
Calibration of the LIGO gravitational wave detectors in the fifth science run

J. Abadie r, B.P. Abbott r, R. Abbott r, M. Abernathy ax, C. Adams t, R. Adhikari r, P. Ajith r, B. Allen b,bk,
G. Allen aj, E. Amador Ceron bk, R.S. Amin v, S.B. Anderson r, W.G. Anderson bk, M.A. Arain aw, M. Araya r,
M. Aronsson r, Y. Aso r, S. Aston av, D.E. Atkinson s, P. Aufmuth q, C. Aulbert b, S. Babak a, P. Baker y,
S. Ballmer r, D. Barker s, S. Barnum u, B. Barr ax, P. Barriga bj, L. Barsotti u, M.A. Barton s, I. Bartos k,
R. Bassiri ax, M. Bastarrika ax, J. Bauchrowitz b, B. Behnke a, M. Benacquista aq, A. Bertolini b, J. Betzwieser r,
N. Beveridge ax, P.T. Beyersdorf af, I.A. Bilenko z, G. Billingsley r, J. Birch t, R. Biswas bk, E. Black r,
J.K. Blackburn r, L. Blackburn u, D. Blair bj, B. Bland s, O. Bock b, T.P. Bodiya u, R. Bondarescu al, R. Bork r,
M. Born b, S. Bose bl, M. Boyle g, P.R. Brady bk, V.B. Braginsky z, J.E. Brau bc, J. Breyer b, D.O. Bridges t,
M. Brinkmann b, M. Britzger b, A.F. Brooks r, D.A. Brown ak, A. Buonanno ay, J. Burguet–Castell bk,
O. Burmeister b, R.L. Byer aj, L. Cadonati az, J. Cain an, J.B. Camp aa, P. Campsie ax, J. Cannizzo aa,
K.C. Cannon r, J. Cao as, C. Capano ak, S. Caride ba, S. Caudill v, M. Cavagli�a an, C. Cepeda r,
T. Chalermsongsak r, E. Chalkley ax, P. Charlton j, S. Chelkowski av, Y. Chen g, N. Christensen i, S.S.Y. Chua d,
C.T.Y. Chung am, D. Clark aj, J. Clark h, J.H. Clayton bk, R. Conte be,bf, D. Cook s, T.R. Corbitt u, N. Cornish y,
C.A. Costa v, D.M. Coward bj, D.C. Coyne r, J.D.E. Creighton bk, T.D. Creighton aq, A.M. Cruise av,
R.M. Culter av, A. Cumming ax, L. Cunningham ax, K. Dahl b, S.L. Danilishin z, R. Dannenberg r,
K. Danzmann b,q, K. Das aw, B. Daudert r, G. Davies h, A. Davis l, E.J. Daw ao, T. Dayanga bl, D. DeBra aj,
J. Degallaix b, V. Dergachev r, R. DeRosa v, R. DeSalvo r, P. Devanka h, S. Dhurandhar p, I. Di Palma b,
M. Dı́az aq, F. Donovan u, K.L. Dooley aw, E.E. Doomes ai, S. Dorsher bb, E.S.D. Douglas s, R.W.P. Drever e,
J.C. Driggers r, J. Dueck b, J.-C. Dumas bj, T. Eberle b, M. Edgar ax, M. Edwards h, A. Effler v, P. Ehrens r,
R. Engel r, T. Etzel r, M. Evans u, T. Evans t, S. Fairhurst h, Y. Fan bj, B.F. Farr ac, D. Fazi ac, H. Fehrmann b,
D. Feldbaum aw, L.S. Finn al, M. Flanigan s, K. Flasch bk, S. Foley u, C. Forrest bd, E. Forsi t, N. Fotopoulos bk,
M. Frede b, M. Frei ap, Z. Freim, A. Freise av, R. Frey bc, T.T. Fricke v, D. Friedrich b, P. Fritschel u, V.V. Frolov t,
P. Fulda av, M. Fyffe t, J.A. Garofoli ak, I. Gholami a, S. Ghosh bl, J.A. Giaime v,t, S. Giampanis b,
K.D. Giardina t, C. Gill ax, E. Goetz ba, L.M. Goggin bk, G. González v, M.L. Gorodetsky z, S. Goßler b,
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a b s t r a c t

The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to

detect local perturbations in the space–time metric from astrophysical sources. These detectors, two in

Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In

their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated

one year of triple coincident data while operating at their designed sensitivity. In this paper, we

describe the calibration of the instruments in the S5 data set, including measurement techniques and

uncertainty estimation.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The Laser Interferometer Gravitational Wave Observatory (LIGO)

is a network of three detectors built in the United States to detect

local perturbations in the space–time metric from astrophysical

sources. These distant sources, including binary black hole or

neutron star coalescences, asymmetric rapidly spinning neutron

stars, and supernovae are expected to produce time-dependent

strain h(t) observable by the interferometer array [37,21].

