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Abstract

When using perspective cameras underwater, the underwater housing with its glass

interface between water and air causes the light rays to change their direction due to re-

fraction. In applications where geometrical properties of images are exploited without

explicitly modeling refraction, i.e. when using the perspective pinhole camera model,

this leads to a systematical error. This error is depending on the housing configuration

like distance between camera and glass interface and angle between glass interface nor-

mal and optical axis. In this paper, we analyze the calibration of those parameters using

a camera model explicitly considering refraction. The goal is to determine those param-

eters without the need of handling a calibration target underwater, which is cumbersome,

if not impossible.

1 Introduction

Underwater imaging is becoming more and more popular as technology becomes available to

explore the ocean floor at great water depths. Applications are the offshore industry, where

underwater vehicles are used in order to manipulate objects of interest or for inspection

purposes. The underwater vehicles themselves can use vision based-navigation algorithms

in order to complement their on-board navigation units. In addition, archaeologists have

great interest in recording, measuring, and reconstructing their objects of interest. Finally,

different areas of ocean research like geology or biology profit from different techniques of

underwater vision for measurements and reconstruction.

All those applications rely on accurate measurements stemming from underwater vision

algorithms. However, there are some fundamental differences in underwater vision com-

pared to vision in air. First, while still propagating through the water, light rays are absorbed

and scattered when single photons encounter particles in the water or water molecules (Mob-

ley [15]). This effect is depending on the light’s wavelength and therefore effects the colors

finally measured by the image sensor, leading to poor contrast and with it difficulties in for

example feature matching routines.

Even more severe however, are effects caused by refraction (Hecht [7]). Refraction oc-

curs when a light ray enters the underwater housing and passes from water through glass into
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Figure 1: Left: camera with flat port underwater housing. All rays not coinciding with the

interface normal are refracted twice: at the water-glass and the glass-air interface. When

tracing the rays coming from the water without refraction (dashed lines), it becomes obvious

that the single view point camera model is invalid. Right: the interface can be tilted with

respect to the image sensor. This tilt can either be parametrized by the interface normal, or

the angles θ and ϕ .

air (fig. 1). Those changes of media cause the ray to change its direction and therefore leads

to geometrical distortions. There are two major groups of underwater housings. Flat ports

are simpler to manufacture and cheaper, but also cause the more severe refraction effects.

When using dome ports, ideally, the ray’s direction coincides with the normal of the port in

the intersection point, thus eliminating refraction effects. Often however, slight refractive

effects occur due to imprecise manufacture or misalignment of camera and housing. In this

paper, we will concentrate on the first case, where severe refraction occurs.

Usually, in both air and water, the perspective pinhole camera model is used for tasks

like mosaicing (Eustice et al. [3], Trucco et al. [19]), reconstruction (Johnson et al. [9],

Sedlazeck et al. [16]), and other measurements exploiting the implicitly contained geometry

of the images. When using a perspective camera model on underwater images, the refractive

effect is approximated by focal length and radial distortion (Fryer and Fraser [5], Lavest et

al. [11]). Explicit consideration of refraction on the other hand (fig. 1) shows that the rays

coming from the water are refracted twice: once at the water-glass interface and a second

time at the glass-air interface, before they enter the camera. When tracing the rays coming

from the water without considering refraction (dashed lines), it becomes obvious that they do

not meet in one common center of projection anymore, hence the single view point camera

model is invalid. Consequently, as shown by Kunz and Singh in [10], using the perspective

camera model in underwater scenarios leads to a systematic error. Kunz and Singh [10] also

present a calibration routine, where a checkerboard pattern is used to capture underwater

checkerboard images. Unfortunately, the authors did not present any calibration results of

the proposed routine.

Other works exist, where the authors calibrate a simplified model with only one refrac-

tion, omitting the shift due to the glass by assuming the glass to be very thin (Treibitz et al.

