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Abstract:  
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alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE 
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Introduction 

Since its introduction by Arrow et al. (1961) the constant elasticity of substitution (CES) 

functions have become extremely popular in empirical research and in microeconomics 

textbooks. Functions with a constant elasticity of substitution are everywhere in 

economics for they provide a neat way to represent the technology and preference 

relations of economic agents. This is particularly so in computable general equilibrium 

(CGE) modeling where the CES formulation offers an unparalleled degree of flexibility 

in the modeling of substitution options among commodities and among inputs. From no 

substitution (the Leontief case of fixed coefficients) to perfect substitution (linearity) 

there is a whole range of possibilities for the CES functions to represent the curvature of 

convex isoquants and isoutilities.  

CGE models are functional representations of the Walrasian canonical model where 

technology and preferences have a specific form that is suitable for numerical 

calculations as long as we assign numerical values to the parameters describing those 

functional forms. Consider the particular Cobb-Douglas case of a constants returns to 

scale production function with two inputs, labor L and capital K, producing output Y. 

The calibrated function requires the knowledge of an efficiency parameter and two 

share coefficients, one for labor and one for capital.  All in all, we need three parameters 

for full calibration. Available empirical data typically includes the value of output p ⋅Y 

and the value of the two primary factors w ⋅L and r ⋅K, that is, three observations. If we 

choose units in such a way that one unit of good is worth one unit of value, then p = w = 

r = 1 and Y = L+K. Notice then that the value of Y is redundant. Notice too that because 

of constant returns to scale and cost minimization the share coefficient for labor 

determines that of capital. Summing up, two independent data observations are all we 

need to calibrate the two remaining independent parameters of the two inputs Cobb-

Douglas production function. By duality the Cobb-Douglas cost function follows 

through. For the general Cobb-Douglas functions with n inputs we only need n 

independent data points. The general CES function with n inputs, however, cannot be 

calibrated from the same data as the Cobb-Douglas function since it contains more 

parameters (n+1: 1 efficiency parameter, n-1 independent productivity coefficients and 

1 elasticity value) than available independent observations (n). We need an exogenous 

parameter and this is usually the elasticity of substitution which can be searched in the 

econometrics literature or else be directly estimated for the problem at hand. 
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Another, and deeper, calibration problem has to do with the presence of indirect 

taxation in empirical databases. In an ideal textbook situation inputs will enter directly 

and without tax surcharges into the production or utility function. But in real world 

applications the value of inputs may be altered by the presence of indirect taxation. It is 

then necessary to modify the calibration techniques to clean up the data in such a way 

that only net of taxes inputs enter the production or utility function.  

Calibration is a popular technique with CGE practitioners but because of its limited data 

requirements it is not so with econometricians (Mansur and Whalley, 1984). Its main 

appeal is that makes CGE models operational and tractable (Whalley, 1987) while at the 

same time guaranteeing consistency with the first order conditions of firms and 

consumers optimization problems. Despite its popularity and widespread use very few 

available references explain the intricacies of the calibration procedures. Rutherford 

(2002) and Nissen (2005) for static general equilibrium models and Klump and Saam 

(2006) for dynamic models are the exceptions to the rule. In all these cases, however, 

the explanations are in general restricted to textbook examples (2 goods, no taxes) that 

are of little use in practical empirical modeling based on actual databases (like input-

output tables and social accounting matrices) with many goods and several indirect 

taxation categories. 

Large scale multisectoral models are implemented using computing code. The code 

translates the economic theory underlying the model into a set of operational modules 

that are executable thanks to the numerical calibration. Calibration in turn is built upon 

the database and the available bank of elasticities depicting the economy. Calibration is 

globally successful when the constructed model is able to replicate the observed 

database as an equilibrium solution.  

The technical details on calibration that we explain below are of course independent of 

the specific programming language used to implement a model. Some programming 

modules like GAMS–MPSGE (Rutherford, 1999) incorporate internally the calibration but 

in our opinion, debatable of course, knowing the details of the calibration is good 

theoretical training in the microeconomics of duality and this at the end gives the 

researcher more freedom to choose the programming tool (GAMS, MATLAB, 

MATHEMATICA, or even EXCEL), more control of the modeling options and more in-
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depth and hands-on knowledge of the data structure of the economy under 

consideration.  

