challenging and difficult task,

especially for high-dimensional systems. One way to address

this issue is to decompose the infinite dimensional matrix O

into O = ΞΩ, where Ξ is infinitely dimensional as O, but Ω

has finite dimension. If we can show that Ξ is of full column

rank, then the null space of Ω will span the unobservable

directions of O.

For the analysis, we use Theorem 1 in [18], which is

summarized in the following:

Theorem 1. Assume that there exists a nonlinear transforma-

tion β (x) = [β 1(x)
⊤...β n(x)

⊤]⊤ (i.e., a set of basis functions)

of the variable x, such that:

1) The system measurement equation can be written as a

function of β , i.e., y = h(x) = h(β )

2)
∂β
∂x

f j, for j = {0, ..., ℓ} is a function of β

Then,

• the observability matrix of system (13) can be factorized

as O = ΞΩ, where Ξ is the observability matrix of the

system

{
β̇ = g0(β )+∑

ℓ
i=1 gi(β )ui

y = h(β )
, (18)

and Ω ,
∂β
∂x

.

• if Ξ is of full column rank, i.e., system (18) is observable,

then the unobservable directions of system (13) will be

spanned by the null vectors of Ω.

Using Theorem 1, we perform the observability analysis for

our proposed IMU-camera system in the following subsection.

B. Observability properties of the proposed system

For the observability analysis, we first rewrite the system

model (2) in the form of the input-linear system (13)















I ṡG

Gv̇I

GṗI

C ṡI

IṗC

Cṗ f1
...

Cṗ fM
















=
















03×1

g
GvI

03×1

03×1

03×1

...

03×1
















︸ ︷︷ ︸

f0

+
















1
2
D

03×3

03×3

03×3

03×3

03×3

...

03×3
















︸ ︷︷ ︸

F1

ω +
















03×3

C⊤

03×3

03×3

03×3

03×3

...

03×3
















︸ ︷︷ ︸

F2

a, (19)

where f0 ∈ R
15+3M , F1 ∈ R

(15+3M)×3 and F2 ∈ R
(15+3M)×3

represent three process functions as

F1ω = f11ω1 + f12ω2 + f13ω3, (20)

F2a = f21a1 + f22a2 + f23a3.

To perform the observability analysis, we consider the

camera measurement model (3) in the form of

(ze⊤3 − I3)
Cṕ f = T Cṕ f = 03×1, (21)

where T , (ze⊤3 − I3). Then we redefine the system mea-

surement model for the k-th key feature (by substituting (4)

into (21)) as

yk = hk(x) = Tk
Cṕ fk (22)

= Tk

(
Cp fk −2CCCere

⊤
r

(

C⊤C⊤
C

Cp fk +
GpI +C⊤IpC

))

.

To define the basis functions, we start with the system

measurement equation (22) for the k-th feature (first condition

of Theorem 1). We define initial basis functions from the

unknown terms appearing in the measurement function (22)

as

β 1k =
Cp fk , β 2 = CCCer, (23)

β3 = e⊤r
GpI, β 4 =

CsI, β 5 =
IpC.

To check the second condition of Theorem 1, we compute

derivatives of the defined bases with respect to the state vector

x, as

∂β 1k

∂x
=
[
03×3 03×3 03×3 03×3 03×3 03×3(k−1) I3 03×3(M−k−1)

]
,

(24)

∂β 2

∂x
=
[

CC⌊Cer⌋ ∂ Iθ G

∂ IsG
03×3 03×3 ⌊CCCer⌋ ∂Cθ I

∂CsI
03×3M

]

,

(25)

∂β3

∂x
=
[

01×3 01×3 e⊤r 01×3 01×3 01×3M

]
, (26)

∂β 4

∂x
=
[
03×3 03×3 03×3 I3 03×3 03×3M

]
, (27)

∂β 5

∂x
=
[
03×3 03×3 03×3 03×3 I3 03×3M

]
, (28)

and project them onto all the process functions. Starting from

β 1k ,
Cp fk , we have

∂β 1k

∂x
f0 = 03×1,

∂β 1k

∂x
f1i = 03×1,

∂β1k

∂x
f2i = 03×1, (29)
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for i = {1,2,3}. Following the same process, for the span of

β 2 , CCCer, we have

∂β 2

∂x
f0 = 03×1, (30)

∂β 2

∂x
f1i = CC⌊Cer⌋ei,

= ⌊CCCer⌋CCei = ⌊β 2⌋C(β 4)ei,

∂β 2

∂x
f2i = 03×1.

For the span of β3 , e⊤r
IpG:

∂β3

∂x
f0 = e⊤r

GvI , β6,
∂β3

∂x
f1i = 0,

∂β3

∂x
f2i = 0, (31)

where β6 , e⊤r
GvI is a newly defined basis function.

Then the span of β 4 ,
CsI:

∂β 4

∂x
f0 = 03×1,

∂β 4

∂x
f1i = 03×1,

∂β4

∂x
f2i = 03×1. (32)

Finally, for β 5 ,
IpC, we get

∂β 5

∂x
f0 = 03×1,

∂β 5

∂x
f1i = 03×1,

∂β5

∂x
f2i = 03×1. (33)

In the next step, we proceed to find the derivative of the

newly defined basis function β6 , e⊤r
GvI with respect to the

state vector x

∂β3

∂x
=
[

01×3 e⊤r 01×3 01×3 01×3 01×3M

]
, (34)

and calculate its projection onto all the process functions as

∂β6

∂x
f0 = e⊤r g = g,

∂β6

∂x
f1i = 0, (35)

∂β6

∂x
f2i = e⊤r C⊤ei = e⊤r C⊤C⊤

C CCei = β⊤
2 C(β 4)ei.

