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As a widely used inertial device, a MEMS triaxial accelerometer has zero-bias error, nonorthogonal error, and scale-factor error
due to technical defects. Raw readings without calibration might seriously affect the accuracy of inertial navigation system.
)erefore, it is necessary to conduct calibration processing before using a MEMS triaxial accelerometer. )is paper presents a
MEMS triaxial accelerometer calibration method based on the maximum likelihood estimation method. )e error of the MEMS
triaxial accelerometer comes into question, and the optimal estimation function is established. )e calibration parameters are
obtained by the Newton iteration method, which is more efficient and accurate. Compared with the least square method, which
estimates the parameters of the suboptimal estimation function established under the condition of assuming that the mean of the
random noise is zero, the parameters calibrated by the maximum likelihood estimation method are more accurate and stable.
Moreover, the proposed method has low computation, which is more functional. Simulation and experimental results using the
consumer low-cost MEMS triaxial accelerometer are presented to support the abovementioned superiorities of the maximum
likelihood estimation method. )e proposed method has the potential to be applied to other triaxial inertial sensors.

1. Introduction

Nowadays, with the gradual rise of microelectromechanical
system (MEMS), low-precision inertial sensors, especially
low-cost inertial sensors, have been widely used in many
fields, such as motion tracking, attitude-controlling system,
and unmanned aircraft systems. Of them, low-cost MEMS
triaxial accelerometers are widely used in pedestrian navi-
gation, vehicle navigation, unmanned aerial vehicle (UAV),
carrier rocket, and other fields [1–5]. However, MEMS
triaxial accelerometers have errors due to inaccuracy in
manufacturing techniques, such as zero-bias error, scale-
factor error, and nonorthogonal error.)e existence of these
errors will affect the accuracy of the raw readings of the
MEMS triaxial accelerometer, thus affecting the accuracy of
inertial navigation system. )erefore, for low-cost MEMS
triaxial accelerometer sensors, calibration is a necessary step.

Under laboratory conditions, the turntable is usually
used to calibrate the MEMS triaxial accelerometer [6, 7].

However, MEMS triaxial accelerometer calibration is usually
carried out without external auxiliary equipment in the field.
In order to calibrate the MEMS triaxial accelerometer in the
field test where it is inconvenient to use external auxiliary
equipment such as a turntable, some methods have been
proposed. In references [8–10], the 6-position method is
used to collect the data of the MEMS triaxial accelerometer
under the condition of static position and the error pa-
rameters are calibrated by the least square (LS) method.
However, the scale-factor error and zero-bias error can be
calibrated when the 6-position method is used, but the
nonorthogonal error cannot be calibrated. Hence, a com-
plete error model was constructed in references [11–13].)e
LSmethod is used to estimate the error parameters, but these
methods cannot obtain the optimal estimation because these
methods assumed that the mean of the random noises is
zero.

)erefore, in order to improve the accuracy of cali-
bration, the unbiased objective estimation function is
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constructed by the maximum likelihood (ML) estimation
method in references [14–16]. In references [14, 15], the
particle swarm optimization (PSO) algorithm is proposed to
compute the objective function established by the ML es-
timation method, which is used to solve for the parameters.
)e initial value of iteration is not required, but the algo-
rithm needs a longer time to obtain the calibrated results, so
it is not suitable for practical application. In reference [16],
the gradient descent method is proposed to estimate the
error parameters, this process can be taken as the ML es-
timation problem. In each iteration, the error parameters are
optimized by the gradient descent method. However, this
method is relative to the initial rough values of the error
parameters. If the initial rough values are not suitable, the
estimation cannot get the global optimal solution. )e step
size and iteration times should also be taken into account
when optimizing the objective function with the gradient
descent method. If the sampling data are large, it is going to
take a long time to compute in the gradient descent method.