In Section II we discuss the calibration of CES technologies. Section III in turn is 

devoted to CES utilities. In both cases, and for notational simplicity, we start with 

simple no-tax cases and then use the developed structure to obtain the extensions to the 

more realistic cases with taxes. In Section IV we discuss how to deal with n 

dimensional situations and provide some very common examples of calibrated functions 

in actual modeling. An Appendix presents GAMS code to illustrate the calibration of a 

CES function in the n dimensional case.  

II Calibration of CES production (or cost) functions 

For an n input technology the CES production function is usually written as 

1

1

n

j j
j

Y X
ρ

ρβ α
=

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∑          (1) 

where Y is an output, Xj is an input, β  is an efficiency parameter, and jα is a 

productivity parameter. The substitution parameter ρ  is related to the elasticity of 

substitution σ  by the relation 1 (1 )σ ρ= − . 

A somewhat more convenient way to write the CES function is 

( )
1

1

n

j j
j

Y X
ρρ

θ
=

⎛ ⎞
= ⋅⎜ ⎟
⎝ ⎠
∑          (2) 

thanks to the substitution  

( )
1

j j
ρθ β α= ⋅           (3) 

The full specification of (2) involves an assignment of values for the n technical 

coefficients jθ  and the substitution parameter .ρ   
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For the sake of expositional simplicity, let us consider a production function with two 

inputs and no indirect taxation of any kind affecting any of the inputs. From the first 

order conditions of the cost minimization problem 

( ) ( )( )
1

1 1 2 2 1 1 1 1Min     subject to  X X Y X Xρ ρ ρω ω θ θ⋅ + ⋅ = ⋅ + ⋅  

where jω  is the price of input jX , it is possible to find the CES cost function 

1

1 2

1 2

( )C Y Y
γ γ γω ω

θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

       (4) 

In this expression we have / ( 1) 1γ ρ ρ σ= − = − . Using Sheppard’s Lemma we find 

conditional demand for inputs, say for input 1 

1 1 1

1 2 1
1

1 1 2 1 1

( ) 1 1C Y X Y
γ γ γγω ω ωγ

ω γ θ θ θ θ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎜ ⎟= = ⋅ + ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
    (5) 

Taking (4) into account we can simplify (5) to obtain 

1 1

1 2 1
1

1 2 1 1

1( )X C Y
γ γ γ

ω ω ω
θ θ θ θ

− −⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ + ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

     (6) 

Now since from (4) again we know that  

1

1 2

1 2

(1)C
γ γ γω ω

θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

        (7) 

From here  

1

1 2

1 2

(1)C
γ γ

γ ω ω
θ θ

−

−
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

        (8) 

Substituting (8) into (6) and solving for θ  we obtain 
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1
1 1

1

( ) (1)C Y C
X

γ γ γθ ω − −= ⋅ ⋅         (9) 

In the process of calibration it is customary to select units of measurement in such a 

way that one unit of good is worth one unit of value. In other words we implicitly use 

units such that 1 1ω = and C(Y)=Y. It follows that C(1)=1 and from here (9) reduces to 

1

1
1

Y
X

γ
θ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

          (10) 

In the numerator we have total output Y, alternatively, its value from the database, and 

the denominator is total input for 1 (or again, its value from the database). For the 

second input, a similar expression can be derived, and likewise for the n-input CES 

production function. In general 

11

1

n
ii

j
j j

XY
X X

γγ

θ =
⎛ ⎞⎛ ⎞
⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑         (11) 

In (11) we take advantage of the fact that no tax affects the purchase of inputs and the 

selection of units that makes all prices unitary. Hence
1

n
ii

Y X
=

= ∑ . 

A simple numerical example to illustrate the procedure follows. Suppose that we read 

from an input-output table or a social accounting matrix (SAM) database that Y=100, 

X1=60 and X2=40. Further suppose that we know the elasticity of substitution between 

inputs to be 0.8σ = . In this case 0.25ρ = −  and 0.2.γ =  Using (11) we obtain 

1 12.8601θ =  and 2 97,6563.θ =  Replace now these coefficients’ values, the substitution 

parameter ρ and the baseline level of inputs in (2) and the baseline output Y should be 

exactly replicated by the calibrated CES production function. As an additional check, 

perform now the substitution of values in the cost function (4) for the parameterγ , the 

coefficients jθ  and unitary input prices to verify that for the calibrated cost function the 

condition C(Y)=Y  does indeed hold true. 

