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Abstract

Multi-camera systems are more and more used in vision-based robotics. An accurate
extrinsic calibration is usually required. In most of cases, this task is done by matching
features through different views of the same scene. However, if the cameras fields of
view do not overlap, such a matching procedure is not feasible anymore.

This article deals with a simple and flexible extrinsic calibration method, for non-
overlapping camera rig. The aim is the calibration of non-overlapping cameras embedded
on a vehicle, for visual navigation purpose in urban environment. The cameras do not see
the same area at the same time. The calibration procedure consists in manoeuvring the
vehicle while each camera observes a static scene. The main contributions are a study
of the singular motions and a specific bundle adjustment which both reconstructs the
scene and calibrates the cameras. Solutions to handle the singular configurations, such
as planar motions, are exposed. The proposed approach has been validated with synthetic
and real data.

1 Introduction

Recently, some navigation methods have been proposed for mobile robots using a single
camera and natural landmarks. However, a single camera does not offer sufficient robust-
ness against outdoor illumination problems, e.g., overexposure. To alleviate this problem,
a solution consists in mounting several cameras on the vehicle, for example, one looking at
the front and an other at the back. If the sun is in front of one camera, an other gives some
useful information. Then, the localization process requires to calibrate the multi-camera sys-
tem. But few approaches have been proposed in order to calibrate a set of cameras with
non-overlapping fields of view. It is possible to use an additional camera moving around the
static cameras. Calibration is then obtained with a 3D reconstruction up to a scale factor.

Alternatively, a planar mirror can be used to create an overlap between views. The ex-
trinsic calibration of a multi-camera system is done using a known [15] or unknown [17]
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geometry calibration pattern. By contrast, non-overlapping static cameras can be calibrated
by tracking a mobile object, the missing trajectory information is estimated in the unob-
served areas [2, 22]. In the same way, Lamprecht et al. [16] calibrate a moving multi-camera
system. A static calibration object is tracked and a prior knowledge about the system speed
is required. An other approach proposed by Esquivel et al. [7] consists in using the rigidity
constraint between the coupled cameras. First, each camera trajectory is computed. Second,
the relative poses are deduced since they do not change over the time. A additional work on
rotation averaging is done by Dai et al. [4].

Once this rigidity constraint is estimated, minimal pose problems [18] are solved to locate
the multi-camera system [3, 9, 12, 13, 23], with an Extended Kalman Filter [11, 21] or with
a structure from motion algorithm [23, 24, 25]. Some of these articles claim to use a manual
extrinsic calibration. However, approximate angles or distance measurements (using a ruler)
might be too inaccurate. In this article, we propose a flexible strategy to achieve an accurate
extrinsic calibration of a mobile set of rigidly linked cameras.

This article can be seen either as an improvement of the algorithm proposed by Esquivel
et al. [7], or as an extension of the classical bundle adjustment proposed by Triggs et al. [26]
for rigidly linked cameras (with possible totally non-overlapping fields of view) for a cali-
bration purpose. After a system overview (Section 2), we introduce a linear initialization of
the extrinsic parameters for general or singular motions (Section 3). Section 4 is dedicated
to a non-linear refinement, which optimizes the extrinsic parameters, the scene and the tra-
jectory of the multi-cameras rig. Finally (Section 5), the results validate our approach with
both synthetic and real data.

2 System overview

We consider at least Ncam ≥ 2 rigidly linked cameras, with known intrinsic parameters and
non-overlapping fields of view. The cameras Ci are assumed to be synchronized. K motions
are performed. Thus, K + 1 is the number of poses of the multi-camera rig over the time.
Ck

i represents the ith camera at time k. Each pose of the camera Ck
i is expressed relative to its

first pose at time k = 0. Let T k
i be the homogeneous transformation of Ci coordinate systems

from time 0 to time k, for k ∈ J0..KK and i ∈ J1..NcamK (see Figure 1). In the same way,
∆Ti is the unknown homogeneous transformation from C1 to Ci coordinate system. Each
homogeneous transformation T is represented with a rotation R and a translation t such that:

T =

(
R t

01×3 1

)

(1)

While the camera rig is moving, each camera Ci observes a static scene Si of 3D points.
sk

i are the projected points of the scene Si, in the image plane of Ck
i .

