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Calibration of self-decomposable Lévy models
Mathias Trabs∗

Institute for Mathematics, Humboldt-Universität zu Berlin, Germany, trabs@math.hu-berlin.de.

We study the nonparametric calibration of exponential, self-decomposable Lévy models whose
jump density can be characterized by the k-function, which is typically nonsmooth at zero. On
the one hand the estimation of the drift, the activity measure α := k(0+) + k(0−) and analog
parameters for the derivatives are considered and on the other hand we estimate the k-function
outside of a neighborhood of zero. Minimax convergence rates are derived, which depend on
α. Therefore, we construct estimators adapting to this unknown parameter. Our estimation
method is based on spectral representations of the observed option prices and on regularization
by cutting off high frequencies. Finally, the procedure is applied to simulations and real data.

Keywords: adaptation, European option, infinite activity jump process, minimax rates,
non linear inverse problem, self-decomposability.
AMS Classification (2010): 60G51, 62G20, 91B25.
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1. Introduction

Since Merton [20] introduced his discontinuous asset price model, stock returns were
frequently described by exponentials of Lévy processes. A review of recent pricing and
hedging results for these models is given by Tankov [25]. The calibration of the underly-
ing model, that is in the case of Lévy models the estimation of the characteristic triplet
(σ, γ, ν), from historical asset prices is mostly studied in parametric models only. Re-
markable exceptions are the nonparametric penalized least squares method of Cont and
Tankov [10] and the spectral calibration procedure of Belomestny and Reiß [3]. Both
articles concentrate on models of finite jump activity. Our goal is to extend their re-
sults to infinite intensity models. More precisely, we study pure-jump self-decomposable
Lévy processes. For instance, this class was considered in the hyperbolic model (Eberlein,
Keller and Prause [11]) or the variance gamma model (Madan and Seneta [19]). More-
over, self-decomposable distributions are discussed in the financial investigation using
Sato processes (Carr et al. [8], Eberlein and Madan [12]). Our results can be applied in
this context, too. The nonparametric calibration of Lévy models is not only relevant for
stock prices, for instance, it can be used for the Libor market as well (see Belomestny
and Schoenmakers [4]). In the context of Ornstein-Uhlenbeck processes, the nonparamet-
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ric inference of self-decomposable Lévy processes was considered by Jongbloed, van der
Meulen and van der Vaart [15].

The jump density of self-decomposable processes can be characterized by

ν(x) =
k(x)

|x|
, x ∈ R \ {0}, (1.1)

with a non-negative so-called k-function k : R \ {0} → R+ which increases on (−∞, 0)
and decreases on (0,∞). While the Blumenthal-Getoor index, which was estimated by
Belomestny [1], is zeroin our model, the infinite activity can be described on a finer scale
by the parameter

α := k(0+) + k(0−).

Since k is typically nonsmooth at zero, we face two estimation problems: Firstly, to give
a proper description of k at zero, we propose estimators for α and its analogs for the
derivatives k(j)(0+) + k(j)(0−), with j ≥ 1, as well as for the drift γ, which can be
estimated similarly. We prove convergence rates for their mean squared error which turn
out to be optimal in minimax sense up to a logarithmic factor that depends on the precise
setup. Secondly, we estimate the shape of the k-function outside of a neighborhood of
zero. To this end, we construct an explicit estimator of k whose mean integrated squared
error on the set R \ [−τ, τ ], for any τ > 0, converges with nearly optimal rates.

Owing to bid-ask spreads and other market frictions, we observe only noisy option
prices. The definition of the estimators is based on the relation between these prices and
the characteristic function of the driving process established by Carr and Madan [6] and
on different spectral representations of the characteristic exponent. Smoothing is done by
cutting off all frequencies higher than a critical value depending on a maximal permitted
parameter α. The whole estimation procedure is computationally efficient and achieves
good results in simulations and in real data examples.

All estimators converge with a polynomial rate, where the maximal α determines the
ill-posedness of the problem. Assuming sub-Gaussian error distributions, we provide an
estimator with α-adaptive rates. The main tool for this result is a concentration inequality
for our estimator α̂ which might be of independent interest.

This work is organized as follows: In Section 2 we describe the setting of our estimation
procedure and give some details about self-decomposable processes. Subsequently, we
derive the necessary representations of the characteristic exponent in Section 3. The
estimation procedure is described in Section 4, where we also determine the convergence
rates of our estimators. The construction of the α-adaptive estimator of α is contained in
Section 5. In view of simulations we discuss our theoretical results and the implementation
of the procedure in Section 6. Applying the proposed calibration to real data, we compare
our method with the spectral calibration of Belomestny and Reiß [3]. All proofs are given
in Section 7.
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2. The model

2.1. Self-decomposable Lévy processes

A real valued random variable X has a self-decomposable law if for any b > 0 there is an

independent random variable Zb such that X
d
= bX + Zb. Since each self-decomposable

distribution µ is infinitely divisible (Sato [22, Prop. 15.5]), we can define the correspond-
ing self-decomposable Lévy process as the Lévy process whose law at unit time equals
µ.

Self-decomposable laws can be understood as the class of limit distributions of converg-
ing scaled sums of independent random variables [22, Thm. 15.3]. This characterization
is of economical interest. If we understand the price of an asset as an aggregate of small
independent influences and release from the

√
n scaling, which leads to diffusion models,

we automatically end up in a self-decomposable price process. Owing to the infinite ac-
tivity, the features of market prices can be reproduced even without a diffusion part (cf.
Carr et al. [7]). Examples of pure-jump and self-decomposable models for option pricing
are the variance gamma model, studied by Madan and Seneta [19] and Madan, Carr and
Chang [18], and the hyperbolic model introduced by Eberlein, Keller and Prause [11].

Sato [22, Cor. 15.11] shows that the jump measure of a self-decomposable distribution
is always absolutely continuous with respect to the Lebesgue measure and its density can
be characterized through equation (1.1). Note that self-decomposability does not affect
the volatility σ nor the drift γ of the Lévy process.

Assuming α to be finite and σ = 0, the process Xt has finite variation and the char-
acteristic function of XT is given by the Lévy-Khintchine representation:

ϕT (u) := E[eiuXT ] = exp
(
T
(
iγu+

∫ ∞
−∞
|eiux − 1|k(x)

|x|
dx
))
. (2.1)

Motivated by a martingale argument, we will suppose the exponential moment condition
E[eXt ] = 1 for all t ≥ 0, which yields

0 = γ +

∫ ∞
−∞

(ex − 1)
k(x)

|x|
dx. (2.2)

In particular, we will impose
∫∞
−∞(ex − 1)k(x)

|x| dx <∞. In this case ϕT is defined on the

strip {z ∈ C| Im z ∈ [−1, 0]}.
Besides Lévy processes there is another class that is closely related to self-decompos-

ability. Dropping the condition of stationary increments while retaining the other prop-
erties of Lévy processes, we obtain so-called additive processes. An additive process (Yt)

which is additionally self-similar, that means for all a > 0 it satisfies (Yat)
d
= (aHYt), for

some exponent H > 0, is called Sato process. Sato [21] showed that self-decomposable dis-
tributions can be characterized as the laws at unit time of self-similar additive processes.
From the self-similarity and self-decomposability follows for T > 0

ϕYT
(u) = E[eiuYT ] = E[eiT

HuY1 ] = exp
(
iTHγu+

∫ ∞
−∞

(eiux − 1)
k(T−Hx)

|x|
dx
)
.
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Since our estimation procedure only depends through equation (2.1) on the distributional
structure of the underlying process, we can apply the estimators directly to Sato processes
using

Ts = 1, γs = THγ, and ks(·) = k(T−H•)

instead of T , γ and k in the case of Lévy processes.
Going back to a Lévy process (Xt), the parameter α captures many of its properties

such as the smoothness of the densities of the marginal distributions [22, Thm. 28.4] and
the tail behavior of the characteristic function of a self-decomposable distribution. Since
the stochastic error in our model is driven by |ϕT (u−i)|−1, we prove the following lemma
in the appendix.

Lemma 2.1. Let (Xt) be a self-decomposable Lévy process with σ = 0 and k-function
k such that the martingale condition (2.2) is valid.

i) If ‖exk(x)‖L1 < ∞ then there exists a constant Cϕ = Cϕ(T, ‖exk(x)‖L1 , α) > 0
such that for all u ∈ R with |u| ≥ 1 we obtain the bound

|ϕT (u− i)| ≥ Cϕ|u|−Tα.

ii) Let ᾱ, R > 0 then the constant Cϕ(T,R, ᾱ) holds uniformly for all functions k with
α ≤ ᾱ and ‖exk(x)‖L1 ≤ R.

2.2. Asset prices and Vanilla options

Let r ≥ 0 be the riskless interest rate in the market and S0 > 0 denote the initial value
of the asset. In an exponential Lévy model the price process is given by

St = S0e
rt+Xt ,

where Xt is a Lévy process described by the characteristic triplet (σ, γ, ν). Throughout
these notes, we assume Xt to be self-decomposable with σ = 0 and α < ∞. On the
probability space (Ω,F ,P) with pricing (or martingale) measure P the discounted process
(e−rtSt) is a martingale with respect to its natural filtration (Ft). This property is
equivalent to E[eXt ] = 1 for all t ≥ 0 and thus, the martingale condition (2.2) holds.

At time t = 0 the risk neutral price of an European call option with underlying S,
time to maturity T and strike price K is given by

C(K,T ) = e−rTE[(ST −K)+],

where A+ := max{0, A}. Similarly, an European put has the price P (K,T ) = e−rTE[(K−
ST )+]. In terms of the negative log-forward moneyness x := log(K/S0) − rT the prices
can be expressed as

C(x, T ) = S0E[(eXT − ex)+] and P(x, T ) = S0E[(ex − eXT )+].
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Carr and Madan [6] introduced the option function

O(x) :=

{
S−1

0 C(x, T ), x ≥ 0,
S−1

0 P(x, T ), x < 0

and set the Fourier transform FO(u) :=
∫∞
−∞ eiuxO(x) dx in relation to the characteristic

function ϕT through the pricing formula

FO(u) =
1− ϕT (u− i)
u(u− i)

, u ∈ R \ {0}. (2.3)

The properties of O were studied further by Belomestny and Reiß [3, Prop. 2.1]: At any
x ∈ R \ {0} the function O is twice differentiable with

∫
R |O

′′(x)|dx ≤ 3 and the first
derivativeO′ has a jump of height -1 at zero. Additionally, they showed that Assumption 1
ensures an exponential decay of the option function, i.e. |O(x)| . e−|x| holds for x ∈ R.

Assumption 1. We assume that C2 := E[e2XT ] is finite, which is equivalent to the
moment condition E[S2

t ] <∞.

Our observations are given by

Oj = O(xj) + δjεj , j = 1, . . . , N, (2.4)

where the noise (εj) consists of independent, centered random variables with E[ε2
j ] = 1

and supj E[ε4
j ] < ∞. The noise levels δj are assumed to be positive and known. In

practice, the uncertainty is due to market frictions such as bid-ask spreads.

3. Representation of the characteristic exponent

Using (2.1) and (2.3), the shifted characteristic exponent is given by

ψ(u) :=
1

T
log(1 + iu(1 + iu)FO(u)) =

1

T
log(ϕT (u− i)) (3.1)

= iγu+ γ +

∫ ∞
−∞

(ei(u−i)x − 1)
k(x)

|x|
dx (3.2)

for u ∈ R. Note that the last line equals zero for u = 0 because of the martingale
condition (2.2). Throughout, we choose a distinguished logarithm, that is a version of
the complex logarithm such that ψ is continuous with ψ(0) = 0. On the assumption∫∞
−∞(1 ∨ ex)k(x) dx <∞1 we can apply Fubini’s theorem to obtain

ψ(u) = iγu+ γ +

∫ 1

0

i(u− i)F(sgn(x)k(x))((u− i)t) dt, (3.3)

1We denote A ∧B := min{A,B} and A ∨B := max{A,B} for A,B ∈ R.
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where the Fourier transform F(sgn ·k) is well-defined on {z ∈ C| Im z ∈ [−1, 0]}.
Typically, the k-function and its derivatives are not continuous at zero. Moreover, for

all non-zero k the function x 7→ sgn(x)k(x) has a jump at zero. Therefore, the Fourier
transform decreases very slowly. Let k be smooth on R \ {0} and fulfill an integrability
condition which will be important later:

Assumption 2. Assume k ∈ Cs(R \ {0}) with all derivatives having a finite right- and
left-hand limit at zero and (1 ∨ ex)k(x), . . . , (1 ∨ ex)k(s) ∈ L1(R).

Our idea is to compensate those discontinuities by adding a linear combination of the
functions

hj(x) := xje−x1[0,∞)(x), x ∈ R, j ∈ N ∪ {0}.
For j ≥ 1 it holds hj ∈ Cj−1(R) and all hj are contained in C∞(R \ {0}). Hence, we can
find αj , j = 0, . . . , s− 2, such that

g(x) := sgn(x)k(x)−
s−2∑
j=0

αjhj(x) ∈ Cs−2(R) ∩ Cs(R \ {0}).

These coefficients are given recursively by the following formula, which can be proved by
straight forward calculations. We omit the details.

Lemma 3.1. Grant Assumption 2. The factors αj , j = 0, . . . s − 2, satisfying g ∈
Cs−2(R) ∩ Cs(R \ {0}), can be calculated via

αj =
1

j!

(
k(j)(0+) + k(j)(0−)

)
−

j∑
m=1

(−1)m

m!
αj−m,

especially α0 = α holds.

Hence, the Fourier transform in (3.3) can be written as F(sgn ·k)(z) = Fg(z) +∑s−2
j=0 αjFhj(z), where integration by parts yields

Fhj(v − ti) =

∫ ∞
0

ei(v+i(1−t))xxj dx =
j!

(1− t− iv)j+1
, v ∈ R, t ∈ [0, 1),

and |Fg(u)| decreases as |u|−s because of the smoothness of g. From these preparations
we derive a representation of ψ which allows us to estimate γ and α0, . . . αs−2. A plug-in
approach yields estimators for k(j)(0+) + k(j)(0−), j = 0, . . . , s − 2, using Lemma 3.1.
Since we only apply this representation when ψ is multiplied with weight functions having
roots of degree s− 1 at zero, the poles that appear in (3.4) do no harm.