Since all the terms in the preceding projections are defined

based on the existing basis functions (i.e., second condition of

Theorem 1 is satisfied), we terminate the process of defining

new basis functions. This means that we have found all the

complete bases. Thus, the corresponding new process model

for the defined bases can be written as

















β̇ 11

...

β̇ 1M

β̇ 2

β̇3

β̇ 4

β̇ 5

β̇6

















=















03×1

...
03×1

03×1

β6

03×1

03×1

g















︸ ︷︷ ︸

g0

+















03×3

...
03×3

⌊β 2⌋C(β 4)
01×3

03×3

03×3

01×3















︸ ︷︷ ︸

G1

ω +















03×3

...
03×3

03×3

01×3

03×3

03×3

β⊤
2 C(β 4)















︸ ︷︷ ︸

G2

a, (36)

and the measurement equation in terms of the basis functions

for the k-th key feature is

yk(β ) = h̄k(β ) = Tk(β 1k −2β 2β⊤
2 β 1 −2β 2β3 −β 2β⊤

2 C(β 4)β 5).
(37)

1) Rank condition test for Ξ: We study the observability

of system (36) using the algebraic test. For this purpose, we

first need to derive the gradients of the Lie derivatives of the

measurement functions. To prove that matrix Ξ is a full column

rank matrix, it suffices to show that a subset of its rows, whose

dimension is the same or larger than the number of columns,

is linearly independent.

To show that Ξ is of full column rank, we form matrix Ξ̄

that is a sub-matrix of Ξ with the following Lie derivative

gradients for the two measurement functions h̄1 and h̄2:3

{∇L
0h̄1,∇L

0h̄2,∇L
1
g0

h̄1,∇L
1
g11

h̄1,∇L
1
g12

h̄1,∇L
1
g13

h̄1,∇L
1
g11

h̄2,

∇L
1
g12

h̄2,∇L
1
g13

h̄2,∇L
2
g0g11

h̄1,∇L
2
g0g12

h̄1,∇L
2
g0g13

h̄1,∇L
2
g0g21

h̄1,

∇L
2
g0g22

h̄1,∇L
2
g0g23

h̄1,∇L
2
g11g11

h̄1,∇L
2
g12g12

h̄1,∇L
2
g13g13

h̄1}.
(38)

In APPENDIX A, we derive the explicit expressions for the

Lie derivatives and their corresponding gradients to construct

Ξ̄. In APPENDIX B, we prove that Ξ̄ is of full column rank if

β6 6= 0 (e⊤r
GvI 6= 0). Then by performing Gaussian elimination

in Ξ̄, we get:









03×3 03×3 03×3 03×1 03×3 I3 03×1

01×3 01×3 01×3 01×3 01×3 01×3 1
I3 03×3 03×3 03×1 03×3 03×3 03×1

03×3 I3 03×3 03×1 03×3 03×3 03×1

03×3 03×3 03×3 03×1 I3 03×3 03×1

03×3 03×3 I3 03×1 03×3 03×3 03×1

01×3 01×3 01×3 1 01×3 01×3 01×1










, (39)

which is of full column rank. Thus, system (36) is observable.

2) Unobservable directions of Ω: Based on Theorem 1,

the unobservable directions of system (3) lie in the null space

of matrix Ω if Ξ is of full rank (see also APPENDIX A).

Since the observability of system (36) is proved for two key

features (M = 2), Ω is formed by stacking the derivatives of

{β 11,β 12,β 2,β3,β 4,β 5,β6} with respect to the state vector x:

Ω =











03×3 03×3 03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 I3

CC⌊Cer⌋ ∂ I θ G

∂ I sG
03×3 03×3 ⌊CCCer⌋ ∂Cθ I

∂CsI
03×3 03×3 03×3

01×3 01×3 e⊤r 01×3 01×3 01×3 01×3

03×3 03×3 03×3 I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 I3 03×3 03×3

01×3 e⊤r 01×3 01×3 01×3 01×3 01×3











.

(40)

To derive the full null space of Ω, we need to find a matrix

N = [N⊤
1 N⊤

2 N⊤
3 N⊤

4 N⊤
5 N⊤

6 N⊤
7 ]

⊤ 6= 0, (41)

such that

ΩN = 0. (42)

From (42), we have:

• Multiplying the first, second, fifth, and sixth block rows

of Ω with N, we get N4 = N5 = N6 = N7 = 0.

3 It is worth mentioning that our observability proof for system (19)
is made under the condition that we select at least two key features and
the orthogonal velocity of the IMU with respect to the mirror is not zero.
However, a proof with relaxed conditions might be feasible by investigating
the higher order Lie derivatives.
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• Multiplying the third block row of Ω with N, we have

CC⌊Cer⌋ ∂ Iθ G

∂ IsG
N1 = 0, which implies that either N1 = 0 or

N1 =
∂ IsG

∂ Iθ G
Cer.

• From the fourth and seventh block rows of ΩN = 0 we

have: e⊤r N3 = 0 and e⊤r N2 = 0. This implies that N2 and

N3 are spanned by {e j,ed} for j,d ∈ {0,1,2,3}, such that

e⊤r e j = e⊤r ed = 0 where e⊤j ed = 0.

By stacking all the combinations of N1,N2,N3 in N, we can

see that only five columns are linearly independent. That is,

the null space of system (3) is spanned by five directions:

N =














03×2 03×2
∂ IsG

∂ Iθ G
Cer

[
e j ed

]
03×2 03×1

03×2

[
e j ed

]
03×1

03×2 03×2 03×1

03×2 03×2 03×1

03×2 03×2 03×1

03×2 03×2 03×1














, (43)

which implies that the IMU-camera calibration parameters

and the 3D positions of the key features with respect to

the camera are all observable. Moreover, the unobservable

directions correspond to the system’s planar translation and

velocity orthogonal to er (first and second block columns of

N) and rotation around er (third block column of N).