The calibration (see Figure 2) consists first in computing each camera trajectory T k
i (see

below). Second, the extrinsic parameters ∆Ti are linearly initialized (Section 3), and finally
refined as well as the scenes thanks to a specific bundle adjustment (Section 4).

Trajectory estimation: First, the trajectory of each camera is independently computed.
To do so, if the scene geometry is totally unknown, a structure and motion algorithm (as
described in [10]) is used. In contrast, if the scene geometry is approximately known, each
camera pose is first initialized by the method described by Dementhon [5]. Then, for each
camera Ci, both the camera’s trajectory T k

i and the scene Si are refined by a standard bundle
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Figure 1: Non-overlapping cameras rig moving along a static scene.

Trajectory estimation
for each camera Linear initialization

Non-linear refinement:
specific 

bundle adjustement

Figure 2: Extrinsic calibration scheme of linked cameras. The successive estimations are
designated by the prime symbol.

adjustment algorithm [26]. In the following, we suppose that for each scene Si, a distance
measure is available between two points. Thus, the whole system has the same scale factor
and the relative scale δi between the scene S1 and the scene Si is set to one. Notice that if these
measures are not available, δi could be added to the unknown parameters to be recovered.

3 Linear initialization

3.1 General motions

An estimate of the relative pose ∆Ti can be obtained linearly from the trajectory T k
i of each

camera. The rigidity assumption and simple changes of basis lead to:

∀i ∈ J1..NcamK,∀k ∈ J1..KK, T k
1 ∆Ti = ∆TiT

k
i (2)

These are equations of the form AX = XB, where X is the unknown matrix. The same equa-
tions are expressed for the hand-eye calibration problem [6], whose solutions represent the
rotations by unit quaternions [7] or by a 3×3 orthogonal matrix [1]. Using the definition (1)
and the property (3), the equation (2) splits into two parts:

vec(ABC) = (A⊗C⊤)vec(B) (3)

Using (1), (2) ⇔∀i ∈ J1..NcamK,∀k ∈ J1..KK,

{

Rk
1∆Ri = ∆RiR

k
i (4a)

Rk
1∆ti + tk

1 = ∆Rit
k
i +∆ti (4b)

⇔∀i ∈ J1..NcamK,∀k ∈ J1..KK,

{

(I9 −Rk
1 ⊗Rk

i )vec(∆Ri) = 09×1 (5a)

(I3 −Rk
1)∆ti = tk

1 −∆Rit
k
i (5b)
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Where ⊗ denotes the matrix Kronecker product, vec vectorizes a matrix into a column vector
by stacking the transposed rows of the matrix and In is the identity matrix of size n.

As suggested in [1], we opt for a matrix representation (which allows to express the
required additional equations in section 3.2) and a two-step solution: solve first the rota-
tions ∆Ri, then the translations ∆ti. With a general motion assumption, the equation (2)
admits a unique solution. First, for each camera Ci, the rotation ∆Ri is estimated thanks to
equation (6):

(5a) ⇒∀i ∈ J2..NcamK,











I9 −R1
1 ⊗R1

i
...

I9 −Rk
1 ⊗Rk

i
...

I9 −RK
1 ⊗RK

i











︸ ︷︷ ︸

=Li

vec(∆Ri) = 09K×1 (6)

For general motions, Li has rank 8. Let vi be a vector of the null space of Li and let Vi be the
3×3 matrix such that vi = vec(Vi), then:

∆Ri = Vi sign(det(Vi))|det(Vi)|
− 1

3 (7)

Second, the translation is estimated thanks to the full-rank equation (8), obtained from (5b)
for each motion k:

(5b) ⇒∀i ∈ J2..NcamK,











I3 −R1
1

...
I3 −Rk

1
...