Due to the aforementioned drawbacks of the traditional
methods, this paper proposes a new calibration method.
Firstly, the total error model function is determined, and then
the ML estimation method was used for the optimal esti-
mation. In this paper, different from the abovementioned
methods, the Newton iterationmethod is used to optimize the
objective function established by the ML estimation method.
)e Newton iteration method has the advantages of fast
convergence speed and global optimal solution. In practical
application, the calibration of the MEMS triaxial acceler-
ometer can be realized without external auxiliary equipment.

2. Error Analysis and Model Establishment of
MEMS Triaxial Accelerometer

)e raw readings of the MEMS triaxial accelerometer are
affected by errors during manufacturing and installation; the
errors are constructed by zero-bias error, scale-factor error
and nonorthogonal error, and so on. )e zero-bias error is
the error caused by the MEMS triaxial accelerometer sensor
outputs not being zero when the ideal outputs are zero,
which is denoted by ba in this paper. )e scale-factor error is
mainly caused by the different sensitivities of each sensor’s
sensitive axis, which is represented by a diagonal matrix Cs
in (1), where si (i� x, y, z) represents the scale-factor de-
viation of each axis [17]:

Cs �
1 + sx

1 + sy
1 + sz

 . (1)

)enonorthogonal error refers to the three sensitive axes
that are not orthogonal to each other during the installation
process of the MEMS triaxial accelerometer. A schematic
diagram of the nonorthogonal error is given in Figure 1,
where the (Sx-Sy-Sz) frame is the orthogonal frame and the
(X-Y-Z) frame is the nonorthogonal frame. )e non-
orthogonal error can be represented by the upper triangular
matrix Cn in (2), which is calculated from the projection of
the orthogonal frame to the nonorthogonal frame.

Cn �
1 sin a −sin b
0 cos a sin c cos b

0 0 cos c cos b

 . (2)

)e MEMS triaxial accelerometer is not only affected by
its own error factors but also affected by the measurement
noise [18]. In general, the raw readings of the MEMS triaxial
accelerometer can be expressed as (3). In (3), ynk represents
the local gravity acceleration, which is approximately con-
sidered unchanged in a certain area under local navigation
frame (n-frame) [19],Cbn represents the rotation matrix from
the navigation frame (n-frame) to the body frame (b-frame),
and ε represents the Gaussian white noise with the variance
of σ and the mean value of zero.

y
m
k � CSCnC

b
ny
n
k + ba + ε. (3)

Define Ta � CSCn and ybk � Cbny
n
k. )e error model (3)

can be rewritten as (4), which is the MEMS triaxial accel-
erometer reading generation model with error:

y
m
k � Tay

b
k + ba + ε. (4)

Define Ra � T−1a , the error correction model of MEMS
triaxial accelerometer under body frame (b-frame) is ob-
tained as follows:

y
b
k � Ra y

m
k − ba − ε( ). (5)

3. Calibration of Maximum Likelihood
Estimation Method for MEMS
Triaxial Accelerometer

3.1. Maximum Likelihood Estimation Model Construction.
In this section, model (4) is used to construct the ML es-
timation model for parameters that need to be calibrated. In
order to get the likelihood function L(θ), it is necessary to
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Figure 1: Schematic diagram of nonorthogonal error ((Sx-Sy-Sz) is
the orthogonal frame; (X-Y-Z) is the nonorthogonal frame).
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discuss the statistical properties of ymk . )e random noise ε in
model (4) is Gaussian white noise, which obeys the normal
distribution.)en, the probability density function of ymk can
be obtained as follows:

f y
m
k( ) � 1

σ
���
2π

√ exp −
y
m
k − Tay

b
k − ba






 




2
2σ2

 . (6)

According to the theory of maximum likelihood esti-
mation method, the likelihood function of a continuous-
type random variable is

L(θ) �∏N
k�1
f y

m
k( ), (7)

wheref(ymk ) is the probability density function of sample ymk
and θ is the parameter to be estimated, θ � Ta, ba, y

c
k{ }. )e

idea of an ML estimate is to find the right θ such that the
likelihood function is maximized:

max
θ
L(θ) �∏N

k�1
f y

m
k( )

