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Abstract. The degree of belief we have in predictions from

hydrologic models will normally depend on how well they

can reproduce observations. Calibrations with traditional

performance measures, such as the Nash-Sutcliffe model ef-

ficiency, are challenged by problems including: (1) uncer-

tain discharge data, (2) variable sensitivity of different per-

formance measures to different flow magnitudes, (3) influ-

ence of unknown input/output errors and (4) inability to eval-

uate model performance when observation time periods for

discharge and model input data do not overlap. This pa-

per explores a calibration method using flow-duration curves

(FDCs) to address these problems. The method focuses on

reproducing the observed discharge frequency distribution

rather than the exact hydrograph. It consists of applying lim-

its of acceptability for selected evaluation points (EPs) on the

observed uncertain FDC in the extended GLUE approach.

Two ways of selecting the EPs were tested – based on equal

intervals of discharge and of volume of water. The method

was tested and compared to a calibration using the tradi-

tional model efficiency for the daily four-parameter WAS-

MOD model in the Paso La Ceiba catchment in Honduras

and for Dynamic TOPMODEL evaluated at an hourly time

scale for the Brue catchment in Great Britain. The volume

method of selecting EPs gave the best results in both catch-

ments with better calibrated slow flow, recession and evapo-

ration than the other criteria. Observed and simulated time
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series of uncertain discharges agreed better for this method

both in calibration and prediction in both catchments. An

advantage with the method is that the rejection criterion is

based on an estimation of the uncertainty in discharge data

and that the EPs of the FDC can be chosen to reflect the

aims of the modelling application, e.g. using more/less EPs

at high/low flows. While the method appears less sensitive to

epistemic input/output errors than previous use of limits of

acceptability applied directly to the time series of discharge,

it still requires a reasonable representation of the distribution

of inputs. Additional constraints might therefore be required

in catchments subject to snow and where peak-flow timing at

sub-daily time scales is of high importance. The results sug-

gest that the calibration method can be useful when observa-

tion time periods for discharge and model input data do not

overlap. The method could also be suitable for calibration to

regional FDCs while taking uncertainties in the hydrological

model and data into account.

1 Introduction

Hydrologic models are used as a basis for decision making

about management of water resources with important conse-

quences for sectors such as agriculture, land planning, hy-

dropower and water supply. The degree of belief we have

in model predictions will normally be dependent on how

well the model can reproduce observations. The choice of

the likelihood measure that measures the agreement between

simulated and observed data is therefore an important choice
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in any modelling study. The definition of an appropriate like-

lihood measure is not, however, simple. Where all sources

of uncertainty can be treated as if they are aleatory in na-

ture, then a number of frameworks exist for the definition

of formal statistical likelihoods (e.g. Liu and Gupta, 2007;

Schoups and Vrugt, 2010; Renard et al., 2010). Where epis-

temic errors are important, however, treating all uncertain-

ties as if they are aleatory will generally lead to overcon-

ditioning of posterior parameter distributions (Beven, 2006,

2010; Beven et al., 2008), particularly if some periods of data

are disinformative (Beven and Westerberg, 2011; Beven et

al., 2011). Thus, there may be scope for using other forms

of likelihood or belief measures in hydrological modelling.

Such informal likelihood measures have been defined based

on limits of acceptability defined from evaluation-data uncer-

tainty (Blazkova and Beven, 2009; Krueger et al., 2010; Liu

et al., 2009) but also based on traditional performance mea-

sures (Freer et al., 2003). One of the most widely used per-

formance measures in hydrology is the Nash-Sutcliffe model

efficiency (Reff). It is calculated as 1.0 minus the normalisa-

tion of the mean squared error by the variance of the observed

data and varies between minus infinity to 1.0 (Nash and Sut-

cliffe, 1970). How appropriate this criterion is for measuring

goodness of fit, as well as what is an acceptable Reff-value,

has been much debated in the literature (Krause et al., 2005;

Legates and McCabe, 1999; Seibert, 2001; Criss and Win-

ston, 2008; Smith et al., 2008; Gupta et al., 2009). Decompo-

sitions of Reff have highlighted several problems associated

with this criterion in model calibration (Gupta et al., 2009;

Smith et al., 2008). Gupta et al. (2009) present a decomposi-

tion of Reff into three components representing bias, variabil-

ity and correlation and conclude that the variability has to be

underestimated to maximize Reff and that runoff peaks tend

to be underestimated when maximizing Reff. They, together

with many other authors (Garrick et al., 1978; Refsgaard and

Knudsen, 1996; Legates and McCabe, 1999; Seibert, 2001;

Krause et al., 2005; Schaefli and Gupta, 2007; McMillan and

Clark, 2009) propose modified versions of the Nash-Sutcliffe

criterion or other performance measures to overcome some

of these problems. However many of the problems in using

lumped global performance measures remain, for instance

that the measure often is more influenced by the performance

at certain flow magnitudes such as high or low flows. This

issue has been addressed in multi-criteria approaches where

different aspects of the fit between simulated and observed

discharge are evaluated. A combination of several criteria

then allows an assessment of model performance with re-

spect to the different aspects of the hydrograph (e.g. Gupta et

al., 1998). Boyle et al. (2000) and later Wagener et al. (2001),

suggest distinguishing between three parts of the hydrograph

(driven quick flow (during events), non-driven quick flow and

slow flow) and to then calculate the performance measure

separately for each flow type. In a related approach, Freer

et al. (2003) used several performance measures for a multi-

criteria calibration in a Generalised Likelihood Uncertainty

Estimation (GLUE) framework where they differentiated the

dataset by season. They found no consistently identified pa-

rameters for Dynamic TOPMODEL that could represent the

range of processes between seasons in the studied watershed.

However, these approaches have not generally taken any ex-

plicit account of uncertainty in the observed input and evalu-

ation data.

Hydrologic models are simplified conceptualisations of

the hydrologic processes in a catchment. Such simplifica-

tions will necessarily lead to errors in the way the struc-

ture of the model represents the real-world hydrologic pro-

cesses (Beven, 1989, 2009; Grayson et al., 1992; McDonnell,

2003). The temporal and spatial scales of the measured input

data are also incommensurate with both the real-world quan-

tities and the scale of the model. This source of error must be

considered together with pure measurement errors (e.g. as a

result of lack of calibration or accuracy of the measurement

equipment) in input data. Such errors can lead to substantial

uncertainty of an epistemic (knowledge) type, e.g. if there

are no rain gauges in the only part of the catchment where it

rains, this will create an error that is difficult or impossible

to characterise in an error model. This type of uncertainty

resulting from non-stationary epistemic errors should be ex-

pected in most datasets used for hydrological modelling be-

cause of the difficulties in measuring the components of the

water balance for a catchment. As discussed by Beven and

Westerberg (2011), such errors, if significant, should be ex-

pected to have a disinformative effect on model calibration.

They suggest that the best strategy to deal with such disin-

formative periods of data would be to identify and remove

them from the dataset independently of the model, but recog-

nise that this identification will be difficult in many cases be-

cause of the uncertainties in the measured data. An alterna-

tive strategy could therefore be to develop model evaluation

criteria that are robust to moderate disinformation to make

sure that models are rejected for the right reason – i.e. poor

model structure and not disinformative data. Model param-

eters need to be inversely estimated from data in calibration

which will involve substantial uncertainty because of the ef-

fect of the types of errors discussed here and their interac-

tions. On top of this, the performance measure that is used

for the model calibration will influence which parameter-

value sets are identified as being acceptable given the un-

certainties in the modelling application (see e.g. Freer et al.,

1996), and is therefore an important consideration.