I3 −RK
1











∆ti =











t1
1 −∆Rit

1
i

...
tk
1 −∆Rit

k
i

...
tK
1 −∆Rit

K
i











(8)

3.2 Singular motions

3.2.1 Overview

This section outlines the critical motions where the equations (6) and (8) become singular
and cannot be used anymore. First of all, the pure translations are singular motions, and have
already been studied by Esquivel [7]. However, some other singular cases should be outlined.
As this linear extrinsic calibration problem can be formulated with the same equations as the
hand eye calibration problem, we can deduce singular cases from the previous studies [1, 8].
The degenerate cases are also analysed by Kim and Chung [11], for a similar topic: motion
and structure from stereo images without stereo correspondence. As a result, the singular
cases raise when the axes nk

1 of the rotations Rk
1 are parallel for every k ∈ J1..KK. In other

words, the singular motions are the orbit of the first pose (for k = 0) under the action of the
group G, where G is composed of the screw motions with collinear axis.

The singular motions are rotations and screw motions about an axis (when the axes nk
1 are

the same), or pure translations, planar motions and screw motions with parallel axes (when
the axes nk

1 are different). For these singular motions, the calibration is partial: only some
parameters can be recovered. Table 1 counts the number of observable degrees of freedom
of the extrinsic parameters.
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Planar motions can be seen as several screw motions about parallel axes nk
1 with zero

translations along these axes. As illustrated by Table 1 and Figure 3, one dimension of the
extrinsic translation ∆ti is not observable along the plane normal n. All we can say is that
∆ti is of the form:

∆ti = ti⊥ +αin (9)

where αi is any scalar value and ti⊥ is the projection of ∆ti in the plane of the motion.

Motions Axes of rotation ∆Ri ∆ti

1) Rotations and screw motions about an axis a same (a = nk
1) 2 2

2) Pure translations along an axis a no rotation 2 0
3) Planar and screw motions about several axes unequal and parallel 3 2

4) 3D (general case) unequal 3 3

Table 1: Observability of extrinsic parameters with respect to K motions of the non-
overlapping cameras. Notice that for the motion 1), if the axis a go through all camera
optical centers, ∆ti isn’t observable. For the motions 1) and 2), if a screw motion about a is
composed with the extrinsic parameters and applied to Si, the observations are not changed.

?

Mobile robotStatic scene Static scene

?

Figure 3: Singular planar motion: the camera’s relative height αi (with respect to the plane of
motion) is not observable. The observations do not differ between the real and the estimated
systems (respectively in black and in red).

3.2.2 Solutions to handle the singular motions

This section focuses on planar motions — the most usual singular case for a mobile robot.
An initial estimate of the extrinsic rotations is provided, then we show a practical way to
initialize the camera relative heights. Lastly, the specific bundle adjustment is applied (§4).

Rotation estimation: This case can neither be solved by the method of Esquivel et al.
for general motion [7, §4.1] nor by our linear formulation (§3.1), where the first step of the
estimation of the rotation (6) fails because of a rank deficiency of the linear equations system.
Indeed, as Rk

1 and Rk
i have the same eigenvalues, the maximum rank value of matrix Li is 6.

Thus, for a planar motion, new constraints must be added to previous initialization (6)
in order to calculate the rotations ∆Ri. Without loss of generality, a non-zero rotation and
non-zero translation motion of the camera C1 is defined as the first motion T 1

1 . Then, noting
t
′k
i = (I3−Rk

i )t
1
i −(I3−R1

i )t
k
i and assuming t

′k
i 6= 03×1, we get the following full rank system:

∀i ∈ J2..NcamK,∀k ∈ J2..KK,





I3 ⊗ t
′k
i

I3 ⊗ (nk
i )

⊤

I3 ⊗ (t
′k
i ×nk

i )
⊤



vec(∆Ri) =





t
′k
1

nk
1

t
′k
1 ×nk

1



 (10)
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Proof: First, as R1
1 and Rk

1 commute because their axes of rotation are parallel, we get:

∀k ∈ J1..KK, (I3 −Rk
1)(I3 −R1

1)− (I3 −R1
1)(I3 −Rk

1) = 03×3 (11)

Second, using the equation (11), and starting from equation (5b) for k = 1 and k 6= 1, the
expression (I3 −Rk

1)(5b)k=1 − (I3 −R1
1)(5b)k 6=1 simplifies to (12):

(5b)&(11) ⇒ (I3 −Rk
1)(t

1
1 −∆Rit

1
i )− (I3 −R1

1)(t
k
1 −∆Rit

k
i ) = 09×1 (12)

(12) ⇔ (I3 −Rk
1)∆Rit

1
i − (I3 −R1

1)∆Rit
k
i = (I3 −Rk

1)t
1
1 − (I3 −R1

1)t
k
1 (13)

(13)&(4a) ⇔ ∆Ri(I3 −Rk
i )t

1
i −∆Ri(I3 −R1

i )t
k
i = (I3 −Rk

1)t
1
1 − (I3 −R1

1)t
k
1 (14)

⇔ ∆Rit
′k
i = t

′k
1 (15)

Moreover, the axes nk
i of the rotations Rk

i verify:

∀i ∈ J1..NcamK,∀k ∈ J1..KK, ∆Rin
k
i = nk

1 (16)

Furthermore, the planar motion involves that t
′k
i and nk

i are linearly independent. Hence, the
cross product t

′k
i ×nk

i is linearly independent from them. As a result, using the property (3),
we obtain the full rank system (10).

In practice, the systems (6) and (10) are concatenated to estimate ∆Ri. However, as
planarity conditions are not perfect with noisy data, the equation (11) is almost verified.
Hence, it is advisable to orthogonalize the estimated rotation matrix thanks to a SVD.

Translation estimation: For a planar motion, the translation remains partially calculable.
Thus, after the initialization, the undefined relative heights αi of the cameras are set to prior
rough value if present, or else 0 m (instead of using an wrong value). In practice, at least one
non-coplanar pose can avoid the singularity. For example, if the camera rig is placed on a
mobile robot, a bump could be located on the robot trajectory.

An other solution consists in moving the multi-camera system such that at least one point
of the scene S can be seen by each camera at different times. During the acquisition process,
the camera rig is moved such that the observed scenes are permuted. Hence, with known
matchings between the views, the relative heights αi are calculable. As a result, for a planar
motion, both the rotations ∆Ri and translations ∆ti are fully calculable.

We will show how to complete the previous initialization (§3.1) with new constraints
(provided by the scene permutation). They are valid either if the motions are planar or
not. T k

i→σ(i) is the homogeneous transformation between the camera Ci at time 0 to the
camera Cσ(i) at time k, with the permutation σ . For Ncam > 2, a system of coupled equations
is obtained. The equations obtained for Ncam = 2, σ(1) = 2 and σ(2) = 1 follow:

T k
1→2(∆T2)

−1 = ∆T2T k
2→1 (17)

⇔

{

Rk
1→2(∆R2)

⊤ = ∆R2Rk
2→1 (18a)

−∆R2Rk
2→1 + tk

1→2 = ∆R2tk
2→1 +∆t2 (18b)

⇔

{

(I9 − (Rk
1→2 ⊗Rk

2→1)Φ9)vec(∆R2) = 09×1 (19a)

(I3 +∆R2Rk
2→1)∆t2 = tk

1→2 −∆R2tk
2→1 (19b)

where Φ9 is the permutation matrix such that vec(M⊤) = Φ9vec(M).
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The equations (19a) can be added to equations (6), but it does not rise enough the rank
of the system in case of planar motion contrary to equation (10). Finally, the equations (8)
and (19b) are concatenated to linearly and fully estimate the translation ∆t2.

4 Specific bundle adjustment

During the previous linear formulation, the trajectories of the cameras were supposed to be
known, and were not optimized. In the opposite, this section is dedicated to an algorithm
which optimizes the trajectory of the camera rig, the extrinsic parameters ∆Ti and the scene
geometry. Notice that the similarity with the hand-eye calibration is not valid in this section.