� 1

σ
���
2π

√( )N exp ∑N
k�1
−
y
m
k − Tay

b
k − ba






 




2
2σ2

 .
(8)

Finding the maximum value of likelihood function is
equivalent to finding the minimum value of∑Nk�1((‖ymk − Tay

b
k − ba‖2)/2σ2); in order to facilitate the

discussion, the constant term 2σ2 was ignored and then the
ML problem is expressed as (9). Equation (10) can be ob-
tained by expanding the constraint conditions in (9) using
model (5). Normalizing the MEMS triaxial accelerometer
calibrated data, the modular square of the data should be
one. Now, due to the noise, the modular square of the
calibrated MEMS triaxial accelerometer data is influenced.

min
θ
∑N
k�1

ek




 



2 � min

θ
∑N
k�1

y
m
k − Tay

b
k − ba






 




2,
s.t. ybk






 




2 � 1, k � 1, . . . ,

(9)

1 � y
b
k






 




2 � Ra y
m
k − ba − ε( )



 



2,

� Ra y
m
k − ba( )



 



2 − 2 y

m
k − ba( )TRTaRaε + εTRTaRaε,

�Δ Ra y
m
k − ba( )



 



2 + c,

(10)

μc�
Δ
E(c) � E tr R

T
RεεT( )[ ] � tr E R

T
RεεT[ ]{ },

� tr E R
T
R[ ]E εεT[ ]{ } � tr R

T
R( )σ2 > 0. (11)

According to (11), μc is not equal to zero; it means that c
is a biased noise. If the noise c is taken as the unbiased
noise, like the traditional LS method, the estimated results
are not optimal. In order to establish a total error esti-
mation model to perform the optimal estimate, a Lagrange
constraint term needs to be introduced to eliminate the
influence of the biased noises c. )eminimization objective
function is shown as (12), where λk denotes the Lagrange
multiplier used to constrain the two paradigms of the
calibration value yck. )e estimated value at this time is θ ,

θ � [vecT (Ta) bTa ybT1 · · · ybTN λ1 · · · λN]T, where vec(·) de-
notes the recomposition of a matrix into a column vector in
the order of the columns, and the column vector does not
include the three lower triangular elements of the matrix
[20].

f(θ) � ∑N
k�1

y
m
k − Tay

b
k − ba






 




2 + λk y
b
k






 




2 − 1( ). (12)

3.2. Newtonian Iteration Solution. )e iteration formula for
the Newtonian iteration method is

θ(i+1) � θ(i) − ∇2f θ(i)( )[ ]− 1∇f θ(i)( ), (13)

where θ(i+1) represents the (i+ 1)-th iteration of parameter θ,
θ(i) represents the i-th iteration of parameter θ, ∇f(θ(i)) and
∇2f(θ(i)) represent the Jacobian matrix and Hessian matrix
of the objective function in the i-th iteration process, re-
spectively. )e Jacobian matrix and Hessian matrix are
described as follows:

∇f � ∇fTTa ∇f
T
ba
∇fTyb

k︸��︷︷��︸
k�1: N

∇fTλk︸��︷︷��︸
k�1: N

 
T

,

∇2f �

∇2fTaTa
∇2fTaba

∇2fTay
b
k
· · · · · ·

∇2fTTaba ∇
2fbaba
∇2fbay

b
k
· · · · · ·

∇2fTTaybk ∇
2fTbaybk
∇2fyb

k
yb
k
∇2fyb

k
λk

⋮ ⋮ ⋱ ⋱

0T9×1 0T3×1 ∇
2fTyb

k
λk

0 · · ·

⋮ ⋮ ⋱ ⋮





, k � 1: N.