The reported number of discharge stations in the world

has gone down substantially from the peak in the late 1970’s

(GRDC, 2010). At the same time global precipitation and

climate data such as TRMM and ERA-Interim have become

available for the last 10–20 yr. Traditional model calibration

is impossible if there are no overlapping periods of input

and output data. In regions where the flow regime is sta-

tionary over time it would be advantageous to use discharge

data from a previous period (with sufficiently long records)

to overcome this temporal mismatch. Calibration approaches
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that do not rely on direct time-series versus time-series com-

parison are useful in such situations. Prior approaches to

model calibration without direct time series comparison in-

clude calibration to spectral properties (Montanari and Toth,

2007), recession curves (Winsemius et al., 2009), slope of

the flow-duration curve (Yadav et al., 2007; Yilmaz et al.,

2008), base-flow index (Bulygina et al., 2009) and the use of

a performance measure based on specified exceedance per-

centages of a synthetic regional flow-duration curve (FDC)

for calibration at un-gauged sites (Yu and Yang, 2000). How-

ever, in these studies uncertainties in observed discharge are

not considered explicitly. Blazkova and Beven (2009) ac-

count for discharge uncertainty and use the discharge at nine

exceedance percentages between 25 to 90 % exceedance for

the FDC as nine out of 57 limits of acceptability in the

extended GLUE approach (Beven, 2006, 2009) in flood-

frequency estimation. The latter study notes the importance

of the realization effect in using a discharge data record of

limited length, and the effect this has on the FDC is also

discussed by Vogel and Fennessey (1994). The added un-

certainty to the FDC stemming from a discharge record of

limited length has to be considered if discharge data from

another period is used for calibration, especially if the flow

regime is not stationary.

Calibrations with traditional performance measures are

challenged by problems including the following: (1) uncer-

tainty in discharge data, (2) variable sensitivity of different

performance measures to different flow magnitudes, (3) in-

fluence of input/output errors of an epistemic nature and

(4) inability to evaluate model performance when observa-

tion time periods for discharge and model input data do

not overlap. Uncertainty in discharge data, which has been

shown to be sometimes substantial (Di Baldassarre and Mon-

tanari, 2009; Pelletier, 1988; Krueger et al., 2010; Petersen-

Overleir et al., 2009) and influence the calibration of hydro-

logical models (McMillan et al., 2010; Aronica et al., 2006),

is usually not accounted for in model evaluation with tra-

ditional performance measures. Novel approaches in envi-

ronmental modelling that include evaluation-data uncertainty

in model calibration include Bayesian calibration to an es-

timated probability-density function of discharge (McMil-

lan et al., 2010), Bayesian calibration with a simplified er-

ror model (Huard and Mailhot, 2008; Thyer et al., 2009),

fuzzy rule based performance measures (Freer et al., 2004)

and limits-of-acceptability calibration in GLUE for rainfall-

runoff modelling (Liu et al., 2009), flood mapping (Pappen-

berger et al., 2007), environmental tracer modelling (Page

et al., 2007) and flood-frequency estimation (Blazkova and

Beven, 2009). Here we explore the limits-of-acceptability

GLUE approach applied to flow-duration curves, which

could be a way of dealing with some of the effects of non-

stationary epistemic errors on the identification of feasible

model parameters in real applications (Beven, 2006, 2010;

Beven and Westerberg, 2011; Beven et al., 2008). However,

in order to establish the extent to which this approach is ro-

bust to such errors, a more extensive analysis than that pre-

sented here is needed. Flow-duration curves have previously

been used in model calibration by Sugawara (1979), Yu and

Yang (2000), as one of the criteria considered by Refsgaard

and Knudsen (1996) and by Blazkova and Beven (2009),

and as a qualitative measure of model performance, e.g. by

Houghton-Carr (1999), Kavetski et al. (2011), and Son and

Sivapalan (2007).

The aim when calibrating a hydrological model should

be to find out whether the model structure can be consid-

ered an appropriate conceptualisation or hypothesis of the

hydrological processes of interest in that catchment (Beven,

2010). Ideally, the reason for rejecting the model as a suit-

able hypothesis of these processes should therefore be be-

cause the model structure is poor and not because the calibra-

tion method does not appropriately account for the uncertain-

ties in the input and output data (i.e. avoiding Type II false

negatives). The aim of this paper was to develop a calibra-

tion method that addresses the four problems in model cal-

ibration with traditional methods outlined above, within the

framework of the limits-of-acceptability approach in GLUE

and with a specific focus on accurate simulation of the water

balance.

2 Study areas and data

The method was first developed for a Honduran catchment

characterised by shallow soils and frequent occurrence of

surface runoff, the Paso La Ceiba catchment. It was then

tested for a contrasting flow regime – the Brue catchment in

Great Britain where run-off generation is controlled by sub-

surface processes on the hill slopes.

2.1 The Paso La Ceiba catchment

The 7500 km2 Choluteca River basin is located in south-

central Honduras (Fig. 1) where the Choluteca River drains

to the Pacific at the Gulf of Fonseca. Two water-supply

dams (constructed in 1976 and 1992) are located upstream

of the capital Tegucigalpa in the upper parts of the basin.

The discharge data from the station at Paso La Ceiba, with

a catchment area of 1766 km2, were used here. This catch-

ment has soils that are shallow and eroded (often less than

a metre deep) and it is mountainous with elevations ranging

from 660 to 2320 m above sea level. The discharge station

was destroyed in October 1998 by the flooding that occurred

during hurricane Mitch and a new station was installed three

kilometres upstream.

The bimodal precipitation regime in the basin is char-

acterised by a high spatial and temporal variability with a

dry season November–December to April and a rainy sea-

son (with around 80 % of the total precipitation) modulated

by a relative minimum, “the midsummer drought”, in July–

August (Westerberg et al., 2010; Portig, 1976; Magaña et

www.hydrol-earth-syst-sci.net/15/2205/2011/ Hydrol. Earth Syst. Sci., 15, 2205–2227, 2011
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Fig. 1. The Choluteca River Basin and the Paso La Ceiba catchment, the urban area in the upper catchment represents Tegucigalpa, the

Honduran capital. Black triangles represent precipitation stations with daily data in 1978–1997 within 30 km of the Paso La Ceiba catchment.

al., 1999). Characteristic of the tropics, temperature variabil-

ity is low and precipitation is mainly convective. ENSO (El

Niño/Southern Oscillation) and Atlantic sea-surface temper-

atures modulate climate variability on a longer, inter-annual

time scale (Diaz et al., 2001; Enfield and Alfaro, 1999). The

long dry season in combination with a fast response of run-

off to precipitation and little base flow lead to a flow regime

where peak flows of short duration account for a large part of

the total volume of discharged water.

The WASMOD model was driven with daily data of pre-

cipitation and potential evaporation. Precipitation data for

1978–1997 from 29 stations within a 30 km distance of the

Paso La Ceiba catchment (Fig. 1) were interpolated with

inverse-distance weighting, this method was chosen because

of the low correlation between daily precipitation data from

different stations and the varying station density (Westerberg

et al., 2010). There were almost twice as many active pre-

cipitation stations in the end of the 90’s as in the early 80’s

implying that there could potentially be time-varying biases

in the interpolated series. Another potential source of data

commensurability errors resulted from the fact that precip-

itation is measured at 7 a.m. but registered on the previous

day. Since the delay time from rainfall in the upper catch-

ment to a peak in run-off at the Paso La Ceiba station is less

than 24 h and precipitation has a clear diurnal variability with

a peak during the second half of the day, the registration of

rainfall had to be changed to the day of the actual measure-

ment to agree with the daily time step in the model. The

mean annual areal precipitation for the catchment equalled

1060 mm yr−1, with a minimum of 810 mm yr−1 and a max-

imum of 1450 mm yr−1 for the studied period.

Potential evaporation was calculated with the Penman-

Monteith equation (Monteith, 1965; Allen et al., 1998) using

daily data of temperature, wind speed, relative humidity and

sun hours from the Toncontı́n station in Tegucigalpa. There

was a decrease in the measured relative humidity around

1984 because of a relocation of the station from a roof-top

to the ground and these data were therefore corrected by the

difference in mean value between the first and the second pe-

riod. There was also a clear shift in the relative humidity

data when the calculation method was changed from lookup

tables to formula in 1 November 1999, which was adjusted

for in the same way. Missing meteorological data were filled

with daily values for a mean year. The correction of the data

was deemed necessary since there was only one station avail-

able with data covering the entire modelling period.