II.1 Calibration with taxes 
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When inputs are taxed the relevant price from the viewpoint of firms’ decisions is the 

after-tax price. Suppose an ad-valorem tax on input j is levied at rate sj. Then the price 

of input j inclusive of tax is (1 )j jsω ⋅ + . Let us use the notation (1 )s
j j jsω ω= ⋅ + to 

denote the after-tax price for input j. For the two input case, the cost minimization 

problem is now 

( ) ( )( )
1

1 1 2 2 1 1 1 1Min     subject to  s sX X Y X Xρ ρ ρω ω θ θ⋅ + ⋅ = ⋅ + ⋅  

The problem has exactly the same appearance as the original problem except for the 

significance of inputs’ prices now. Thus the minimization problem has the same formal 

solution as before but instead of (9) we now have 

( ) 1

1 1
1

( ) (1)sC Y C
X

γγ γθ ω
− −= ⋅ ⋅         (9’) 

It is convenient to slightly rewrite this as 

( ) ( )1 1 1 1
1 1 1 1

( ) ( )(1) (1 ) (1)s
s s

C Y C YC s C
X X

γ γγ γ γθ ω ω
ω ω

− −= ⋅ ⋅ = ⋅ ⋅ + ⋅
⋅ ⋅

   (12) 

In selecting units for calibration we need now to decide whether we equate units to pre-

tax or after-tax prices since these are the two prices affecting inputs. From the viewpoint 

of inputs we want to isolate the net price as the baseline price prior to any tax 

surcharges. This makes comparison of input prices in different tax simulations or 

regimes far easier. In addition it allows us to distinguish which part in the total change 

is due to a direct change in a tax rate, for instance, from the tax-induced change in 

prices via general equilibrium effects. In practice all this amounts to setting 1 1.ω =  On 

the other hand, from the viewpoint of the output its price should be inclusive of all tax 

surcharges since this is the last price in the chain. This entails fixing the price of one 

unit of output to be equal to one; in other words C(1) = 1 again. Finally notice that the 

remaining fraction in (12) has total cost in the numerator (i.e. C(Y)) whereas the 

denominator picks up gross of tax cost for input 1 (i.e. 1 1
s Xω ⋅ ). These two are 

magnitudes that can be directly read from the empirical database. Therefore the 

selection of units for inputs and output yields 
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1

1 1
1 1

( ) (1 )s

C Y s
X

γ
θ

ω
⎛ ⎞

= ⋅ +⎜ ⎟⋅⎝ ⎠
        (13) 

This expression generalizes in a straightforward way to any other inputs in the CES 

function. Provided we know, or are able to calculate, tax rates (13) is all we need to 

calibrate a CES production function. 

Let us illustrate again with a hypothetical example. Assume once more a substitution 

elasticity of 0.8σ =  (i.e. 0.2γ = ).Take Y=100, X1=50, X2=35 and let taxes on inputs 1 

and 2 be T1=10, T2=5. The calibration of a CES production function to these data 

requires first the determination of the tax rates: s1=10/50, s2=5/35. Next we select output 

units such that C(Y)=Y and inputs units such that 1 2 1ω ω= = . The last step involves the 

calculation of total after-tax input cost. In our example and using (13) we would obtain  

1
0.2

1
100 (1 10 / 50)

(1 10 / 50) 50
θ ⎛ ⎞
= ⋅ +⎜ ⎟+ ⋅⎝ ⎠

=15.4321 

1
0.2

2
100 (1 5/ 35)

(1 5/ 35) 35
θ ⎛ ⎞

= ⋅ + =⎜ ⎟+ ⋅⎝ ⎠
111.6071 

The replication check works fine once again. When we plug inputs net of taxes (X1=50, 

X2=35) into the CES production function (2) for the corresponding substitution 

parameter ρ and the just calibrated coefficients jθ we indeed obtain total observed 

output Y=100. Similarly for the calibrated cost function. 