V. ESTIMATION FRAMEWORK

In this section, we first describe the system process model in

the form of an error state model based on the inertial measure-

ments in Section V-A. Then, the measurement model from the

camera is presented in Section V-B. Finally, the statistics of

the random variables under the constructed nonlinear process

model (2) and the nonlinear measurement equation (3) are esti-

mated in an unscented Kalman filter framework (Algorithm 1).

A. Propagation model

We define the inertial navigation system (INS) state vector

as:

xins = [IqG
⊤ GvI

⊤ GpI

⊤
b⊤

a b⊤
g ]

⊤, (44)

where IqG is the quaternion that represents the orientation of

the global frame {G} in the IMU’s frame of reference {I};

ba and bg are the bias vectors affecting the accelerometer and

gyroscope measurements, respectively.

The time evolution of the INS state is described by

Iq̇G(t) =
1

2

[
−⌊ω(t)⌋ ω(t)

−ω(t)⊤ 0

]

IqG(t), (45)

Gv̇I(t) =
Ga(t) = Gg+C(IqG(t))

⊤ (Ia(t)−ba(t)) ,
GṗI(t) =

GvI(t), ḃa(t) = nδa, ḃg(t) = nδg,

where nδg and nδa are the accelerometer and gyroscope

bias driving white Gaussian noises. The output measurement

signals of the gyroscope, ωm, and accelerometer, am, are

modeled as:

ωm(t) = ω(t)+bg(t)+ng(t) (46)

am(t) = C(CqG(t))(
Ga− Gg)+ba(t)+na(t). (47)

For the state estimation, we use the system discrete-time

error state space model, which is derived from (45) based on

the standard additive error definition for the position, velocity,

and biases (δx ≃ x− x̂), and quaternion error for the rotational

euler angles θ (δq ≃ [1 δθ
2

⊤
]⊤). Then the concatenated INS

error state vector is

δxins = [δ Iθ⊤
G δ GvI

⊤
δ Gp⊤

I δb⊤
a δb⊤

g ]
⊤, (48)

and the total error state vector from (1) is

δx = [δxins⊤ δCθ⊤
I δ Ip⊤

C δCp f1

⊤ · · · δCp fM
⊤
]⊤. (49)

During a short period of time δ t, we approximate the

nonlinear INS propagation model (2) in the form of a discrete-

time linear state-space model

δxk+1 = Fkδxk +Gknk ∈ R
15+6+3M, (50)

where Fk and Gk are known as discrete time state and system

noise propagation matrices, respectively:

Fk =

[
F̄k 015×(6+3M)

0(6+3M)×15 I(6+3M)×(6+3M)

]

, (51)

where

F̄k =







I3 03×3 03×3 03×3 −dtC(Cq̂G)
dt⌊C(Cq̂G)â⌋ I3 03×3 dtC(Cq̂G) 03×3

03×3 dtI3 I3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03 03×3 I3






,

and

Gk =

















03×3 −dtC(Cq̂G) 03×3 03×3

dtC(Cq̂G) 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 dtI3 03×3

03×3 03×3 03×3 dtI3

06×3 06×3 06×3 06×3

03×3 03×3 03×3 03×3

...
...

...
...

03×3 03×3 03×3 03×3

















. (52)

nk = [n⊤
a n⊤

g n⊤
δa

n⊤
δg
]⊤ is the process noise (assumed

to be stationary) with the corresponding diagonal covariance

matrix Q ∈ R
12×12, C(Cq̂G) is the estimated rotation matrix,

and â = am − b̂a.

B. Camera measurement

When the camera along with the IMU is moving in front

of a planar mirror, the body frame angular velocity and

specific force are measured by the IMU. Meanwhile, the

camera records images of the virtual features. The camera

measurement of the reflected feature point (following (3)) can

be represented as

z̃k =

[
uk

vk

]

+vk =

[
1 0 0

0 1 0

]
1

e⊤3
Cṕ fk

Cṕ fk +vk, (53)

where vk is the feature-measurement noise with covariance

matrix Rk = σ2
v I2 Hence, the measurement model of the

system (53) for M observed reflected feature points is

z̄ = h̄(x)+ v̄ ∈ R
2M, (54)
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assuming the measurement noise from each projection of the

reflected features to be mutually uncorrelated, the covariance

matrix of v̄, R̄2M×2M , will be a block-diagonal.

Finally, the joint state-space model of the system can be

constructed from the error propagation (50) along with the

measurement equation (54). An overview of the estimation

algorithm is given in Algorithm 1. In this algorithm, χl is

the l-th column of the sigma-points matrix χ , N is the length

of the state vector. R̄m is the measurement noise covariance

matrix at m-th step, G is the system noise propagation matrix

and Q is the process noise covariance matrix. The weights of

the sigma-points wc
l , wm

l are set to 1
2(N+1) for l = 1, · · · ,2N,

and for l = 0 we have wc
0 =

λ
N+λ +(1−α2 +β ), wm

0 = λ
N+λ .

The scaling parameter λ = α2(N +κ)−N, and η =
√

N +λ
are set using α = 0.1, β = 2, and κ = 0, [19].