[18]) or use underwater calibration targets like Telem and Filin in [17] or other photogram-

metric methods (Li et al. [12]). In any case, handling a checkerboard or other calibration

targets underwater is at least cumbersome and time-consuming, if not impractical.

This paper proposes a method, where based on known intrinsic parameters of the cameras

of a stereo rig, the underwater housing parameters and the rig geometry are calibrated based

on images captured below water, without the need for a special calibration target. In addition,

as in [10] by Kunz and Singh, glass thickness is modeled explicitly because in our scenario,

deep sea underwater housings with glass thicknesses in the order of several centimeters are

used.

The paper is organized as follows. First, refraction and the resulting camera model are
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Figure 2: When unprojecting a point, the ray runs from the camera through air intersecting

the inner interface plane (Xi,Yi,Zi)
T . The refracted ray in glass intersects the outer interface

plane (Xo,Yo,Zo)
T , is refracted again, yielding the ray in water on which the 3D point

(Xw,Yw,Zw)
T lies.

presented, then, the calibration routine will be introduced. After that, results on synthetic

and real data will be presented, followed by a conclusion.

2 Refractive Camera Model

The derivation of the ray cast in the physical underwater model presented here is essen-

tially the same as derived by Kunz and Singh in [10] with slight differences in the port

parametrization. When using a flat port in front of an underwater housing, the distance to

the port, the glass thickness, and the normal of the glass surface within the camera coor-

dinate system are important parameters. Here, the inner interface plane is parametrized by

Πi = (n1,n2,n3
︸ ︷︷ ︸

nΠ

,−d) containing the normal vector and the port’s distance to the origin. In

addition, the outer interface plane is parametrized by the same normal vector and glass thick-

ness dg: Πo = (n1,n2,n3,−(d+dg)) (refer to figure 2). When unprojecting 1 an image point,

the goal is the computation of the point on the outer interface plane and the direction of the

ray in water. First, an image point is unprojected to the ray within the camera’s underwater

housing X̃a, using the camera’s intrinsic parameters including radial distortion. This ray is in

the camera coordinate system, meaning that the center of projection is in the origin. In order

to find the intersection Xi between ray and interface the following equation is used:

ΠT







λgX̃a

λgỸa

λgZ̃a

1







= 0 ⇒ λg =
d

< nπ , X̃a >
⇒ Xi =





0

0

0



+λgX̃a. (1)

The intersection of the port’s inner plane and the ray, parametrized by λg, is used to

determine the point on the inner plane of the interface Xi. In order to compute the ray within

the glass, the incidence angles θa and θg are computed. The angle θa between normal and

1In this paper, a camera projects 3D points to 2D points in the image plane, while unproject denotes the compu-

tation of 3D points or rays from 2D points.
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Figure 3: Caustics caused by non-single view-point camera. Left: radial image of a caustic

caused by refraction at a water-air interface. Right: caustic for camera with thick glass

interface and slight (ca. 2◦) interface rotation. Note the asymmetric distortion.

incident ray before refraction is derived by the scalar product between the plane’s normal nΠ

and the ray in air, then Snell’s law [7] is applied to compute θg:

θa = arccos

(

< nΠ, X̃a >

‖nΠ‖‖X̃a‖

)

⇒ θg = arcsin(sinθa

na

ng

), (2)

where na and ng denote the indices of refraction in air and water respectively. Now, the ray

being incident upon the inner interface plane needs to be rotated/refracted. This rotation

is described by a rotation around the normal resulting from the cross product of the plane

normal and the incoming ray and with θrot = θg−θa, the unit quaternion for the rotation can

be defined:

nrot =
nΠ × X̃a

‖nΠ‖‖X̃a‖sinθa

⇒ q =





sin
(

θrot
2

)

‖nrot‖
nrot

cos
(

θrot
2

)



 . (3)

This quaternion is applied to the ray X̃a, yielding the refracted ray X̃g, which describes

the light’s traveling direction within the glass. Now, the point on the outer interface needs to

be computed:

Xo =Xi +λwX̃g with λw =
(dg +d−< nπ ,Xi >)

< nπ , X̃g >
. (4)

The ray within the glass is refracted again, using the indices of refraction for glass and water,

the cross product, and the unit quaternion rotation. The result is the ray in water X̃w.

