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Abstract

Calorimeters have been used extensively for the study of neutrino interactions in the last decade. This
paper describes the need for calibration of such calorimeters and how this was realized for the case of
the CHARM fine-grained calorimeter. The energy and spatial response of the calorimeter to both
hadronic and electromagnetic showers was measured in 7 and electron bearns from 5 to 140 GeV. The
results and resolutions are presented.
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2 Calibration of the CHARM Calorimeter

1. Introduction
1.1 Calorimetry in Neutrino Experiments

The neutrino (or its anti-particle the antineutrino), can justly be described as the most elusive of
the fundamental particles. This quality stems from the lack of properties which could lead to easy de-
tection. The neutrino has no electric charge and, to the best of our current knowledge, has no intrinsic
mass. The lack of electric charge means that a neutrino will pass through matter without causing ioni-
sation and will pass through electric or magnetic fields without suffeing any deflection. The lack of
intrinsic mass constrains the neutrino to travel always at the velocity of light. Furthermore, as far as we
know, neutrinos are completely stable and do not decay into other particles which might be easier to
detect.

Hence, the only way that the presence of neutrinos can be detected (rather than inferred) is
through their interaction, and even this is extremely weak. For example, the probability that a neutri-
no of 4 GeV cnergy will interact with a given target is 1072 that with which a proton would interact
with the same target.

Despite these inherent difficulties, ever since the existence of accelerators of sufficient energy (such
as the proton synchrotrons of energy greater than 10 GeV), beams of neutrinos have been produced
and experiments have been carried out using these beams.

The detectors of neutrinos, which must rely on producing interactions of these elusive particles,
have necessarily been massive in order to produce a significant number of interactions in a finite time.
These have been of two types. Large bubble chambers, usually containing several tons of liquid, in
which the rare neutrino events have been detected by photographing the ionisation tracks produced by
the charged products of the neutrino interactions. The second type of detector has been developed in
order to use the maximum amount of material and thus to produce large numbers of neutrino interac-
tions for detailed study. It comprises typically laminations of solid material interspersed with detector
layers which record signals proportional to the number of charged tracks which have passed through
each layer, thus "sampling” the deposition of energy of the hadronic shower produced by the neutrino
interaction. This type of detector has become known as the target calorimeter, since it acts both as a
massive target to produce neutrino interactions, and as an energy detector to measure the amount of
energy released by the neutrino interaction. Such detectors have masses of several hundred tons, and
have yielded hundreds of thousands of neutgino events.

These two types of detectors have played a complementary role in neutrino physics in the last two
decades; the bubble chamber giving extremely fine resolution of the charged tracks produced in neutri-
no interactions, whilst the target calorimeter detectors have yielded many more interactions in which
much less detail of the final state could be seen. It is natural that both these kinds of detector have
evolved with time. The bubble chamber detectors have added muon detectors outside the chamber it-
self in order to improve the efficiency for detection of the high-energy muons produced commonly in
neutrino interactions (in the so-called charged-current reactions of muon-neutrinos v,)- The target ca-
lorimeters have become more and more sophisticated in an attempt to measure more than just the en-
ergy of the hadronic shower and the direction of the outgoing muon, when present.

With the increasing sophistication of target calorimeters has come an even greater need for so-
phisticated calibration of their response. This paper will deal with the methods used to calibrate the
response of a fine-grained target calorimeter used by the CHARM Collaboration [1] in a series of neu-
trino experiments over the period 1977-1984 in which not only the reaction energy was measured, but
also the direction and composition of the hadronic shower as well as the momentum of the outgoing
muon produced in charged current reactions. The results of a first calibration of the detector, appro-
priate to the early phase of its existence, have been published [2] previously.
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1.2 The Need for Calibration of Calorimeters

In any neutrino experiment, the knowledge of the amount of energy deposited by the interacting
neutrino is important. For example, in the study of charged-current interactions of neutrinos on nuclei,
the measured shower energy can be equated with the energy of the produced hadrons, Ey, which may
be simply added to the energy of the muon to yicld the incident neutrino energy, E,,, as well as yielding
the inelasticity of the event (from the ratio y = Eg/E, ). In the case of neutral-current interactions on
nuclel, where the emerging lepton is no longer a muon, but an unseen neutrino, the hadron energy and
the lateral position of the interaction vertex must be known in order to deduce the energy of the in-
coming neutrino from a knowledge of the momentum of the parent = or K in the beam.

In both these examples, it is necessary to know how to convert the detector response, usually
based on a sum of pulse-heights from the active planes of the calorimeter, into a real energy in GeV,
including the resolution with which this can be achieved.

Since, as will be shown later, the techniques of calibration involve the exposure of the detector to
beams of charged particles, it is also necessary to provide some way to keep track of changes in the
detector response on a continuous basis, since exposure of the detector to such charged particle beams
necessarily occurs rather infrequently. This is commonly done by continuously recording the response
of the detector to the passage of cosmic-ray muons, which are minimum ionizing particles in the case
of large calorimeters with appropriate triggering. This can be carried out throughout the exposure of
the calorimeter to the neutrino beam during the time in between the bursts of neutrinos produced by
the accelerator. After correction for the angle of incidence of the muons with respect to the detector
planes, the pulse-height response of the detector can be converted into an equivalent number of mini-
muin ionizing particles passing normally through a detector plane.

Thus a calibration of the energy response of a target calorimeter invelves comparing the output of
the detector planes when exposed to a beam of charged particles of known energy with the output of
the same detector from events initiated by cosmic-ray muons and recorded at the same time (i.e. be-
tween accelerator bursts). The output of the detector from a charged particle of known energy can thus
be interpreted as an equivalent number of minimum ionizing particles.

Under neutrino ¢xposure conditions, the response of the detector to neutrino-induced showers can
then be converted into the energy of a charged particle which would produce the equivalent output,
using the intermediate step of conversion to minimum ionizing response to eliminate drifts between
calibration periods.