Algorithm 1

1: Initialize x̂−0 and P−
0

2: for n = 0:end do
3: INS equation update
4: if the measurement from the camera is ready then
5: z̄n = [z̃⊤1 , z̃

⊤
2 , · · · , z̃⊤M ]⊤ % f rom (53)

6: R̄n = diag(Rk)% k = 1, · · · ,M
7: ξ−

l,n
= hn(χ

−
l,n
)

8: ˆ̄z−n = ∑
2N
l=0 wm

l ξ−
l,n

9: %Measurement update
10: Re,n = ∑

2N
l=0 wm

l (ξ
−
l,n

− ˆ̄z−n )(ξ
−
l,n

− ˆ̄z−n )
∗+ R̄n

11: Rx,e,n = ∑
2N
l=0 wm

l (χ
−
l,n

− x̂−n )(ξ
−
l,n

− ˆ̄z−n )
∗

12: Kn = Rx,e,nR−1
e,n

13: x̂n = x̂−n +Kn(z̄n − z̄−n )
14: Pn = P−

n −KnRe,nK∗
n

15: sn = x̂n

16: Sn = Pn

17: else
18: sn = x̂−n
19: Sn = P−

n
20: end if
21: %Sigma−Point generation
22: χn = [sn sn +η

√
Sn sn −η

√
Sn]

23: χ−
n = fk(χl,n)

24: %Time update
25: x̂−n+1 = ∑

2N
l=0 wm

l χ−
l,n+1

26: P−
n+1 = ∑

2N
l=0 wc

l (χ
−
l,n+1 − x̂−n+1)(χ

−
l,n+1 − x̂−n+1)

∗+GQG∗

27: end for

VI. PERFORMANCE EVALUATION

The proposed calibration approach has been extensively

evaluated using both simulations and experiments. Some of

the results are given in the following.

A. Simulation results

Fig. 4 shows a sample trajectory used for performance eval-

uation of the estimator within a period of 120 s. The sampling

rate of the IMU is 100 Hz. The camera sampling rate is 10 Hz

and its intrinsic parameters are set to ku = kv = 833, pu = 2,

pv = 8, and s = 3 [26]. The IMU-camera relative translation

is IpC = [5 − 5 10]⊤ cm and the relative rotation angles are

set to Cθ I = [−90◦ 0◦ − 90◦]⊤. The projections of the key

−1

0

1

−0.5

0

0.5
0

0.2

0.4

0.6

0.8

1

 

x[m]y[m]
 

z
[m

]

Camera Trajectory

Mirror Frame

Fig. 4: Simulated IMU-camera trajectory over a planar mirror, for
120 s. In this scenario, the normal of the mirror is aligned with the
gravity along the z axis (taken from [17]).

features’ reflections in the image plane are corrupted with

additive zero-mean Gaussian noise with a standard deviation

of σv = 2 pixels.

To examine the key finding of our observability analysis,

we performed 100 Monte Carlo simulations to get estimates

of the errors in the state variables (1). Fig. 5(a)–Fig. 5(c)

show the estimated mean errors along with the 3σ bounds

for the IMU-camera relative rotation, translation, position and

attitude. The results are achieved using only two key features

whose reflections were tracked in the images over time. The

3σ values are computed from the corresponding diagonal

elements of the filter’s error covariance matrix that provides

a representation of its estimate uncertainty. As we expected,

the estimated errors remain bounded for the observable states

(IMU-camera relative rotation and translation, IMU orthogonal

distance to the mirror, IMU roll and pitch, and the 3D positions

of the key features with respect to the camera). Also, Fig. 5(c)

and Fig. 5(d) show that the uncertainties of the errors are

increasing along the unobservable states, which is in line with

our theoretical results.

Table I summarizes the final estimated mean values and

the standard deviations of the errors (σ ) for IMU-camera

6-DoF, translations and rotations, where different numbers

of key features (KF) are used in each of the experiments.

Simulation results show that the proposed estimation method

is able to reach subcentimeter and subdegree accuracy for

the IMU-camera rotation and translation. As can be noticed,

we can achieve a good level of accuracy using only two

key features, and the estimation uncertainties decrease only

marginally by observing more key features. The proposed

estimation algorithm is quite modest in complexity because

of the involved basic algebraic functions. Noticeably, from the

filter computational point of view, the length of the state vector

in our method is fixed to 15+6+3M and the computational

complexity is mainly determined (excluding feature detection

and matching) by matrix inversions in the Kalman filtering.

Code optimization was not a part of the study and a Matlab
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implementation running on a standard laptop was used for

our implementation. The processing time ratio increasing the

number of features is given by 1:1.2:2.4 for two, three and six

features, respectively.

TABLE I: Initial, final, and error statistics of the IMU-camera
calibration parameters, using the simulation data.

pb
c,x ±σ [cm] pb

c,y ±σ [cm] pb
c,z ±σ [cm]

Initial 0±1 0±1 0±1

Final (2 KF) 4.2±0.72 −5.56±0.22 10.72±0.4

Final (3 KF) 5.1±0.6 −5.1±0.16 10.68±0.32

Final (6 KF) 5.52±0.5 −5.23±0.15 10.3±0.29

ϕφ ±σ [◦] ϕθ ±σ [◦] ϕψ ±σ [◦]

Initial −70±2 10±2 −100±2

Final (2 KF) −89.99±0.02 0±0.2 −89.99±0.07

Final (3 KF) −90±0.01 0±0.02 −90±0.06

Final (6 KF) −90±0.01 0±0.01 −90±0.06

B. Experimental results

We studied the performance of the proposed calibration

method using experimental data. To concentrate our exper-

iments on validating our theoretical analysis, we used a

checkerboard pattern attached to the IMU-camera where its

corners were selected as the candidate’s key features. Hence,

the feature detection and tracking can be performed with high

accuracy, which in turn helped us to examine our calibration

method without being affected by the possible errors from the

feature detection and tracking. For the feature detection, Harris

corner detection was applied to the images, then nearest-

neighbor-matching was used for tracking the position of the

virtual features. To initialize the IMU attitude, we used the

gravitational force during the first samples in which the system

was stationary in front of the planar mirror [27]. The initial

values of the IMU-camera calibration parameters were set

using manual measurements on the hardware.