The discharge and uncertainty in discharge was previously

calculated with a fuzzy linear regression of rating data based

on the estimated uncertainty in single discharge and gauge-

height measurements by Westerberg et al. (2011) and only

the key points are given here. The method accounted for

the non-stationarity in the stage-discharge relationship which

was substantial in the alluvial Choluteca River, as well as

the commensurability error in only having a limited num-

ber of gauge-height measurements per day for the calcula-

tion of mean daily discharge. The added uncertainty from

Hydrol. Earth Syst. Sci., 15, 2205–2227, 2011 www.hydrol-earth-syst-sci.net/15/2205/2011/
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Fig. 2. The Brue catchment and the location of the 28 rain areas

(black lines) and the Lovington flow gauge (black dot).

this commensurability error was estimated at 17 %, a factor

that represented 95 % of the errors from calculations using

high temporal resolution stage data for a later period. Larger

uncertainties could occur at some events if flow peaks pass

between the stage readings, but are not easily estimated. The

data included 1216 ratings for 1980–1997 at the Paso La

Ceiba station and gauge-height measurements three times-

a-day, at 06:00, 12:00 and 18:00. Estimated discharge un-

certainty was in the form of a time series of triangular fuzzy

numbers consisting of a crisp (best-estimate) discharge and a

lower and upper limit.

2.2 The Brue catchment

The 135 km2 Brue catchment in south-west England (Fig. 2)

is characterised by low hills (up to 300 m above sea level) and

alternating bands of permeable and impermeable rocks be-

neath clayey soils on top of which the land use is dominated

by grasslands (74 %). An extensive precipitation data set

from the HYREX (HYdrological Radar EXperiment) project

(Moore, 2000; Wood et al., 2000) includes 49 gauges as well

as radar data with a 15-min resolution. The mean areal pre-

cipitation for the period 1 January 1995 to 31 December 1997

equalled 770 mm yr−1. Potential evaporation data from the

HYREX project that had been calculated using data from an

automatic weather station in the lowland part of the catch-

ment were used and periods with missing data were filled

using a sine-wave function. Flow data were from the Lov-
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Fig. 3. Uncertain rating curve for the Lovington gauging station in

the Brue catchment derived from the stage-discharge measurements

from 1990–1998 (stage in m and discharge in m3 s−1 before trans-

formation). The dots represent the measured values and the grey

boxes the fuzzy representation of the estimated uncertainty in the

measurements. The upper and lower lines represent the uncertainty

limits for the fitted rating curve.

ington gauging station, for which the rating curve data from

the UK Environmental Agency showed considerable spread.

Discharge uncertainty limits were calculated with the same

method as for the Paso La Ceiba catchment, but here the

rating curve was assumed stationary and 15-min stage data

were available for the whole period so no temporal com-

mensurability error needed to be estimated. Discharge and

the uncertainty limits were calculated using 79 simultaneous

stage-discharge measurements from 1990–1998 that covered

the flow range well. The gauge heights (in m) were log-

transformed and the discharges (in m3 s−1) were Box-Cox-

transformed to obtain a linear relationship (Fig. 3). The Box-

Cox lambda parameter was optimized to obtain the highest

degree of linearity and a lambda-value of 0.0946 gave a cor-

relation of 0.998. The same uncertainties in the stage and

discharge measurements as for the Honduran data were as-

sumed (5 % for gauge height and 25 % for discharge), as the

fitted curve encompassed the uncertainty in the ratings well

(Fig. 3).

3 Hydrological models

Two hydrological models with different time scales but rela-

tively parsimonious conceptualisations of the dominant hy-

drological processes in the two catchments were chosen,

WASMOD (Xu, 2002) for the Honduran catchment and Dy-

namic TOPMODEL (Beven and Freer, 2001) for the British

catchment.
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Table 1. List of equations, parameters and their sampling ranges for the version of WASMOD used in this study.

Model equation Description Parameter Units Sampling range

et = min(ept (1−A
wt/(ept×1t)
et ),wt/1t)

where

wt = pt ×1t +smt−1 is available water for evaporation,

pt is mean areal precipitation for day t , ept is potential

evaporation, and sm t−1 is soil moisture storage at day

t −1

Actual evaporation Aet [-] [0, 1]

st = Sf(smt−1)0.5 Slow flow Sf [mm0.5 day−1] [e−9, 1]

ft = Ff ×smt−1 ×nt

where nt is active precipitation

nt = pt −ept (1−e
−

pt
ept ) if ept > 1

nt = pt −ept if ept ≤ 1

Fast flow Ff [mm−1] [e−7, e−4]

sct = sct−1 +ft ×1t

rt = Rf ×sct

sct = sct −rt ×1t

where sct is the routing storage for day t

Routing of fast flow Rf [day−1] [0, 1]

dt = min(st +rt ,wt −et ) Total runoff

smt = smt−1 +(pt −et −dt )×1t Water balance

equation

3.1 The model used in the Paso La Ceiba catchment –

WASMOD

The lumped conceptual water-balance model WASMOD has

been applied to many catchments with different climatic

conditions and has been used at various spatial scales –

e.g. Widen-Nilsson et al. (2007) and Xu and Halldin (1997).

Here it was used for the Honduran catchment with a daily

time step and a model formulation for snow-free catchments

with potential evaporation and precipitation as input data.

This version of the model, identical to the snow-free part of

the monthly WASMOD model except for the routing scheme,

had four parameters for fast flow, slow flow, actual evapora-

tion and routing (Table 1). This was the first application of

this model version using a daily time step. The model was

evaluated in a split-sample test for 1980–1988/1989–1997,

where it was first calibrated in the first period and evaluated

in the second and then the reverse. The two years prior to

1980 were used as a warming-up period.

3.2 The model used in the Brue catchment – Dynamic

TOPMODEL

In the Brue catchment the semi-distributed Dynamic TOP-

MODEL was run using a 15-min simulation time step. The

simulated runoff series were aggregated to a mean hourly

time step before the computation of any goodness-of-fit mea-

sure or other analysis of the simulated results. Compared to

the original TOPMODEL (Beven and Kirkby, 1979), the dy-

namic version enables the distributed response to be repre-

sented more explicitly through functional units of the land-

scape. These functional units are not only defined by the to-

pographic index (as in the original TOPMODEL version) but

also by similarity in land use, differences in rainfall inputs or

other spatial characteristics. In this application, which was

the same as in Younger et al. (2009), land use was considered

homogenous and the functional units were a function of slope

and contributing area (i.e. the topographic index was split up

to allow dynamic changes in the upslope contributing area)

as well as the spatiotemporal variability in rainfall (see also

the previous application of the Probability Distributed Model

(PDM) and Grid to Grid models to the Brue in Bell and

Moore, 2000). Data from rainfall stations within the same

2 km grid cell were averaged so that 28 “rain areas” were cre-

ated from the 49 gauges via a nearest-neighbour approach.

The parameter intervals for the Monte Carlo sampling are

given in Table 2. The model was evaluated in a split-sample

test for 1995–1996/1997–30 June 1998, first with the first pe-

riod for calibration and the second for prediction and then the

reverse, 1994 was used as a warming-up period.

4 Flow-duration curve calibration

Monte Carlo runs were performed for both test catchments

as a basis for the subsequent calibration. For the Paso La

Ceiba catchment 100 000 parameter-value sets were gener-

ated and used to simulate runoff series with WASMOD. For

the Brue catchment TOPMODEL was run 50 000 times. For

calibration (i.e. the selection of the behavioural parameter-

value sets and their weights for GLUE) the FDCs of these

simulated time series were then evaluated in a comparison

Hydrol. Earth Syst. Sci., 15, 2205–2227, 2011 www.hydrol-earth-syst-sci.net/15/2205/2011/
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Table 2. Sampling ranges for dynamic TOPMODEL parameters.