Proposition 3.2. Let s ≥ 2. On Assumption 2 there exist functions D : {−1, 1} → C
and ρ : R \ {0} → C such that |us−1ρ(u)| is bounded in u and it holds

ψ(u) = D(sgn(u)) + iγu− α0 log(|u|) +

s−2∑
j=1

ij(j − 1)!αj
uj

+ ρ(u), u 6= 0, (3.4)
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From the proof in Section 7.1 we deduce the form of the mapping D : {−1, 1} → C:

D(±1) = γ ∓ iπ
2
−
s−2∑
j=1

(j − 1)!αj +

∞∫
−∞

g(x)
ex/2 − 1

x
dx± i

∞∫
0

F(ex/2g(x))(±v) dv.

Proposition 3.2 covers the case s ≥ 2. For s = 1 we conclude from (3.2) and the martingale
condition (2.2)

ψ(u) = iγu+

∫ ∞
−∞

(eiux − 1)ex
k(x)

|x|
dx = iγu+ i

∫ u

0

F
(

sgn(x)exk(x)
)
(v) dv, (3.5)

where the last equation follows from Fubini’s theorem on the condition
∫∞
−∞ exk(x) dx <

∞, which is implied by Assumption 2. Hence, ψ is a sum of a constant from the integra-
tion, the linear drift iγu and a remainder of order log |u|, which follows from the decay
of the Fourier transform as |u|−1 (cf. Lemma 7.1). One can even show Corollary B.6 that
there exists no L2-consistent estimator of α for s = 1. Therefore, we concentrate on the
case s ≥ 2 in the sequel.

Equation (3.5) allows another useful observation. Defining the exponentially scaled
k-function

ke(x) := sgn(x)exk(x), x ∈ R,

we obtain by differentiation

ψ′(u) =
1

T

(i− 2u)FO(u)− (u+ iu2)F
(
xO(x)

)
(u)

1 + (iu− u2)FO(u)
= iγ + iFke(u). (3.6)

Using this relation, we can define an estimator of ke.

4. Estimation procedure

4.1. Definition of the estimators and weight functions

Given the observations {(x1, O1), . . . , (xN , ON )}, we fit a function Õ to these data using
linear B-splines

bj(x) :=
x− xj−1

xj − xj−1
1[xj−1,xj) +

xj+1 − x
xj+1 − xj

1[xj ,xj+1], j = 1, . . . , N,

and a function β0 with β′0(0+)− β′0(0−) = −1 to take care of the jump of O′:

Õ(x) = β0(x) +

N∑
j=1

Ojbj(x), x ∈ R.
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We choose β0 with support [xj0−1, xj0 ] where j0 satisfies xj0−1 < 0 ≤ xj0 . Replacing O
with Õ in the representations (3.1) and (3.6) of ψ and ψ′, respectively, allows us to define
their empirical versions through

ψ̃(u) :=
1

T
log
(
vκ(u)(1 + iu(1 + iu)FÕ(u))

)
,

ψ̃′(u) :=
1

T

(i− 2u)FÕ(u)− (u+ iu2)F
(
xÕ(x)

)
(u)

vκ(u)(1 + iu(1 + iu)FÕ(u))
, u ∈ R,

where κ is a positive function and we apply a trimming function given by

vκ(z) : C \ {0} → C, z 7→

{
z, |z| ≥ κ,
κz/|z|, |z| < κ

to stabilize for large stochastic errors. A reasonable choice of κ will be derived below.
The function ψ̃ is well-defined on the interval [−U,U ] on the event

A := {ω ∈ Ω : 1 + iu(1 + iu)F(Õ(ω, •))(u) 6= 0∀u ∈ [−U,U ]} ⊆ Ω.

For ω ∈ Ω \ A we set ψ̃ arbitrarily, for instance equal to zero. The more Õ concentrates
around the true function O the greater is the probability of A. Söhl [23] shows even that
in the continuous-time Lévy model with finite jump activity the identity P(A) = 1 holds.

In the spirit of Belomestny and Reiß [3] we estimate the parameters γ and αj , j =
0, . . . s− 2, as coefficients of the different powers of u in equation (3.4). Using a spectral
cut-off value U > 0, we define

γ̂ :=

∫ U

−U
Im(ψ̃(u))wUγ (u) du

and for 0 ≤ j ≤ s− 2

α̂j :=



∫ U

−U
Re(ψ̃(u))wUαj

(u) du, if j is even,

∫ U

−U
Im(ψ̃(u))wUαj

(u) du, otherwise.

Owing to (3.6), the nonparametric object ke can be estimated by

k̂e(x) := F−1
((
− γ̂ − iψ̃′(u)

)
wk(

u

U
)
)

(x), x ∈ R.

The weight functions wUγ and wUαj
are chosen such that they filter the coefficients of

interest. Moreover, wk should decrease fast in the spatial domain and should cut off high
frequencies:
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Assumption 3. We assume:

• wUγ fulfills for all odd j ∈ {1, . . . , s− 2}∫ U

−U
uwUγ (u) du = 1,

∫ U

−U
u−jwUγ (u) du = 0 and

∫ U

0

wUγ (±u) du = 0.

• wUα0
satisfies for all even j ∈ {1, . . . , s− 2}∫ U

−U
log(|u|)wUα0

(u) du = −1,

∫ U

−U
u−jwUα0

(u) du = 0 and

∫ U

0

wUα0
(±u) du = 0.

• For j = 1, . . . , s− 2 the weight functions wUαj
fulfill∫ U

−U
u−jwUαj

(u) du =
(−1)bj/2c

(j − 1)!
,

∫ U

−U
u−lwUαj

(u) du = 0 and

∫ U

0

wUαj
(±u) du = 0,

where 1 ≤ l ≤ s − 2 and l is even for even j and odd otherwise. For even j we
impose additionally ∫ U

−U
log(|u|)wUαj

(u) du = 0.

• wk is contained in Cm(R) for some m ≥ 2s+ 1 and satisfies suppwk ⊆ [−1, 1] as
well as wk ≡ 1 on (−ak, ak) for some ak ∈ (0, 1).

Furthermore, we assume continuity and boundedness of the functions u 7→ u−s+1w1
q(u)

for q ∈ {γ, α0, . . . , αs−2}.

The integral conditions can be provided by rescaling: Let w1
q satisfy Assumption 3 for

q ∈ {γ, α0, . . . , αs−2} and U = 1. Since 1 =
∫ 1

−1
uw1

γ(u) du =
∫ U
−U uU

−2w1
γ(u/U) du, we

can choose wUγ (u) := U−2w1
γ( uU ). Similarly, a rescaling is possible for wUα0

:

−1 =

∫ 1

−1

log(|u|)w1
α0

(u) du =

∫ U

−U
log(|u|)U−1w1

α0
(
u

U
) du− log(U)

U

∫ U

−U
w1
α0

(
u

U
) du

=

∫ U

−U
log(|u|)U−1w1

α0
(
u

U
) du.

Therefore, we define wUα0
(u) := U−1w1

α0
( uU ) and analogously wUαj

(u) := U j−1w1
αj

( uU ).
The continuity condition in Assumption 3 is set to take advantage of the decay of the
remainder ρ. In connection with the rescaling it implies

|wUγ (u)| . U−s−1|u|s−1 and |wUαj
(u)| . U−s+j |u|s−1, j = 0, . . . , s− 2. (4.1)

In the sequel we assume that the weight functions satisfy Assumption 3 and the property
(4.1).
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4.2. Convergence rates

To ensure a well-defined procedure, an exponential decay of O, the identity (3.5) and to
obtain a lower bound of |ϕT (u− i)|, we consider the class G0(R, ᾱ). Uniform convergence
results for the parameters will be derived in the smoothness class Gs(R, ᾱ).

Definition 4.1. Let s ∈ N and R, ᾱ > 0. We define

i) G0(R, ᾱ) as the set of all pairs P = (γ, k) where k is a k-function and the corre-
sponding Lévy process X given by the triplet (0, γ, k(x)/|x|) satisfies Assumption 1
with C2 ≤ R, martingale condition (2.2) as well as

α ∈ [0, ᾱ] and ‖ke‖ ≤ R,

ii) Gs(R, ᾱ) as the set of all pairs P = (γ, k) ∈ G0(R, ᾱ) satisfying addionally Assump-
tion 2 with

|k(l)(0+) + k(l)(0−)| ≤ R, for l = 1, . . . , s− 1,

‖(1 ∨ ex)k(l)(x)‖L1 ≤ R, for l = 0, . . . , s.

In the class G0(R, ᾱ) Lemma 2.1 ii) provides a common lower bound of |ϕT (u− i)| for

|u| ≥ 1. Using maxx∈R
1−cos(x)

x ∈ (0, 1], we estimate roughly for u ∈ (−1, 1) \ {0}:

|ϕT (u− i)| = exp
(
T

∫ ∞
−∞

(cos(ux)− 1)
exk(x)

x
dx
)

≥ exp
(
− T

∫ ∞
−∞

ex/|u|k(
x

|u|
) dx

)
≥ exp

(
− TR

)
.

Hence, the choice

κ(u) := κᾱ(u) :=

{
1
3e
−TR, |u| < 1,

1
3Cϕ(T,R, ᾱ)|u|−Tᾱ, |u| ≥ 1,

satisfies
1

3
|ϕT (u− i)| ≥ κ(u), u ∈ R, (4.2)

where the factor 1/3 is used for technical reasons. As discussed above, we can restrict
our investigation to the case s ≥ 2.

Since the Lévy process is only identifiable if O is known on the whole real line, we
consider asymptotics of a growing number of observations with

∆ := max
j=2,...,N

(xj − xj−1)→ 0 and A := min(xN ,−x1)→∞.

Taking into account the numerical interpolation error and the stochastic error, we analyze
the risk of the estimators in terms of the abstract noise level

ε := ∆3/2 + ∆1/2‖δ‖l∞ .
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Theorem 4.2. Let s ≥ 2, R, ᾱ > 0 and assume e−A . ∆2 and ∆‖δ‖2l2 . ‖δ‖2l∞ . We

choose the cut-off value Uᾱ := ε−2/(2s+2Tᾱ+1) to obtain the uniform convergence rates

sup
P=(γ,k)∈Gs(R,ᾱ)

EP [|γ̂ − γ|2]1/2 . ε2s/(2s+2Tᾱ+1) and

sup
P=(γ,k)∈Gs(R,ᾱ)

EP [|α̂j − αj |2]1/2 . ε2(s−1−j)/(2s+2Tᾱ+1), j = 0, . . . , s− 2.

As one may expect the rates for αj , j = 0, . . . , s− 2, become slower as j gets closer to
its maximal value because the profit from the smoothness of k decreases. Note that the
cut-off for all estimators is the same.

Remark 4.3. The proof in Section 7.2 reveals that the condition ∆‖δ‖2l2 . ‖δ‖2l∞ is
only used to estimate the remainder term. In the case s ≥ 3 our bound is not strict and
we can replace the constraint by the weaker one

∆r‖δ‖2l2 . ‖δ‖4−2r
l∞ for some r ∈

(
1,

3s+ 2T ᾱ− 1

2s+ 2T ᾱ+ 1

]
.

In this setting δj can be bounded away from 0 if A increases slowly enough whereas for
r = 1 the noise δj must tend to 0 for xj → ±∞. Otherwise ∆‖δ‖2l2 could not be bounded
because of ∆N ≥ 2A

N N →∞.

For τ ∈ (0, 1
2 ) we study the loss of the exponentially scaled k-function ke in the norm

‖ke‖L2,τ :=
(∫

R\[−τ,τ ]

|ke(x)|2 dx
)1/2

.

In contrast to Gs(R, ᾱ) we assume Sobolev conditions on ke in the class Hs(R, ᾱ) in order
to apply L2-Fourier analysis.

Definition 4.4. Let s ∈ N and R, ᾱ > 0. We define Hs(R, ᾱ) as the set of all pairs
P = (γ, k) ∈ G0(R, ᾱ) satisfying additionally k ∈ Cs(R \ {0}), EP [|XT e

XT |] ≤ R for
corresponding Lévy process X as well as

|γ| ≤ R, and ‖k(l)
e ‖L2 ≤ R, for l = 0, . . . , s.

In the next theorem the conditions on A and δ are stronger than for the upper bounds
of the parameters which is due to the necessity to estimate also the derivative of ψ.
However, the estimation of ψ′ does not lead to a loss in the rate.

Theorem 4.5. Let s ≥ 1, R, ᾱ > 0, τ ∈ (0, 1
2 ) and assume Ae−A . ∆2 and ∆(‖δj‖2l2 +

∆2‖(xjδj)j‖2l2) . ‖δ‖2l∞ . We choose the cut-off value Uᾱ := ε−2/(2s+2Tᾱ+5). Then we

obtain for the risk of k̂e the uniform convergence rate

sup
P=(γ,k)∈Hs(R,ᾱ)

EP [‖k̂e − ke‖2L2,τ ]1/2 . ε2s/(2s+2Tᾱ+5).

Remark 4.6. The convergence rates in the Theorems 4.2 and 4.5 are minimax optimal
up to a logrithmic factor, which is shown in Appendix B and C.
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5. Adaptation

The convergence rate of our estimation procedure depends on the bound ᾱ of the true
but unknown α ∈ R+. Therefore, we construct an α-adaptive estimator. For simplicity
we concentrate on the estimation of α itself whereas the results can be easily extended
to γ, αj , j = 1, . . . , s− 2, and ke. In this section we will require the following

Assumption 4. Let R > 0, s ≥ 2 and α ∈ [0, ᾱ] for some maximal ᾱ > 0. Furthermore,
we suppose e−A . ∆2 and ∆‖δ‖2l2 . ‖δ‖2l∞ .

These conditions only recall the setting in which the convergence rates of our param-
eter estimators were proven. Given a consistent preestimator α̂pre of α, let α̃0 be the
estimator using the data-driven cut-off value and the trimming parameter

Ũ := Uα̂pre
:= ε−2/(2s+2Tα̂pre+1) and (5.1)

κ̃(u) := κᾱpre(u) :=

{
1
2e
−TR, |u| < 1,

1
2Cᾱpre

|u|−Tᾱpre , |u| ≥ 1,
(5.2)

respectively, with ᾱpre := α̂pre + | log ε|−1. If α̂pre is sufficiently concentrated around the
true value, the adaptation does not lead to losses in the rate as the following proposition
shows. Note that the condition α̃0 ∈ [0, ᾱ] is not restrictive since any estimator α̂ of
α ∈ [0, ᾱ] can be improved by using (0 ∨ α̂) ∧ ᾱ instead.