To better quantify the estimation uncertainty, the 3σ bounds

of the error for some of the estimated parameters are plotted.

Fig. 6(a) and Fig. 6(b) depict the 3σ bounds of the error

for the IMU-camera calibration parameters, where the IMU-

camera was moved for a period of 140 s in front of the mirror.

Moreover, we have plotted the 3σ bounds for the errors in the

IMU position in Fig. 6(c), which gives bounded uncertainties

for the IMU orthogonal translation relative to the mirror. As

can be noticed, we observe similar behavior for the estimated

error between the simulation data and experiments (increasing

uncertainty for the unobservable modes and bounded error for

the observable modes).

Moreover, Table II reports the final estimated values and

the standard deviation of the error (σ ) for IMU-camera 6-

DoF’s translation and rotation, where different numbers of key

features are used in the estimation process.

VII. CONCLUSION

We have proposed an IMU-camera calibration method for

estimating the 6-DoF transformation between the IMU-camera

TABLE II: Initial, final, and error statistics for the IMU-camera
calibration parameters.

pb
c,x ±σ [cm] pb

c,y ±σ [cm] pb
c,z ±σ [cm]

Initial 0±1 0±1 0±1

Final (2 KF) −2.7±0.15 −0.56±0.15 1.6±0.16

Final (3 KF) −2.77±0.15 −0.81±0.15 1.93±0.15

Final (6 KF) −2.65±0.13 −1.21±0.13 2.57±0.13

ϕφ ±σ [◦] ϕθ ±σ [◦] ϕψ ±σ [◦]

Initial −85±5 6±5 80±5

Final (2 KF) −88.9±0.23 0.58±0.23 88.25±0.21

Final (3 KF) −89.1±0.22 0.54±0.22 88.42±0.20

Final (6 KF) −89.1±0.19 0.55±0.19 88.44±0.18

rig. In this visual inertial navigation system, the visual correc-

tions are provided by tracking a set of key features’ reflections

in a planar mirror on the image planes. The key features

are positioned at arbitrary unknown locations on the sensors’s

body, such that their reflections can be observed by the camera.

We have studied the observability properties of the calibration

parameters for the system when navigating in front of a planar

mirror. Through the observability analysis, we have proved

that the calibration parameters and the 3D positions of the key

features with respect to the camera are observable using only

two key features. Moreover, for the analysed nonlinear system,

we proposed an estimation approach using the unscented

Kalman filter. Finally, the findings of our observability analysis

and the proposed estimation approach were evaluated both in

simulations and using experimental data. The flexibility and

simplicity in addition to the achieved results indicate that the

proposed method can conveniently be used in smartphones and

off-the-shelf IMU-camera devices, without having access to a

calibration target.
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Fig. 5: Estimated error and the 3σ bounds for (a) the IMU-camera relative rotation and (b) translations, (c) IMU attitude and (d) position,
and (e)–(f) two key features. The results are achieved using the simulation data where the ground truths are available.
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APPENDIX A

Here, we compute only those Lie derivatives of h̄1 and h̄2 whose derivatives are used to prove that Ξ is of full column rank.

• The zeroth order Lie derivative of a function is the function itself, i.e.,

L
0h̄1 = T1(β 11 −2β 2β⊤

2 β 11 −2β 2β3 −2β 2β⊤
2 C(β 4)β 5), (55)

L
0h̄2 = T2(β 12 −2β 2β⊤

2 β 12 −2β 2β3 −2β 2β⊤
2 C(β 4)β 5). (56)

Then the gradients (the spans) of the zeroth order Lie derivatives are

∇L
0h̄1 = T1

[

I3 −2β 2β⊤
2 03×3 Π21 −2β 2 −2β 2β⊤

2
∂C(β 4)β 5

∂β 4
−2β 2β⊤

2 C(β 4) 03×1

]

, (57)

∇L
0h̄2 = T2

[

03×3 I3 −2β 2β⊤
2 Π22 −2β 2 −2β 2β⊤

2
∂C(β 4)β 5

∂β 4
−2β 2β⊤

2 C(β 4) 03×1

]

, (58)

where

Π2k =−2β⊤
2 β 1kI3 −2β 2β⊤

1k −2β 3I3 −2β⊤
2 C(β 4)β 5I3 −2β 2β⊤

5 C(β 4)
⊤. (59)

• The first order Lie derivatives of h̄k with respect to g0, and g1i are computed respectively as:

L
1
g0

h̄1 = ∇L
0h̄1g0 =−2β 2β 6, (60)

L
1
g1i

h̄1 = ∇L
0h̄1g1i = Π21 ⌊β 2⌋C(β 4)ei, (61)

L
1
g0

h̄2 = ∇L
0h̄2g0 =−2β 2β 6, (62)

L
1
g1i

h̄2 = ∇L
0h̄2g1i = Π22 ⌊β 2⌋C(β 4)ei, (63)

and the gradients that correspond with them are given by

∇L
1
g0

h̄1 =
∂L1

g0
h̄1

∂β
= T1

[
03×3 03×3 −2β6I3 03×3 03×3 03×3 −2β 2

]
, (64)