Parameter Units Sampling range Description

SZM [m] [0.01, 0.1] Form of the exponential

decline in saturated

hydraulic conductivity

with depth

ln (T0) [ln(m2 h−1)] [-8, 0] Effective lateral saturated

transmissivity

SRmax [m] [0.005, 0.1] Maximum soil root zone

deficit

SRinit [m] [0, 0.01] Initial root zone deficit

CHV [m h−1] [500, 2500] Channel routing velocity

Td [h] [0.1, 40] Unsaturated zone time

delay

12 [-] [0.3, 0.7] Effective porosity

Smax [m] [0.1, 0.8] Maximum effective deficit

of the subsurface storage

zone

with the observed FDCs. The observed FDCs together with

limits of acceptability were constructed from the discharge

time series and the estimated uncertainty bounds. The FDC

of each simulated discharge series from the Monte Carlo runs

was compared to the limits of acceptability for the observed

FDC at selected evaluation points (EPs) along the FDC. All

simulated FDCs which were inside the limits of acceptability

for all EPs were considered behavioural and a performance

measure was calculated using a triangular evaluation func-

tion at each EP. This performance measure was used as an

informal likelihood measure for each behavioural parameter-

value set. This FDC calibration was compared to that using

the model efficiency (Nash and Sutcliffe, 1970) with differ-

ent behavioural threshold values. Furthermore, the model

performance when using an observed FDC from a time pe-

riod different to the simulated one was evaluated in the Paso

La Ceiba catchment to assess the ability of the method to

address mismatching observation time periods. These are

called “time-shift” calibrations below. Finally, in a pos-

terior analysis the simulated discharge uncertainty ranges,

which resulted from using the different performance mea-

sures, were compared to the observed discharge uncertainties

for the simulated periods.

4.1 Selection of evaluation points

The selection of the exceedance percentages that were used

as evaluation points (EPs) – i.e. the points where the sim-

ulated FDC was compared to the observed – was an im-

portant choice for the FDC calibration. The high-flow part

of the FDC, which describes the dynamic response of the

catchment to the effective precipitation input, usually con-

tains most of the information about catchment response and

many parameters are therefore sensitive with respect to these

high flows. Sufficient points on this part of the FDC therefore

needs to be set in order to constrain these parameters. Here
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Fig. 4. (a) Selection of EP values using equal intervals of crisp

discharge (FDC-Q); (b) selection of EP values using equal intervals

of the area under the FDC (i.e. using equal intervals of water volume

contributed by flows in a certain magnitude range (FDC-V).

Fig. 5. (a) Calculation of the scaled scores, Qmin(i) is the lower

limit for the discharge uncertainty at the i:th evaluation point (EP),

Qmax(i) the upper limit and Q(i) the crisp discharge. A simulated

value that is at the crisp value gets a scaled score of 0, if the value is

at the lower limit a scaled score of −1 and at the upper limit it is 1,

values within or outside are linearly inter- or extrapolated; (b) trian-

gular weighting function applied at each EP such that weights are

zero for scaled scores outside the range [−1, 1].

we explored two methods for EP selection which each em-

phasized different aspects of the FDC (Fig. 4). For the first

method the crisp discharge values (i.e. the best estimate of

the uncertain discharges) were classed into N equal classes

(Fig. 4a). The minimum and maximum discharge values of

the entire FDC were excluded and the remaining N −1 dis-

charge class boundary values were used to calculate the cor-

responding EPs. Here N = 20 intervals were used resulting

in 19 EPs. Different ways can be used to calculate specific

exceedance percentages or discharge values for the FDC, but

the choice of method is negligible in cases where the FDC is

based on thousands of daily discharges as was the case here

(Vogel and Fennessey, 1994). We calculated exceedance per-

centages from the sorted discharges based on the percentile

values 100(0.5/n), 100(1.5/n), ..., 100([n-0.5]/n), where n

is the number of discharge values. Linear interpolation was

used between the sorted observed discharge values. This cal-

culation was first reversed to calculate EPs in terms of ex-

ceedance percentages for the discharge class boundary val-

ues for the crisp observed discharge. It was finally used to
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calculate discharge for the upper and lower acceptability lim-

its and for the simulated discharge at these EPs, which were

then used in the calculation of the performance measures.

The second method for EP selection consisted of re-scaling

the FDC so that it represented the total volume of water con-

tributed by flows smaller than or equal to a given magnitude.

These volumes were then divided into N equal classes and

the EPs were calculated in the same way, again excluding the

minimum and maximum discharge values. As the area under

the normal FDC represents the volume of water discharged

during the time for which the FDC was calculated, this ap-

proach equalled a weighting using N intervals of equal area

below the curve for the crisp discharge (Fig. 4b). Since we

used N = 20 this resulted in volume increments of 5 %. The

expectation was that the volume-based EP selection would

provide a more appropriate evaluation with respect to the

entire FDC than the discharge-based selection, because the

latter meant that the low flows were not constrained for the

types of flow regimes considered here. The volume method

was therefore expected to be well-suited for water-balance

studies, whereas the discharge method was more focused on

high-flow performance.

4.2 Performance measures

Two performance measures RFDC−Q (for EP selection based

on discharge intervals) and RFDC−V (for EP selection based

on volume intervals) were calculated using the sum of a tri-

angular weighting function based on the observed discharge

and its limits of acceptability at each EP (Fig. 5b). Scaled

scores were calculated to evaluate the deviations of the sim-

ulated discharge with respect to the limits of acceptability. If

the simulated discharge value equalled the crisp discharge for

a certain EP, the scaled score was zero; if it was at the upper

or lower limit the score was 1 and −1 respectively. Values

between and outside these values were calculated based on

linear inter- or extrapolation (Fig. 5a).

In this study behavioural simulations were required to be

inside the limits of acceptability (i.e. to have an absolute

scaled score ≤ 1) at all EPs. The performance measures

RFDC−V and RFDC−Q were calculated as:

RFDC = 1−

∑N−1
i=1 |Si |

N−1
where −1 ≤ Si ≤ 1,i = 1,2,...,N −1 (1)

where N −1 was the number of EPs and Si the scaled score

at EP i. This means that a simulation with a perfect fit to the

crisp discharge at all EPs received a value of 1 and if the sim-

ulated discharge was at either limit for all EPs, this resulted

in a value of 0. There were no values lower than 0 as simula-

tions were classed as non-behavioural if the absolute scaled

score was larger than 1 for any EP (Fig. 5b). These per-

formance measures were compared to the model efficiency

(Reff) calculated based on the crisp discharge (with different

behavioural thresholds). This form of triangular weighting

function based on scaled scores has been used before, for ex-

ample by Blazkova and Beven (2009) and Liu et al. (2009)

and is analogous to the fuzzy measures used by Pappenberger

et al. (2007) and Page et al. (2007).

4.3 Posterior analysis of simulated and observed

discharges

In a posterior analysis the time series of observed uncertain

discharge were compared to the simulated results from the

calibration and prediction with the two models. A simple

measure of how well the simulated and observed uncertain

discharge agree, is given by the calculation of the percentage

of time that the observed and simulated uncertainty bounds

overlap (here termed OP). A similar measure, called relia-

bility, has been used previously for single-valued observed

discharge (Yadav et al., 2007). The overlap measure can be

high simply because the simulated uncertainty is overesti-

mated. Therefore a combined overlap percentage (COP) was

calculated as the mean of the percentage of the overlapping

range between the observed and simulated discharge relative

to the observed and relative to the simulated discharge range

(Eq. 2).

COP =

∑T
t=1

(

mean
(

QRoverlap

QRobs
,

QRoverlap

QRsim

))

T
(2)

T is the number of time steps, QRoverlap the intersection be-

tween the simulated and observed discharge ranges, QRobs

the observed discharge range and QRsim the simulated dis-

charge range. A perfect match of 100 % can then not be

achieved if the simulated uncertainty is overestimated.

More complex measures, such as a PQQ-plot (Thyer et

al, 2009) or a rank histogram, analyse the quantiles of the

observed value in the simulated distribution. The generalised

rank histogram (McMillan et al., 2010) is an extension of

the rank histogram that compares two uncertain distributions

so that uncertainty in the observed data can be accounted

for. However, the generalised rank histogram does not relate

how far simulated values that are outside the observed distri-

bution lie. We therefore chose to analyse scaled scores to the

limits of acceptability for the time series of simulated values.