Proposition 5.1. On Assumption 4 let α̂pre be a consistent estimator which is inde-
pendent of the data Oj , j = 1, . . . , N, and fulfills for ε→ 0 the inequality

P(|α̂pre − α| ≥ | log ε|−1) ≤ dε2 (5.3)

with a constant d ∈ (0,∞). Furthermore, we suppose α̃0 ∈ [0, ᾱ] almost surely. Then α̃0

satisfies the asymptotic risk bound

sup
P∈Gs(R,α)

EP,α̂pre
[|α̃0 − α|2]1/2 . ε2(s−1)/(2s+2Tα+1)

where the expectation is taken with respect to the common distribution PP,α̂pre
of the

observations O1, . . . , ON and the preestimator α̂pre .

To use α̂0 on an independent sample as preestimator, we establish a concentration
result for the proposed procedure. Therefor, we require (εj) to be uniformly sub-Gaussian
(see e.g. van de Geer [27]). That means there are constants C1, C2 ∈ (0,∞) such that
the following concentration inequality holds for all t,N > 0 and a1, . . . aN ∈ R

P
(∣∣∣ N∑

j=1

ajεj

∣∣∣ ≥ t) ≤ C1 exp
(
− C2

t2∑N
j=1 a

2
j

)
. (5.4)
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Proposition 5.2. Additionally to Assumption 4 let (εj) be uniformly sub-Gaussian
fulfilling (5.4). Then there is a constant c > 0 and for all κ > 0 there is an ε0 ∼
κ(2s+2Tᾱ+1)/(2s−2), such that for all ε < ε0 ∧ 1 the estimator α̂0 satisfies

P(|α̂0 − α| ≥ κ) ≤ ((7N + 1)C1 + 2) exp
(
− c(κ2 ∧ κ1/2)ε−(s−1)/(2s+2Tᾱ+1)

)
. (5.5)

Concentration (5.5) is stronger than in Proposition 5.1 needed. To apply the proposed
estimation procedure, let Spre and S be two independent samples with noise levels εpre
and ε as well as sample sizes Npre and N , respectively. Using Spre for the estimator
α̂pre, we construct adaptively α̃0 on S. We suppose Npre grows at most polynomial in
εpre, that is Npre . ε−ppre holds for some p > 0. This is fulfilled for polynomially strike
distributions with a logarithmically growing domain as considered in Appendix B . To
satisfy (5.3), it is sufficient if there exists a power q > 0, which can be arbitrary small,
such that εpre ∼ εq owing to the exponential inequality (5.5). Using ε2 & AN/N ≥ 1/N ,
we estimate

Npre
N

. ε−ppreε
2 ∼ ε2−pq → 0

for q < 2/p. Thus, relatively to all available data the necessary number of observations
for the preestimator tends to zero.

6. Discussion and application

6.1. Numerical example

We apply the proposed estimation procedure to the variance gamma model (see [18]). In
view of the empirical study of Madan, Carr and Chang [18] we choose the parameters
ν ∈ {0.05, 0.1, 0.2, 0.5}, σ = 1.2 and θ = −0.15. The value of γ is then given by the
martingale condition (2.2):

γ =
1

ν
log(1− θν − σ2ν/2).

According to the different choices of ν, we set ᾱ = 40 as maximal value of α.
The deterministic design of the sample {x1, . . . , xN} is distributed normally with mean

zero and variance 1/3. The observations Oj are computed from the characteristic function
ϕT using the fast Fourier transform method of Carr and Madan [6]. The additive noise
consists of normal centered random variables with variance |δO(xj)|2 for some δ > 0.

We estimate q ∈ {γ, α0, α1, α2, ke}. Hence, we need s ≥ 4 (see Corollary B.6 ). We
used maturity T = 0.25, interest r = 0.06, smoothness s = 6, sample size N = 100 and
noise level δ = 0.01, which generates values of ε on average 0.168. The results of our
Monte Carlo simulations are summarized in Tables 1 and 2.

In order to apply the estimation procedure, we need to choose the tuning param-
eters. Owing to the typically unknown smoothness s, let the weight functions satisfy
Assumption 3 for some large value smax. The weights for the parameters can be chosen
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α E[|α̂0 − α|2]1/2 E[|α̃0 − α|2]1/2

40 20.7998 23.3589
20 5.8362 7.7724
10 1.0505 2.4534
4 0.1729 1.1158

Table 1. 1000 Monte Carlo simulation of the variance gamma model with N = 100, δ = 0.01 and
ν ∈ {0.05, 0.1, 0.2, 0.5}.

q E[|q̂ − q|2]1/2 E[|q̃ − q|2]1/2

γ 0.1408 0.0065 0.0126
α0 10.0000 1.0505 2.4534
α1 -94.1667 34.5066 85.9605
α2 4458.1250 1203.1827 2741.7031

‖q‖1/2
L2 E[‖K̂ − q‖2

L2 ]1/2 E[‖q̃ − q‖2
L2 ]1/2

ke 0.9556 0.3289 0.3368

Table 2. 1000 Monte Carlo simulations of the variance gamma model with N = 100, δ = 0.01 and
ν = 0.2.

polynomial whereas a flat-top kernel function can be used as wk, as done by Belomestny
[2]. The trimming parameter κ is included mainly for theoretical reasons and is not im-
portant to the implementation. The most crucial point is the choice of the cut-off value
U . For q̂ we implement the oracle method U = argminV≥0 |q̂(V ) − q| and an adaptive
estimator q̃ based on the construction of Section 5. The sample size for the preestimator
is chosen Npre = 25. This adaptation to α is a first step to a data-driven procedure and
should be developed further.

6.2. Discussion

The rates show that the studied estimation problem is (mildly) ill-posed compared with
classical nonparametric regression models. In order to understand the convergence rate of
the estimators for γ and αj better, we rewrite equation (3.6) in the distributional sense,
denoting the Dirac distribution at zero by δ0, and differentiate representation (3.4)

ψ′(u) = F
(
iγδ0 + ike

)
(u) = iγ −

s−2∑
j=0

ijj!αju
−j−1 + ρ′(u), u ∈ R \ {0}.

Hence, ψ′ can be seen as Fourier transform of an s-times weakly differentiable function
and estimating γ from noisy observations of ψ′ corresponds to a nonparametric regression
with regularity s. Since dividing by u on the right-hand side of the above equation
corresponds to taking the derivative in the spatial domain, the estimation of αj is similar
to the estimation of the (j + 1)th derivative in a regression model. The convergence
rate of ke is in line with the results of Belomestny and Reiß [3] for σ = 0. Outside a
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neighborhood of zero estimating the k-function amounts to estimating the jump density
itself so that their rates equals ours in the case α = 0.

For k̂e(x) with x different zero the degree of ill-posedness is given by Tα+ 2. This can
be seen analytically by observing that the noise is governed by u2|ϕT (u − i)|−1, which
grows with rate Tα+2. From a statistical point of view a higher value of α leads to a more
active Lévy process and hence, it is harder to distinguish the small jumps of the process
from the additive noise. The influence of the time to maturity T on the convergence rates
is an interesting deviation from the analysis of Belomestny and Reiß [3]. The simulation
shown in Table 1 demonstrates the improvement of the estimation for small the values
of α.

The proposed estimator k̂e does not take into account the shape restrictions of the k-
function. Therefore, it can be understood as estimator of the function |x|ν(x) for arbitrary
absolutely continuous Lévy measures. Thus, the estimation procedure can be applied to
exponential Lévy models with Blumenthal-Getoor index larger than zero, for example
tempered stable processes. However, the behavior of the Lévy density at zero needs
different methods in these cases and should be studied further. For instance, Belomestny
[1] discusses the estimation of the fractional order for regular Lévy models of exponential
type.

In the self-decomposable framework we reduce the loss of k̂e by truncating positive
values on R− and negative ones on R+. The monotonicity can be generated by a re-
arrangement of the function. Chernozhukov, Fernández-Val and Galichon [9] show that
the rearrangement reduces weakly the error for increasing target functions on compact
subsets. This result carries over to our estimation problem, where ke is decreasing and
we restrict its support to a possibly large interval.

To calibrate the self-decomposable model completely, we combine the estimator k̂e,
which works away from zero asymptotically optimal, and the estimators α̂j , j ≥ 0, which
provide a proper description of the true k-function at zero. Using only α̂0 and α̂1, this
can be done as follows: Choosing some τ > 0, we take the estimation of k̂e(x) for |x| ≥ τ
and extend it continuously with linear functions on (−τ, τ) such that the result fits to
α̂j , j = 1, 2. We define the combined estimator as

K̂(x) :=


m−(x+ τ) + k̂e(−τ), −τ < x < 0,

m+(x− τ) + k̂e(τ), 0 ≤ x < τ,

k̂e(x), |x| ≥ τ

where m± are uniquely given by the conditions

α̂0 = K̂(0+)− K̂(0−) and 2α̂0 + α̂1 = K̂ ′(0+)− K̂ ′(0−).

Since k is monoton, we force m± ≤ 0, which might lead to a violation of the second
equation for large stochastic errors. Table 2 contains simulation results for the estima-
tors q̂ and q̃, q ∈ {γ, α0, α1, α2, ke}, corresponding to oracle and α-adaptive cut-off values,

respectively. The optimal combination of estimators α̂j and k̂e should be developed fur-
ther, for instance an exponential Taylor expansion could be used. However, taking α̂j
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T 0.314 0.567
r 0.045 0.044
Npre 20 21
N 81 85

γ̃ 0.109 0.506
α̃0 24.850 29.846
α̃1 -59.595 256.049
α̃2 9319.844 7570.380

Table 3.. Estimation based on ODAX from 29 May
2008.

Figure 1. Given ODAX data points from 29 May
2008 with T = 0.314 and the option function gen-
erated from the estimated model.

for higher j into account leads to a loss in the convergence rate and it is actually not
clear how to decompose the estimators into the left and right limits of the derivatives of
k. Assuming finite right- and left-hand limits of k and its derivatives at zero, one-sided
kernels might estimate the k-function even in the neighborhood of zero optimally.

Even if the practitioner prefers specific parametric models that might achieve smaller
errors and faster rates, the nonparametric method should be used as a goodness-of-fit test
against model misspecification. This issue makes progress through study of confidence
sets in the framework of Lévy processes with finite activity done by Söhl [24] and it would
be interesting to derive confidence intervals for α.

6.3. Real data example

We apply our estimation method to a data set from the Deutsche Börse database Eurex2.
It consists of settlement prices of put and call options on the DAX index with three and
six months to maturity from 29 May 2008. The sample sizes are 101 and 106, respectively.
The interest rate is chosen such that the put-call parity holds as best as possible for all
pairs of put and call options with the same strike and maturity. The subsample for
the preestimator consists of every fifth strike while the main estimation is done from the
remaining data points. By a rule of thumb the bid-ask spread is chosen as 1% of the option
prices. Therefore, we get noise levels ε with values 0.0138 and 0.069 for the two maturities,
respectively. Table 3 shows the result of the proposed method. The estimations of ke are
presented in Figure 2, which show k̂e without rearrangement as well as the estimated
k-function which results from K̂. In Figure 1 the calibrated model is used to generate
the option function in the case of three months to maturity, where the data points used
for the preestimator are marked with triangles in the figure.

2provided through the Collaborative Research Center 649 “Economic Risk”
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Figure 2. Estimation of ODAX data from 29 May 2008 with three (top) and six (bottom) months

maturity. Left : Estimated function k̂e. Right : Estimation of the k-function using K̂.

Finally, we compare the outcome of our estimation procedure with the spectral calibra-
tion of Belomestny and Reiß [3], where the cut-off value is chosen by the penalized least
squares criterion. The estimation results of the latter method applied to the same data
set are presented in Table 4. We obtain that the higher α in the selfdecomposable model
corresponds to a higher σ in the Lévy model with finite jump activity. The parameter λ
is even smaller for T = 0.567.

7. Proofs

7.1. Proof of Proposition 3.2

Standard Fourier analysis yields the decay of |Fg(u)|:

Lemma 7.1. Let f ∈ Cs−2(R) ∩Cs(R \ {0}) for s ≥ 2 and f ∈ C1(R \ {0}) in case of
s = 1, respectively. Furthermore, we assume finite left- and right-hand limits of f (s−1)

and f (s) at zero and f (0), . . . , f (s) ∈ L1(R). Then we obtain

|Ff(u)| . |u|−s for |u| → ∞.
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T 0.314 0.567
r 0.045 0.044
N 101 106

σ̃ 0.112 0.127
γ̃ 0.160 0.100

λ̃ 1.381 0.546

Table 4. Estimation based on ODAX from 29 May 2008.

Especially, on Assumption 2 there is a constant Cg > 0 independent from t and u such
that

|Fg(v − it)| ≤ Cg|v|−s for t ∈ [0, 1) and |v| ≥ 1

2
.

Proof. Part 1: Since f ∈ Cs−2(R) has a piecewise continuous (s − 1)th derivative and
all derivatives are in L1(R), standard Fourier analysis yields

F(f (s−1))(u) = (−iu)s−1Ff(u).

Therefore, it is enough to show for f ∈ C1(R \ {0}) with f, f ′ ∈ L1(R) that |Ff(u)| ≤
C|u|−1, |u| ≥ 1, where C > 0 does not depend on u. The integrability of f ′ ensures the
existence of the limits of f for x→ ±∞. Since f itself is absolutely integrable, those limits
equal 0. Integration by parts applied to the piecewise C1-function verifies for u 6= 0:

|Ff(u)| =
∣∣∣ ∫ 0

−∞
eiuxf(x) dx+

∫ ∞
0

eiuxf(x) dx
∣∣∣ =

1

|u|
|f(0−)− f(0+)−F(f ′)(u)|

≤ 1

|u|
(|f(0−)− f(0+)|+ ‖f ′‖L1) .

Part 2: From Part 1 and the Leibniz rule follow for t ∈ [0, 1) and |v| ≥ 1
2

|Fg(v − it)|

=
1

|v|s
∣∣∣F ( ∂s−1

∂xs−1
etxg(x)

)
(v)
∣∣∣∣∣∣g(s−1)(0−)− g(s−1)(0+)−F

(
∂s

∂xs
etxg(x)

)
(v)
∣∣∣

≤ 1

|v|s
( s−1∑
l=0

∣∣∣F (etxg(l)(x)
)

(v)
∣∣∣)(∣∣∣g(s−1)(0−)− g(s−1)(0+)

∣∣∣+

s∑
l=0

∣∣∣F (etxg(l)(x)
)

(v)
∣∣∣).