Even if the Ncam previous bundle adjustments are the maximum-likelihood estimators for
each camera, it is not the case for a multi-camera rig. Indeed, when the bundle adjustments
are considered independently, the whole system is over-parametrized. For example, Triggs
et al. [26] propose a bundle adjustment for one or several cameras. However, the optimized
parameters are the whole cameras poses relative to a global coordinate system1. In our case,
the cameras are rigidly linked. As proposed by King [14] for a stereo camera, a minimal
parametrisation is advisable; only the master camera C1 poses are expressed relative to a
global coordinate system (6(K + 1) parameters for tk

1 and Rk
1). The other cameras are ex-

pressed relative to the master camera (6(Ncam − 1) parameters for ∆ti and ∆Ri, represented
by local Euler angles).

Notice that if the world coordinate system were defined as the first pose of the master
camera, the most minimal parametrization would be reached. But in practice, some local
minima can occur due to this assumption (the reader can refer to [26] for more details about
gauge freedom). Thus none camera pose is defined as the world coordinate system.

The algorithm is initialized with the linear estimate of the extrinsic parameters and the
union of all scene points, expressed in the same coordinate system. Let M be the number
of all the 3D points. Finally, 6(K + 1)+ 6(Ncam − 1)+ 3M parameters are optimized by a
Levenberg Marquardt algorithm during the minimization of the reprojection errors.

Under the assumption of Gaussian pixel noise, the proposed algorithm is a maximum-
likelihood estimator. Notice that the scene’s occlusions are handled. Moreover, each 3D
point can be seen by any camera. Thus the permutations of the scenes (see §3.2.2) are also
handled.

5 Validation

5.1 Results with synthetic data

The experimental protocol is the following, with Ncam = 2 cameras. First of all, 10 poses are
synthesized for a 3D motion without U-turn. The scene points Si are created in front of each
camera Ci.This ground truth is used to calculate the image points sk

i . Then, sk
i are subject

to an Additive White Gaussian Noise (AWGN) with a standard deviation σ . The distance
measures — used to fix the scale factor — are also subject to an AWGN with a standard
deviation of 0.5 mm. Finally, our calibration algorithm is applied on the noisy data.

During this experiment, the transformation ∆T2 corresponds to the translation (0.1m 0.1m
-2m) and the rotation from yaw, pitch and roll angles (−179◦, −4◦, 171◦).

1The intrinsic parameters can also be optimized for auto-calibration purpose.
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For every σ value, 10 measures have been performed. The calibration accuracy is given
by both the norm ‖dT‖ of the translation error vector (and also ‖dT‖/‖∆T2‖ express as per-
centage of the magnitude of the camera baseline) and the angular error dR whose expression
is given by:

dR = d(R̂,R∗) = arccos
(

trace(R̂⊤R∗)−1
2

)

(20)

where R∗ is the ground truth rotation and R̂ is the estimated rotation. Figure 4 shows the
performances of the algorithm, using a 11 points unknown 3D scene (about 1.5 m by 0.5 m)
for S1 and S2 at distance around 1 m from each camera Ci. In case of 3D motion, the algo-
rithm proposed in [7] gives the same results as our linear initialization. Both methods are
outperformed by the specific bundle adjustment (the translation and the rotation estimation
are about respectively four and three times more accurate).

Figure 4: Results with synthetic data: extrinsic calibration error with respect to noise level.
With real data, the noise standard deviation is below 0.1 pixel.

5.2 Results with real data

First, the accuracy of the proposed calibration method is demonstrated with an overlap-
ping stereo camera system. Second, the feasibility of the approach is illustrated with non-
overlapping cameras embedded on a vehicle. For scene features, we use circular landmarks
similar to [19] and developed in [17, §VII], with a black bullseye and a circular code (see
Figure 5). These landmarks guarantee a subpixel detection. An automatic feature detec-
tor allows to accurately estimate the landmarks’ center and their label. Consequently the
matchings between the views are automatically performed. The resolution of the images is
1600x1200. We use an 5.6 mm focal length for the cameras, with a pixel width of 4.4 µm.