(14)

In the following formula, define dk � ymk − ba:
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∇fTa
� −2∑N

k�1
y
b
k ⊗ dk − Ty

b
k( ),

∇fba
� −2∑N

k�1
dk − Ty

b
k( ),

∇fyb
k
� −2TTa dk − Ty

b
k( ) + 2λky

b
k,

∇fλk � y
b
k






 




2 − 1,

∇2fTaTa
� 2∑N

k�1
y
b
ky
bT
k( )⊗ I,

∇2fTaba
� 2∑N

k�1
y
b
k ⊗ I,

∇2fTay
b
k
� 2 y

b
k ⊗ I( )T − I⊗ dk − Tay

b
k( )( ),

∇2fbaba
� 2NI,

∇2fbay
b
k
� 2T,

∇2fyb
k
yb
k
� 2TTT + 2λkI,

∇2fyb
k
λk
� 2ybk,

(15)

where I denotes the 3 × 3 unit matrix and ⊗ denotes the
Kronecker product. )e abovementioned formulas are used
in the Newton iteration method process. However, the
Newton iteration method requires a good initial value to
ensure that the iteration converges to a global minimum
rather than a local minimum, so good initial estimate pa-
rameters are necessary for an accurate iteration result.

3.3. Initial Estimate. In this section, the ellipsoid fitting
method of initial estimation is discussed. Since the initial
parameters are required to ensure the accuracy before doing
the ML estimate, it is important to give accurate initial
parameters. Ignoring the noise in (10) and expanding 1 �
‖Ra(ymk − ba)‖

2 give

y
mT
k Ey

m
k +(2F)

T
y
m
k + G � 0, (16)

where E � RTaRa, F � −RTaRaba, and G � bTaRTaRaba − 1. )e
output vectors of the MEMS triaxial accelerometer sensors
lie on an ellipsoidal surface, and the coefficients of the el-
lipsoidal equation are a function of the error parameters, so
an estimation of the parameters of calibration can be
considered as an estimate of the parameters of the ellipsoid.
)e general equation of the ellipsoidal equation is

aX2
k + bY

2 + cZ2 + 2fXY

+ 2gXZ + 2hYZ + 2pX + 2qY + 2rZ + d � 0.
(17)

Bringing the vector ymk � Xk Yk Zk[ ]T into (16) and
then expanding and comparing with (17), we can get the
following:

E �

a f g

f b h

g h c


,

F �

p

q

r


,

G � d.

(18)

Substituting the raw readings into (17), the parameters of
the ellipsoid can be obtained by the LS method, and then the
initial parameters of calibration are obtained by
R(0)a � chol(E) and b(0)a � −E−1F. chol(·) is the Cholesky
decomposition.

4. Simulation and Experimental Analysis

4.1. Simulation Analysis. According to models (3) and (4),
the parameters of the simulation are taken to be as (20). )e
attitude transformation matrix Cbn, which is converted from
the navigation frame (n-frame) to the body frame (b-frame),
is generated by Euler angles. )e pitch angle, swing angle,
and heading angle are taken to be 120, 120, and 80 degrees,
respectively; to simulate the generation of real angle data, the
data information was multiplied by random numbers to
generate 300 sets of angle data, and then 300 sets of the
attitude conversionmatrix are converted.)e random errors
are set as Gaussian white noises with the mean of zero and a
standard deviation of 0.1.

Ta �
1.1500 0.0602 −0.0401

0 1.0985 0.0575

0 0 1.0978

 ,

ba �
0.1

0.15

0.2

 .
(19)

)e ideal model of the vectors measured by the MEMS
triaxial accelerometer after normalization should be a unit
sphere, the center of the sphere is the coordinate origin, and
the radius is 1. )e model fitted from the measured and
calibrated data is represented by the black ellipsoid and the
data are represented by the red points in Figures 2(a) and
2(b). It can be observed that the calibrated ellipsoid is a unit
sphere with its center at the coordinate origin.