Hence, it remains to bound |F
(
etxg(l)(x)

)
(v)| uniformly over t ∈ [0, 1) and |v| ≥ 1

2 ,
where l = 0, . . . , s. For each j = 0, . . . s− 2 and l = 0, . . . s there is a linear combination

h
(l)
j (x) =

j∑
m=0

β
(j,l)
m hm(x) with β

(j,l)
m ∈ R,m = 0, . . . , j. Thus, we can find β

(l)
j ∈ R, j =

0, . . . s− 2, such that the derivatives of g are given by

g(l)(x) = sgn(x)k(l)(x) +

s−2∑
j=0

αjβ
(l)
j hj(x), x ∈ R \ {0}, l = 0, . . . , s.
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Therefore, we obtain for all t ∈ [0, 1), |v| ≥ 1
2 and l = 0, . . . , s

∣∣∣F (etxg(l)(x)
)

(v)
∣∣∣ =

∣∣∣F (sgn(x)etxk(l)(x)
)

(v) +

s−2∑
j=0

αjβ
(l)
j F

(
etxhj(x)

)
(v)
∣∣∣

≤ ‖(1 ∨ ex)k(l)(x)‖L1 +

s−2∑
j=0

j!|αjβ(l)
j |

|1− t− iv|j+1

≤ ‖(1 ∨ ex)k(l)(x)‖L1 +

s−2∑
j=0

2(j+1)j!|αjβ(l)
j |.

With this lemma at hand the representation (3.4) can be proved as follows: Owing to
the symmetry ψ(−u) = ψ(u), u ∈ R, it is sufficient to consider the case u > 0. We recall
representation (3.3) of ψ:

ψ(u) = iγu+ γ +

∫ 1

0

i(u− i)F(sgn ·k) ((u− i)t) dt.

To develop this integral further we consider for τ ∈ (0, 1
2 )

ξτ (u) :=

∫ 1−τ

0

i(u− i)F(sgn ·k) ((u− i)t) dt

=

s−2∑
j=0

∫ 1−τ

0

i(u− i)αjFhj((u− i)t) dt+

∫ 1−τ

0

i(u− i)Fg((u− i)t) dt

=−
s−2∑
j=1

(j − 1)!αj − α0 log(τ − iu(1− τ)) +

s−2∑
j=1

(j − 1)!αj
(τ − iu(1− τ))j

+

∫ 1−τ

0

i(u− i)Fg((u− i)t) dt

To calculate the last integral we split its domain in [0, 1
2 ] and ( 1

2 , 1− τ ]. By assumption

and choice of hj we obtain |ei(u−i)txg(x)| ≤ |(1 ∨ ex/2)g(x)| ∈ L1, for 0 ≤ t ≤ 1
2 , and

thus, we can apply Fubini’s theorem to the first part:∫ 1/2

0

i(u− i)Fg((u− i)t) dt =

∫ ∞
−∞

g(x)

∫ 1/2

0

i(u− i)ei(u−i)tx dtdx.

Since z 7→ eizx is holomorphic, Cauchy’s integral theorem yields∫ 1/2

0

i(u− i)ei(u−i)tx dt =

∫ (u−i)/2

0

ieizx dz =

∫ −i/2
0

ieizx dz +

∫ (u−i)/2

−i/2
ieizx dz.
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Hence,∫ 1/2

0

i(u− i)Fg((u− i)t) dt =

∫ ∞
−∞

g(x)

(∫ 1/2

0

etx dt+

∫ u/2

0

ieivx+x/2 dv

)
dx.

Another application of Fubini’s theorem to the second term shows∫ 1/2

0

i(u− i)Fg((u− i)t) dt

=

∫ ∞
−∞

g(x)
ex/2 − 1

x
dx+ i

∫ ∞
0

F(ex/2g(x))(v) dv − i
∫ ∞
u/2

F(ex/2g(x))(v) dv. (7.1)

The first two summands are independent from u whereas we can use Lemma 7.1 to
estimate the last integral for u ≥ 1:∣∣∣ ∫ ∞

u/2

F(ex/2g(x))(v) dv
∣∣∣ ≤ Cg ∫ ∞

u/2

|v|−s dv =
2s−1Cg
s− 1

|u|−s+1. (7.2)

Also the integral over ( 1
2 , 1 − τ ] can be estimated using Lemma 7.1. For all τ ∈ (0, 1

2 )
and for all u ≥ 1 we obtain uniformly:∣∣∣ ∫ 1−τ

1/2

i(u− i)Fg((u− i)t) dt
∣∣∣ ≤ Cg|(u− i)u−s|∫ 1

1/2

t−s dt ∼ |u|−s+1. (7.3)

Thus, (7.1) yields

ξτ (u) =−
s−2∑
j=1

(j − 1)!αj +

∫ ∞
−∞

g(x)
ex/2 − 1

x
dx+ i

∫ ∞
0

F(ex/2g(x))(v) dv

− α0 log(τ − iu(1− τ)) +

s−2∑
j=1

(j − 1)!αj
(τ − iu(1− τ))j

+ ρτ (u) (7.4)

with

ρτ (u) : = −i
∫ ∞
u/2

F(ex/2g(x))(v) dv +

∫ 1−τ

1/2

i(u− i)Fg((u− i)t) dt (7.5)

= −i
∫ ∞
u/2

F(ex/2g(x))(v) dv +

∫ 1−τ

1/2

i(u− i)
(
F(sgn ·k)((u− i)t)

−
s−2∑
j=0

j!αj
(1− i(u− i)t)j+1

)
dt.

Plugging the estimates (7.2) and (7.3) into equation (7.5), we obtain |ρτ (u)| . |u|−s+1

uniformly over τ > 0 and u ≥ 1.
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For u > 0 there exists ρ(u) := limτ→0 ρτ (u) because F(sgn ·k) is defined on {z ∈
C| Im(z) ∈ [−1, 0]} and is continuous on its domain whereas the integral over the sum
can be computed explicitly. Then the bound |u|−s+1 holds for ρ(u), |u| ≥ 1, too. Also for
small u ∈ (0, 1) the term |us−1ρ(u)| remains bounded since ρ has a pole at 0 of maximal
order s − 2. Since all terms in (7.4) are continuous in τ at 0 this equation is true for
τ = 0. Finally, we notice log(−iu) = log(|− iu|)+ i arg(−iu) = log(|u|)− iπ/2 and insert
(7.4) in (3.3).

7.2. Proof of the upper bounds

Let us recall some results of Belomestny and Reiß [3]: Because of the B-spline interpo-

lation we obtain Ol(x) := E[Õ(x)] =
∑N
j=1O(xj)bj(x) + β0(x), x ∈ R. Furthermore, the

decomposition of the stochastic error ψ̃ − ψ in a linearization L and a remainder R,

L(u) := T−1ϕT (u− i)−1(i− u)uF(Õ − O)(u),

R(u) := ψ̃(u)− ψ(u)− L(u),

u ∈ R, has the following properties:

Proposition 7.2. i) Under the hypothesis e−A . ∆2 we obtain uniformly over all
Lévy triplets satisfying Assumption 1

sup
u∈R
|E[FÕ(u)−FO(u)]| = sup

u∈R
|FOl(u)−FO(u)| . ∆2.

ii) If the function κ : R → R+ satisfies (4.2) then for all u ∈ R the remainder is
bounded by

|R(u)| ≤ T−1κ(u)−2(u4 + u2)|F(Õ − O)(u)|2.

Upper bound for γ and αj (Theorem 4.2):

Since Theorem 4.2 can be proven analogously to Theorem 4.2 of Belomestny and Reiß
[3], we only sketch the main steps. Note that in Gs(R, ᾱ) we can bound uniformly the
constant Cg from Lemma 7.1. Let us consider γ first. The definition of γ̂ and wUγ , the

decomposition of ψ̃ and representation (3.4) yield

γ̂ =

∫ U

−U
Im(ψ̃(u))wUγ (u) du = γ +

∫ U

−U
Im(ρ(u) + L(u) +R(u))wUγ (u) du.

Hence, we obtain

E[|γ̂ − γ|2] ≤ 3
∣∣∣ ∫ U

−U
ρ(u)wUγ (u) du

∣∣∣2 + 3E
[∣∣∣ ∫ U

−U
L(u)wUγ (u) du

∣∣∣2]
+ 3E

[∣∣∣ ∫ U

−U
R(u)wUγ (u) du

∣∣∣2],
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where all three summands can be estimated separately. The first one is a deterministic
error term. It can be estimated using the decay of ρ(u) and the weight function property
(4.1): ∣∣∣ ∫ U

−U
ρ(u)wUγ (u) du

∣∣∣ . ∫ U

−U
U−(s+1)|ρ(u)us−1|du . U−s.

A bias-variance decomposition, with the definition Var(Z) := E[|Z−E[Z]|2], of the linear
error term yields

E
[∣∣∣ ∫ U

−U
L(u)wUγ (u) du

∣∣∣2] =
∣∣∣ ∫ U

−U

(i− u)u

TϕT (u− i)
E[F(Õ − O)(u)]wUγ (u) du

∣∣∣2
+ Var

(∫ U

−U

(i− u)u

TϕT (u− i)
FÕ(u)wUγ (u) du

)
=: L2

b + Lv.

Using the approximation result in Proposition 7.2, the bound of |ϕT (u− i)|−1 given by
κ−1 and property (4.1), we infer the estimate of the bias term:

|Lb| . ∆2U−(s+1)

∫ U

−U
|ϕT (u− i)|−1|u|s+1 du . ∆2UTᾱ+1.

For the variance part we make use of the properties of the the linear spline functions bk
as well as supp(wUγ ) ⊆ [−U,U ] and the independence of (εk). We estimate (Cov(Y,Z) :=

E[(Y − E[Y ])(Z − E[Z])]) as in [3]:

Lv =

∫ U

−U

∫ U

−U
Cov

( (i− u)u

TϕT (u− i)
FÕ(u),

(i− v)v

TϕT (v − i)
FÕ(v)

)
wUγ (u)wUγ (v) dudv

=

N∑
k=1

δ2
k

∣∣∣ ∫ U

−U

(i− u)u

TϕT (u− i)
Fbk(u)wUγ (u) du

∣∣∣2 . ∆‖δ‖2l∞U2Tᾱ+1.

To estimate the remaining term R, we use Proposition 7.2, the property (4.1) of wUγ and
the choice of κ. In addition the independence of (εk) and the uniform bound of their
fourth moments comes into play.

E
[∣∣∣ ∫ U

−U
R(u)wUγ (u) du

∣∣∣2]
.

U∫
−U

U∫
−U

(
‖F(Ol −O)‖4∞ + E

[∣∣∣F(Õ − Ol)(u)F(Õ − Ol)(v)
∣∣∣2])u4wUγ (u)v4wUγ (v)

κ(u)2κ(v)2
dudv

.
(

∆4

∫ U

−U

u4wUγ (u)

κ(u)2
du
)2

+
(∫ U

−U

N∑
k=1

δ2
k|Fbk(u)|2

u4wUγ (u)

κ(u)2
du
)2

.
(

∆4U−(s+1)

∫ U

−U
κ(u)−2|u|s+3 du

)2

+
(

∆2‖δ‖2l2U−(s+1)

∫ U

−U
κ(u)−2|u|s+3 du

)2

. U4Tᾱ+6(∆8 + ∆4‖δ‖4l2).



23

Therefore, the total risk of γ̂ is of order

E[|γ̂ − γ|2] . U−2s + U2Tᾱ+1(∆4U + ∆‖δ‖2l∞) + U4Tᾱ+6(∆8 + ∆4‖δ‖4l2)

uniformly over Gs(R, ᾱ). Since the explicit choice of U = Uᾱ = ε−2/(2s+2Tᾱ+1) fulfills
U . ∆−1 and ∆‖δ‖2l2 . ‖δ‖2l∞ holds by assumption, this bound simplifies to

E[|γ̂ − γ|2] . U−2s + U2Tᾱ+1ε2 + U4Tᾱ+6ε4.

Here Uᾱ balances the trade-off between the first and the second term whereby the third
summand is asympotitically negligible. We obtain the claimed rate.

For αj , j = 0, . . . , s− 2, the only difference to the analysis for γ̂ is the rescaling factor
of wUαj

in (4.1). Since its square appears in front of every summand, we verify

E[|α̂j − αj |2] . U−2(s−1−j) + U2Tᾱ+2j+3(∆4U + ∆‖δ‖2l∞)

+ U4Tᾱ+2j+8(∆8 + ∆4‖δ‖4l2)

. U−2(s−1−j) + U2Tᾱ+2j+3ε2 + U4Tᾱ+2j+8ε4.

The explicit choice of U = Uᾱ implies the result.

Upper bound for ke (Theorem 4.5):

Similarly to the uniform bound of the bias of FÕ in Proposition 7.2, we prove the
following lemma.

Lemma 7.3. If Ae−A . ∆2 holds, we obtain uniformly over all Lévy triplets satisfying
Assumption 1 and E[|XT e

XT |] . 1

sup
u∈R
|E[F

(
x(Õ − O)(x)

)
(u)]| = sup

u∈R
|F
(
x(Ol −O)(x)

)
(u)| . ∆2.

Proof. We follow the lines of the proof of Proposition 6.1 in [3] with the slightly different
estimation:∫ xN

x1

|x(Ol −O)(x) dx| ≤
N∑
j=2

(|xj−1| ∨ |xj |)
∫ xj

xj−1

|Ol(x)−O(x)|dx

≤
∑

j∈{2,...,N}\{j0}

∫ xj

xj−1

∫ x

xj−1

∫ xj

xj−1

(|xj−1|+ ∆)|O′′(z)|dz dy dx+ C0(|xj0−1| ∨ |xj0 |)∆2

≤‖xO′′(x)‖L1∆2 + ‖O′′‖L1∆3 + 2C0∆3.

Since the extrapolation errors can be bounded by 4C2∆(A+ ∆)e−A−∆, we obtain∫ ∞
−∞
|E[x(Õ − O)(x)]|dx

≤2C2(Ae−A + e−A) + ‖xO′′(x)‖L1∆2 + (‖O′′‖L1 + 2C0)∆3 + 4C2∆(A+ ∆)e−A−∆
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It remains to bound ‖xO′′(x)‖L1 . Recall from [3, Prop. 2.1] that O′′(x) = ex
(
P(XT <

x) + fT (x)− 1{x>0}
)
, x ∈ R. Integration by parts yields∫ ∞

0

|xO′′(x)|dx =

∫ ∞
0

xex
∣∣P(XT < x) + fT (x)− 1

∣∣dx
≤
∫ ∞

0

xex
(
1− P(XT < x)

)
dx+ E

[
|XT |eXT 1{XT>0}

]
= 1− P(XT < 0) +

∫ ∞
0

(x− 1)exfT (x) dx+ E
[
|XT |eXT 1{XT>0}

]
= P(XT ≥ 0) + E

[
(2|XT |+ 1)eXT 1{XT>0}

]
.