The 3D point can be computed if the distance dist between the camera center and the

3D point is known, the following equation can be solved for αw yielding the distance the ray

needs to travel from the interface point:

||Xo+αwX̃w||= dist ⇒ Xw = Xo +αwX̃w. (5)

Xw is still in the camera coordinate system, but using the transform of the camera with

rotation and translation, the point can easily be transformed into the world coordinate system.

Figure 1 already showed that the single view point model is invalid for underwater cam-

eras. Instead of a single view point, the rays meet in a singularity of the bundle of rays. The

locus of this singularity is the caustic (fig. 3), which encompasses only a single point in case

of the perspective camera - the center of projection.
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In order to compute the caustic, the mapping from image coordinates to points in 3D

space (5) is differentiated. The determinant of the Jacobian matrix of this parametrization is

set to zero and solved for the parameter αw: det(J(Xw(x,y,αw))) = 0. Using αw in (5) allows

to compute the corresponding point on the caustic for each pixel position (x,y).
In order to project a 3D point into the camera system, one can either use Fermat’s law and

solve an equation system with four unknowns (the x- and y coordinates of the intersections on

the inner and outer interface planes) or use the unprojection described above for a numerical

computation. Note, that in both cases, the projection needs an optimization and is therefore

less efficient to use compared to the common perspective projection.

3 Calibration

Important and usually unknown parameters in the above described camera model are the

interface distance d and the interface normal nπ . This section will introduce an algorithm for

calibrating those housing parameters for two cameras in a stereo rig, each in its own housing

without the need to use a calibration target below water. The intrinsics (focal length, principal

point, and radial distortion) of both cameras are assumed to be known. They can be calibrated

using one of the established methods in air (Bouguet [2], Heikkila and Silven [8]) with one

adaptation: when computing radial distortion, the polynomial is applied when undistorting

images and the iteration when distorting images. This is an interesting adaptation because

only the undistortion function is used for the unprojection and not the iterative distortion. In

addition, we assume the glass thickness and the refractive index of the glass to be known.

We use image pairs, captured using the stereo rig, for calibration. Between images cor-

respondences are matched using SIFT (Lowe [13]) and an Approximate Nearest Neighbor

algorithm (ANN) by Arya et al. [1]. The feature matching is completed by a RANSAC

(Fischler and Bolles [4]) routine using the Fundamental matrix (Hartley and Zisserman [6])

for outlier detection with a tolerant threshold. An initial calibration of the rig extrinsics is

usually known, e.g. the baseline is about 20cm, and there is little or no rotation between the

camera poses.

3.1 Error Functions

When calibrating the underwater housing parameters, it is essential to find a robust error

function. We experimented with the following three error functions.

Reprojection Error In bundle adjustment and other optimizations in 3D reconstruction

[6], usually the reprojection error in the image is minimized. The advantage is that the

error is minimized in the same space, where noise in the observations (2D image points)

originates. However, in the underwater case, it is extremely time-consuming to use the

projection because, as mentioned before, the projection is an optimization in itself.

Error in 3D point space Instead of optimizing the reprojection error in the images, it is

also possible to minimize the distance error between triangulated 3D points in space. Two

corresponding points of a stereo image pair are unprojected, triangulated, and the distance

between the triangulated point and the 3D point parameter is used as an error. The disadvan-

tage of this error function’s minimum is its strong sensitivity to noise in the 2D data, which

is why it is not considered any further.
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Figure 4: Left: projection of 3D point into virtual camera. Right: d invariance when using

two cameras only.