As remarked already, in order to deduce the incident neutrino energy from the observed shower
energy in neutral-current reactions, the lateral position of the interaction vertex is needed to define the
decay kinematics of the parent = or K. Calibration of the precision with which the shower vertex can
be determined is thus needed.

In the specific case of the CHARM fine-grain calorimeter, the use of spatial information extends
even further. This calorimeter has been used to measure neutral-current interactions where the only
source of information on the kinematics of the final state of the neutrino interaction 1s the hadronic
shower. Not only the shower energy and vertex, but also the energy-flow vector of the shower was
measured. Calibration of the resolution with which this vector could be measured was clearly necessary
in order to unfold the desired kinematic variables from the observed data. This type of information can
also be obtained by exposing the calorimeter to charged particle beams where the trajectory of the in-
cident particles is recorded together with the calorimeter data.
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1.3 Use of Pion and Electron Beams - Shower Development

The response of calorimeters to hadronic and electromagnetic showers is in general not identical.
Hence calibration must be carried out with beams of hadrons (usually »~) and with beams of elec-
trons. When the neutrino-induced shower contains both electrons and hadrons, as occurs in the case of
the interaction of electron neutrinos, special techniques are necessary to recognize the electromagpetic
shower amongst the hadronic components (see section 3.6).

It is assumed in all calibration work on calorimeters operating above about 1 GeV that the energy
deposition of a neutrinc-induced hadronic shower is insignificantly different from that produced by a
single # of the same energy. This assumption is equivalent to assuming that a constant ener-
gy-independent fraction of the deposited energy is detected. Thus by exposing the detector (or at least a
sufficiently large fraction of it) to pion beamns of different energies one can create a calibration curve
which will relate the detector output to a true energy in GeV,

Figure [: Photograph of the CHARM Calorimeter.
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Care must be taken that only pions are used for the calibration, and for this purpose a Cherenkov
counter in the beam is required which can positively identify the incident particle as a pion. To sim-
plify this task, #~ beams are preferred because they are naturally richer in pions than the correspond-
ing positive beams. At high energies where it is difficult to separate electrons from pions by Cherenkov
techniques, the electrons are removed by inserting a thin layer of lead in the beam-line upstream of the
last bending magnet in front of the detector. Contamination of the sample of events by beam muons
must be eliminated at the analysis stage, since these particles do not produce showers, and deposit far
less energy in the calorimeter.

Calibration of the detector energy response to electrons is done in a similar manner. Again a
Cherenkov counter can be used to identify electrons in a mixed beam.

In order to fully study the spatial resolution, the charged particle beamn must be well measured
before it enters the calorimeter, so that the lateral vertex position of the shower is known from the in-
coming vector of the charged particle. In the case of electron beams, care must be taken to eliminate
those events where the electron initiated a shower before entering the calorimeter, which would falsify
the measurements of the shower vertex.

In the case of the CHARM calorimeter, where the energy flow vector was measured, the response
of the detector to charged particles incident at different angles needed to be calibrated so the test beam
had to have that possibility over a reasonable angular range.

2. The CHARM Calorimeter
2.1 Components of the Calorimeter

The neutrino detector used by the CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration,
consists of a fine-grained target calorimeter, here referred to as the CHARM calorimeter, composed of
78 identical subunits, each surrounded by a frame of magnetized iron for muon identification, and of a
muon spectrometer. It has been described in detail [1} previously. A photograph of this detector is
shown in Figure 1.

Each subunit comprises the following elements (see Figure 2):

¢ A marble (CaCO3) plate, 3x 3 m? in surface area and 8 cm thick, suriounded by a magnetized
iron frame of the same thickness and 45 cm wide.

® An array of 20 scintillation counters, each of 3 m length, 15 cm width and 3 cm thickness,
covering the surface of the marble plate.

e An array of 128 proportional drift tubes, each of 3x3 cm? cross-section and 4 m length, cov-
ering the surface of the marble plate and the surrounding iron frame. The proportional tubes
were orented at 90° with respect to the scintillation counters.

e An array of 256 limited streamer tubes, each of 1x 1 cm? cross-section and forming a plane of
about 2.65x2.65 m? sensitive arca, covering the centre-most region of the marble plate. The
streamer tubes were oriented at 90° with respect to the proportional tubes (i.e. parallel to the
scintillation counters). The streamer tube planes [4] were added to the detector in 1980 to im-
prove the vertex determination, by allowing accurate lateral track sampling in two orthogonal
projections in each subunit.

The marble plates, cach weighing 2 tons, formed the target material for the neutrino interac-
tions and was the principal radiator material of the calorimeter. The choice of this material was made,
following extensive Monte Carlo simulation, in order to minimize the difference in length of hadronic
and electromagnetic showers of the same energy, so that hadronic showers with abnormal »° content
would not degrade the angular resolution of the measurement of the energy-flow vector. Aluminium
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Figure 2: Partial View of the CHARM Calorimeter.

could also have been used, since its physical properties (radiation length, absorption length, density)
are similar to marble, but would have been much more expensive.

2.2 The Scintillator System

The scintillation counters had two very important functions. They were the elements used to trig-
ger the detector and initiate the readout of the other components. They were also the principal and
most precise detector of the energy deposited by a shower.

The scintillation counters, each 3m long, were coupled at one end by light-pipes to a photomulti-
plier tube. The other end of each scintillator was terminated with a plane mirror to minimize the vari-
ation in pulse-height response with the position at which the particles traversed the scintillator. The
orentation of the scintillators was such that the photomultiplier tubes appeared (as seen from the
beamn direction) sequentially up, right, down, left with respect to the calorimeter. In this way, the re-
sponse of the scintillators to tracks penetrating at least four planes was made essentially independent of
the location of the track.
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Figure 3: Differential Trigger Inefficiency vs Hadron Energy

The most inclusive trigger used with the CHARM calorimeter for neutrino detection at high en-
ergies required that hits were detected in any 4 of the 78 planes of scintillators. This trigger was meas-
ured to have an integral inefficiency of (6.2 + 0.7).107* for Ey > 2 GeV. The differential inefficiency
for this trigger as a function of the measured energy deposition is shown in Figure 3.