The detectors, two in Hanford, WA (H1 and H2) and one in

Livingston, LA (L1), are power-recycled Fabry–Perot Michelson

interferometers. The optical layout of the interferometers is

shown in Fig. 1. The perpendicular Fabry–Perot arm cavities of

the Michelson, each of length L¼ 3995m for H1 and L1

(L¼2009m for H2), are composed of 10 kg optics or ‘‘test masses’’

suspended as pendula. Light reflected from the input port of the

Michelson is recycled with an additional suspended optic forming

a power recycling cavity. Each interferometer uses a Nd:YAG laser

(l¼ 1064nm, or f ¼ 282THz), whose phase is modulated at

several frequencies such that a Pound–Drever–Hall style control

scheme [13,31] can be used to hold the arm cavities and power

recycling cavity in resonance. Fig. 2 shows a schematic of the

suspension system for a given optic and electro-magnetic coil-

actuators (paired with magnets secured on the rear face of the

optic) used to control its motion. Further details of the inter-

ferometer configuration are described in Ref. [2].

During the fifth LIGO science run (S5), these detectors

accumulated approximately one year (368.84 days) of triple

coincidence data near their designed sensitivity between Novem-

ber 4, 2005 and October 1, 2007 (GPS time 815097613 through

875232014). The best sensitivity (strain amplitude spectral

density) for each detector and an example sensitivity curve used

to guide the design for the 4km detectors [6] are shown in Fig. 3.

As a figure of merit of the sensitivity over time, we integrate the

power spectral density using a matched-filter template describing

a binary neutron star (1.4–1.4 solar mass) coalescence over which

angle and orientation have been averaged. This metric produces a

predicted range out to which we may see such a source with
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signal-to-noise ratio of 8 (see Ref. [4] for details). Fig. 4 illustrates

the daily median of this range over the course of the science run.

Differential displacement of the interferometer’s end test

masses is measured by precisely monitoring the differential

phase between light returned by each Fabry–Perot arm cavity

using a Pound–Drever–Hall error signal. When the interferometer

is under servo control, this error signal eD(f) is proportional to a

differential arm (DARM) length change, DLextðf Þ caused by the end

test mass displacement such that

DLextðf Þ ¼ RLðf ÞeDðf Þ ð1Þ

where the change in length DLext is the sum of the interferom-

eter’s response to the astrophysical signal and other differential

noise sources.

The quantity RL(f) is a complex function in the frequency-

domain known as the ‘‘length response function.’’ In this paper,

we provide a complete description of a frequency-domain model

of the length response function used for each detector in the S5

data set. Table 1 summarizes the uncertainty in our model of RL(f),

broken up into magnitude and phase of the complex function, and

separated into three frequency bands. Each value is the estimated

68% confidence interval (one sigma) across the band for the entire

2 calendar-year science run.

In Section 2, we describe the model used for all LIGO

interferometers which divides a given interferometer into three

major subsystems – sensing, digital control, and actuation – and

includes a detailed description of the important components of

each subsystem. Measurements of these components along with

corresponding uncertainties are presented in Section 3. Finally,

the response function, RL(f), is developed from the subsystems and

the uncertainty in each subsystem is combined in Section 4 to

form the total uncertainty estimate as seen in Table 1.

Gravitational wave data analysis is performed on a signal

proportional to strain generated in the time domain from eD(t)

4  km
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Power
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Mirror

Beam

Splitter

Input

Test
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Fig. 1. Schematic optical layout of the LIGO interferometers.

Fig. 2. A schematic of the LIGO optic suspensions for S5. The actuation force is

provided by the coil actuators (mounted to the support structure) which act upon

the magnets secured directly on the rear face of the optic.
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and a convolution kernel, RLðt�tuÞ,

hðtÞ ¼ 1

L

Z

RLðt�tuÞeDðtuÞdtu ð2Þ

developed from the parameters of the length response function.

The production of the time-domain convolution kernel, RLðt�tuÞ,
from the frequency-domain model, RL(f), and the associated

additional uncertainty is discussed in detail in Refs. [33,22].

2. Model

Astrophysical gravitational wave strain h(f) detected by the

interferometers contains source information including wave

forms hþ ,�ðf Þ, azimuthal angle f, polar angle y, and orientation

(or polarization angle) c (see Fig. 5). The amplitude of the wave’s

projection into the interferometer basis is described by

hðf Þ ¼ F�ðy,f,cÞh�ðf ÞþFþ ðy,f,cÞhþ ðf Þ ð3Þ

where F�, þ are the antenna response of the detectors and h�, þ are

the wave amplitudes in the ‘‘cross’’ and ‘‘plus’’ polarizations of the

local metric perturbations hmn in the transverse-traceless gauge

[37,9,8].