In Figure 3, the MEMS triaxial accelerometer data
calibrated by the LS method and the data calibrated by the
ML estimation method are significantly improved compared
with the uncalibratedMEMS triaxial accelerometer data.)e
modular square of the MEMS triaxial accelerometer cali-
brated by the ML estimation method fluctuates less and is
closer to one than that of the LS method. Statistically, in
Figure 3, the means of modular square are 1.172 (uncali-
brated), 0.9945 (calibrated by the LS method), and 1
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(calibrated by the ML method), respectively. )e standard
deviations of modular square are 0.18 (uncalibrated), 0.1052
(calibrated by the LS method), and 0.0403 (calibrated by the
ML method), respectively. Both the LS method and the ML
method have obvious effects on the calibration, but the
results calibrated by the ML estimation method have less
fluctuation in the vicinity of modular square of one than the
results calibrated by the LS method. )e parameters set in
this paper and the parameters calibrated by the LS method
and the ML estimation method are compared in Table 1.
vec(Ta) can be compared to observe the calibration effect of
the LS method and ML estimation method for

nonorthogonal error and scale-factor error, and ba can be
compared to observe the calibration effect of the LS method
and ML estimation method for zero-bias error. Compared
with the simulation parameters, vec(Ta) and ba calibrated
by the LS method are reduced [−0.0827, 0.0066, 0.0298,
0.0096, 0.0165, and 0.1012] and [−0.131, 0.0062, and
−0.0210], respectively. Similarly, compared with the simu-
lation parameters, vec(Ta) and ba calibrated by the ML
estimation method are reduced [0.0077, 0.0073, −0.0007,
−0.0013, −0.0063, and 0.0308] and [−0.0089, 0.0058, and
−0.0079], respectively. By comparing with the parameters, it
can be seen that both the LS method and ML estimation
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Figure 2: (a) )e ellipsoid fitted by measured data (black) and the data points (red). (b) )e ellipsoid fitted by data calibrated by the ML
estimation method (black) and the data points (red).
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method can effectively calibrate the parameters. However,
compared with the LS method, the parameters calibrated by
the ML estimation method are closer to the simulation
parameters, so it is more accurate.

In order to verify the stability of theML estimationmethod
under different random noise disturbances, 50 Monte Carlo
experiments were conducted on the objective function values.
)e experiment results are shown in Figure 4, which shows that
the objective function values reach the convergence state after
the third iteration. To further highlight the advantages of the
ML estimation method over the LS method, the equations in
(20) are defined as a metric and 50 Monte Carlo experiments
are performed. In (20), Tac and bac, respectively, represent the
parameters calibrated and Ta and ba, respectively, represent
parameters set in this paper. In Figures 5 and 6, the variation of
the objective function specified during the Monte Carlo ex-
periment can be observed. )e results of eT and eb, calculated
by the parameters calibrated by the LS method, are both
represented by the black solid lines. Also, the mean values of
the results calibrated by the LS method are both represented by
black dashed lines. Similarly, the results of eT and eb, calculated
by the parameters calibrated by the ML method, are both
represented by the red solid lines and the mean values of the
results calibrated by the ML method are both represented by
red dashed lines. In Figures 5 and 6, the parameters calibrated
by the ML estimation method in the Monte Carlo experiment
are closer to the parameters set in this paper than those
calibrated by the LS method. In Figure 7, we can see that
although the modular square of the data calibrated by the LS
method is close to 1, the modular square of the data calibrated
by theML estimationmethod fluctuates slightly at 1. According
to the analysis of Figures 5–7, it can be seen that the ML
estimation method is more stable and accurate under the
influence of noise than the LS method.

eT �
1

6
vec Ta − Tac( )



 



 × 100%,

eb �
1

3
ba − bac




 



 × 100%.

(20)

4.2. Experimental Analysis. )is section will verify the pro-
posed method through practical experiments. Figures 8(a) and

8(b) show the experimental equipment and sensors of this
paper, including the 3D printed frame, MPU9250 module,
bubble level, and black desktop.)eMPU9250 module is fixed
to the 3D printed frame (the angle between the MPU9250
module and the 3D printed frame is not considered). )e

Table 1: Comparison of the parameters set in this article and the parameters calibrated by LS and ML estimation methods.