These were calculated in the same way as the scaled scores

used in the calculation of RFDC−V and RFDC−Q, but for each

time step instead of each EP in the FDC. The scaled scores

of all the behavioural simulations were analysed for different

flow types: base flow, rising limbs, falling limbs, peaks and

troughs, to be able to identify differences in the simulation

of different parts of the hydrograph between the criteria. For

each performance measure the histograms of scaled scores

were normalised to the number of behavioural simulations

to facilitate comparison. The classification of discharge

into different flow types was made in the same way as by

Younger et al. (2011) for the Brue catchment. However, we

used different threshold values since the hydrographs were

analysed at an hourly instead of 15-minute time step. The

observed flow Qt at time t was classified as:
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baseflow if Qt < Qb

rising limb if Qt−T < Qt < Qt+T and Qt > Qb

falling limb if Qt−T > Qt > Qt+T and Qt > Qb

peak if Qt−T < Qt and Qt > Qt+T and Qt > Qb

trough if Qt−T > Qt and Qt < Qt+T and Qt > Qb

The values of Qb and T were determined through visual

inspection of the classified hydrographs. The values were de-

termined to Qb = 1.7 m3 s−1 (= 13 l s−1 km−2) and 5 m3 s−1

(= 2.8 l s−1 km−2) and T = 4 h and 3 days for the Brue and

Paso La Ceiba catchment respectively. Plots of the time se-

ries of mean scaled scores for each performance measure to-

gether with the simulated and observed discharge were also

used to analyse the simulated results, especially the periods

where the simulations were outside the uncertainty in the ob-

served discharge.

5 Results

5.1 Observed uncertain FDCs

The FDCs for the two catchments illustrate the differences in

flow regime. In the Honduran catchment base flow was very

low and a larger part of the total volume of water was con-

tributed by high flows than in the British catchment (Fig. 6).

At Paso La Ceiba the flow regime (as illustrated by the FDCs)

was more or less stable in-between the calibration and eval-

uation periods. In the Brue catchment, where the discharge

record was much shorter, the low-flow part of the FDC was

not as stable as the high-flow part between the two periods.

If a model is calibrated with data from another time period

(a “time-shift” calibration) and the FDC is not stable, there

could be a realisation effect in using a limited sample of

discharge data. Therefore the extremes from a bootstrap of

FDCs for successive nine- and two-year periods of discharge

data (for the Paso La Ceiba and Brue catchment respectively)

were plotted to illustrate the extra uncertainty from this real-

isation effect – that should be accounted for if the station-

arity of the FDC is unknown. As would be expected, the

realisation effect was larger for the Brue compared to Paso

La Ceiba. Factors affecting the magnitude of the realisation

effect include the length of the record, the nature of the cli-

mate variability and the non-stationarity of the hydrological

regime. The estimated uncertainty in discharge ranged be-

tween −43 to +73 % of the best discharge estimate at Paso

La Ceiba (Westerberg et al., 2011) and ±34 % in the Brue

catchment. The EPs of the FDCs ranged from a fraction of

flow equalled or exceeded of 0.004 to 0.70 for RFDC−V and

from 0.0002 to 0.30 for RFDC−Q for the two periods in the

Brue and from 0.003 to 0.69 for RFDC−V and from 0.0003 to

0.17 for RFDC−Q for the two periods at Paso La Ceiba. The

very low values included here reflect the fact that the high

flows represent a small fraction of all flows.

5.2 Number of behavioural parameter-value sets

The identification of behavioural parameter-value sets us-

ing the performance measures based on the FDC evalua-

tion points resulted in more behavioural parameter-value sets

for the discharge-interval selection compared to the volume-

interval selection for both catchments (Table 3). The num-

bers of behavioural parameter-value sets are those that sur-

vived the limits of acceptability for all the EPs considered,

of the 100 000 simulations for Paso La Ceiba and 50 000

simulations for the Brue. The time-shift calibration results

for Paso La Ceiba use the FDC from one period, to pro-

vide limits of acceptability for the other period (which in

this case is assumed to have no observed discharges avail-

able). The column labelled prediction shows the percent-

age of parameter-value sets calibrated in the second period

which were behavioural for the first period based on the two

FDC criteria. For the Brue catchment the performance for

the two periods was quite different and only 3 % (RFDC−V)

and 13 % (RFDC−Q) of the parameter-value sets in the sec-

ond period were also behavioural in the first. The percent-

ages were higher for the Paso La Ceiba with almost 50 % of

the parameter-value sets behavioural in both periods for both

criteria. This is likely a result of the higher uncertainty in

discharge combined with the less complex rainfall-runoff re-

lationship in this catchment compared to the Brue, especially

since a simpler model and more uncertain precipitation data

were used compared to the semi-distributed model set-up and

dense rain-gauge network in the Brue. It might also provide

an indication that the more complex Dynamic TOPMODEL

has been over-fitted to responses and errors in the calibration

period that are then rather different in the evaluation period.

Table 4 shows the results based on the Nash-Sutcliffe ef-

ficiency performance measure, using different thresholds to

define the behavioural parameter-value sets, and also with

an additional constraint based on the absolute volume error

(VE) in predicted discharge. With higher thresholds there

was a greater chance that the sets of behavioural parameter

values for the two periods would be non-overlapping, while

the maximum values for the Brue were generally lower than

at Paso La Ceiba. In the Paso La Ceiba catchment the ad-

dition of the VE had a large constraining effect on the num-

ber of behavioural parameter-value sets but not in the Brue

catchment. The time-shift calibration was not possible with

this performance measure.
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Fig. 6. Observed crisp and uncertain FDCs for the Paso La Ceiba catchment, (a–b) upper and lower flow range respectively and for the Brue

catchment, (c–d) upper and lower flow range respectively. The extreme FDC represents the maximum and minimum uncertain FDC for all

consecutive 9- and 2-yr periods for the Paso La Ceiba and Brue catchment respectively. The FDC-V represents volume interval EPs and

FDC-Q discharge interval EPs (only plotted for the last period in each catchment). The high and low flows of the FDCs are plotted separately

for better visualisation; note the difference in scale on the y-axis.

Table 3. Number of behavioural parameter-value sets for the different FDC performance measures.

Catchment

(model)

Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)

Performance

measures

Calibration Time-shift Calibration1 Prediction2 Calibration Prediction2

1980–1988 1989–1997 1980–1988 1989–1997 1995–1996 1997–1998

RFDC−Q 17 085 24 166 21 932 22 853 48 % (11 575) 983 477 13% (123)

RFDC−V 758 1430 871 1408 47 % (673) 360 42 3 % (12)

1 Calibration using the FDC from the previous/later period 2 Percentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in

the first period.

5.3 Parameter identifiability

5.3.1 The Paso La Ceiba catchment – WASMOD

In this catchment the performance measures based on the

FDC resulted in more overlapping sets of behavioural pa-

rameter values between calibration and prediction compared

to the calibration with Reff (Tables 3 and 4). The FDC

criterion based on volume EPs, RFDC−V, resulted in much

fewer behavioural parameter-value sets than RFDC−Q. The

largest difference in parameter identifiability was seen for

the evaporation and slow-flow parameters which mainly con-

trol simulated discharge for low flows and recession peri-

ods (Fig. 7). They were better constrained for the RFDC−V
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Table 4. Number of behavioural parameter-value sets for different Nash-Sutcliffe based performance measures.

Catchment (model) Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)

Performance measures1 Calibration Prediction2 Calibration Prediction2

1980–1988 1989–1997 1995–1996 1997–1998

Reff > 0.7 & VE < 20% 796 12 477 4 % (464) 2299 240 4 % (82)

Reff > 0.7 & VE < 10% 365 6399 2 % (147) 1128 127 0 % (0)

Reff > 0.7 1473 28 455 5 % (1,473) 2696 240 4 % (108)

Reff > 0.75 89 20 046 0.4 % (89) 985 13 0.4 % (4)

Reff > 0.8 0 11 101 0 % (0) 140 0 0 % (0)

Reff > 0.85 0 2246 0 % (0) 3 0 0 % (0)

1 VE is the absolute volume error 2 Percentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in the first period.

 

–

– –

Fig. 7. Cumulative informal likelihood distributions for all WASMOD model parameters (Rf – routing of fast flow, Aet – evaporation,

Sf – slow flow, and Ff – fast flow). The informal likelihood weights for each performance measure were calculated for the calibration in

1989–1997 for Reff, RFDC−Q and RFDC−V, and for the calibration in 1989–1997 using the FDC for 1980–1988 for RFDC−Q−TS, and

RFDC−V−TS in the Paso La Ceiba catchment.

measure compared to the RFDC−Q and Reff measures, which

mostly constrained model performance at medium to high-

flows. The behavioural parameter-value sets obtained from

calibrating the model for 1989–1997 using the “time-shift”

FDC for 1980–1988 did not differ much from calibration

with the FDC from 1989–1997, especially for the volume

EP criterion, as the flow regime did not change substantially

in-between the two periods (Fig. 6–7).