5.2.1 Stereo camera

Here we calibrate an overlapping stereo camera with non-overlapping assumptions: each
camera observes only one scene at the same time (illustrated on Figure 5a by the blue arrows
or the green crossed arrows in case of permutation). S1 and S2 are supported by, respec-
tively, the left and the right board (see Figure 5b). Our algorithm’s results are compared to a
classical stereo calibration algorithm, with overlapping fields of view and a 3D motion (see
Table 2). For each case, 15 images are acquired. The camera baseline is about 22 cm. All
the standard deviations of the reprojection errors are about 0.03 pix.
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Cameras

(a) (b) (c)
Figure 5: Calibration of stereo camera with non-overlapping assumption, for overlapping
cameras (a) and (b) and embedded non-overlapping cameras (c).

Fields of view Overlapping Non-overlapping
Motions Planar 3D Planar

Scenes permutation n/a no no yes
Translation error ‖dT‖ (mm) 0.14 0.41 60.39 0.08

Angular error dR(°) 0.008 0.011 0.038 0.011

Table 2: Comparison of extrinsic calibration accuracy with respect to overlapping assump-
tions, motions and scene permutation. The reference is a standard stereo calibration, with
overlapping fields of view and a 3D motion.

Results of Table 2 shows that our calibration with non-overlapping assumption is nearly
as accurate as a classical algorithm with overlapping fields of view (see column 3D). In case
of quasi-planar motion, if the scenes are not permuted (see 4th column), then the singularity
involves expected inaccurate results due to the unobservable translation. Therefore, the scene
permutation (see last column) enables to have the same accuracy than a classical algorithm
(below 0.5 mm for the translation — i.e. ‖dT‖/‖∆T2‖ < 0.2% — and about 0.01° for the
rotation).

5.2.2 Embedded multi-camera rig

Two cameras are now embedded on a mobile robot : one at the front, another at the back
(the camera baseline is about 22 cm, see Figure 5c). According to Pless [20], this is the best
design for two standard cameras for ego-motion purpose. The main advantages are the vehi-
cle symmetry, and the robustness against outdoor illumination problems for the localization
process.

The robot manoeuvres on a planar floor, between two scenes. A U-turn is applied during
the acquisition to permute the observed scenes. Furthermore, the scene’s occlusions are
handled, therefore wide-based views are added to get an accurate scene reconstruction. The
algorithm returns the extrinsic parameters. The standard deviation of the reprojection errors
is about 0.09 pix. Notice that if the equation (19b) were not added to initialize the extrinsic
translation, an error of about 1.6 m would occur along the normal of the motion’s plane.

To validate the calibration, we consider one couple of images which was not used in the
calibration process. Using the previous estimation of both the 3D points and the extrinsic
parameters, the pose of the multi-camera system is computed. The standard deviation of the
reprojection errors is about 0.05 pix (the same order of magnitude, with a zero mean value).



10 LÉBRALY et al.: CALIBRATION OF NON-OVERLAPPING CAMERAS

6 Conclusion

A flexible method for extrinsic calibration of mobile multi-camera system has been proposed
and validated with both synthetic and real data. First, extrinsic parameters have been linearly
initialized using the trajectory of each camera. Second, the specific bundle adjustment, which
is a maximum-likelihood estimator, refined the scene, the trajectory of the multi-cameras rig
and the extrinsic parameters. The singular motions have been outlined. Even if the motions
are planar, the scene permutation solution allows to get a full calibration. Moreover, the
results show that our calibration, with non-overlapping assumption, is as accurate as classical
algorithm with overlapping fields of view.

In our future work, the circular landmarks will be replaced by interest points to compare
the algorithms accuracy. To achieve an efficient implementation, we will analytically express
the sparse Jacobian of the projection function with respect to the optimized parameters.
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