Other tnggers used during the various experiments performed with the CHARM calorimeter re-
quired that the pulse-height sum from the scintillators exceeded a given threshold or that a track pene-
trated a greater number of planes. For example, the trigger used outside the time of the beam burst to
record cosmic-ray muons for calibration purposes required penetration through the equivalent of 12
planes of the calorimeter. This was necessary in order to ecliminate very steep muon tracks which
would pass through the scintillators with grazing angles of incidence producing very large energy de-
post.

As a result of the sequential orientation of the scintillators, no attenuation correction was needed
for the individual charged tracks of showers in the calorimeter. Nevertheless, attenuation corrections
were applied to each scintillator output based on the position of the barycentre of the shower in each
scintillator plane, as measured by the proportional tubes. Attenuation corrections were also needed for
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the calibration of the scintiliator output in terms of the equivalent number of minimum ionizing parti-
cles traversing a single scintillator plane.

The light attenuation properties of each scintillation counter were measured before installation in
the calorimeter. The response of the scintillators as a function of the distance x from the light-guide
could be represented analytically by the formula:

f(x) = Klexp(—x/A) + pexp{x~2L)/A]

where K is a constant, p a reflectivity coefficient = 0.8, A the attenuation length, and L its physical

length.

During the course of the experiments using the calorimeter, cosmic-ray data were taken at inter-
vals of about two months specifically to measure the light attenuation properties. About 500,000 tracks
through the calorimeter were recorded on each occasion. These tracks were reconstructed in space us-
ing the proportional tube information (see next section) so that the point of intersection of the muon
track with each scintillator and its angle of incidence were known. The pulse-height response of each
scintillator was corrected to yield the output which a muon of normal incidence would have produced.
The corrected response of each scintillator was then histogrammed in bins of 10cm along its length,
and the shape of the histogram was fitted using the function f{x) given above, or more usually an ap-
proximation of it by a second-order polynomial which gave better values of x2. The fit was made ex-
cluding the two end bins where edge effects cause deviations from the simple functional form used.
The deviations of the two end bins were explicitly taken into account. The difference between the
measured transmission and the fit is shown in Figure 4.

It was found that the light transmission properties of the scintillator showed a degradation with
time and in particular, the absorption length, A, decreased at a rate of = 1.5% per month. Measure-
ments showed that the principal degradation occurred for the shorter wavelengths, so corrective action
was taken in 1980, at the time when the streamer tubes were added to the calorimeter, by inserting
yellow filters in front of each photomultiplier. This restored the original attenuation length, at the cost
of a factor two in photomultiplier output, but did not remove totally the dependence of A on time, al-
though it became less serious (0.63% per month).

In addition to these special attenuation measurements, cosmic-ray muons were recorded continu-
ously during data taking in between the bursts of neutrinos. The tracks of these events were fitted as
described above and used to provide a calibration of the pulse-height output of the scintillators in
terms of an equivalent number of minimum ionizing particles traversing the standard thickness of scin-
tillator, after correcting for the angle of incidence of each muon track, and the attenuation of each
counter. The uniformity of this calibration procedure over the whole detector, ensuring equal mean
energy loss, was carefully checked and found to be reahzed to within + 0.5%.

This calibration procedure ensured that the output of the scintillation counters was converted into
a physical quantity measured with the same apparatus at the same time, and thus eliminated drifis in
gain of the photomultipliers and changes in the properties of the analogue-to-digital converters, as well
as the slow changes in the properties of the scintillators themselves. The uncertainty of this procedure
has been estimated to be + 2%.

The scintillator output provided a definition of the longitudinal position of the shower vertex
which was taken as the centre of the marble plate behind which an energy loss corresponding to more
than the equivalent of four minimum ionizing particles was detected in two contiguous scintillator
planes. The barycentre of the energy deposition in the scintillators (after subtracting the energy depos-
ited by the muon track, if present) was used as the first estimate of the centre of the shower, and the
line joining this point to the vertex gave an estimate of the shower direction.
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Figure 4: Scintillator Response: Deviation from Parabolic Fit

2.3 Proportional Drift Tube System

The proportional tubes of the CHARM calorimeter (78 layers in the target calorimeter and 18
layers in the muon spectrometer) were required to locate muon tracks with a precision of < 1 mm. In
addition, the energy of particie showers was sampled by these planes in the same way as done with the
scintillators. However, the proportional tube planes in the target calorimeter covered an area of 4x4
m? and thus could be used to sample the energy “leaking” into the iron frame surrounding the marble
plates. The proportional tube planes in the first iron toroid of the muon spectrometer could also sam-
ple the energy leakage from the end of the target calorimeter.

Each wire of the proportional tubes was connected to a charge amplificr. SeH-triggering electronics
provided measurements of the charge and the time-of-arrival of the pulse from each wire. An external
gate signal, derived from the scintillation counter trigger, enabled the electronics for charge measure-
ment and set the time reference for the drift-time measurement. The drift-time was calibrated using
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high-energy muons and the calibration curve is shown in Figure 5. In order to solve the left-right am-
biguity, consecutive planes of the same orientation were aligned staggered by one-half of the wire
spacing.
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Figure 5: Drift-Time Calibration: Proportional Tubes