∇L
1
g1i

h̄1 =
∂L1

g1i
h̄1

∂β
= T1

[
Π̄11i 03×3 Π̄21i Π̄31i Π̄41i Π̄51i 03×1

]
, (65)

∇L
1
g0

h̄2 =
∂L1

g0
h̄2

∂β
= T2

[
03×3 03×3 −2β6I3 03×3 03×3 03×3 −2β 2

]
, (66)

∇L
1
g1i

h̄2 =
∂L1

g1i
h̄2

∂β
= T2

[
03×3 Π̄12i Π̄22i Π̄32i Π̄42i Π̄52i 03×1

]
, (67)

where

Π̄1ki =−2⌊β 2⌋C(β 4)eiβ
⊤
2 −2β 2 (⌊β 2⌋C(β 4)ei)

⊤
, (68)

Π̄2ki =−Π2k ⌊C(β 4)ei⌋−2⌊β 2⌋C(β 4)eiβ
⊤
1k −2β⊤

1k ⌊β 2⌋C(β 4)eiI3 −2⌊β 2⌋C(β 4)eiβ
⊤
5 C(β 4)

⊤ (69)

−2β⊤
5 C(β 4)

⊤ ⌊β 2⌋C(β 4)eiI3,

Π̄3ki =−2⌊β 2⌋C(β 4)ei, (70)

Π̄5ki =−2⌊β 2⌋C(β 4)eiβ
⊤
2 C(β 4)−2β 2 (⌊β 2⌋C(β 4)ei)

⊤
C(β 4). (71)

• The second order Lie derivatives and their gradients that correspond with them are as follows:

L
2
g0g1i

h̄1 = ∇L
1
g0

h̄1g1i =−2β6 ⌊β 2⌋C(β 4)ei, (72)

L
2
g0g2i

h̄1 = ∇L
1
g0

h̄1g2i =−2β 2β⊤
2 C(β 4)ei, (73)

L
2
g1ig1 j

h̄1 = ∇L
1
g1i

h̄1g1 j = Π̄21i ⌊β 2⌋C(β 4)e j, (74)

∇L
2
g0g1i

h̄1 =
∂L2

g0g1i
h̄1

∂β
= T1

[

03×3 03×3 2β6 ⌊C(β 4)ei⌋ 03×3 −2β6 ⌊β 2⌋
∂C(β 4)ei

∂β 4
03×3 −2⌊β 2⌋C(β 4)ei

]

,

(75)

∇L
2
g0g2i

h̄1 =
∂L2

g0g2i
h̄1

∂β
= T1

[

03×3 03×3 −2β⊤
2 C(β 4)eiI3 −2β 2e⊤i C(β 4)

⊤ 03×3 −2β 2β⊤
2

∂C(β 4)ei

∂β 4
03×3 03×1

]

,

(76)

∇L
2
g1ig1 j

h̄1 =
∂L2

g1ig1 j
h̄1

∂β
= T1

[
Π̃11i j 03×3 Π̃21i j Π̃31i j Π̃41i j Π̃51i j 03×1

]
, (77)
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where

Π̃11i j = 2⌊C(β 4)ei⌋⌊β 2⌋C(β 4)e jβ
⊤
2 +2β 2 (⌊C(β 4)ei⌋⌊β 2⌋C(β 4)e j)

⊤−2⌊β 2⌋C(β 4)ei (⌊β 2⌋C(β 4)e j)
⊤

(78)

−2⌊β 2⌋C(β 4)e j (⌊β 2⌋C(β 4)ei)
⊤
,

Π̃31i j = 2⌊C(β 4)ei⌋⌊β 2⌋C(β 4)e j. (79)

APPENDIX B

When the computed gradients of Lie derivatives are stacked together, the observability matrix Ξ̄ (a submatrix of Ξ) is

constructed as:

Ξ̄=

































T1(I3 −2β2β⊤
2
) 03×3 T1Π21 −2T1β2 −2T1β2β⊤

2
∂C(β4)β5

∂β4
−2T1β2β⊤

2
C(β4) 03×1

03×3 T2(I3 −2β2β⊤
2
) T2Π22 −2T2β2 −2T2β2β⊤

2
∂C(β4)β5

∂β4
−2T2β2β⊤

2
C(β4) 03×1

03×3 03×3 −2β6T1 03×3 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 Π̄211 Π̄311 Π̄411 Π̄511 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 Π̄212 Π̄312 Π̄412 Π̄512 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 Π̄213 Π̄313 Π̄413 Π̄513 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) Π̄221 Π̄321 Π̄421 Π̄521 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) Π̄222 Π̄322 Π̄422 Π̄522 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) Π̄223 Π̄323 Π̄423 Π̄523 03×1

03×3 03×3 2β6T1

⌊
C(β4)e1

⌋
03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e1
∂β4

03×3 −2T1

⌊
β2

⌋
C(β4)e1

03×3 03×3 2β6T1

⌊
C(β4)e2

⌋
03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e2
∂β4

03×3 −2T1

⌊
β2

⌋
C(β4)e2

03×3 03×3 2β6T1

⌊
C(β4)e3

⌋
03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e3
∂β4

03×3 −2T1

⌊
β2

⌋
C(β4)e3

03×3 03×3 −2T1(β
⊤
2

C(β4)e1I3 +β2e⊤
1

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e1

∂β4
03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e2I3 +β2e⊤
2

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e2

∂β4
03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e3I3 +β2e⊤
3

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e3

∂β4
03×3 03×1

T1Π̃1111 03×3 T1Π̃2111 T1Π̃3111 T1Π̃4111 Π̃5111 03×1

T1Π̃1122 03×3 T1Π̃2122 T1Π̃3122 T1Π̃4122 Π̃5122 03×1

T1Π̃1133 03×3 T1Π̃2133 T1Π̃3133 T1Π̃4133 Π̃5133 03×1

































(80)