III. Calibration of CES utility (or expenditure) functions 

We now turn to CES preferences as typically represented by utility functions. As before 

let σ  be the elasticity of substitution and ( 1) /ρ σ σ= −  be the substitution parameter. 

Suppose too, for now, that there are no indirect taxes affecting consumption. The two 

good CES utility function takes the form 

( ) ( )( )
1

1 1 2 2U X Xρ ρ ρθ θ= ⋅ + ⋅        (14) 
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where Xj stands for consumption of good j. From the budget constrained utility 

maximization problem (with income level m) 

Max ( ) ( )( )
1

1 1 2 2U X Xρ ρ ρθ θ= ⋅ + ⋅   subject to  1 1 2 2p X p X m⋅ + ⋅ =   

we can, after quite a bit of tedious algebraic manipulation, derive the Marshallian 

demand functions for consumption goods 1 and 2 

1 1 1 1

2
1 1

1

j j j j
j

j j
i i

i

p pm mX
p pp

σ σ σ σ

σ σ

θ θ

θ

− − − −

− −

=

⋅ ⋅
= ⋅ = ⋅

Δ⋅∑
      (15) 

where we simplify the expression by setting 
2

1 1

1
i i

i

p σ σθ− −

=

Δ = ⋅∑ . 

We now want to establish a procedure to numerically specify the utility coefficients 

jθ in (14) given empirical observations in a database and an exogenous elasticity of 

substitution value.   

We first notice that from (15) we can compute the ratio of consumption expenditures 

1 1
1 1 1 1

1 1
2 2 2 2

p X p
p X p

σ σ

σ σ

θ
θ

− −

− −

⋅ ⋅
=

⋅ ⋅
         (16) 

The left-hand side is a ratio that can be easily calculated from the empirical database. 

Let us denote this observable consumption expenditure ratio as c. If the selection of 

units follows the traditional convention of assigning one unit of good to one unit of 

value, that is, we set prices to unitary values, i.e. pj=1, then (16) becomes 

1

1

2

c
σ

θ
θ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

          (17) 

The specification of the two coefficients  jθ  cannot however be completed from the 

knowledge of c and σ  alone. There is a degree of freedom that can be closed in several 

ways since adding a condition on the coefficients will not alter the utility function. It is 

just a normalization that we can select in a way that turns out to be convenient. 
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One option is to choose jθ  in the non-negative unit simplex  

1 2 1θ θ+ =           (18) 

From (17) and (18) we can uniquely determine the utility coefficients. In particular for 

1θ  we obtain 

11 1
1 1

1 1c cσ σθ
−

− −
⎛ ⎞

= ⋅ +⎜ ⎟
⎝ ⎠

         (19) 

A second option to eliminate the degree of freedom rests in the crucial fact that the 

associated expenditure function is also a utility function. It is the so-called money 

metric utility (Varian, 1992). In other words we may scale the utilities in such a way 

that the minimum expenditure to attain one unit of utility is one unit of value. If e(p, u) 

stands for the associated expenditure function, we are selecting utility units in such a 

way that e(p,u) = u.  

If we now solve the expenditure minimization problem for the CES utility function we 

would find 

1
1 1 1

1 2

1 2

( , ) p pe p u u
σ σ σ

θ θ

− − −⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

        (20) 

Recall the previous definition of Δ and use it in (20) to obtain 

1
1( , )e p u u σ−= ⋅ Δ          (21) 

For the isoutility labeled with value u=1 we have  

1
1( ,1)e p σ−= Δ           (22) 

or alternatively 

1( ,1)e p σ−Δ =           (23) 
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From the Marshallian demand functions in (15) and condition (23) we can express the 

expenditure shares for each good as 

1 1 1 1

1( ,1)
j j j j j j

j

p X p p
m e p

σ σ σ σ

σ

θ θ
α

− − − −

−

⋅ ⋅ ⋅
= = =

Δ
      (24) 

Remember that we are implicitly choosing utility units such that e(p, u) = u. Thus 

e(p,1)=1. On the other hand the conventional selection of consumption units entails that 

all prices are unitary, i.e.  pj=1. Plugging in all these values into (24) and bearing in 

mind that expenditure shares necessarily add up to 1 we obtain 

1 1
1 2 1 2 1σ σα α θ θ− −+ = + =         (25) 