5.3.2 The Brue catchment – Dynamic TOPMODEL

As in the Paso La Ceiba catchment, the largest difference in

parameter identifiability between the Reff and RFDC−V mea-

sures could be seen for the parameters controlling the reces-

sion/slow flow and the evaporation in the model (Fig. 8).

In Dynamic TOPMODEL the SZM parameter describes

the exponential decline in saturated hydraulic conductivity

with depth and controls the shape of the hydrograph in the

recession periods. It was constrained to much lower values

for RFDC−V compared to the other measures. The SRmax

parameter, which controls the water available for evapora-

tion, was also more constrained for RFDC−V. The best sim-

ulations for Reff (Reff > 0.8) showed more constraint on the

CHV and Smax parameters. In the case of CHV, the channel-

routing velocity parameter, this reflects the sensitivity of the

Reff measure to timing errors in the higher peak hydrographs.

The sensitivity of Smax, which controls the root zone deficit

due to actual evapotranspiration, might reflect the effect of
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Fig. 8. Cumulative informal likelihood distributions for all Dynamic TOPMODEL parameters (the parameter names are explained in Table 2).

The informal likelihood weights for each performance measure were calculated for the calibration in 1995–1996 in the Brue catchment.

antecedent conditions on peak flow magnitude and timing

that is not so important for the RFDC measures.

5.4 Simulated flow-duration curves

5.4.1 The Paso La Ceiba catchment – WASMOD

The RFDC−V measure gave simulated FDCs that most closely

resembled the observed FDC for the whole flow range in both

calibration and prediction. The largest difference between

the performance measures occurred at low flows for both the

calibration and evaluation periods (Fig. 9). Here almost all

of the simulations for the Reff and RFDC−Q measures under-

estimated the discharge, but there were a number of simula-

tions that had a large overestimation in this flow range. The

RFDC−V simulations were more evenly distributed within the

range of the uncertain observed FDC at the low-flow EPs.

This difference at low flows was not surprising since the

largest difference in the parameter identifiability (Fig. 7) was

seen for the evaporation and slow-flow parameters that con-

trol this part of the FDC. For the RFDC−Q measure this lack of

constraint was not surprising as there were no low-flow EPs.

For the Reff calibration the low-flow simulation even for be-

havioural parameter-value sets with the highest Reff values

resulted in consistent errors for low flows. The calibration in

1989–1997 using the “time-shift” FDC in 1980–1988 with

the RFDC−V measure gave results similar to when the 1989–

1997 FDC was used for the same measure. The RFDC−Q

measure gave good high-flow performance but the poorest

performance for low flows as seen when plotted for the vol-

ume EPs.

In prediction 1989–1997 Reff gave more consistent under-

estimation for high flows compared to RFDC−V and RFDC−Q.

As in the calibration period, the low-flow performance was

much poorer for Reff and RFDC−Q compared to RFDC−V,

which was largely consistent with the observed FDC. Note

that in calibration the lowest EP for which the RFDC−Q was

evaluated in the current study was at a crisp discharge of

21 m3 s−1. Figure 9 shows that this still allows sufficient

freedom for the behavioural simulations to depart from the

observed FDC limits at lower flows, in this case for 86 %
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Fig. 9. (a) and (b) FDCs for behavioural parameter-value sets for WASMOD in the Paso La Ceiba catchment for calibration in 1989–1997

using RFDC−V (all FDCs plotted as grey lines), Reff, RFDC−Q, and RFDC−V−TS (maximum and minimum FDC values plotted as lines)

and observed crisp, upper-limit and lower-limit discharge; (c) and (d) FDCs for prediction in 1989–1997 using behavioural parameter-value

sets for RFDC−V (all FDCs plotted as grey lines), Reff and RFDC−Q calibrated 1980–1988 (maximum and minimum FDC values plotted as

lines) and observed crisp, upper limit and lower limit discharge. The FDCs are split in two plots (left – high flows and right – low flows) at

10 % exceedance. All FDCs are plotted for the volume interval EPs.

of the time, and that these simulated results were similar to

those of the Reff calibration.

5.4.2 The Brue catchment – Dynamic TOPMODEL

In the Brue catchment the results were largely similar to the

Paso La Ceiba catchment (Fig. 10). The RFDC−V criterion

also constrained the low-flow part of the FDC which the other

criteria did not. Here, however, the behavioural simulations

did not cover the entire low-flow range which could indicate

that some of the observed behaviour could not be reproduced

by the model. The majority of the flows at the low-flow EPs

were overestimated for Reff and RFDC−Q in this catchment.

Again, the number of increments used in the determination

of RFDC−Q allows significant freedom amongst behavioural

parameter-value sets in the prediction of lower flows and a

similar pattern is seen for Reff.

5.5 Posterior analysis of simulated and observed

discharges

The measures of overlap (OP and COP) between the simu-

lated and observed uncertain discharge bounds were gener-

ally higher for the RFDC−V measure compared to the other

measures (Fig. 11). As the COP measure accounted for over-

estimated predictive uncertainty a high value of this measure

was more important than for OP. The results for the time-shift

calibration using the FDC from another time period gave re-

sults similar to that of the normal FDC calibration. The best

Reff simulations (Reff > 0.8) resulted in a similar number of

behavioural simulations as RFDC−V at Brue, but gave much

lower overlap than for RFDC−V, which was largely because

of the poorer low-flow performance. The RFDC−Q measure

resulted in better results in the Brue catchment compared to

Paso La Ceiba. This might relate to the fact that there was

more baseflow at Brue wherefore the EPs for the discharge-

interval-selection method covered the low-flow part of the

FDC better than at Paso La Ceiba.
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Fig. 10. (a) and (b) FDCs for behavioural parameter-value sets for Dynamic TOPMODEL in the Brue catchment for calibration in 1995–

1996 using RFDC−V (all FDCs plotted as grey/shaded lines), Reff, and RFDC−Q (maximum and minimum FDC values plotted as lines) and

observed crisp, upper and lower discharge; (c) and (d) FDCs for prediction in 1997–1998 using the behavioural parameter-value sets from

1995–1996. The FDCs are split in two plots (left – high flows and right – low flows) at 10 % exceedance. All FDCs are plotted for the

volume interval EPs.

5.5.1 The Paso La Ceiba catchment – WASMOD

The simulated discharge for the Paso La Ceiba catchment

was in general in good agreement with the observed dis-

charge (Fig. 12). During the low-flow periods of some years

the discharge was underestimated for all performance mea-

sures, indicating a possible model-structural error in simulat-

ing a slower/deeper ground-water response or errors in the

input data.

The posterior analysis of the mean scaled scores for dif-

ferent parts of the hydrograph (Fig. 13) for the prediction in

1989–1997 showed that when using the RFDC−V calibration

compared to Reff: (1) the distributions of scaled scores were

more centred on zero, (2) there were fewer base flows that

were underestimated, and (3) the largest difference was seen

for the troughs, falling limbs and base flows that are con-

trolled by the slow-flow and evaporation parameters. The

same results were seen in all the other calibration/prediction

periods. Events where the predicted discharge was under-

estimated did not generate as large scaled scores as if the

predicted discharge was overestimated, as the uncertainty

bounds were wider in absolute terms for high flows com-

pared to low flows, this explains the skew in the histograms

in Fig. 13. The distributions of the scaled scores for Reff and

RFDC−Q were always centred on negative scaled scores for

all flow types.