One way to show that Ξ̄ is of full rank is through Gaussian elimination. The Gaussian elimination is performed as follows:

Under the condition that β6 6= 0, we multiply the third block row by ⌊C(β 4)ei⌋ for i = {1,2,3} and when we subtract it

from the block rows 10-12, we have































T1(I3 −2β2β⊤
2
) 03×3 T1Π21 −2T1β2 −2T1β2β⊤

2
∂C(β4)β5

∂β4
−2T1β2β⊤

2
C(β4) 03×1

03×3 T2(I3 −2β2β⊤
2
) T2Π22 −2T2β2 −2T2β2β⊤

2
∂C(β4)β5

∂β4
−2T2β2β⊤

2
C(β4) 03×1

03×3 03×3 −2β6T1 03×3 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 Π̄211 Π̄311 Π̄411 Π̄511 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 Π̄212 Π̄312 Π̄412 Π̄512 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 Π̄213 Π̄313 Π̄413 Π̄513 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) Π̄221 Π̄321 Π̄421 Π̄521 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) Π̄222 Π̄322 Π̄422 Π̄522 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) Π̄223 Π̄323 Π̄423 Π̄523 03×1

03×3 03×3 03×3 03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e1
∂β4

03×3 03×1

03×3 03×3 03×3 03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e2
∂β4

03×3 03×1

03×3 03×3 03×3 03×3 −2β6T1

⌊
β2

⌋ ∂C(β4)e3
∂β4

03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e1I3 +β2e⊤
1

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e1

∂β4
03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e2I3 +β2e⊤
2

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e2

∂β4
03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e3I3 +β2e⊤
3

C(β4)
⊤) 03×3 −2T1β2β⊤

2
∂C(β4)e3

∂β4
03×3 03×1

T1Π̃1111 03×3 T1Π̃2111 T1Π̃3111 T1Π̃4111 Π̃5111 03×1

T1Π̃1122 03×3 T1Π̃2122 T1Π̃3122 T1Π̃4122 Π̃5122 03×1
T1Π̃1133 03×3 T1Π̃2133 T1Π̃3133 T1Π̃4133 Π̃5133 03×1































.

(81)

The non-zero terms that remain between block rows 10-12 can be represented in matrix form as:







−2β6T1 ⌊β 2⌋
∂C(β 4)e1

∂β 4

−2β6T1 ⌊β 2⌋
∂C(β 4)e2

∂β 4

−2β6T1 ⌊β 2⌋
∂C(β 4)e3

∂β 4






, (82)
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which is of full column rank. Hence, it can be used to eliminate all the other terms in the fifth block column:























T1(I3 −2β2β⊤
2
) 03×3 T1Π21 −2T1β2 03×3 −2T1β2β⊤

2
C(β4) 03×1

03×3 T2(I3 −2β2β⊤
2
) T2Π22 −2T2β2 03×3 −2T2β2β⊤

2
C(β4) 03×1

03×3 03×3 −2β6T1 03×3 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 Π̄211 Π̄311 03×3 Π̄511 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 Π̄212 Π̄312 03×3 Π̄512 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 Π̄213 Π̄313 03×3 Π̄513 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) Π̄221 Π̄321 03×3 Π̄521 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) Π̄222 Π̄322 03×3 Π̄522 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) Π̄223 Π̄323 03×3 Π̄523 03×1
03×3 03×3 03×3 03×3 I3 03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e1I3 +β2e⊤
1

C(β4)
⊤) 03×3 03×3 03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e2I3 +β2e⊤
2

C(β4)
⊤) 03×3 03×3 03×3 03×1

03×3 03×3 −2T1(β
⊤
2

C(β4)e3I3 +β2e⊤
3

C(β4)
⊤) 03×3 03×3 03×3 03×1

T1Π̃1111 03×3 T1Π̃2111 T1Π̃3111 03×3 Π̃5111 03×1
T1Π̃1122 03×3 T1Π̃2122 T1Π̃3122 03×3 Π̃5122 03×1
T1Π̃1133 03×3 T1Π̃2133 T1Π̃3133 03×3 Π̃5133 03×1























. (83)

The non-zero terms in the specified block row in the third column in the matrix form are






−2T1(β
⊤
2 C(β 4)e1I3 +β 2e⊤1 C(β 4)

⊤)
−2T1(β

⊤
2 C(β 4)e2I3 +β 2e⊤2 C(β 4)

⊤)
−2T1(β

⊤
2 C(β 4)e3I3 +β 2e⊤3 C(β 4)

⊤)




 , (84)

which is of full rank, so it can be used to eliminate all the other terms in the third block column. Then we have


















T1(I3 −2β2β⊤
2
) 03×3 03×3 −2T1β2 03×3 −2T1β2β⊤

2
C(β4) 03×1

03×3 T2(I3 −2β2β⊤
2
) 03×3 −2T2β2 03×3 −2T2β2β⊤

2
C(β4) 03×1

03×3 03×3 03×3 03×1 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 03×3 Π̄311 03×3 Π̄511 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 03×3 Π̄312 03×3 Π̄512 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 03×3 Π̄313 03×3 Π̄513 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 Π̄321 03×3 Π̄521 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 Π̄322 03×3 Π̄522 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 Π̄323 03×3 Π̄523 03×1
03×3 03×3 03×3 03×3 I3 03×3 03×1
03×3 03×3 I3 03×3 03×3 03×3 03×1