The response of this proportional tube system was also calibrated against the energy loss of cos-
mic-ray muons. The track-fitting procedure required at least four hits in each projection. With this re-
quirement, the muon tracks produced in charged-current neutrino interactions (or by cosmic-ray
muons) could be readily reconstructed by the analysis program. The identification of a muon in the fi-
nal state of a neutrino interaction was the element which enabled it to be classified as a charged-current
event. Conversely, the absence of such a muon was the signature of neutral-current neutrino interac-
tions, or the interaction of electron neutrinos. On the other hand, muon tracks fitted and found to
have entered the detector from the outside, could be often readily classified as cosmic-ray background
events and rejected accordingly.
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The proportional tubes also provided information on the lateral vertex position of the neutrino
interactions. The early part of a shower contains only a few charged tracks. The hit distribution of the
proportional tube planes immediately downstream of the start of the shower, weighted by the
pulse-height in each tube, was used to estimate the lateral coordinates of the vertex. An example of the
measured lateral energy deposition by 10 GeV pions (averaged over many events) is shown in Figure 6.
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Figure 6: Lateral Energy Deposition: Proportional Tubes

A further important role of the proportional tubes was in the determination of the shower direc-
tion [5]. Starting from a first estimate of the shower axis obtained by joining the shower vertex to its
barycentre, which was derived from the energy deposition in the scintillators, an algorithm was used to
refine the shower direction measurement based on the pulse-height recorded in the proportional tubes
and their distance from the shower vertex and the current estimate of the shower axis. This iterative
procedure found the straight line starting from the vertex which subdivided the energy deposition in
each projection into two equal parts. Tube hits far from the shower axis were given less weight than
those close to the the axis.
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2.4 Streamer Tube System

The sampling of the CHARM calorimeter for energy deposition occurred after cach marble plate
(i.e. = 1 rad. length). However, the sampling in spatial position by the proportional tubes occurred ef-
fectively only every two marble plates, since the measurements alternated between the horizontal and
the vertical. This proved to be a limitation on the angular resolution with which the shower direction
could be measured, particularly for electromagnetic showers. The emergence of the limited streamer
tube [6] as an inexpensive detector of charged particles cnabled this limitation of the CHARM Calo-
rimeter to be overcome, by inserting a plane of such tubes, which were specially constructed for the
purpose [3], [4], in between each marble plate.

The main aim of the streamer tubes was to improve the resolution of the measurement of the di-
rection of electromagnetic showers produced in the scattering of muon-neutrinos by electrons:

v#+e‘——vp+e"'

and v, +e -7, +te".
The results showing the improved resolution obtained are given in section 3.4.

The streamer tubes also gave improvements in the vertex resolution and in the energy flow meas-
urements of hadronic showers, as well as giving an independent energy sampling of the showers based
on the number of fired tubes.

Because the streamer tubes provide only a “hit” distribution, saturation in the energy response
occurs for high-energy hadron showers, due to the fact that more than one particle can hit the same
tube. Electromagnetic showers are even more dense and saturation occurs at quite low energy. This
effect was used to help separate electromagnetic and hadronic showers by comparing the number of
*holes” (i.e. non-fired tubes) in the shower region with the number expected for an average electro-
magnetic shower of the same energy.

Improved measurements of both the vertex and the shower angle were obtained by using the
streamer tubes in a way analogous to the use of the proportional tubes described before. Thus in the
first gap after the shower vertex, one projection was well measured by the proportional tubes and the
other by the streamer tubes. For the measurement of the shower angle, both proportional and streamer
tubes were used independently as well as in combination weighted by the inverse of their respective
resolutions.

3. Calibration Measurements
3.1 Beam and Test Installation

For the purposes of calibration, 36 of the 78 subunits of the target calorimeter were installed in a
charged particle beam at CERN whose energy could be varied from 5 to 140 GeV. In order to study
the response of this structure to very low energy particles, a smaller copy of the calonmeter was con-
structed by the Moscow members of the Collaboration, and exposed to a beam of energies 0.5 - 6 GeV
at the Institute for Theoretical and Experimental Physics, Moscow. The details of this low energy cali-
bration will be published {7] elsewhere, but for completeness, the results will also be presented here.

Figure 7 shows the beam lay-out and the arrangement in the experimental hall 182 at CERN.
The charged particle beam was brought alongside the neutrino beam line in the experimental hall so
that the installation of the 36 calorimeter subunits could be achieved by a simple translation of their
position. Two 5 m long bending magnets allowed the beam to be deflected horizontally in order to
study different impact points and angles at the detector. Beam profile counters were used to determine
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Figure 7: Layout of Calibration Test Bean

the impact point on the first calorimeter plane. An anti-counter allowed the rejection of particles out-
side the defined beam acceptance. In the undeflected beam position, a backscatter detector could be
placed in front of the calorimeter. This was used to determine the energy deposition of backward scat-
tered particles as well as to investigate the development of electron showers with a vertex at different
depths of marble in the calorimeter.

The test beam of negative pions and electrons, produced by the interaction of 200 GeV protons
from the SPS, had a momentum range of 5 to 140 GeV/c for pions and of 5 to 50 GeV/c for electrons.
The central beam momentum was known to +1%, the fractional momentum spread was about
0.75%. For measurements with the pion beam, a beryllium target (150 mm long) was used; for the
clectron beam an aluminium target of 100 mm length was chosen to increase the yield of electrons
compared to pions. Above 50 GeV/c the electron component of the beam was less than 1%. When a
pure pion beam was needed, a lead filter was placed in the beam just upstream of one of the bending
magnets. The beam intensity was adjusted to around 10 to 20 particles per burst in a 30 ms spill.

This test beam was transported in a vacuum pipe up to the Cherenkov counter. The 20 m long
helium-filled threshold Cherenkov counter permitted the tagging of electrons up to 30 GeV/e. 50
GeV/c electrons were identified by the width of their shower profile. The beam profile counters were
multi-wire chambets of 1 mm wire spacing with a sensitive area of 64x64 mm?. Each set had 2 or-
thogonal planes of wires; the two sets were spaced by about 1 m. The anti-counter was a lead/scintil-
lator sandwich with two lead plates of 2 cm thickness each, interleaved by a 6 mm thick scintillator.
The sensitive area was about 1 m?, with a central hole of 45x45 mm? diameter, for the passage of the
beam particles.