Error on outer Interface Plane In order to gain something more similar to the reprojec-

tion error within the image without having to compute the projection via optimization, we

build upon the idea of Telem and Filin [17] who derive a virtual perspective projection for

the 3D point into the image. Based on the intersection of the ray in water and the optical axis,

the projected point is moved in the image plane according to the error caused by the camera

model, without explicitly modeling the shift within the glass. However, we found that in case

of rotation between interface and image sensor, the ray in water does not necessarily inter-

sect the optical axis. Therefore, we propose to use a virtual camera with the caustic point as

a the center of projection Cv. The virtual camera’s optical axis is parallel with the interface’s

normal (fig. 4). 3D points can then be projected perspectively by the virtual camera, while

2D points in the image are transformed into the virtual camera as well. The point on the

caustic is computed numerically as in the description above. Note, that the virtual camera

needs to be computed for each 2D-3D correspondence separately because the virtual camera

center, the point on the caustic is different for each 2D point. The virtual camera’s rotation

Rv is defined by a rotation axis nrot and a rotation angle θrot , derived from cross and scalar

product of interface normal and optical axis of the original camera respectively:

nrot = nπ × (0,0,1)T θrot = arccos(< (0,0,1)T
,nπ >) (6)

The 3D point in water Xw is first transformed into the camera’s local coordinate system

and then into the virtual coordinate system by, the camera’s and virtual camera’s rotations

Rcam, Rv and centers of projection Ccam and Cv respectively:

XlocalCam = (RT
cam|−RT

camCcam)Xw (7)

Xv = (RT
v |−RT

v Cv)XlocalCam.

In addition, the 2D point in the image is unprojected onto the outer interface Xo by the

method described in the section above. It is then transformed into the virtual camera coordi-

nate system as well:

Xov = (RT
v |−RT

v Cv)Xo (8)

Both points are then projected using the focal length of the virtual camera fv in figure 4 (on

the left):

fv = (< X̃w,nπ >) ‖ (Cv −Xo) ‖2 (9)
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Figure 5: overview for system with multiple images.

The error for a set of N 2D-3D point correspondences is the sum of squared distances be-

tween unprojected 2D image point Xov and projected 3D point Xv in the virtual camera:

errorouterInt = ∑
i∈1,...,N

‖ Xovi
−Xvi

‖2
2 (10)

The virtual rotation, which is derived directly from the interface normal to be calibrated,

leads to very high errors in case of erroneous normal parameters and therefore to robust-

ness against noise in the observation data. At the same time it is largely invariant against

erroneous camera-interface distances.

3.2 Calibration Algorithms

3.2.1 Stereo Image Pair

The above error functions were utilized in different calibration scenarios. When computing

3D points from correspondences in one stereo pair, it is possible to estimate the normal

between interface and image sensor using Bundle Adjustment (McGlone [14]) optimizing

3D points and normals with the virtual camera error. Note, that in this simple case, the rig

geometry is not optimized, only the normal parameters.

The interface distance d cannot be optimized in this simplified scenario because, as can

be seen in figure 4, a fitting 3D point can be found for each different interface distance.

3.2.2 Multiple Image Pairs

In order to be able to optimize the interface distance, we use several image pairs and the

corresponding rig transformations. Initial rig transformations are assumed to be known, but

can be calibrated with a SfM approach (refer to Hartley and Zisserman [6]). The initial

rig transformations are optimized with the classic perspective pinhole camera model by ap-

proximating refractive effects by focal length and radial distortion. The known functional

correlation between the focal length in water and the focal length in air 1.3333 fair = fwater

(see Fryer and Fraser [5], Lavest et al. [11]) is used as an approximate intrinsic camera cali-

bration. In this equation, 1.333 is the refractive index of water, which is not optimized in our

approach, since the index of refraction changes only about 2% in the whole relevant range

of ocean water bodies (Mobley [15]). The resulting intrinsic calibration is used to refine the

initial set of cameras and the sparse 3D point cloud using the adjustment method with the
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Figure 6: Results from stereo image based normal estimation. Left: interface distance and

camera poses were correct, added noise varied. Right: error in normal estimation with erro-

neous interface distances, ground truth was 20mm. The algorithm takes about 5 minutes for

optimization on a common desktop PC.

perspective camera model. Parameters are the rig poses (translation and rotation), the rela-

tive transform of the slave camera in the rig, radial distortion, and the 3D points. This step

yields a good approximation of the scene that can now be used to find the parameters for the

underwater housing. Experiments with the above listed error functions lead to a system with

nested loops: the outer loop minimizes the virtual camera error functions, while the inner

loop optimizes the interface distance using the reprojection error. Parameters and usage of

error functions are summarized in fig 5.