Combining this restriction with condition (17) we can solve for the utility coefficients 

under this second normalization and find the following values 

 

                (26) 

          

We can now proceed to do the data replication check with some hypothetical numerical 

examples. Suppose that 4σ =  and observed consumption demands are C1=90 and 

C2=10 (implicitly we take prices of goods 1 and 2 to be unitary and thus income 

m=100). If we use the first normalization option in (19) we would obtain coefficients 

1

2

0.6753
0.3247

θ
θ
=
=

 

Using these utility coefficients in the Marshallian CES demand functions in (15) we can 

verify that observed consumptions are duly replicated by the demand function. When 

we use the second normalization set up in (26) we would generate coefficients 

1

2

0.9655
0.4642

θ
θ
=
=

 

1
1

1

1
1

2

1

1
1

c
c

c

σ

σ

θ

θ

−

−

⎛ ⎞= ⎜ ⎟+⎝ ⎠

⎛ ⎞= ⎜ ⎟+⎝ ⎠
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Observed demands are again replicated when we substitute these coefficients in (15) but 

with the added bonus that total associated expenditure now also measures total utility. 

Hence this second normalization makes welfare computations in counterfactual policy 

scenarios and simulations extremely simple.  

III.1 Calibration with taxes 

It is time now to introduce indirect taxes in our problem. For final purchases agents may 

face a sales tax, or a consumption based value-added tax. In this circumstance final 

prices should include the tax surcharge. If vj is the ad-valorem tax rate on final 

purchases of good j, then the relevant price for consumers’ decisions is (1 )j jp v⋅ + . The 

CES utility maximization problem would now be 

Max ( ) ( )( )
1

1 1 2 2U X Xρ ρ ρθ θ= ⋅ + ⋅   subject to  1 1 1 2 2 2(1 ) (1 )p v X p v X m⋅ + ⋅ + ⋅ + ⋅ =  

with solution 

1 1 1

2
1 1 1

1
1 1 1

(1 )
(1 ) (1 )

(1 )
(1 )

j j j
j

j j
i i i

i

j j j

j j

v pmX
v p v p

v pm
v p

σ σ σ

σ σ σ

σ σ σ

θ

θ

θ

− − −

− − −

=

− − −

+ ⋅ ⋅
= ⋅ =

+ ⋅ + ⋅ ⋅

+ ⋅ ⋅
= ⋅

+ ⋅ Δ

∑
     (27) 

and Δ  now being 
2

1 1 1

1

(1 )i i i
i

v pσ σ σθ− − −

=

Δ = + ⋅ ⋅∑  

As in the no tax case, given an elasticity value σ  calibration requires to determine the 

utility coefficients jθ  in a way that replication of observed data is verified. Without 

explicitly repeating all of the steps outlined above, for option 1 we want to specify 

coefficients that add up to one and for option 2 coefficients that satisfy that utility is 

directly expressed in terms of expenditure.  

For the first case, using (27) we see that the consumption expenditure ratio will now be 

( )
( )

1 1
1 1 11 1 1

1 1
2 2 2 2 2 2

(1 )(1 )
(1 ) (1 )

v pv p Xc
v p X v p

σ σ

σ σ

θ
θ

− −

− −

+ ⋅ ⋅+ ⋅ ⋅
= =

+ ⋅ ⋅ + ⋅ ⋅
      (28) 
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When selecting units such that prices are unitary and making  

1

1

2

1
1

v k
v

σ−
⎛ ⎞+

=⎜ ⎟+⎝ ⎠
         (29) 

we obtain 

1

1

2

c k
σ

θ
θ

−
⎛ ⎞

= ⋅ ⎜ ⎟
⎝ ⎠

          (30) 

Condition (30) plus (18) and some algebra yields 

11 1
1 1

1 1c c
k k

σ σ
θ

−

− −
⎛ ⎞

⎛ ⎞ ⎛ ⎞⎜ ⎟= ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
⎝ ⎠

        (31) 

Notice that in the no tax situation the coefficient k=1 and (31) reverts to (19).  