A plot of the mean scaled scores and the discharge for

1989–1990 revealed the difference in low-flow performance

(Fig. 14). A large scaled deviation can be seen for all per-

formance measures in the end of 1990 where there is a peak

in the predicted discharge but not in the observed. This is a

type of epistemic error that could be a result of erroneous dis-

charge data, influence of upstream dams or unrepresentative

precipitation data. This type of event had a large effect on

the Reff calibration where it generated a large sum-of-squares

error and a reduction in overall performance. A similar devi-

ation is seen in the end of 1989. The maximum scaled scores

for all the calibration and prediction periods at Paso La Ceiba

were consistently larger for the FDC-based measures com-

pared to Reff which might indicate that the FDC criteria are

not as sensitive to such disinformative events.
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Fig. 11. Percentage of time that the simulated and observed uncertain discharges overlap (OP) and the combined overlap percentage (COP)

for the calibration (Cal.), time-shift calibration (T-S. Cal.) and prediction (Pred.) using WASMOD in the Paso La Ceiba catchment (a–b) and

calibration and prediction using Dynamic TOPMODEL in the Brue catchment (c–d).

–

Fig. 12. Uncertainty limits for observed discharge and predicted discharge (5 % and 95 % percentiles of the predicted discharge of all

behavioural parameter-value sets) in the rainy season 1995 with WASMOD parameters calibrated 1980–1988 using the RFDC−V performance

measure in the Paso La Ceiba catchment. The overlapping area between the two uncertain intervals is plotted in grey.
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Fig. 13. Scaled scores to limits of acceptability for different parts of the hydrograph at Paso La Ceiba for prediction in 1989–1997 with

behavioural parameter-value sets for 1980–1988 for WASMOD. For each performance measure the histograms were normalised by the

number of behavioural simulations, which means that the y-axis represents the number of time steps. The upper range of the histogram x-

axis was limited to improve the visibility of the lower range, the maximum scaled scores, max(S), for each criterion are given in the legends

and all scaled scores larger or equal to the last bin are plotted in the last bin.

–

–

Fig. 14. Daily precipitation in 1989–1990 (top) and predicted and observed crisp daily discharge for behavioural parameter-value sets

from using RFDC−V for calibration of WASMOD in the Paso La Ceiba catchment in 1980–1988 (middle). The mean scaled scores for all

performance measures are plotted in the bottom plot where the grey area represents a scaled score from −1 to 1, i.e. a simulated discharge

with a score inside this range is inside the discharge uncertainty limits.
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5.5.2 The Brue catchment – Dynamic TOPMODEL

The results for the Brue catchment were similar to Paso

La Ceiba with generally better performance for base flows,

falling limbs and troughs for RFDC−V. In contrast to Paso La

Ceiba the results were poorer for peaks and rising limbs com-

pared to Reff (Fig. 15), this difference was less pronounced in

1995–1996 where the calibration worked better. Also in con-

trast to the Paso La Ceiba catchment, the Reff and RFDC−Q

measures resulted in more overestimation of low flows here,

which is also seen in Fig. 10. The maximum scaled scores

were in general larger for the FDC-based criteria but not for

all flow types as was the case at Paso La Ceiba. Some peri-

ods of plausible model-structural errors were visible for the

base flows where there were many time steps with overpre-

diction with a scaled score around 5. These periods did in-

deed seem to be a result of model-structural error in July–

October 1997 as shown by a plot (Fig. 16) of the mean scaled

scores for the calibration during the same years; all of the

performance measures gave simulations that overpredicted

in this period. Another period of probable model-structural

error could be seen where the simulated discharge was un-

derestimated in the wetting-up period for the prediction in

1997–1998 (Fig. 17).

6 Discussion and conclusions

This paper has explored a calibration method that ad-

dresses four particular problems that arise in calibration

with traditional performance measures: (1) uncertain dis-

charge data, (2) variable sensitivity of different performance

measures to different flow magnitudes, (3) influence of in-

put/output errors of an epistemic nature and (4) inability to

evaluate model performance when observation time periods

for discharge and model input data do not overlap. The

method was evaluated in two catchments with contrasting

flow regimes where two different models were applied at two

different time scales. The results showed that when the ex-

ceedance percentages (EPs) of the FDC were chosen based

on volume intervals, this calibration method resulted in more

constrained low-flow parameters and a better overlap with

the observed data compared to a “traditional” calibration us-

ing the Nash-Sufcliffe model efficiency.

FDCs have been used previously in model calibration and

evaluation (Blazkova and Beven, 2009; Son and Sivapalan,

2007; Sugawara, 1979; Yu and Yang, 2000). The novel as-

pect of our use of the FDC is that it takes account of uncer-

tainty in the discharge data and at the same time shows that

the FDC can work surprisingly well as a single criterion in

some cases. Here discharge uncertainty was calculated using

a fuzzy linear regression for the rating curve based on esti-

mations of the uncertainty in both stage and discharge mea-

surements. Other methods could also be considered to do

this (e.g. Pappenberger et al., 2006), but the non-stationarity

of the stage-discharge relationship at Paso La Ceiba (Wester-

berg et al., 2011) constrained the number of feasible methods

for that site. Our construction of the uncertain FDC implies

an interpretation of the discharge uncertainty as an epistemic

error with an expectation of non-stationary bias rather than

a random error, which would lead to averaging of individual

errors. There might be many reasons for such epistemic er-

rors including current meters that have not been re-calibrated

and base levels subject to erosion and deposition (Westerberg

et al., 2011). Correlation in fitting successive EPs is handled

naturally in the limits-of-acceptability approach, since only

models that satisfy all limits are retained in prediction, and

simulations with consistent bias relative to the best-estimate

discharge are given a low weight.

The choice of the evaluation points at which the limits of

acceptability for the FDC are set is an important considera-

tion in the FDC calibration and the selection could be made

in different ways. The important point is that the choice

should be informed by the perceptual understanding of the

uncertainties in the hydro-meteorological data and made with

the aims of the modelling study and the characteristics of the

FDC in mind. For example, if high or low-flow performance

is of special importance then additional points could be cho-

sen for these flow ranges. The shape of the FDC will influ-

ence how the EPs are spaced for a given selection method

(e.g. the Brue catchment had higher base flow and therefore

for RFDC−Q the lowest EP occurred at a higher exceedance

percentage than at Paso La Ceiba). In both catchments in

this study the volume weighting gave the best overall results

as it constrained the model also for the low flows and reces-

sion periods. At the daily time scale it also resulted in better

simulations for peak flows, while at the sub-daily time scale

there was greater uncertainty in peak-flow timing compared

to Reff. The volume-based EP-selection method would be

especially suitable for water-balance studies where the cor-

rect volume of water for different flow ranges is of specific

concern, but exact timing is not as critical. The low sensitiv-

ity to timing errors will have a limited effect as long as run-

off coefficients are represented correctly. At sub-daily time

steps and where peak-flow timing is of greater concern, ad-

ditional criteria could be enforced to constrain this aspect of

the simulations. In doing so, the epistemic uncertainties as-

sociated with estimates of the higher discharges, particularly

resulting from rating-curve extrapolation, should be taken

into account. The FDC-calibration approach allows differ-

ent weightings by including different EPs and one could also

consider giving different weights to different EPs in the cal-

culation of the likelihood measure. In other catchments than

those studied here, other factors may come into play, such

as the effects of the timing of snowmelt in snow-dominated

catchments. Using FDC calibration, the exact timing of the

melt would not be as important as for a Nash-Sutcliffe mea-

sure (see the example in Ambroise et al., 1996), but the dis-

tribution of the melt over time would still be important and

would likely require additional constraints. The posterior
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–
Fig. 15. Scaled scores to limits of acceptability for different parts of the hydrograph at Brue for calibration in 1997–1998 using Dynamic

TOPMODEL. For each performance measure the histograms were normalised by the number of behavioural simulations, so the y-axis

represents the normalised number of time steps. The upper range of the histogram x-axis was limited to improve the visibility of the lower

range, the maximum scaled scores, max(S), for each criterion are given in the legends and all scaled scores larger or equal to the last bin are

plotted in the last bin.

analysis of the simulated time series employed here can be

useful in deciding whether additional criteria are necessary.