The backscatter detector, shown in Figure 8, had a structure identical to the target calorimeter. It
consisted of 2 marble planes of the same thickness (8§ cm) as those in the target calorimeter, each one
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Figure 8: Detail of the Backscatter Detector

being made of two halves. The 2 marble planes were imbedded in 3 planes of detection elements, each
composed of proportional drift tubes, scintillators and streamer tubes in the same alternating orienta-
tion as in the calorimeter. The arrangement of marble plates and detection elements was such that it
left a free passage for the beam particles of about 50x 50 mm?; the outside dimensions of this appara-
tus were 1x 1 m?. The most downstream detection planes of the backscatter detector with proportional
drift tubes, scintillators and streamer tubes, could be moved such that they also covered the free beam
passage behind the last marble plane. This arrangement was used to investigate the development of
electron showers with marble plates of different thickness placed in the slit of the last marble plane.

The backscatter detector was used only for measurements in the undeflected beam position T; for
the other measurements it was taken out without changing the disposition of either the anti-counter or
the beam profile counters. Table 1 gives details of the impact points chosen and of the beam direction
in the horizontal and vertical planes of these points. During beam steering, a scintillation counter was
inserted before and a scintillator hodoscope after the Cherenkov counter; for all real measurements
they were moved out of the beam.
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Table 1: Beam Parameters for Calibration Measurements

code impact-points impact-angles
name (in mm) (in mrad)
Horiz. Vert. Horiz. Vert.
R — 240 71 — 67.6 —B.65
T + 273 - 376
A + 1020 + 6.1
L + 1150 71 + 13.7 —B.65

A beam of incident particles was defined by the absence of a signal from the anti-counter, and a
coincidence of the signals from two beam scintillation counters. The first, of dimensions 100x 100
mm?, was located at the entrance of the bending magnets. The second, of dimensions 50x 50 mm?,
was located in front of the anti-counter. For electron measurements, signals from the Cherenkov
counter in coincidence with the incident particles were used, with the gas pressure set below the
threshold for pions. The calorimeter was read out if at least four scintillator planes were hit. Events
induced by pions were required to have not more than one hit in the first two scintillator planes and in
the first plane of proportional drift tubes to avoid beam halo. In the analysis, events were sclected if
each hodoscope of beam profile counters and the scintillators had registered only one incoming particle
and if no signal was present from the veto counter in time with the beam particle.

3.2 Use of the Backscatter Detector

Relativistic kinematics restricts backscattering to the products of nuclear break-up which have an
almost isotropic angular distribution. The purpose of the backscatter detector was to enable studies to
be made of the frequency of occurrence of this phenomenon and its effect on the determination of the
shower vertex position by the various routines in the analysis program.

For such tests, pion-runs with an open backscatter detector were chosen, and only events starting
in the first plane were used in the analysis. A ¢riterion was needed to determine that the shower indeed
started in the first plane. At least two streamer-tube and at least two proportional-tube hits were re-
quired. This criterion was not perfect; a passing pion could, for example, fulfil this criterion and then
interact ten planes later. A stronger criterion would have caused a bias in shower selection, hence it
was accepted that a small contamination of events starting actually in a later plane was present in the
data sample. However, it is certain from the detector set-up that no event started before the first plane
and thus the influence of backscattering could be investigated.

The percentage of pions interacting in the first plane selected according to this criterion was com-
patible with the percentage predicted from the known properties of marble and the pion interaction
cross-section.

The percentage of events with any backscatter hit, a backscatter hit in a scintiflator, a proportion-
al-tube or a streamer-tube is shown in Figure 9. versus the energy of the incoming pion. The scintilla-
tor system is evidently more strongly affected by backscattering than the tube systems. This occurs
since backscattering is produced mainly by low-energy nucleons from nuclear breakup, and gaseous
detectors are sensitive only to charged particles whereas scintillators also detect neutrons.
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Table 2: Mean Backscattered Energy for Different Beam Energies

Beam Energy
[GeV]

7.5
10.0
15.0
200
50.0
70.0
90.0

105.0
120.0
140.0

E{Backscatter)
[GeV]

0.15
0.16
0.16
0.17
0.19
0.18
0.18
0.16
0.17
0.20
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Despite the high frequency at which backscattering occurs, the average energy contained in the
backscatter is small and rather independent of the beam energy, as shown in Table 2. However the
backscatter energy distribution has a long tail to high energies, so individual events can have deposition
of several GeV.

The data taken were used to study algorithms to correct the error in the determination of the
start-plane of the true shower. These were based on the principle that backscattering produces energy
deposition which in addition to being upstream of the true shower vertex, is frequently far away from
the axis of the shower. Thus if the comparison between the position of the barycentre of the scintilla-
tors in the first plane of a shower was inconsistent with the position expected by extrapolating back the
shower axis (determined from the subsequent three planes in each projection), the start-plane of the
shower was taken to be one plane further downstream, and the energy deposition in the first active
plane was assumed to be due to backscattering. The same data were also used to study and improve
the varous algorithms to determine the lateral shower vertex.

3.3 Energy Calibration Measurements

The calibration of the energy response of the calorimeter to hadrons and electrons was performed
using the apparatus described in section 3.1. For the calibration with hadrons, beams of # = with ener-
gies from 5 to 140 GeV were used. For clectrons, the range was 5 to 50 GeV.

The principal tool used for the energy measurement was the response of the scintillation counters
to the charged particles in the cascade. However, both the proportional drift tubes and the streamer
tubes were used for energy measurements, albeit with poorer resolution. Calibration of the propor-
tional tubes was necessary since they were the only detectors present in the iron frame around the
marble and in the end calorimeter. Calibration of the streamer tubes enabled an independent measure
of the energy deposit to be made and was based on the number of “hits” in the streamer tubes pro-
duced by a known shower.