We conclude analogously∫ 0

−∞
|xO′′(x)|dx = P(XT < 0) + E

[
(2|XT |+ 1)eXT 1{XT<0}

]
.

Therefore, it holds ‖xO′′(x)‖L1 ≤ 2+2E[|XT e
XT |], which is bounded by assumption.

As we will see, the estimation of γ in the definition of k̂e is asymptotically negligible.
We thus set γ̂ ≡ 0 in this section. To show Theorem 4.5 we define the function Wk :=
F−1wk which can be understood as a kernel with bandwidth U−1. By the properties of
the weight wk it satisfies for l = 1, . . . ,m− 2:

wk(
u

U
) = UF(Wk(Ux))(u),

∫
R
Wk(x) dx = wk(0) = 1,∫

R
xlWk(x) dx = (−i)lw(l)

k (0) = 0,

∫
R
|x|l|Wk(x)|dx <∞.

We split the risk into a deterministic error, an error caused by γ and a stochastic error,

EP [‖k̂e − ke‖2L2,τ ]

=EP [‖F−1
(
− iψ̃′(u)wk(

u

U
)
)
− ke‖2L2,τ ]

≤EP
[ ∫

R\[−τ,τ ]

3
∣∣∣F−1

(
(−γ − iψ′(u))wk(

u

U
)
)

(x)− ke(x)
∣∣∣2

+ 3
∣∣∣F−1

(
γwk(

u

U
)
)

(x)
∣∣∣2 + 3

∣∣∣F−1
(

(−iψ̃′(u) + iψ′(u))wk(
u

U
)
)

(x)
∣∣∣2 dx

]
=3

∫
R\[−τ,τ ]

∣∣∣F−1
(
Fke(u)wk(

u

U
)
)

(x)− ke(x)
∣∣∣2 dx+ 3|γ|2

∫
R\[−τ,τ ]

|UWk(Ux)|2 dx

+ 3E
[ ∫

R\[−τ,τ ]

∣∣∣F−1
((
ψ̃′(u)− ψ′(u)

)
wk(

u

U
)
)

(x)
∣∣∣2 dx

]
=:D +G+ S.
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Using wk ∈ Cm(R), we infer |Wk(x)| . |x|−m for x→∞ and thus, the addend G can be
bounded by

G . 6U2|γ|2
∫ ∞
τ

|Ux|−2m dx . U−2m+2.

The deterministic term D can be estimated in the spatial domain, where we use the local
smoothness of ke. For pointwise convergence rates this was done by Belomestny [2]. We
decompose

D = 3

∫
R\[−τ,τ ]

∣∣∣U(ke ∗Wk(U•)
)
(x)− ke(x)

∣∣∣2 dx

≤ 6

∫
R\[−τ,τ ]

∣∣∣ ∫
|y|>Uτ

(
ke(x− y/U)− ke(x)

)
Wk(y) dy

∣∣∣2 dx

+ 6

∫
R\[−τ,τ ]

∣∣∣ ∫
|y|≤Uτ

(
ke(x− y/U)− ke(x)

)
Wk(y) dy

∣∣∣2 dx =: 6(D1 +D2).

An application of the Cauchy-Schwarz inequality, of the estimate
∫
|y|>Uτ |Wk(y)|dy ≤

(Uτ)−m+2
∫
R |y|

m−2|Wk(y)|dy . U−m+2 and of Fubini’s theorem yield

D1 ≤
∫
R\[−τ,τ ]

∫
|y|>Uτ

|Wk(y)|dy
∫
|y|>Uτ

∣∣ke(x− y/U)− ke(x)
∣∣2|Wk(y)|dy dx

. (U)−m+2

∫
R\[−τ,τ ]

∫
|y|>Uτ

(
|ke(x− y/U)|2 + |ke(x)|2

)
|Wk(y)|dy dx

. (U)−m+2

∫
|y|>Uτ

|Wk(y)|
∫
R\[−τ,τ ]

|ke(x− y/U)|2 + |ke(x)|2 dxdy

. (U)−2m+4‖ke‖2L2 .

Using a Taylor expansion, we split D2 in a polynomial part and a remainder:

D2 ≤ 2

∫
R\[−τ,τ ]

∣∣∣ ∫
|y|≤Uτ

( s−1∑
j=0

k
(j)
e (x)

j!U j
(−y)j

)
Wk(y) dy

∣∣∣2 dx

+ 2

∫
R\[−τ,τ ]

∣∣∣ ∫
|y|≤Uτ

∫ x−y/U

x

k
(s)
e (z)(x− y/U − z)s−1

(s− 1)!
dzWk(y) dy

∣∣∣2 dx

=: 2D2P + 2D2R.

We estimate

D2P ≤ s(Uτ)−2m+4
s−1∑
j=0

τ2j

(j!)2

∫
R\[−τ,τ ]

|k(j)
e (x)|2 dx

(∫
R
|y|m−2|Wk(y)|dy

)2

. U−2m+4
s−1∑
j=0

‖kje‖2L2 .
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With twofold usage of Cauchy-Schwarz and with Fubini’s theorem we obtain

D2R =

∫
|x|>τ

∣∣∣ ∫
|y|≤Uτ

∫ y/U

0

k
(s)
e (x− z)(z − y

U )s−1

(s− 1)!
dzWk(y) dy

∣∣∣2 dx

≤
∫
|x|>τ

(∫
|y|≤Uτ

(∫ |y/U |
0

|k(s)
e (x− sgn(y)z)|2 dz

)1/2

·
(∫ |y/U |

0

(z − | yU |)
2s−2

((s− 1)!)2
dz
)1/2

|Wk(y)|dy
)2

dx

≤
∫
|x|>τ

∫
|y|≤Uτ

∫ |y/U |
0

|k(s)
e (x− sgn(y)z)|2 dz|Wk(y)|dy

·
∫
|y|≤Uτ

|y/U |2s−1

(2s− 1)((s− 1)!)2
|Wk(y)|dy dx

.U−(2s−1)

∫
|y|≤Uτ

∫ |y/U |
0

∫
|x|>τ

|k(s)
e (x− sgn(y)z)|2 dxdz|Wk(y)|dy

≤U−(2s−1)‖k(s)
e ‖2L2

∫
|y|≤Uτ

|y/U | |Wk(y)|dy

.U−2s.

Therefore, we have D +G . U−2s.
To estimate the stochastic error S, we bound the term |ψ̃′(u)−ψ′(u)|. Let us introduce

the notation

ϕ̃T (u− i) := vκ(u)

(
1 + (iu− u2)FÕ(u)

)
,

ϕ̃′T (u− i) := (i− 2u)FÕ(u)− (u+ iu2)F
(
xÕ(x)

)
(u), u ∈ R.

For all u ∈ R where |ϕ̃T (u− i)| > κ(u) we obtain ϕ̃T (u− i) = 1 + (iu− u2)FÕ(u). For
|ϕ̃T (u− i)| = κ(u) the estimate |ϕ̃T (u− i)− ϕT (u− i)| ≥ 2κ(u) follows from (4.2). This
yields

|ϕ̃T (u− i)− ϕT (u− i)| ≤ |1 + (iu− u2)FÕ(u)− ϕT (u− i)|+ κ(u)

≤ |1 + (iu− u2)FÕ(u)− ϕT (u− i)|+ 1

2
|ϕ̃T (u− i)− ϕT (u− i)|.

Therefore, |ϕ̃T (u− i)−ϕT (u− i)| ≤ 2|1+(iu−u2)FÕ(u)−ϕT (u− i)| holds for all u ∈ R.
We obtain a similar decomposition as Kappus and Reiß [16],

|ψ̃′(u)− ψ′(u)| = 1

T

∣∣∣ ϕ̃′T (u− i)
ϕ̃T (u− i)

− ϕ′T (u− i)
ϕT (u− i)

∣∣∣
≤ 1

T |ϕ̃T (u− i)|

(
|ϕ̃′T (u− i)− ϕ′T (u− i)|+ T |ψ′(u)||ϕT (u− i)− ϕ̃T (u− i)|

)
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≤ 1

2Tκ(u)

((
(1 + 4u2)1/2 + 2T |ψ′(u)|(u2 + u4)1/2

)
|F(Õ − O)(u)|

+ (u2 + u4)1/2|F
(
x(Õ − O)(x)

)
(u)|

)
.

Since |ψ′(u)| ≤ |γ|+ ‖ke‖L1 ≤ 2R, we have

|ψ̃′(u)− ψ′(u)| . 1

κ(u)

(
(1 + u2)|F(Õ − O)(u)|+ (u2 + u4)1/2|F

(
x(Õ − O)(x)

)
(u)|

)
.

It follows with Plancherel’s equality

S ≤3E
[∥∥F−1

(
(ψ̃′(u)− ψ′(u))wk(u/U)

)∥∥2

L2

]
=

3

2π

∫
R
E
[
|ψ̃′(u)− ψ′(u)|2

]
|wk(u/U)|2 du

.
∫ U

−U

u4

|κ(u)|2
(
E
[
|F(Õ − O)(u)|2

]
+ E

[∣∣F(x(Õ − O)(x)
)
(u)
∣∣2])|wk(u/U)|2 du

=:S1 + S2.

Both terms can be estimated similarly. Thus, we only write it down for S2, where stronger
conditions are needed. Lemma 7.3 and ‖F(xbj(x))‖∞ ≤ 2∆(xj + ∆), j = 1, . . . , N , yield

S2 ≤
∫ U

−U

u4

|κ(u)|2
(
‖x(Ol −O)(x)‖2∞ + V ar

(
F
(
xÕ(x)

)
(u)
))
|wk(u/U)|2 du

.
∫ U

−U
|u|2Tᾱ+4

(
∆4 +

N∑
j=1

δ2
j |F
(
xbj(x)

)
(u)|2

)
du

.(∆4 + ∆2‖(xjδj)‖2l2 + ∆4‖δj‖2l2)U2Tᾱ+5 . ε2U2Tᾱ+5.

Therefore, we have shown E
[
‖k̂e − ke‖2L2,τ

]
. U−2s + ε2U2Tᾱ+5. The claim follows

from the asymptotic optimal choice U = Uᾱ = ε−2/(2s+2Tᾱ+5).

7.3. Proof of Proposition 5.1

Step 1: We consider deterministic approximate of α. Let (aε)ε>0 be such that there is a
constant C > 0 with |aε − α| ≤ C| log ε|−1. Let the estimator α̂0 use the cut-off value
Uε := Ũaε and the trimming parameter κε := κ̃āε , with āε := aε +C| log ε|−1, as defined
in (5.1) and (5.2). Then we can show the asymptotic risk bound

sup
P∈Gs(R,α)

EP [|α̂0 − α|2]1/2 . ε2(s−1)/(2s+2Tα+1)

as follows: By construction holds α ≤ āε. Hence, κε fulfills condition (4.2) for each pair
P ∈ Gs(R,α). Therefore, we deduce from Theorem 4.2:

EP
[
|α̂0 − α|2

]
. U−2(s−1)

ε + U2Tα+3
ε ε2 + U4T āε+8

ε ε4

=ε4(s−1)/(2s+2Taε+1)
(
1 + ε4T (aε−α)/(2s+2Taε+1) + ε(4s−8+8T (aε−āε))/(2s+2Taε+1)

)
. (7.6)
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The first factor has the claimed order, which follows from

(α− aε) log ε ≤ C
⇒ (2s+ 2Tα+ 1) log ε ≤ (2s+ 2Taε + 1) log ε+ 2TC

⇒ 4(s−1)
2s+2Taε+1 log ε ≤ 4(s−1)

2s+2Tα+1 log ε+ 8(s−1)T
(2s+1)2 C

⇒ ε4(s−1)/(2s+2Taε+1) . ε4(s−1)/(2s+2Tα+1).

Thus, the claim follows once we have bound the sum in the bracket of equation (7.6).
For the second summand this is implied by∣∣∣ 4T (aε − α)

2s+ 2Taε + 1
log ε

∣∣∣ ≤ 4T |(aε − α) log ε|
2s+ 1

≤ 4TC

2s+ 1
.

To estimate the third term, we obtain from s ≥ 2 and ε < 1

4s− 8 + 8T (aε − āε)
2s+ 2Taε + 1

log ε ≤ −8TC| log ε|−1

2s+ 1
log ε ≤ 8TC

2s+ 1
.

Step 2: Let P ∈ Gs(R,α). Note that κε satisfies the condition (4.2) on the set {|α̂pre−α| <
| log ε|−1}. Using the independence of α̂pre and Oj , the almost sure bound α̃0 ≤ ᾱ and
the concentration of α̂pre, we deduce from step 1:

EP,α̂pre

[
|α̃0 − α|2

]
≤EP,α̂pre

[
EP,α̂pre

[
|α̃0 − α|2

∣∣α̂pre]1{|α̂pre−α|<| log ε|−1}

]
+ 4ᾱ2Pα̂pre

(
|α̂pre − α| ≥ | log ε|−1

)
.ε4(s−1)/(2s+2Tα+1) + 4ᾱ2dε2.

Since the second term decreases faster then the first one for ε→ 0, we obtain the claimed
rate.

7.4. Proof of Proposition 5.2

Let ε < 1. Recall that the cut-off value of α̂0 is given by U = ε−2/(2s+2Tᾱ+1). For κ > 0
we obtain from the definition of the estimator and the decomposition of the stochastic
error into linear part and remainder:

P(|α̂0 − α| ≥ κ) = P
(∣∣∣ ∫ U

−U
Re(ρ+ ψ̃ − ψ)(u)wUα0

(u) du
∣∣∣ ≥ κ)

≤ P
(∣∣∣ ∫ U

−U
ρ(u)wUα0

(u) du
∣∣∣ ≥ κ

3

)
+ P

(∣∣∣ ∫ U

−U
Re(L(u))wUα0

(u) du
∣∣∣ ≥ κ

3

)
+ P

(∣∣∣ ∫ U

−U
R(u)wUα0

(u) du
∣∣∣ ≥ κ

3

)
=: P1 + P2 + P3.
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We will bound all three probabilities separately. To that end, let cj , j ∈ N, be suitable
non-negative constants not depending on κ, ε and N .