For the second option, the normalization that equates expenditure and utility levels, we 

proceed as follows. The CES expenditure function would now take the form 

1
1 1 1 1

1 11 2 1
1 2

1 2

( , ) (1 ) (1 )p pe p u u v v u
σ σ σ

σ σ σ

θ θ

− − −
− − −

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⋅ + ⋅ + + ⋅ = ⋅Δ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

  (32) 

Under the utility normalization e(p,u)=u and taking u=1 the expenditure shares can be 

seen to be 

1 1 1

1

(1 ) (1 )
( ,1)

j j j j j j
j

v p X v p
m e p

σ σ σ

σ

θ
α

− − −

−

+ ⋅ ⋅ + ⋅ ⋅
= =      (33) 

If units are chosen such that pre-tax prices are unitary (34) becomes 

1 1(1 )j j jv σ σα θ− −= + ⋅          (34) 

Consumption shares add up to one. For the two goods case we have 

1 1 1 1
1 1 2 2(1 ) (1 ) 1v vσ σ σ σθ θ− − − −+ ⋅ + + ⋅ =        (35) 
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We have obtained a non-linear system for the utility coefficients jθ  comprised of 

condition (35) plus condition (30). Solving for jθ we would find the calibrated 

coefficients to be 

1
1

1 1

1
1

2 2

(1 )
1

1(1 )
1

cv
c

v
c

σ

σ

θ

θ

−

−

⎛ ⎞= + ⋅ ⎜ ⎟+⎝ ⎠

⎛ ⎞= + ⋅ ⎜ ⎟+⎝ ⎠

        (36) 

Let us now consider some numerical examples. Suppose that consumptions are X1=80, 

X2=8 with consumption taxes being, respectively, V1=10 and V2=2 and the elasticity of 

substitution in consumption is 4.σ =  Using solution (31) the calibrated CES utility 

coefficients would be 

1

2

0.6518
0.3482

θ
θ
=
=

 

Replacing these coefficients in the Marshallian demand function (27) for the appropriate 

ad-valorem tax rates and total income yields the observed values for demand.  

If instead of the normalization solution (31) we use the solution in (36) the calibrated 

coefficients would turn out to be 

1

2

1.0862
0.5802

θ
θ
=
=

 

Once again observed demands can be seen to be correctly replicated by the calibrated 

function and, in addition, total expenditure can be seen to be equal to total utility for this 

configuration, i.e.,  e(p,u)=u with u=100. 

IV. Extensions 

The procedures outlined above apply to the two goods case. The conceptual extensions 

to the n good case are straightforward and will not be pursued here in much more detail. 

Whereas on the production side expression (13) generalizes without any difficulties to 

the n input case, there is one technical difficulty in the consumption case that involves 
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the solution of the nonlinear system of utility coefficients. In the n good case, for 

example, conditions (18) and (30) can be seen to take the following form 

1

1
n

j
j

θ
=

=∑           (18’) 

1

i
ij ij

j

c k
σ

θ
θ

−
⎛ ⎞

= ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠

         (30’) 

In (30’) cij stands for the consumption expenditure ratio between goods i and j whereas 

the constants kij represent the tax ratios ( )1(1 ) /(1 )i jv v
σ−

+ + . 

Since there are only n-1 independent expenditure ratios, in (18’) and (30’) we have 

altogether n equations and n utility coefficients to be determined. Similar considerations 

apply to the second normalization. Along with (30’) the general n good case would also 

require the following condition to be fulfilled 

1 1

1

(1 ) 1
n

j j
j

v σ σθ− −

=

+ ⋅ =∑         (35’) 

Both systems can be solved using computational techniques and to this effect code 

written in GAMS is presented in the Appendix. The system of equations, as constructed, 

is a square system that falls within the class of Constrained Nonlinear Systems (CNS) 

and can be quickly solved using GAMS-CNS. The example uses a 4 good utility 

function but the reader can easily modify the problem to deal with higher dimensions. 

Or reformulate to lower dimensions and check the numerical values provided in the 

utility examples above. After solving the nonlinear model some replication 

computations are added and performed to verify that numerical calibration has 

proceeded as expected from the theory. The two normalization options are included and 

the user can select which one to use or, if needed, include other and different 

normalizations. 