Data were taken at each given beam energy and the total shower energy was obtained by sum-
ming the outputs of the scintillators (and the proportional tubes) covering the region of the shower.
For this the raw electronic signals from each scintillator were first corrected for light attenuation and
the signals from both scintillators and proportional tubes were converted into energies (referred to as
E;o) via the comparison with the known response of the same detectors to cosmic-ray muons as de-
scribed in section 2.2. Thus E; is the number of normally incident cosmic-ray muons traversing a
single detector plane which would produce the same electronic response multiplied by the known en-
ergy deposition by one normally incident muon at the mean energy of the muons accepted by the cos-
mic-ray trigger (7.4 MeV for scintillators). An example of the response of the scintillators to =~ is
shown in Figure 10. At higher energies, the response curves show a tail towards lower E;; because of
leakage. The procedure used to extrapolate the response for an infinitely long calorimeter has been de-
scribed previously [2].

The response of the detector was defined as the fraction of the energy E which was observed in
the scintillators (or proportional tubes).

F = Eyjg/E

The energy resolution was defined as the r.m.s. deviation of the visible energy from its mean value
(derived from a Gaussian fit) divided by the mean value.

R = o(Evig)/ <Evis>

Since the test installation contained only 36 planes of the detector, at higher energies hadronic
showers were not completely contained. The longitudinal energy deposition shows some leakage at the
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downstream end, particularly for showers which start late in the calorimeter. At each beam energy, the
mean longitudinal scintillator shower profile was evaluated by superposition of all showers where the
plane showing the highest energy deposition was used to adjust the longitudinal position of each
shower to correct for the differing start planes. If a shower started after the 16th plane, or had its max-
imum-energy plane after the 30th plane, it was not used for this analysis.

From this shower profile, it was possible to deduce the fractional hadronic energy leakage, «, as a
function of the beam energy, and this could then be used to correct for the leakage at high energies.
The fractional leakage beyond N planes (measured from the vertex plane) could be parametrized as:

a = 2.55 exp( —0.440N/E°2)

where E was the beam energy in GeV. The effect of this correction was a maxirnum of 0.7% at 140
GeV.

A further correction was applied to take account of the energy deposition of the incoming pion
before the start of the shower. Unlike neutrino induced showers, the energy seen in front of the shower
region was added to that found inside the shower region in order to record the full energy deposition of
the incident particle.

After applying these corrections, the mean value of the energy response and the r.m.s. deviation of
the distributions at each energy, nonmalised to this mean, were computed from a Gaussian fit. The re-
sults are shown in Table 3, for both scintiliators and proportional tubes.
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Table 3: Hadronic Energy Resporse and Resolution

Beam Scintillators Proportional Tubes
Energy TESPONSE resolution response resolution
(GeV) Fg(x 10%) Rg (%) Fp(x 10%) Rp (%)

7.5 8.88 + 0.03 1949 + 0.3 8.87 £ 0.05 28.60 + 0.4
10.0 8.99 + 0.03 16.87 + 0.2 9.15 + 0.04 2445+ 0.3
15.0 9.20 + 0.01 13.71 £ 0.1 9.29 + 0.02 21.04 £ 0.2
20.0 9.20 + 0.01 1243 + 0.1 9.01 + 0.02 18.34 + 0.2
30.0 9.50 + 0.02 1091 + 0.1 9.18 £ 0.03 16.82 + 0.2
50.0 9.48 + 0.01 8.25 + 0.1 8.80 + 0.02 14.22 + 0.1
70.0 9.59 = 0.01 7.17 £ 0.1 8.63 = 0.02 13.50 £ 0.2
120.0 9.64 + 0.01 5.56 + 0.1 8.43 + 0.02 11.70 %+ 0.2
140.0 9.59 = 0.01 524 + 0.1 7.96 + 0.03 13.29 + 0.2

These results were fitted to give a parametrization of the energy dependence of the response and
resolution of the scintillators and proportional tubes to incident hadrons, yielding:

Scintillators:
hadron response Fg(hadr.)
hadron resolution ~ Rg(hadr.)

[(9.62 — 257/(E?+315)) + 0.05]x 102
[(48.7//E + 1.27) + 0.31%

Proportional Tubes:
hadron response Fp(hadr.)
hadron resolution  Rp(hadr.)

{(10.4 — 0.19./E) + 0.4]x107%
[(44.3/,/E + 8.1) £ 1.8]%

fon

where the energy E is in GeV, Hence the hadronic shower energy could be computed from the scintil-
lator energy (Ey;s) from the formula:

E = B3 [10.40 + 1.85/(Ey; + 1.5) — 0.0376/(E;s? +0.014)1.

The corresponding response function (Fg(hadr.) = Ey;;/E) is shown in Figure 11, together with
the data from these measurements {(open points) and the data taken at the Institute of Theoretical and
Experimental Physics, Moscow (solid points) using a smaller copy of the calorimeter in a beam of en-
ergies 0.5 - 6 GeV [7]. For these latter data, which were normalized to the CERN data using the clec-
tron response at 5 GeV, the energy E was the kinetic energy of the beam, since hadron masses cannot
be neglected at low energies.

An equivalent procedure to that described above was carried out for the calibration of the re-
sponse of the scintillators and proportional tubes to electrons. In this case, no leakage correction was
necessary, even at the higher energies, since electromagnetic showers were well contained in the 36
planes of the calorimeter used for calibration. An example of the energy response of the scintillators to
e~ is shown in Figure 12.

The response and resolutions of the scintillators and proportional tubes to electron beams were
evaluated as before, and the results are given in Table 4. These results were fitted to give a parametri-
zation of the energy dependence of the response and resolution of the scintillators and proportional
tubes to incident electrons, yielding:
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Figure 11: Scintillator Hadron Response Function Fg(hadr) vs. JE

Scintillators:

electron response  Fglelee.) = [11.3 + ¢.3]x 1072
electron resolution Rg(elec.) =

[
[(18 £ 1)/,/E]%
Proportional Tubes:

electron response  Fp(elec.)
electron resolution  Rp(elec.)

no

[(13 — 0.7./E) £ 0.5]x 1073
[(17.5 -

E) £ 21%
where the energy E is in GeV.