The event in P1 is deterministic. Hence, the same estimate on the deterministic error
as in Theorem 4.2∣∣∣ ∫ U

−U
ρ(u)wUα0

(u) du
∣∣∣ ≤ c1U−(s−1) = c1ε

2(s−1)/(2s+2Tᾱ+1)

yields P1 = 0 for all ε < ε(1) := (κ/(3c1))
(2s+2Tᾱ+1)/(2s−2)

.
To bound P2 we infer from the definition of L, the linear appearance of the errors in

Õ = Ol +
∑N
j=1 δjεjbj and from the estimate of the term |Lb| in Theorem 4.2:∣∣∣ ∫ U

−U
Re(L(u))wUα0

(u) du
∣∣∣ =

∣∣∣ ∫ U

−U
Re
( (i− u)u

TϕT (u− i)
F(Õ − O)(u)

)
wUα0

(u) du
∣∣∣

≤
∫ U

−U

(u4 + u2)1/2

T |ϕT (u− i)|
|F(Ol −O)(u)wUα0

(u)|du

+
∣∣∣ ∫ U

−U
Re
( (i− u)u

TϕT (u− i)

N∑
j=1

δjεjFbj(u)
)
wUα0

(u) du
∣∣∣

≤ c2∆2UTᾱ+2 +
∣∣∣ N∑
j=1

δjεj

∫ U

−U
Re
( (i− u)u

TϕT (u− i)
Fbj(u)

)
wUα0

(u) du
∣∣∣

≤ c2ε2(s−1)/(2s+2Tᾱ+1) +
∣∣∣ N∑
j=1

ajεj

∣∣∣
where the coefficients are given by

aj := δj

∫ U

−U
Re
( (i− u)u

TϕT (u− i)
Fbj(u)

)
wUα0

(u) du, j = 1, . . . , N.

To apply (5.4), we deduce from ‖Fbj‖∞ ≤ 2∆, the weight function property (4.1) and
the assumption ∆‖δ‖2l2 . ‖δ‖2l∞ :

N∑
j=1

a2
j ≤

N∑
j=1

δ2
j

(∫ U

−U

(u4 + u2)1/2

T |ϕT (u− i)|
|Fbj(u)||wUα0

(u)|du

)2

≤ c3∆2U2Tᾱ+4‖δ‖2l2

≤ c4ε2U2Tᾱ+4 = c4ε
2(s−1)/(2s+2Tᾱ+1).

This implies through the concentration inequality of (εj)

P2 ≤ P
(∣∣∣ N∑

j=1

ajεj

∣∣∣ ≥ κ

6

)
+ P

(
c2ε

2(s−1)/(2s+2Tᾱ+1) ≥ κ

6

)
≤ C1 exp

(
− C2

36c4
κ2ε−2(s−1)/(2s+2Tᾱ+1)

)
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for all ε < ε(2) := (κ/(6c2))
(2s+2Tᾱ+1)/(2s−2)

.
It remains to estimate probability P3. The bound of R in Proposition 7.2 ii) yields∣∣∣ ∫ U

−U
R(u)wUα0

(u) du
∣∣∣ ≤ ∫ U

−U

u4 + u2

Tκ(u)2
|F(Õ − O)(u)|2|wUα0

(u)|du

≤2

U∫
−U

u4 + u2

Tκ(u)2
|F(Ol −O)(u)|2|wUα0

(u)|du+ 2

U∫
−U

u4 + u2

Tκ(u)2

∣∣∣ N∑
j=1

δjεjFbj(u)
∣∣∣2|wUα0

(u)|du.

The first addend gets small owing to Proposition 7.2 i):∫ U

−U

u4 + u2

Tκ(u)2
|F(Ol −O)(u)|2|wUα0

(u)|du ≤‖F(Ol −O)‖2∞
∫ U

−U

u4 + u2

Tκ(u)2
|wUα0

(u)|du

≤c5∆4U2Tᾱ+4 ≤ c5ε2(s−1)/(2s+2Tᾱ+1).

For the second one we obtain∣∣∣ N∑
j=1

δjεjFbj(u)
∣∣∣2 =

N∑
j=1

δ2
j ε

2
j |Fbj(u)|2 + 2

N∑
j=2

j−1∑
k=1

δjδkεjεk Re
(
Fbj(u)Fbk(−u)

)
.

Thus, ∣∣∣ ∫ U

−U
R(u)wUα0

(u) du
∣∣∣

≤ 2c5ε
(4s−6)/(2s+2Tᾱ+1) + 2

N∑
j=1

δ2
j ε

2
jξj,j(U) + 4

N∑
j=2

j−1∑
k=1

δjδkεjεkξj,k(U)

with

ξj,k(U) :=

∫ U

−U

u4 + u2

Tκ(u)2
Re
(
Fbj(u)Fbk(−u)

)
|wUα0

(u)|du.

Denoting the diagonal term and the cross term as

DN :=

N∑
j=1

δ2
j ε

2
jξj,j(U) and UN :=

N∑
j=2

j−1∑
k=1

δjδkεjεkξj,k(U),

respectively, we obtain

P3 ≤ P
(

2c5ε
2(s−1)/(2s+2Tᾱ+1) ≥ κ

9

)
+ P

(
2DN ≥

κ

9

)
+ P

(
4UN ≥

κ

9

)
.

The first summand vanishes for ε < ε(3) := (κ/(18c5))
(2s+2Tᾱ+1)/(2s−2)

. To estimate the
probabilities on DN and UN , we establish the bound

|ξj,k(U)| ≤ ‖Fbj‖∞‖Fbk‖∞
∫ U

−U

u4 + u2

Tκ(u)2
|wUα0

(u)|du ≤ c6∆2U2Tᾱ+4 (7.7)
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for j, k = 1, . . . , N . Hence,

∣∣∣ N∑
j=1

δ2
j ξj,j(U)

∣∣∣ ≤ c6∆2‖δ‖2l2U2Tᾱ+4 ≤ c7ε2U2Tᾱ+4 ≤ c7ε2(s−1)/(2s+2Tᾱ+1),

which yields together with (5.4)

P
(
DN ≥

κ

18

)
≤ P

(
sup

k=1,...,N
|εk|2

∣∣∣ N∑
j=1

δ2
j ξj,j(U)

∣∣∣ ≥ κ

18

)
≤ P

(
sup

k=1,...,N
|εk|2 ≥

κ

18c7
ε−2(s−1)/(2s+2Tᾱ+1)

)
≤ C1N exp

(
− C2

18c7
κε−2(s−1)/(2s+2Tᾱ+1)

)
.

To derive an exponential inequality for the U-statistic UN , we apply the martingale idea
of Houdré and Reynaud-Bouret [14]: Because of the independence and the centering of
the (εj), the process (UN )N≥1 is a martingale with respect to its natural filtration (FUN )
(setting U1 = 0):

E[UN − UN−1|FUN−1] = E
[N−1∑
k=1

δNδkεNεkξN,k(U)|FUN−1

]
= 0.

We will apply the following martingale version of the Bernstein inequality:

Proposition 7.4 (Bernstein’s inequality). Let (Mn,Fn) be a martingale with M0 = 0.
For arbitrary t, Q, S > 0 the following holds true:

P(|Mn| ≥ t) ≤ 2P(〈M〉n > Q) + 2P
(

max
k=1,...,n

|Mk −Mk−1| > S
)

+ 2 exp
(
− t2

4(Q+ tS)

)
.

Hence, we consider the increment, N ≥ 2,

|UN − UN−1| = |εN |
∣∣∣N−1∑
k=1

δNδkξN,k(U)︸ ︷︷ ︸
=:aN,k

εk

∣∣∣
for which we estimate using (7.7)

N−1∑
k=1

a2
N,k = δ2

N

N−1∑
k=1

δ2
kξN,k(U)2 ≤ c26∆4U4Tᾱ+8δ2

N‖δ‖2l2 (7.8)

≤ c26∆4‖δ‖4l2U4Tᾱ+8 ≤ c27ε4U4Tᾱ+8 ≤ c27ε4(s−1)/(2s+2Tᾱ+1).



32

Thus, by Assumption (5.4) we obtain for all S > 0

P(|UN − UN−1| > S) = P
(
|εN |

∣∣∣N−1∑
k=1

aN,kεk

∣∣∣ > S
)

≤P
(
|εN | >

√
Sε−(s−1)/(2s+2Tᾱ+1)

)
+ P

(∣∣∣N−1∑
k=1

aN,kεk

∣∣∣ > √Sε(s−1)/(2s+2Tᾱ+1)
)

≤C1 exp
(
− C2Sε

−2(s−1)/(2s+2Tᾱ+1)
)

+ C1 exp
(
− C2

c27
Sε−2(s−1)/(2s+2Tᾱ+1)

)
.

The quadratic variation of UN is given by

〈U〉N − 〈U〉N−1 = E
[
(UN − UN−1)2

∣∣FUN−1

]
= δ2

N

(N−1∑
k=1

δkεkξN,k(U)
)2

.

W.l.o.g. we can assume
∑N
j=2 δ

2
j > 0. Otherwise follows

∑N
j=2 δ

2
j = 0 which implies δj = 0

for all j = 2, . . . , N and thus 〈U〉N =
∑N
j=2

(
〈U〉j−〈U〉j−1

)
= 0. Then P(〈U〉N > Q) = 0

would hold for Q > 0. Hence, we obtain:

P(〈U〉N > Q) = P
( N∑
j=2

(
〈U〉j − 〈U〉j−1

)
> Q

)
≤

N∑
j=2

P
(
〈U〉j − 〈U〉j−1 >

δ2
j∑N

k=2 δ
2
k

Q
)

≤
N∑
j=2

P
(
‖δ‖l2

j−1∑
k=1

δkεkξj,k(U) >
√
Q
)
.

To apply inequality (5.4) we estimate ‖δ‖2l2
∑j−1
k=1 δ

2
kξj,k(U)2 ≤ c26∆4‖δ‖4l2U4Tᾱ+8 ≤

c27ε
4(s−1)/(2s+2Tᾱ+1) analogous to (7.8) and obtain

P(〈U〉N > Q) ≤ C1N exp
(
− C2

c27
Qε−4(s−1)/(2s+2Tᾱ+1)

)
.

We deduce from Bernstein’s inequality:

P
(
UN ≥

κ

36

)
≤2P

(
〈U〉N > Q

)
+ 2P

(
max

k=2,...,N
|Uk − Uk−1| > S

)
+ 2 exp

(
− κ2

144(36Q+ κS)

)
≤2C1N exp

(
− C2

c27
Qε−4(s−1)/(2s+2Tᾱ+1)

)
+ 4C1N exp

(
− C2

c27 ∨ 1
Sε−2(s−1)/(2s+2Tᾱ+1)

)
+ 2 exp

(
− κ2

144(36Q+ κS)

)
.

By choosing Q = κS and S =
√
κε(s−1)/(2s+2Tᾱ+1) we get

P
(
UN ≥

κ

36

)
≤ (6C1N + 2) exp

(
− c8 min

q=1,3

(
κ1/2ε−(s−1)/(2s+2Tᾱ+1)

)q)
.
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For all ε < ε(3) we have κε−2(s−1)/(2s+2Tᾱ+1) > κ
(
ε(3)
)−2(s−1)/(2s+2Tᾱ+1) ∼ 1 and

hence,

P3 ≤ P(DN ≥
κ

18
) + P(UN ≥

κ

36
) ≤ (7C1N + 2) exp

(
− c8κ1/2ε−(s−1)/(2s+2Tᾱ+1)

)
.

Putting the bounds of P1, P2 and P3 together yields for a constant c ∈ (0,∞) and all
ε < ε0 ∧ 1 with ε0 := min{ε(1), ε(2), ε(3)}

P(|α̂0 − α| ≥ κ) ≤ (7C1N + C1 + 2) exp
(
− c(κ2 ∧ κ1/2)ε−(s−1)/(2s+2Tᾱ+1)

)
.

Appendix A: Proof of Lemma 2.1

Part i) The martingale condition yields

|ϕT (u− i)| = exp
(
T

∫ ∞
−∞

(
cos(ux)− 1

)exk(x)

|x|
dx
)
.

W.l.o.g. we assume T = 1, α > 0 and u ≥ 1 because of the symmetry of the cosine.
Step 1: Let k(0−) = 0. We split the integral domain into three parts:

|ϕ1(u− i)| = exp
((∫ 1

0

+

∫ u

1

+

∫ ∞
u

)
(cos x− 1)

ex/uk(xu )

x
dx
)
.

Using the monotonicity of k and the constant C1 :=
∫ 1

0
1−cos x

x dx ∈ (0,∞), we estimate∫ 1

0

(cos x− 1)
ex/uk(xu )

x
dx ≥ e1/uk(0+)

∫ 1

0

cos x− 1

x
dx ≥ −C1ek(0+).

In the second part the dependence on u comes into play. The Taylor series of the expo-
nential function together with dominated convergence yield:∫ u

1

(cos x− 1)
ex/uk(xu )

x
dx ≥ k(0+)

(∫ u

1

cos x

x
− 1

x
dx+

∞∑
k=1

∫ u

1

(cos x− 1)
xk−1

ukk!
dx
)

≥ k(0+)
(

min
v≥1

∫ v

1

cos x

x
dx︸ ︷︷ ︸

=:−C2≤0

− log(u)− 2

∞∑
k=1

1

k!k
(1− u−k)

)
≥ k(0+)(−C2 − 2e− log(u)).

Note that the constant C2 is finite since x 7→ cos(x)
x is Riemann integrable on [1,∞). We

obtain for the third part:∫ ∞
1

(cos x− 1)
exk(x)

x
dx ≥ −2

∫ ∞
1

exk(x) dx.
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This achieves the estimate

|ϕ1(u− i)| ≥ exp

(
k(0+)(−(C1 + 2)e− C2)− 2

∫ ∞
1

exk(x) dx

)
u−k(0+).

Step 2: Suppose k(0+) = 0. By substituting x = −y we derive similarly:

|ϕ1(u− i)| ≥ exp

(
−k(0−)(C1 + C2)− 2

∫ −1

−∞
exk(x) dx

)
u−k(0−).

Step 3: Let k(0−) > 0 and k(0+) > 0. We split the integral domain into R+ and R−
and deduce from steps 1 and 2 the estimate |ϕT (u − i)| ≥ Cϕ(T, ‖exk(x)‖L1 , α)u−Tα

for |u| ≥ 1 and with Cϕ(T,R, α) := exp(Tα(−(C1 + 2)e + C2) − 2TR). Part ii) follows
immediately from the explicit choice of Cϕ.