T1Π̃1111 03×3 03×3 T1Π̃3111 03×3 Π̃5111 03×1
T1Π̃1122 03×3 03×3 T1Π̃3122 03×3 Π̃5122 03×1

T1Π̃1133 03×3 03×3 T1Π̃3133 03×3 Π̃5133 03×1


















. (85)

When the sixth block column is multiplied with C(β 4)
⊤ (a full rank matrix) and then the first and second block columns are

subtracted from it, we have


















T1(I3 −2β2β⊤
2
) 03×3 03×3 −2T1β2 03×3 T1 03×1

03×3 T2(I3 −2β2β⊤
2
) 03×3 −2T2β2 03×3 T2 03×1

03×3 03×3 03×3 03×1 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 03×3 Π̄311 03×3 03×3 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 03×3 Π̄312 03×3 03×3 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 03×3 Π̄313 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 Π̄321 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 Π̄322 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 Π̄323 03×3 03×3 03×1
03×3 03×3 03×3 03×3 I3 03×3 03×1
03×3 03×3 I3 03×3 03×3 03×3 03×1

T1Π̃1111 03×3 03×3 T1Π̃3111 03×3 03×3 03×1
T1Π̃1122 03×3 03×3 T1Π̃3122 03×3 03×3 03×1

T1Π̃1133 03×3 03×3 T1Π̃3133 03×3 03×3 03×1


















. (86)

When the first and second block columns are multiplied with β 2 and then subtracted from the fourth block column, we get


















T1(I3 −2β2β⊤
2
) 03×3 03×3 −2T1β2 03×3 T1 03×1

03×3 T2(I3 −2β2β⊤
2
) 03×3 −2T2β2 03×3 T2 03×1

03×3 03×3 03×3 03×1 03×3 03×3 −2T1β2

−2T1(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 03×3 03×1 03×3 03×3 03×1

−2T1(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 03×3 03×1 03×3 03×3 03×1

−2T1(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 03×3 03×1 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e1β⊤

2
+β2

(⌊
β2

⌋
C(β4)e1

)⊤) 03×3 03×1 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e2β⊤

2
+β2

(⌊
β2

⌋
C(β4)e2

)⊤) 03×3 03×1 03×3 03×3 03×1

03×3 −2T2(
⌊
β2

⌋
C(β4)e3β⊤

2
+β2

(⌊
β2

⌋
C(β4)e3

)⊤) 03×3 03×1 03×3 03×3 03×1
03×3 03×3 03×3 03×1 I3 03×3 03×1
03×3 03×3 I3 03×1 03×3 03×3 03×1

T1Π̃1111 03×3 03×3 2T1β2

(⌊
C(β4)e1

⌋⌊
β2

⌋
C(β4)e1

)⊤ β2 03×3 03×3 03×1

T1Π̃1122 03×3 03×3 2T1β2

(⌊
C(β4)e2

⌋⌊
β2

⌋
C(β4)e2

)⊤ β2 03×3 03×3 03×1

T1Π̃1133 03×3 03×3 2T1β2

(⌊
C(β4)e3

⌋⌊
β2

⌋
C(β4)e3

)⊤ β2 03×3 03×3 03×1


















. (87)
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The non-zero block matrices in the first and second block columns are of full column rank, and can be used to eliminate the

non-zero terms in their corresponding block columns as



















03×3 03×3 03×3 −2T1β 2 03×3 T1 03×1

03×3 03×3 03×3 −2T2β 2 03×3 T2 03×1

03×3 03×3 03×3 03×1 03×3 03×3 −2T1β 2

I3 03×3 03×3 03×1 03×3 03×3 03×1

03×3 I3 03×3 03×1 03×3 03×3 03×1

03×3 03×3 03×3 03×1 I3 03×3 03×1

03×3 03×3 I3 03×1 03×3 03×3 03×1

03×3 03×3 03×3 2T1β 2 (⌊C(β 4)e1⌋⌊β 2⌋C(β 4)e1)
⊤ β 2 03×3 03×3 03×1

03×3 03×3 03×3 2T1β 2 (⌊C(β 4)e2⌋⌊β 2⌋C(β 4)e2)
⊤ β 2 03×3 03×3 03×1

03×3 03×3 03×3 2T1β 2 (⌊C(β 4)e3⌋⌊β 2⌋C(β 4)e3)
⊤ β 2 03×3 03×3 03×1




















. (88)

The non-zero terms in the last three block rows form a matrix that is of full column rank, and can be used to eliminate the

other terms in the fourth block column:














03×3 03×3 03×3 03×1 03×3 T1 03×1

03×3 03×3 03×3 03×1 03×3 T2 03×1

03×3 03×3 03×3 03×1 03×3 03×3 −2T1β 2

I3 03×3 03×3 03×1 03×3 03×3 03×1

03×3 I3 03×3 03×1 03×3 03×3 03×1

03×3 03×3 03×3 03×1 I3 03×3 03×1

03×3 03×3 I3 03×1 03×3 03×3 03×1

01×3 01×3 01×3 1 01×3 01×3 01×1















. (89)

Finally, −2T1β 2 and [T⊤
1 T⊤

2 ]
⊤ are of full column rank. So we have













03×3 03×3 03×3 03×1 03×3 I3 03×1

01×3 01×3 01×3 01×3 01×3 01×3 1

I3 03×3 03×3 03×1 03×3 03×3 03×1

03×3 I3 03×3 03×1 03×3 03×3 03×1

03×3 03×3 03×3 03×1 I3 03×3 03×1

03×3 03×3 I3 03×1 03×3 03×3 03×1

01×3 01×3 01×3 1 01×3 01×3 01×1













, (90)

which is of full column rank. Thus Ξ is of full column rank, and system (36) is observable.
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