Hence for electromagnetic showers, the shower energy could be evaluated simply from the visible
energy in the scintillators as E = E;/11.3. The resolution obtained with the scintillation counters for
both hadronic and electromagnetic showers is shown in Figure 13 where Rg./E is plotted as a function
of \/E.

The calibration of the streamer tubes involved recording the mean number of tube “hits” at each
beam energy. As already mentioned in section 2.4, the response of the streamer tubes saturates at quite
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Table 4: Electromagnetic Energy Response and Resolution
Beam Scintillators Proportional Tubes
Energy response resolution response resolution
(GeV) Fg(x 10%) Rg (%) Fp(x 10%) Rp (%)
5.0 113+ 03 8.0+ 04 11.5+ 0.3 15. % 2.
7.5 113+ 03 6.7+ 03 105+ 0.5 15. % 2.
10.0 i1.3+ 03 58+ 03 10.5 £ 0.5 14. % 2.
15.0 1.2+ 03 48+ 0.2 102 £ 0.5 12. + 2.
20.0 112+ 03 42 1+ 0.2 93+ 05 16. + 2.
30.0 i14+ 03 3304 83+ 0.5 15. + 2.
50.6 1.t + 0.5 24+ 04 8.1+ 0.5 1. £ 3.

modest energies, particularly for electromagnetic showers. This effect is clearly seen in Figure 14, where

the number of “hits” is plotted against the beam energy for both =~ and ¢~ beams.
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3.4 Shower Direction Measurements

The test set-up (described in section 3.1) contained beam profile counters which aliowed the tra-
jectory of the incoming particles to be defined. Hence the vertex of the interaction could be deterrnined
by extrapolation of this trajectory to the start-plane of the shower. The resolution of the calorimeter in
determining the lateral shower vertex could then be measured by comparing this beam vertex with that
determined purely from the analysis of the shower data.
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Since the streamer tubes were added to improve the resolution on the lateral vertex position (as
well as the shower angle resolution), Figure 15 displays the energy dependence of the r.m.s. resolution
on this vertex determination from the proportional tubes alone (broken line) and when both propor-
tional and streamer tubes are used (solid line).

The vertex resolution obtained using pions was parametnized as follows:
Without Streamer Tubes: op(x) = 16.2/,/E + 0.014E (cm)
With Streamer Tubes: oyy(x) = 14.9/\/E + 0.006E (cm)
Similarly, the direction of the showers as measured by the shower properties alone could be compared
with the known beam direction. Again the comparison is made of two situations in Figure 16, where
the broken line indicates the energy dependence of the r.m.s. resolution on the projected shower angle
from the =~ beam data without the use of the streamer tubes, and the solid line shows the improve-

ment with their addition where the average of the two projections is shown. The curves of Figure 16
can be parametrized as follows:

Without Streamer Tubes: oyy(#) = 238/,/E + 241/E (mrad)

With Streamer Tubes:  opg(#) = 141//JE + S20/E (mrad)
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The equivalent situation for electromagnetic showers is shown in Figure 17, where the open
points show the energy dependence of the r.m.s. resolution on the projected shower angle from the e~
beam data without the use of the streamer tubes, and the solid points show the improvement with

their addition.
The parametrizations of the curves of Figure 17 are:
Without Streamer Tubes: o (#) = 46/,/E (mrad)

With Streamer Tubes: oo(#) = 32/\/E (mrad)
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3.5 Electron-Pion Separation

The calibration test beam was used intensively to understand the different response to electro-
magnetic showers, represented by electron beam data, and to hadronic showers, represented by =~
beam data. As a result it was possible to define a “signature” by which electron showers could be rec-
ognized whilst allowing pion showers to be rejected.

The electron signature in the CHARM calorimeter is based on the following general characteris-
tics of electron showers. Close to the vertex (0.5 - 1 radiation length) the number of charged shower
particles is in general odd, being 1 (in about 30% of the cases) or 3 (in about 10% of cases) or more;
the probability of observing 2 particles is very small. A distribution from. 15 GeV electrons measured
after 0.5 radiation lengths shown in figure 18 demonstrates this property.

The lateral distribution of the energy deposited by the shower in a detector plane is regularly dis-
tributed in a disk centred around the direction of the primary electron with a radius Ryq, where Ry is
the Moliere radius given by 21MeV/E . For low Z material where the critical energy is high, Rpy is
smaller than one radiation length. The appearance of energy tails generated by energetic particles
off-axis is quite exceptional for electromagnetic showers in contrast with hadronic showers.



26 Calibration of the CHARM Calorimeter

18 .
6F o -
i ¢
14 l
?
12r ¢ .
¢
10 - ¢ Q .

o(0) (mrad)

Li- o WITHOUT STREAMER TUBES -
® WITH STREAMER TUBES

2r _
\ ! | | \ |

0 10 20 30

E (GeV)
Figure 17: Angular Resolution for Electromagnetic Showers

The characteristics mentioned above are reflected in the space distribution of the signals from the
three detector components of the calorimeter. These include a plastic scintillator plane, a plane of pro-
portional counters and a digital (yes, no) streamer-tube plane for every one radiation length of marble,
which extends over 20cm longitudinally. The shower characteristics can be transformed into mathe-
matical estimators for electron-hadron separation in a very simple way.