Appendix B: White noise model and lower bounds

To establish asymptotic lower bounds for the convergence rates of the estimators γ̂, α̂j ,

j = 0, . . . , s− 2 and k̂e, we consider the continuous white noise model

dZP(x) = OP(x) dx+
1√
N
λN (x) dW (x), x ∈ [−AN , AN ], (B.1)

with a two sided Brownian motion W , an option function OP induced by the pair P ∈
Gs(R, ᾱ) and AN > 0 growing in N . Under certain conditions, we can apply the results of
Brown and Low [5] to show the asymptotic equivalence of the above considered regression
model

Oj = O(xj) + δjεj , j = 1, . . . , N, (B.2)

and the white noise model (B.1) for N → ∞. Setting N and ε in relation to each other
allows us to derive lower bounds in terms of ε.

To that end, we state the situation of (B.2) more precisely. Let N ∈ N and HN :
[−AN , AN ]→ [0, 1] be an increasing, absolutely continuous distribution function with

hN := H ′N > 0 a.e. on [−AN , AN ] (B.3)

such that the strikes are given by xj = H−1
N (j/(N + 1)) for j = 1, . . . , N . Furthermore,

let δj = δ(xj) for some function δ ∈ L∞(R). We suppose that δ is absolutely continuous
satisfying the technical condition∣∣∣ d

dx
log δ(x)

∣∣∣ ≤ Cδ, x ∈ R, (B.4)

for some constant Cδ < ∞. From Belomestny and Reiß [3, Prop. 2.1] we know that
O′ is continuous on R \ {0} with a jump at zero of height -1. ‖O′′‖L1 ≤ 3 implies
|O′(x)| = |

∫ x
0
O′′(x) dx| ≤ 3 for all x 6= 0 and thus, O′ is uniformly bounded. Especially,

O is Lipschitz continuous for any P ∈ Gs(R, ᾱ)∪Hs(R, ᾱ). The equivalence result follows
immediately from Brown and Low [5, Thm. 4.1, Cor. 4.2].
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Proposition B.1. Under the assumptions (B.3) and (B.4) the nonparametric regres-
sion model (B.2) with εj ∼ N(0, 1) iid. and the white noise model (B.1) are asymptotically
equivalent in Le Cam’s sense if λ2

N (x) = δ2(x)/hN (x) for x ∈ [−AN , AN ].

Remark B.2. Grama and Nussbaum [13] showed the asymptotic equivalence of loca-
tion type regression models with non-Gaussian noise to regression models with Gaussian
noise. Hence, the condition on the distribution of εj in the preceding proposition can be
relaxed to error laws with regular densities.

By Proposition B.1 asymptotic lower bounds in the regression model can be proved in
the white noise setting equivalently. To this end we need a uniform lower bound of the
noise level λN/

√
N in terms of ε. Let the strike distribution be polynomial:

hN (x) ∼ C−1
N (|x|+ 1)−q, x ∈ [−AN , AN ], (B.5)

for some q ≥ 0 and normalization constant CN . This is reasonable since in practice
most of the traded options are almost at-the-money whereas only less ones are far in- or
out-of-the-money. Moreover, we suppose a minimal noise through

δ2(x) & ‖δ‖2∞(|x|+ 1)−p, x ∈ R, (B.6)

where p > 1 is necessary. The restriction on p is because the condition ∆‖(δj)‖2l2 .
‖(δj)‖2l∞ in the Theorem 4.2 implies necessarily δ ∈ L2(R) which is due to Fatou’s
lemma:

‖δ‖2L2 ≤ lim inf
N→∞

(
∆δ2(x1) +

N∑
j=2

(xj − xj−1)δ2(xj)
)
≤ lim inf

N→∞
∆‖(δj)‖2l2 . ‖δ‖2∞.

In the same way ∆‖(xjδj)‖2l2 . ‖(δj)‖2l∞ implies even xδ(x) ∈ L2(R) in the situation of
Theorem 4.5. In view of the condition e−AN . ∆2 ∼ ε4 and ANe

−AN . ∆2, respectively,
we assume addionally AN ∼ log ε−1.

Lemma B.3. Let the properties (B.5) and (B.6) be satisfied. If AN ∼ log ε−1 holds

then we obtain
λ2
N (x)
N & ε2(log ε−1)−β for β := max{p, q}.

The proof of the lemma is straight forward and thus omitted. In the sequel we assume
always that the model (B.1) satisfies the conditions of this lemma.

Remark B.4. For the estimators γ̂ and α̂j with s ≥ 3 we can consider the case p ∈ [0, 1)
because of Remark 4.3. In the situation of 0 = p = q we obtain β = 0 and hence, the
lower bounds proved in the next theorems imply that our estimation procedure achieves
exact minimax rates for the parameters. With regard to k̂e the condition ∆‖(xjδj)‖2l2 .
‖(δj)‖2l∞ yields β ≥ p > 3.



36

Theorem B.5. Let s ∈ N, s ≥ 2, R, ᾱ > 0 and j = 0, . . . , s − 2,. We obtain in the
observation model (B.1) the asymptotic risk lower bounds

inf
γ̂

sup
P∈Gs(R,ᾱ)

EP [|γ̂ − γ|2]1/2 &
(
ε(log ε−1)−β/2

)2s/(2s+2Tᾱ+1)
,

inf
α̂j

sup
P∈Gs(R,ᾱ)

EP [|α̂j − αj |2]1/2 &
(
ε(log ε−1)−β/2

)2(s−1−j)/(2s+2Tᾱ+1)
and

inf
k̂e

sup
P∈Hs(R,ᾱ)

EP [‖k̂e − ke‖2L2,τ ]1/2 &
(
ε(log ε−1)−β/2

)2s/(2s+2Tᾱ+5)

where the infimum is taken over all estimators, i.e. all measurable functions of the ob-
servation Z. The bound for ke holds for s = 1 as well.

As noticed these lower bounds are a logarithmic factor better then the convergence
rates in the last section in the case β > 0. The following corollary extends the result to
the parameter αs−1 := k(s−1)(0+) + k(s−1)(0−). Especially, the estimation of α in the
case s = 1 is of interest.

Corollary B.6. Consider the situation of the Theorem B.5 where s = 1 is also possible.
For αs−1 we obtain asymptotically the risk lower bound

inf
α̂s−1

sup
P∈Gs(R,ᾱ)

EP [|α̂s−1 − αs−1|2]1/2 & 1

in the observation model (B.1). Hence, we cannot estimate αs−1 consistently in the L2-
sense.

Appendix C: Proofs of lower bounds

First, we are interested in the distance of ZP0
and ZP1

with P0,P1 ∈ G0(R, ᾱ). Girsanvo’s
theorem implies the equivalence of the laws of ZP• and the likelihood ratio for P0 with
respect to P1, given by Liptser and Shiryaev [17, Theorem 7.18], is:

Λ(P0,P1) = exp
(∫ AN

−AN

(OP1 −OP0)(x)
√
NλN (x)−1 dW (x)

− 1

2

∫ AN

−AN

|OP1 −OP0 |2(x)NλN (x)−2 dx
)
.
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Hence, we can bound the Kullback-Leibler divergence using the uniform bound of N/λ2
N ,

Parseval’s identity and the pricing formula

KL(P1|P0) = EP1

[
log
(
Λ(P1,P0)

)]
=

1

2

∫ AN

−AN

|OP1
−OP0

|2(x)NλN (x)−2 dx

∼ ε−2(log ε−1)β
∫ ∞
−∞
|F(OP1

−OP0
)(u)|2 du

∼ ε−2(log ε−1)β
∫ ∞
−∞

∣∣∣ϕT,P0(u− i)− ϕT,P1(u− i)
u(u− i)

∣∣∣2 du. (C.1)

C.1. Lower bound for γ:

Following the standard approach, we perturb a pair P0 ∈ Gs(R, ᾱ). Let P0 = (γ0, k0)
satisfies all conditions where norms and constants are strictly smaller then R and with
α = ᾱ. Furthermore, let k0 do not decrease too rapidly, i.e., we assume k0 & |x|−p and
|k′0| & |x|−q for some p, q > 0, and |ϕT (u − i)| . |u|−Tα hold exactly. Certainly such a
pair exists.
Let δ > 0 and consider P1 = (γ1, k1) given by

γ1 = γ0 + δ and F
(k1(x)− k0(x)

|x|
ex
)

(u) = −δi(u− i)e−u
2m/U2m

where we will choose U > 1 and m ∈ N properly. In the following we call the difference of

the exponentially scaled jump measures g(x) := k1(x)−k0(x)
|x| ex. By construction g is real

valued and the martingale condition is valid:

γ1 +

∫
R

(ex − 1)
k1(x)

|x|
dx = γ0 + δ +

∫
R

(ex − 1)
k0(x)

|x|
dx+ Fg(0)−Fg(i)

= γ0 + δ +

∫
R

(ex − 1)
k0(x)

|x|
dx− δ = 0.

Also the moment assumption can be checked straight forward for δ small enough:

EP1
[e2XT ] = EP0

[e2XT ] · exp
(

2δ +

∫ ∞
−∞

(ex − e−x)g(x) dx
)

= EP0 [e2XT ] · exp
(
2δ(1− e(−1)m+1/U2m

)
)
< e2δEP0 [e2XT ] ≤ R.

Using the Schwartz-functions ζ1 := F−1
(
− iue−u2m)

, ζ2 := F−1
(
− e−u2m) ∈ S (R) the

inversion and scaling properties of the Fourier transform yield for u ∈ R

Fg(u) = δUFζ1(
u

U
) + δFζ2(

u

U
) = F

(
δU2ζ1(Ux) + δUζ2(Ux)

)
(u).

Hence, we have g(x) = δU2ζ1(Ux) + δUζ2(Ux) ∈ S (R). Even e−xg(x) ∈ S (R) holds
because of F

(
e−xζj(x)

)
(u) = Fζj(u+ i) for u ∈ R and j ∈ {1, 2}.
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If δU2 . 1 the disturbance |x|e−xg(x) and its derivative are bounded for all U ≥ 1, owing
to the rescaling with U :∣∣Uxe−xζj(Ux)

∣∣ ≤ ∣∣Ux(1 ∨ e−Ux)ζj(Ux)
∣∣ ≤ ‖x(1 ∨ e−xζj(x))‖∞ ≤ ∞.

Since additionally |x|exg(x) is fast decreasing and k0 and k′0 are bounded from below,
the k-function k1 is non-negative and satisfies the monotonicity conditions provided δ is
small enough.

The continuity and polynomial decrease of ζj imply ‖(1 ∨ e−x)ζ
(l)
j ‖L1 < ∞, j = 1, 2.

Furthermore, by construction (k1 − k0)(0) = 0 and the derivatives of the disturbance is
given by

(k1 − k0)(m)(x) =
dm

dxm
|x|e−xg(x) =

m∑
l=0

(
m

l

)
(−1)l(|x| − l sgnx)e−xg(m−l)(x)

=δ

m∑
l=0

(
m

l

)
(−1)lUm−l+2(|x| − l sgnx)e−x

(
ζ

(m−l)
1 (Ux) + U−1ζ

(m−l)
2 (Ux)

)
for m = 1, . . . , s and x 6= 0. Hence, (k0 − k1)(m)(0+) + (k0 − k1)(m)(0−) = 0 for m =
0, . . . , s and substituting y = Ux yield∥∥(1 ∨ ex)(k0 − k1)(s)(x)

∥∥
L1

≤δ
(
Us
∥∥∥(1 ∨ e−y)|y|ζs1(y)

∥∥∥
L1

+

s∑
l=1

(
s

l

)
Us−l+1

∥∥∥(1 ∨ e−y)(|y|+ l)ζs−l1 (y)
∥∥∥
L1

+ Us−1
∥∥∥(1 ∨ e−y)|y|ζs2(y)

∥∥∥
L1

+

s∑
l=1

(
s

l

)
Us−l

∥∥∥(1 ∨ e−y)(|y|+ l)ζs−l2 (y)
∥∥∥
L1

)
.δUs

and even better bounds for derivatives of lower order. Thus, the norm restrictions are
fulfilled by choosing U ∼ δ−1/s. Additionally, δU2 ∼ δ(s−2)/s . 1 is valid. Therefore,
P1 ∈ Gs(R,αmax) holds. From Tsybakov [26, Thm. 2.2] follows the lower bound

inf
γ̂

sup
P∈Gs(R,αmax)

EP [|γ̂ − γ|2] & δ2,

once we have shown that the Kullback-Leibler divergence is asymptotically bounded. We
deduce from equation (C.1), the estimate |1 − ez| ≤ 2|z| for all z ∈ C in a small ball
around 0 and the assumed decrease |ϕT (u− i)| . |u|−Tα for m ≥ Tα+ 1

KL(P1|P0) .
| log ε|β

ε2

∫ ∞
−∞
|ϕT,P0

(u− i)|2
∣∣iδ(u− i) + Fg(u)−Fg(i)

∣∣2(u4 + u2)−1 du

= ε−2(log ε−1)βδ2

∫ ∞
−∞
|ϕT,P0

(u− i)|2
∣∣1− e−u2m/U2m ∣∣2u−2 du.
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. ε−2(log ε−1)βδ2U−2Tα−1

∫ ∞
−∞
|u|−2Tα−2

∣∣1− e−u2m ∣∣2 du

. ε−2(log ε−1)βδ(2s+2Tα+1)/s

Hence, KL(P1|P0) remains bounded if δ ∼
(
ε2(log ε−1)−β

)s/(2s+2Tα+1)
.

C.2. Lower bound for αj:

We will need the following auxiliary lemma which is shown in Section C.4 separately:

Lemma C.1. Let j ∈ {0, . . . , s − 1} and m ∈ N. There is a family of functions
(gU )U≥1 ⊂ Cs(R \ {0}) or (gU )U≥1 ⊂ Cj−1(R) ∩ Cs(R \ {0}) for j = 0 or j ≥ 1,
respectively, such that each gU has compact support and satisfies the following conditions
for some constants S,Umin > 1 and for all U ≥ Umin:

i)
∫∞
−∞

ex/U−1
|x| gU (x) dx = 0,

ii)
∫∞
−∞ |

e2x−1
x gU (x)|dx ≤ S,

iii) gU (0+) + gU (0−) ≥ 0, g
(j)
U (0+) + g

(j)
U (0−) = 1 and |g(l)

U (0+) + g
(l)
U (0−)| ≤ S for

l = 0, . . . , s− 1,

iv) ‖gU‖∞ ≤ S and
∫∞
−∞(1 ∨ ex)|g(l)

U (x)|dx ≤ S for l = 0, . . . , s as well as

v)
∣∣∣u−m ∫∞−∞ eiux−1

|x| ex/UgU (x) dx
∣∣∣ ≤ S, u ∈ [−1, 1].