Parameter Ta ba

Simulation
parameter values

1.1500 0.0602 −0.0401
0 1.0985 0.0575
0 0 1.0978

  0.1
0.15
0.2

 
Parameter values
after calibration
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Figure 5: 50 Monte Carlo simulation experiments’ eT change plot.
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bubble level is used to observe the status of the black desktop.
)e sampling frequency of the MPU9250 module is 100Hz,
and the data are transmitted to the master computer through a
serial port and then received and stored in the master com-
puter. )e 3D printed frame is placed on the black desktop.
When the x-axis of the 3D frame is up, the 3D printed frame
rotates horizontally by 90 degrees at regular intervals, so the
static data of the accelerometer can be obtained when the x-axis
is up. Similarly, static data can be obtained when the x-axis is
down, when the y-axis is up and down, and when the z-axis is
up and down. )e sensor’s static data at 24 positions are
recorded as data 1. )e 3D printed frame is held in hand for

slow movement, and the data obtained during the movement
are recorded as data 2.

Calibrating data 1 and data 2 by the LS method and ML
estimation method, the modular square results of Figures 9
and 10 are obtained, respectively. )e statistical information
can be obtained from Table 2. In Table 2, the mean of
modular square of the two groups of sensors data calibrated
by the LS method is very close to 1, while the mean of
modular square calibrated by the ML method is 1, which is
closer to the theoretical value 1, so it is more accurate. )e
standard deviation after calibration by the ML estimation
method is significantly reduced compared with that
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Figure 6: 50 Monte Carlo simulation experiments’ eb change plot.
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calibrated by the LS method. In Figures 9 and 10, the pink
curve fluctuates less than the green curve and fluctuates
around 1.

)e two sets of sensors data and calibration data are
projected onto the ellipsoid, which is plotted in Figures 11

and 12. By comparing Figures 11(a), 11(b), 12(a), and 12(b),
after the calibration, the uncalibrated ellipsoid in black has
been calibrated as a unit sphere, and the center of sphere is at
the origin of the frame, which verifies the effectiveness of the
calibration method proposed in this paper.

Table 2: Comparison of the standard deviation of modular square and mean of modular square of the uncalibrated data and the data
calibrated by the LS method and ML method.

#Data 1 #Data 2

Uncalibrated mean of modular square 1.159 1.195
Uncalibrated standard deviation of modular square 0.2496 0.27
LS method mean of modular square 0.9996 0.9972
LS method standard deviation of modular square 0.02861 0.07423
ML method mean of modular square 1 1
ML method standard deviation of modular square 0.02853 0.07142
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Figure 11: (a) )e ellipsoid fitted by data 1 (black) and the data 1 points (red). (b) )e ellipsoid fitted by data 1 calibrated by the ML
estimation method (black) and the points of data 1 calibrated by the ML estimation method (red).
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5. Conclusions

In this paper, a complete error model of MEMS triaxial ac-
celerometers is constructed. )e influence of biased noises of
the traditional objective function model, which is constructed
by modulus calculation, is eliminated. To eliminate this in-
fluence, a calibration method based on the ML estimation
method is proposed in this paper. )e total error unbiased
objective function is constructed, and the optimal estimation
is obtained by the Newton iteration method. To make the
Newton iteration method converge to the optimal value, an
ellipsoid fittingmethod is adopted to get the initial parameters
for the Newton iteration method. In the simulation, the re-
sults of the ellipsoid model and modular square verify the
validity of the ML estimation method. Comparing using the
Monte Carlo experiment, the results calibrated by the ML
estimation method are better and more stable than the LS
method. )e experiment verifies the feasibility of the ML
estimationmethod under different sets of data collected by the
MPU9250 module. )e method proposed in this paper is not
only limited to calibrating the MEMS triaxial accelerometer
but also has potential calibration effects for sensors of the
same triaxial structure, such as magnetometers.
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