1. The energy deposited in the first plane Ep is defined by the signal on the scintillator. Showers
initiated by a single electron can be defined by the condition Ep < 2Eppp (®12.5 MeV),
where Epqp is the energy deposited by one minimum ionising particle (an energetic muon). A
selection Egp € 8 MeV can be used to identify single electrons in the presence of showers ini-
tiated by more than one electron, for example those produced by photons or #° decays.
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2. The projected lateral energy distribution in the scintillators (which have transverse dimensions
of 15cm) can be described by a Cauchy distribution of width I'. Electron showers have T’ <
lem (for 90% containment) in the CHARM calorimeter as shown by the calibration data
where well identified electrons are incident on the Calorimeter (Fig. 19).

3. The lateral tails of the showers are well measured by the proportional planes which extend
over the full detector area and allow for the largest fiducial volume. The root mean square (o}
of the energy distribution is used to measure the shower width, and the test data show that
electron showers have ¢ < 1lem (for 80% containment) for all electron energies of interest in
the experiment {Fig. 19.).

The requirement of these values for T and o in the electron definition allows a separation of elec-
tron and pion showers with a rejection of the = showers by a factor larger than 100 and a global elec-
tron efficiency e¢] = 0.6 for the case where all types of electron showers are considered (3 £ Ep £ 50
MeV). Further separation can be obtained by counting the number of holes in the streamer-tube hit
distribution in the first eight radiation lengths of a shower. The efficiency in selecting electron and pion
showers by requiring a minirum energy-dependent number of holes (referred to as "holicity”) is shown
in Figure 20.
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3.6 Measurement of Electromagnetic Showers Embedded in Hadronic Cascades

The fine granularity of the CHARM calorimeter allowed electromagnetic showers originating at
the interaction vertex to be identified even in the presence of hadronic showers for part of the kine-
matic y-range of r.-interactions. Since the CHARM detector was designed to equalize the average
length of hadronic and electromagnetic showers [1}, the length could not be used directly to discrimi-
nate electromagnetic and hadronic showers. However, electromagnetic showers are much narrower and
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much more regular in their longitudinal development than those originating from hadrons. The proce-
dure used these two characteristic differences, in a somewhat different way to that described in the
previous section.

The input to the electron search program was the energy as measured in the scintillation counters.
A very restricted volume was used in this search for electromagnetic showers. A road was defined
starting at the position of the reconstructed interaction vertex whose length was chosen according to
the energy of the electron candidate, which was determined from the test beam data to be typically to
be 3/4 of the full shower length to obtain 95% containment. The width of the road corresponded to
the width of the scintillator eclements. The typical width of an electron shower in the calorimeter was
2.5 cm FWHM as compared to the scintillator width of 15 cm.
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A direct separation of electron-neutrino induced charged-current events from all muonless events
was performed by computer code. The method was used in the beam dump experiment [8]. In the
case of v, and 7, induced charged-current events the shower detected in the calorimeter consisted of
two components, an electromagnetic part induced by the electron, and a hadronic part induced by the
recoiling hadron system. In most cases these two components were not separated in space.

Four different estimators were used to determine the energy of electron candidates. They were
based on the energy detected:

1. in the scintillator at the maximum of the shower development;

2. in three scintillators around and including the shower maximum in 3 adjacent planes, combin-
ing information of scintillators of horizontal and vertical orientation;

3. in all horizontally oriented scintillators of the road;
4. in all vertically oriented scintillators of the road.
These estimators were strongly correlated for electromagnetic showers.

The search was performed for a large number of trials for the shower direction starting at or in the
vicinity of the reconstructed interaction vertex. The most probable candidate for an electromagnetic
shower was taken from the trial for which the energy estimators showed the best consistency with the
data taken in the test beam using incident electrons.

A demonstration of the power of these estimators is shown in Figure 21, where the electron
search algorithm has been applied to 15 GeV test beam data for both electrons (full histogram) and
pions (dashed histogram). The inelasticity y defined as

Y = (Biotal ~ Eelectromagnetic)/Etotal

is shown, where Eelectromagnetic is obtained from the weighted average of the four energy measure-
ments. The resolution and response of the estimators were calibrated with data recorded in the test
beam for energies from 5 GeV to 50 GeV. Showers generated by Monte Carlo simulation were used to
extend the calibration range up to 150 GeV.

For charged current (CC) v, (7,) events the response of the estimators is shifted and the resolu-
tion deteriorated by the presence of the hadronic shower in the volume of the search. This effect was
evaluated by applying the method to semi-Monte Carlo events, which were constructed by using CC
v,-events recorded in a neutrino exposure, for which the muon was replaced by an electromagnetic
shower of the same energy and direction generated by a Monte Carlo program.

Applying this method to events which do not contain an electron from charged-current v (or 7,)
interactions also leads to an estimate of the electromagnetic content of the hadronic showers. Such
events contribute to the background.The shape of this background distribution was determined by ap-
plying the method to a data sample collected in the wide-band beam which contains only a small con-
tamination of electron neutrinos which was taken into account. The resulting y-distribution for a data
sample from a beam-dump exposure is shown in Figure 22. The figure illustrates a fit for events in the
energy range 40— 60 GeV using data taken during a beam dump experiment. a) shows the measured
y-distribution (full line) and the background component (dashed line), b) shows the background sub-
tracted y-distribution (full line) and the Monte Carlo prediction (dashed line).
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4. Conclusions

The CHARM calorimeter has been used extensively for the study of neutrino interactions over a
period of seven years. The need for detailed calibration of the response of this detector has been ex-
plained in section 1.2. As a result of measurements made in a test beam over the energy range 5-140
GeV, the response of the calorimeter to both pions and electrons has been fully explored.

Specific results obtained are;

[ ]
-
L]
®
L]

These results have also led to an understanding of the showers produced by electron-neutrino in-
duced interactions, which can contain both hadronic and electromagnetic components, from which the
kinematic parameters relevant for the neutrino physics could be obtained.

Energy response and resolution for hadronic showers

Energy response and resolution for electromagnetic showers

Angular resolution of both hadronic and electromagnetic showers
Identification of electromagnetic showers from the shower shape
Measurement of electromagnetic showers embedded in hadronic cascades
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