Now, we are in position to prove lower bounds for αj . Since the convergence rates of
αj decrease for rising j and because of the recursion formula in Lemma 3.1, it is sufficient
to consider k(j)(0+) + k(j)(0−) instead of αj . Fix a j ∈ {0, . . . , s− 2}.
We argue analogously to the proof for the estimation of γ: Again we perturb a pair
P0 = (γ0, k0) ∈ Gs(R, ᾱ) with exactly the same properties as above. To disturb P0 in
a suitable way, we choose a family of functions (gU )U≥1 ⊂ Cs(R \ {0}) or (gU )U≥1 ⊂
Cj−1(R) ∩ Cs(R \ {0}) for j = 0 or j ≥ 1, respectively, with the properties i) - v) from
Lemma C.1 for some constants S,Umin > 1 and m ∈ N,m ≥ Tα + 2. For δ > 0 define
P1 = (γ1, k1) as

γ1 := γ0 and k1(x) := k0(x)− δU−jgU (Ux), x ∈ R.

From i) follows the martingale condition as for γ:

0 = γ0 +

∫
R

(ex − 1)
k0(x)

|x|
dx− δU−j

∫
R

ex/U − 1

|x|
gU (x) dx = γ1 +

∫
R

(ex − 1)
k1(x)

|x|
dx.

As long as δU−j+1 is bounded the perturbation and its derivative are bounded in U
such that the necessary monotonicity and non-negativity conditions of k1 follow as in the
proof before. We derive the moment assumption using ii)

EP1
[e2XT ] = exp

(
− δU−j

∫
R

e2x − 1

|x|
gU (Ux) dx

)
EP0

[e2XT ] ≤ eSδU
−j

EP0
[e2XT ].
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Furthermore, the smoothness of gU and condition iii) yield

(k0 − k1)(j)(0+) + (k0 − k1)(j)(0−) = δ and

(k0 − k1)(s−1)(0+) + (k0 − k1)(s−1)(0−) ≤ SδUs−1−j .

Using the integrability condition iv), we estimate

‖(1 ∨ ex)(k1 − k0)(s)‖L1 = δU−j‖(1 ∨ ex)(gU (Ux))(s)‖L1

= δUs−1−j‖(1 ∨ ex/U )g
(s)
U (x)‖L1 ≤ SδUs−1−j

and better bounds for derivatives of lower order. Thus, P1 ∈ Gs(R,αmax) if we choose
U ∼ δ−1/(s−1−j) with a constant small enough (note δU−j+1 ∼ δ(s−2)/(s−1−j) . 1).

With respect to condition v), the uniform boundedness of gU , their compact support
and the estimate (C.1) the Kullback-Leibler divergence is bounded by

KL(P1|P0)

.T 2 | log ε|β

ε2

∫ ∞
−∞
|ϕT,P0

(u− i)|2
∣∣∣ ∫ ∞
−∞

eiux − 1

|x|
ex(k1 − k0)(x) dx

∣∣∣2(u4 + u2)−1 du

.
| log ε|β

ε2
δ2U−2j

∫ ∞
−∞
|ϕT,P0

(u− i)|2
∣∣∣ ∫ ∞
−∞

eiux − 1

|x|
exgU (Ux) dx

∣∣∣2(u4 + u2)−1 du

.
| log ε|β

ε2
δ2U−2j

∫ ∞
−∞
|u|−2Tα−4

∣∣∣ ∫ ∞
−∞

eiux/U − 1

|x|
ex/UgU (x) dx

∣∣∣2 du

.
| log ε|β

ε2
δ2U−2Tα−2j−3

∫ ∞
−∞
|u|−2Tα−4

∣∣∣ ∫ ∞
−∞

eiux − 1

|x|
ex/UgU (x) dx

∣∣∣2 du

.ε−2(log ε−1)βδ(2s+2Tα+1)/(s−1−j).

Hence, the choice δ ∼
(
ε2(log ε−1)−β

)(s−1−j)/(2s+2Tα+1)
yields the claim.

Form this proof we can conclude Corollary B.6 as follows:
Using the same perturbation P1 of a pair P0 ∈ Gs(R, ᾱ) we obtain bounds for (k0 −
k1)(s−1)(0+) + (k0 − k1)(s−1)(0−) and ‖(1 ∨ ex)(k1 − k0)(s)‖L1 which depend only on δ.
Thus, we choose U > 1 and δ independently from each other and estimate the Kullback-
Leibler-distance as in the theorem:

KL(P1|P0) . ε−2(log ε−1)βδ2U−2s−2Tα−1.

Therefore, for a small constant δ and U ∼
(
ε−2(log ε−1)β

)1/(2s+2Tα+1)
the Kullback-

Leibler-divergence is bounded.

C.3. Lower bound for ke:

Choose some P0 = (γ0, k0) ∈ Hs(R, ᾱ) such that the corresponding characteristic func-
tion decreases as |u|−Tᾱ but all integral norms and constants are strictly smaller than



41

R. For j ∈ N let ψj ∈ C∞(R) satisfy suppψ = [0, 1] and ‖ψj‖L2 = 1 as well as∫
R
ψj(x) dx =

∫
R
ψj(x)e−2−jx dx = 0 and

∫
R
|Fψj(u)u−λ|2 du <∞

for some λ > Tᾱ + 2 and have uniformly bounded norms ‖ψ(m)
j ‖L2 < C for a constant

C > 0 and all j ≥ 1,m = 0, . . . , s. Such functions exist, for instance the last property
holds if ψj is the λth derivative of an L2-function. Defining

ψjl(x) := 2j/2ψj(2
jx− l) for j ≥ 1, l = 2j−1, . . . , 2j−1 − 1,

we obtain Fψjl(0) = Fψjl(i) = 0. For any r = (r2j−1 , . . . , r2j−1) ∈ {−1, 1}2j−1

we
consider the perturbed pair Pr = (γ0, kr) with

kr(x)− k0(x) = δe−x|x|
2j−1∑
l=2j−1

rlψjl(x), x ∈ R.

Hence, ke,r(x)− ke,0(x) = δx
∑2j−1
l=2j−1 rlψjl(x) and Pr satisfies the martingale condition

and (kr − k0)(0+) + (kr − k0)(0−) = 0. Assumption 1 with C2 ≤ R and EPr [XT e
XT ] =

−iϕ′T,Pr
(−i) ≤ R hold for δ sufficiently small. Using the disjoint support of ψjl for

different l, we calculate for m = 0, . . . , s:

‖k(m)
e,r − k

(m)
e,0 ‖2L2 =δ2

2j−1∑
l=2j−1

∥∥∥ dm

dxm
xψjl(x)

∥∥∥2

L2
= δ2

2j−1∑
l=2j−1

∥∥∥xψ(m)
jl (x) +mψ

(m−1)
jl (x)

∥∥∥2

L2

=δ222jm
2j−1∑
l=2j−1

∥∥∥2−j(y + l)ψ
(m)
j (y) +m2−jψ

(m−1)
j (y)

∥∥∥2

L2
.

We note that y = 2jx− l ∈ [0, 1] implies x = 2−j(y + l) ∈ [1/2, 1] and estimate

‖k(m)
e,r − k

(m)
e,0 ‖2L2 ≤ δ222jm+j−1

(
2‖ψ(m)

j ‖2L2 + 2m2‖ψ(m−1)
j ‖2L2

)
. δ22j(2m+1).

Since ‖ke,r − ke,0‖L1 . δ2j/2 follows in the same way, choosing δ ∼ 2−j(s+1/2) ensures
Pr ∈ Hs(R, ᾱ).

Let r, r′ ∈ {−1, 1}2j−1

with Hemming distance equal to one, that is rl = r′l except for
one l0. Then, ψj,l0(x) = 0 for |x| < 1/2 implies

‖ke,r − ke,r′‖2L2,τ = 4δ2‖xψj,l0(x)‖2L2 = 4δ2‖2−j(y + l0)ψj(y)‖2L2 ≥ δ2‖ψj‖2L2 .

We will apply Assouad’s lemma (see Tsybakov [26, Lem. 2.12]), which yields

inf
k̂e

sup
P∈Hs(R,ᾱ)

EP [|k̂e − ke|2] & 2j−1‖ke,r − ke,r′‖2L2,τ & 2−2js
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if the Kullback-Leibler divergence for two alternatives with Hamming distance one re-

mains bounded. This holds true by choosing 2−j ∼
(
ε(log ε−1)−β/2

)2/(2s+2Tᾱ+5)
since

KL(Pr′ |Pr) . ε−2(log ε−1)β
∫ ∞
−∞

∣∣∣ϕT,Pr (u− i)F
(ex(kr′ − kr)(x)

|x|

)
(u)
∣∣∣2(u4 + u2)−1 du

. ε−2(log ε−1)βδ2

∫ ∞
−∞
|u|−2Tᾱ−4

∣∣Fψjl0(u)
∣∣2 du

= ε−2(log ε−1)βδ22−j
∫ ∞
−∞
|u|−2Tᾱ−4

∣∣Fψj(2−ju)
∣∣2 du

. ε−2(log ε−1)β2−j(2s+2Tᾱ+5).

C.4. Proof of Lemma C.1

Let j ≥ 0 and define C−1(R) := RR. For a constant T > 1 consider the set

CT :=
{
f ∈ Cs(R \ {0}) ∩ Cj−1(R)

∣∣ supp f = [−1, 1], f satisfies condition iii),

‖f (l)‖∞ < T, l = 0, . . . , s
}
⊂ L2(R).

Certainly, CT is non-empty if T is greater then a minimal value. Thus, each g ∈ CT
satisfies the properties ii) - iv) for some S > T big enough. To handle conditions i) and
v), we define the functions χUl : [−1, 1]→ R, x 7→ sgn(x)xl−1ex/U , with l = 1, . . . ,m− 1,
and consider gU ∈ CT which satisfies gU ⊥ χUl , l = 1, . . . ,m − 1, where we write f ⊥ g
if f, g ∈ L2[−1, 1] are orthogonal in the sense of L2[−1, 1]. Then dominated convergence
yields for u ∈ [−1, 1]∣∣∣ ∫ ∞

−∞

eiux − 1

|x|
ex/UgU (x) dx

∣∣∣ ≤ ∞∑
k=m

|u|k

k!

∣∣∣ ∫ ∞
−∞

sgn(x)xk−1ex/UgU (x) dx
∣∣∣

≤|u|m
∫ ∞
−∞

∞∑
k=m−1

|x|k

(k + 1)!
ex/U |gU (x)|dx ≤ |u|m

∫ ∞
−∞

e|x|(1 ∨ ex)|gU (x)|dx ≤ 2e2T |u|m.

Hence, condition v) is satisfied if S ≥ 2e2T . Furthermore, the orthogonality of gU and
χUl l = 1, . . . ,m− 1, implies〈

ex/U − 1

|x|
, gU

〉
=

〈
−
∞∑
k=m

sgn(x)xk−1

k!(−U)k
ex/U︸ ︷︷ ︸

=:(−U)−mχU
m(x)

, gU

〉
.

Therefore, gU satisfies condition i) if gU ⊥ χUm. It remains to prove

CT ∩A ⊥U 6= ∅ where AU := {χUl |l = 1, . . . ,m}.
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This can be done by contradiction using a separation argument:
Assume CT ∩A ⊥U = ∅. Since CT 6= ∅ and A ⊥U are convex, the Hahn-Banach separation
theorem and the Fréchet-Riesz representation theorem imply the existence of a function
ξU in the Hilbert space (L2[−1, 1], 〈·, ·〉) such that 〈f, ξU 〉 ≤ 〈g, ξU 〉 for all f ∈ CT ,∀g ∈
A ⊥U . Because A ⊥U ⊂ L2[−1, 1] is a subspace and the linear functional A ⊥U 3 g 7→ 〈g, ξU 〉 ∈
R is bounded from below, 〈g, ξU 〉 = 0 holds for all g ∈ A ⊥U . Since AU is finite, we conclude
further

ξU ∈ lin AU = lin AU and 〈f, ξU 〉 ≤ 0, ∀f ∈ CT .

This leads to a contradiction if there exists an f ∈ CT such that 〈f, ξU 〉 > 0. To show
this, we define χl ∈ L2[−1, 1] via the pointwise limits χl(x) := limU→∞ χUl (x) for x ∈ R\
{0}, l = 1, . . . ,m. These limits are linearly independent and non-zero. By the compactness
of the interval and the uniform boundedness of the functions χUl this is also an L2 limit.
Let ξU =

∑m
l=1 alχ

U
l for some al ∈ R, l = 1, . . . ,m. Using the Cauchy-Schwarz inequality,

we obtain for all f ∈ CT :

〈f, ξU 〉 =

m∑
l=1

al
(
〈f, χl〉 −

〈
f, χl − χUl

〉 )
≥

m∑
l=1

|al|
(
〈f, sgn(al)χl〉

)
− ‖f‖L2‖χl − χUl ‖L2

)
≥

m∑
l=1

|al|
(
〈f, sgn(al)χl〉

)
−
√

2T‖χl − χUl ‖L2

)
Thus, for some τ > 0 we choose T big enough such that for all e = (el)

m
l=1 ∈ {−1, 1}m

there exists an fe ∈ CT such that minl=1,...,m 〈fe, elχl〉 > τ . (This can be done by choosing
fe as a polynomial with 2s+ 2 conditions at ±1 and 0 as well as m linear restrictions on
the coefficients of the polynomial since we can calculate 〈fe, elχl〉 explicitly.) Choosing
a Umin > 1 such that τ >

√
2T maxl=1,...,m ‖χUmin

l − χl‖L2 ensures 〈fe, ξU 〉 > 0 with
e = (sgn(al))

m
l=1.
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[15] Jongbloed, G., van der Meulen, F. H. and van der Vaart, A. W. (2005).
Nonparametric inference for Lvy-driven Ornstein-Uhlenbeck processes. Bernoulli 11
759-791.

[16] Kappus, J. and Reiß, M. (2010). Estimation of the characteristics of a Lévy
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