In calibration to “hydrological signatures” such as an FDC

calculated from the discharge series, the simulated uncer-

tainty bounds have a direct interpretation relative to the un-

certainty in the observed discharge data. This is an advantage

compared to say a behavioural threshold-value of Reff of 0.7

that is not easily interpretable (Legates and McCabe, 1999;

Seibert, 2001). Winsemius et al. (2009) set limits of accept-

ability in GLUE (for different types of signatures such as re-

cession curves) based on inter-annual variability but took no

explicit account of the uncertainty in the observed discharge

data.

It is interesting to note that the 19 EPs used for the RFDC−V

criterion provided better information for the calibration of the

model than the 3288 days or 17544 hours for the first years

of calibration/prediction used for Reff. Limited information

content in discharge time series was also demonstrated by

Juston et al. (2009) and Seibert and Beven (2009), who found

that calibration using a small fraction of data points chosen

at hydrologically informed times was comparable to when

the whole time series was used. We chose Reff for com-

parison with the FDC-calibration as it is sensitive to timing

errors, well-known and commonly used. Other approaches

such as multi-criteria calibration or the calculation of Reff

on transformed discharge can of course also be used to con-

strain simulations. We also tested log and square-root trans-

formed discharge in the calculation of Reff. This resulted in

good simulations for low flows whereas the simulation for

the highest flows was poorer constrained compared to Reff

and the FDC-calibration. A multi-criteria calibration could

constrain different aspects simultaneously, but the problems

of deciding on a behavioural threshold value and accounting

for discharge-data uncertainty remain in such approaches.

When the FDC-method was first developed it was tested

with inconsistent satellite-derived precipitation in a Hon-

duran basin which resulted in that no simulations were found

that were consistent with the observed FDC. In such cases a

traditional calibration will result in low values for the perfor-

mance measure and not point as strongly to where the incon-

sistencies in the simulated flow regime occur. This is there-

fore an advantage of using constraints based on signatures

(such as a FDC) calculated from the flow data, as suggested

elsewhere for use in regionalisation methods for estimating

the response of ungauged basins (e.g. Yadav et al., 2007).

Hydrol. Earth Syst. Sci., 15, 2205–2227, 2011 www.hydrol-earth-syst-sci.net/15/2205/2011/



I. K. Westerberg et al.: Calibration of hydrological models using flow-duration curves 2223

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0

5

10

15

M
e

a
n

 s
c
a

le
d

 s
c
o

re
 [

−
]

 

 
Mean scaled score R

eff
 > 0.7

Mean scaled score R
eff

 > 0.8

Mean scaled score R
FDC−V

Mean scaled score R
FDC−Q

0

10

20

30

D
is

c
h

a
rg

e
 [

m
3
/s

]

 

 

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

D
is

c
h

a
rg

e
 [

m
3
/s

]

 

 

0

5

10

P
re

c
ip

it
a

ti
o

n
 [

m
m

]

Predicted with R
FDC−V

Observed crisp discharge

Fig. 16. Predicted and observed crisp discharge for 1997–1998 for behavioural parameter-value sets for RFDC−V from calibration using

Dynamic TOPMODEL in 1995–1996 for the Brue catchment (upper plot shows the whole flow range, middle the low flows). The mean

scaled scores for all performance measures are plotted in the bottom plot where the grey area represents a scaled score from −1 to 1, i.e. a

simulated discharge with a score inside this range is inside the discharge uncertainty limits. The RFDC−V criterion gave simulations with

less overprediction in the summer. In July–October 1997 there was a period of consistent overprediction at low flows for all performance

measures where the model could not reproduce the observations.

Disinformative data can lead to biased parameter estimates

in calibration if the model is forced to compensate for such

errors. We expect the FDC-calibration method to be more

robust to disinformation in many cases, especially pure tim-

ing errors such as an isolated single precipitation event reg-

istered on the wrong day or single events with inconsistent

inputs and outputs which might lead to rejection of all mod-

els in a limits-of-acceptability evaluation based on individual

time steps (e.g. Liu et al., 2009). The extent to which it is

robust needs to be assessed in future studies. It would likely

be most sensitive to disinformation that affects the tails of the

simulated and observed distributions, as that would lead to a

greater effect on the shape of the simulated or observed FDC.

In the absence of methods to identify and remove disinfor-

mative data prior to calibration, a posterior analysis like the

one we employed here can be used to readily identify periods

where the simulations from the behavioural parameter-value

sets are failing. These periods can then be analysed to see

whether the lack of fit can be attributed to disinformative data

or to model-structural errors (which in that case could lead to

learning from where the model is failing). In some cases it

might be obvious where there are problems in the observa-

tions, for example where a discharge hydrograph is observed

without significant rainfall. In the Paso La Ceiba catchment a

large peak flow was simulated in 1990 without a peak in ob-

served discharge (Fig. 14), which is not likely for that type of

hydrological regime where there is a direct relationship be-

tween rainfall and runoff, and this event was therefore likely

an epistemic error in the discharge data such as the effect of

an upstream dam or wrongly digitised data. In the case of

the Brue catchment, with 49 rain gauges in 135 km2, signif-

icant departures between observed and predicted discharge

(such as the large scaled scores for the low-flows in July–

October 1997 in Fig. 16) might be inferred to be more a re-

sult of model deficiencies than input errors. These periods of

probable model failure at low flows could be readily seen in

the analysis of the scaled scores for the different parts of the

hydrograph.

Are these two models then acceptable hypothesis about

the hydrological processes in the respective catchments or

should they be rejected? As noted in the introduction this de-

pends on the hydrological processes of interest and the aims

of the modelling application. In the Paso La Ceiba catch-

ment the simulated discharge overlapped with the observed

discharge for around 95 % of the time steps for the RFDC−V

calibration and prediction in both periods. If the overall
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–

–

Fig. 17. Uncertainty limits for observed discharge in 1997–1998 and predicted discharge (5 % and 95 % percentiles of the predicted discharge

of all behavioural parameter-value sets calibrated in 1995–1996 using the RFDC−V performance measure) for the same period for Dynamic

TOPMODEL in the Brue catchment. The overlapping area between the two uncertain intervals is plotted in grey. In the beginning of

November there was a period where the model could not reproduce the observations.

water-balance is of interest then this would be an acceptable

result, especially considering the likely time-variable uncer-

tainty in the rainfall inputs because of the low and time-

varying number of precipitation stations for this complex

precipitation regime (Westerberg et al., 2010). Additional

evaluation criteria might of course still reveal that we are

not getting the right answers for the right reasons (Kirch-

ner, 2006), a possibility that should be kept in mind if mak-

ing predictions of changed future conditions. In the Brue

catchment the overlap between simulated and observed dis-

charge was much lower, between 75–90 % of the time for the

RFDC−V calibration and prediction in both periods. In com-

bination with the analysis of the scaled scores this suggests

that, given the number of rain gauges in this catchment, the

model structure can be rejected as a good hypothesis for the

hydrological processes in this catchment. The information

about likely model-structural errors revealed in this poste-

rior analysis could be investigated to see if some improve-

ments might be implemented, such as in the representation

of the storage-discharge function at low flows (which in Dy-

namic TOPMODEL is not restricted to any particular func-

tional form).

Experiments using the FDC calibration with time-

shifted data in the Honduran catchment resulted in similar

parameter-value distributions and overlap with the observed

discharge as the normal FDC calibration. It might therefore

have potential for bridging temporal mismatch of data avail-

ability in regions such as Central America where there are

few available discharge data in the last decades but more

data for the 70–90’s. The effect of climate variability and

the stationarity of the flow regime in the longer term must

be accounted for in such applications. If the flow regime is

non-stationary or if the time-shifted period does not cover

periods of climate variability (e.g. El Niño/La Niña years) to

a sufficient extent, the extra uncertainty stemming from this

realisation effect should be added to the FDC. The method

might also be useful for studying the effect of modifica-

tions to the hydrological regime such as dams, where “pre-

dam” data could be used for calibration to the natural flow

regime. Another area of possible application is calibration to

regional FDCs such as in the study by Yu and Yang (2000),

but also taking uncertainties in the calibration of the hydro-

logical model and the data into account. A major advantage

of the FDC-calibration approach is the way in which it re-

quires structured consideration of the uncertainties expected

to affect the observed and simulated FDCs, not the least in

the discharge estimates themselves but also other sources of

uncertainties that affect model calibration.
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