4 Results

The algorithm was implemented in C++ using the BIAS Image Library 2. In this section

results on synthetic and real data will be presented.

4.1 Synthetic Data

Synthetically generated sets of 3D points with the corresponding 2D points allow to evaluate

the method’s ability to deal with normal distributed noise added to the 2D observations. This

was tested in two different scenarios. First, estimating the interface normals from one stereo

image pair was simulated and the normals were initialized with (0,0,1)T , while the true

normal was rotated by the angles ϕle f t = 40◦, θle f t = −2◦, ϕright = −10, and θright = −1◦

(see fig. 1 right) and the results in figure 6 show that the estimation works.

In a second scenario, multiple image pairs were used for optimizing interface normal,

interface distance, and camera poses as in figure 5 except that the geometric data was gen-

erated and then optimized using the perspective Bundle Adjustment routine. The results are

shown in figure 7: the initial interface distances were 10mm, the true interface distances were

20mm. Note, that part of the error caused by using the perspective camera model is absorbed

by the camera poses and not only by focal length and radial distortion, so after working

perspectively, optimizing the camera poses along with the housing parameters is essential.

2www.mip.informatik.uni-kiel.de
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Figure 7: Results for synthetic tests on multiple image pairs. In order to simulate initializa-

tion after perspective Structure from Motion, the data was optimized using the perspective

Bundle Adjustment. After that, the underwater optimization was started with initial interface

normals (0,0,1)T and interface distance 10mm, ground truth was 20mm. The run-time of the

algorithm was in the order of 3 hours on a common desktop PC. However, there is still room

for optimization.

Trial # ϕle f t θle f t ϕright θright

1 6.872◦ 0.725◦ 170.450◦ 0.810◦

2 8.785◦ 0.573◦ 163.589◦ 0.512◦

3 5.003◦ 0.810◦ 171.251◦ 0.959◦

∅ 6.887◦ 0.703◦ 168.430◦ 0.760◦

var 2.38◦ 0.009611◦ 11.823◦ 0.219◦

Figure 8: Top row: exemplary input images. Bottom: results of normal estimation on real

images.

4.2 Synthetically Rendered Images

Using a simulator, we can render images compliant with the above described camera model.

This allows us to test the performance of the method when using images, thus having feature

matching errors to cope with. The results in figure 6 on the right show that the normal can

be estimated based on feature correspondences even if the interface distance is in the order

of centimeters from the true interface distance.

4.3 Real Data

Normal estimation has also been tried on real images taken using a stereo rig mounted on

a ROV. Since the ground truth is unknown, only robustness in estimation can be judged. In

order to gain enough correspondences from the images, several pairs were used for feature

matching. Different such sets of images were used to compute the normals shown in figure

8 on the right. Even though the accuracy of the camera rig calibration and the interface
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distance are unknown, the interface normals could be estimated.

5 Conclusion and Future Work

We have presented a system for calibrating the underwater housings of a stereo rig using

a camera model explicitly modeling refraction. It allows to determine the normals of the

interface with respect to the optical axis. In addition, the interface distance can be calibrated

when using several image pairs captured from different poses in space with overlapping view

ports. Assuming the glass thickness and index of refraction of the underwater housing to be

known, this allows calibrating the underwater housings of the stereo rig without using a

checkerboard underwater. In the future, we hope to improve robustness and run time of the

system and investigate extensions towards a complete Structure-from-Motion pipeline with

explicit consideration of refraction.
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