A different type of extension a modeler may need to deal with has to do with the way 

taxes are levied on production or consumption inputs. We have focus on ad-valorem 

taxes but there are cases where taxes are instead unitary. Indirect energy taxes are an 

example. If tax rates are unitary the above procedures can be quickly adapted to solve 
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the calibration problem. A further complication is when a given commodity is taxed 

twice in a composite way. In Europe, for instance, gasoline purchases by consumers are 

taxed by a specific unitary gasoline tax and on top of that there is a value-added tax. The 

same applies to the purchase of alcoholic beverage purchases. Several recurrent taxes 

can therefore be dealt with the procedures outline above, although the underlying 

algebra presentation inevitably becomes a bit more cluttered. This is the counterpart to 

the flexibility to deal with several alternate tax situations. 

As for content-specific applications, there are several possibilities that originate from 

available multisectoral databases (input-output tables or social accounting matrices) and 

the econometrics literature on elasticities of substitution. On the production side CES 

technologies are typically depicted when using the Armington (1969) assumption to 

model substitution between domestic and imported goods. CES technologies are also 

used in modeling substitution between primary factors—types of labor and types of 

capital, or between value-added and a composite primary energy input which in turn can 

be a CES aggregate of different energy goods. In most practical cases taxation (tariffs, 

labor taxes, output taxes, and the like) affecting the use of inputs into production will be 

present and thus we need procedures for calibration that take actual taxation protocols 

into account.  

The calibration of CES functions is also relevant for sensitivity analysis. When there is 

uncertainty, or simply, lack of knowledge on the values of key elasticities, a range of 

sensible literature values can be selected and comparative simulations run. The CES 

approach offers us a degree of modeling flexibility way beyond that of the commonly 

adopted Cobb-Douglas functions. Even when unitary substitution elasticities are called 

for, the possibility to rerun alternate simulations is invaluable from the perspective of 

sensitivity analysis.  
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Appendix: GAMS code for CES utility calibration 

$title CES Calibration for the n good consumption case 
option decimals = 4; 
set I consumption goods /1*4/; 
alias(i,j); 
 
scalar sig substitution elasticity; sig = 4;  
scalar ro substitution parameter; ro = (sig-1)/sig; 
 
parameter  
x(i) pretax consumption 
     / 1   50 
       2   8    
       3   10 
       4   20/ 
t(i) tax surcharge 
     / 1    5 
       2    2   
       3    2 
       4    3/ 
m income; m=sum(i, x(i)+t(i)); 
 
parameter 
c(i,j) consumption expenditure ratios 
v(i)   advalorem tax multiplier; 
c(i,j)$(ord(i) ne ord(j)) = (x(i)+t(i))/(x(j)+t(j));  
v(i) = 1+ t(i)/x(i); 
 
positive variable a(i) utility coefficients; 
a.l(i) = 1/card(i); 
  
equations 
normalize      normalization choice 
constraint(j)  independent expenditure ratios ; 
constraint(j)$(ord(j) gt 1)..  
c('1',j) =e= ((v('1')*a(j))/(v(j)*a('1')) )**(1-sig);  
 
* Choose option by uncommenting appropriate equation line 
* Option 1: normalize to simplex 
* normalize..  sum(i, a(i)) =e= 1; 
* Option 2: normalize to money metric utility 
normalize..  sum(i, v(i)**(1-sig) * a(i)**(sig-1)) =e= 1; 
 
model utiCES /all/; 
solve utiCES using cns; 
 
* Replication check for calibration consistency  
 
parameter  
del    auxiliary CES demand parameter,  
dem(i) calibrated CES demand,  
exp    calibrated CES expenditure,  
u      calibrated CES utility; 
del = sum(i, a.l(i)**(sig-1)*v(i)**(1-sig) ) ; 
dem(i) = m/v(i); dem(i) = dem(i)*(v(i)/a.l(i))**(1-sig) ; dem(i) = dem(i)/del; 
u   = sum(i, (a.l(i)*dem(i))**ro); u = u**(1/ro); 
exp = sum(i, (v(i)/a.l(i))**(1-sig)); exp = u*exp**(1/(1-sig)); 
 
display a.l, dem, u, exp; 
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