We model each interferometer’s response to an optimally

oriented ðy¼f¼c¼ 0Þ, plus-polarized wave form using the long

wavelength approximation. The approximation is valid between

40 and 6000Hz, and has associated uncertainty of at most 2% [29].

From this reference model, the detector response to an arbitrary

waveform, orientation, and polarization angle may be calculated

analytically [37,9,8]. In the long wavelength approximation, the

strain amplitude, hðf Þ, in Fabry–Perot arm lengths of the

interferometer is

hðf Þ ¼ Lxextðf Þ�Lyextðf Þ
L

¼ DLext
L

: ð4Þ

Feedback control systems are used to hold the interferometer

in a regime where the digital error signal, eD(f), is linearly related

to the DARM length, DLext (as in Eq. (1)) and hence to the

gravitational wave strain, h(f). We model this control loop as a

single-input, single-output control loop depicted in Fig. 6.

The loop contains three major subsystems. First is the length

sensing function, CL(f,t), which describes how the interferometer

responds to differential changes in arm lengths and how that

response is digitized. This function is separated into a frequency-

dependent function CL(f) which may have some slow time

dependence captured by a factor gðtÞ. D(f) is a set of digital filters,

used to shape the loop error signal into a control signal. The

remaining subsystem is the actuation function, A(f), which

describes how the test masses physically respond to the digital

control signal. We assume linear relationships between all

subsystems, such that any subsystem (and internal components)

may be defined by the ratio of output over input signals.

The product of frequency-dependent subsystems inside the

control loop is the ‘‘open loop transfer function’’ GL(f),

GLðf Þ ¼ CLðf ÞDðf ÞAðf Þ: ð5Þ

Using the above model, we derive the length response function,

RL(f,t), in terms of these functions to be

RLðf ,tÞ � 1þgðtÞGLðf Þ
gðtÞCLðf Þ

: ð6Þ

The remainder of this section describes the components of each

subsystem in the control loop.

2.1. Sensing function

The length sensing function, CL(f,t), describes the transfer

function between the residual change in DARM length, DLðf Þ, and
the digital error signal, eD(f),

CLðf ,tÞ ¼ gðtÞ eDðf Þ
DLðf Þ : ð7Þ

It is important to note that this linear relationship between the

DARM length change and the digital error signal only applies

when the detector is under control of the feedback loop: in Eq. (7),

DLðf Þ is the residual external DARM length change, DLextðf Þ, after
the controlled length change, DLAðf Þ, is applied. The sensing

function has several components (shown in Fig. 7) which are

treated independently,

CLðf ,tÞ ¼ gðtÞ �KC � ½CFPðf Þ � ADCðf Þ�: ð8Þ
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Fig. 4. Daily median of detector sensitivity during S5 to a 1.4–1.4 solar mass

compact binary system averaged over angle and orientation. Dashed lines indicate

the times during which the representative spectra in Fig. 3 were taken. Large

variations in detector sensitivity are due to upgrades or hardware problems.

Table 1

Summary of band-limited response function errors for the S5 science run.

RL(f) Magnitude error (%) RL (f) Phase error (Deg)

40–2000Hz 2–4kHz 4–6kHz 40–2000Hz 2–4kHz 4–6kHz

H1 10.4 15.4 24.2 4.5 4.9 5.8

H2 10.1 11.2 16.3 3.0 1.8 2.0

L1 14.4 13.9 13.8 4.2 3.6 3.3

x'

x

y

y'z

�

�

Fig. 5. A schematic of the coordinates used both in the interferometer basis, and in

the incoming plane wave basis. The Euler angles y,f and c are as defined in Refs.

[9,8], except here they are shown relative to the detector frame rather than the

equatorial frame.
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The constant, KC , which holds all frequency-independent scaling

factors, has dimensions of digital counts of error signal per unit

change in DARM length. The remaining terms in Eq. (8) are

dimensionless, including time dependence, treated independently

in the coefficient gðtÞ.
The change in each arm cavity length L affects the phase of the

laser’s electric field returning from the cavity. On resonance, the

transfer function between the change in electric field phase

reflected by the cavity input mirror Fðf Þ and a change in cavity

length is

HFPðf Þ ¼
2p

l

1

rc

reð1�r2i Þ
ð1�rireÞ

sinð2pfL=cÞ
2pfL=c

e�2pifL=c

1�riree�4pifL=c
ð9Þ

where l is the laser wavelength, rc ¼ ðre�riÞ=ð1�rireÞ is the on-

resonance Fabry–Perot arm cavity reflectivity, ri and re are the

amplitude reflectivity of the input and end test masses, and c is

the speed of light. In the frequency band considered for analysis,

where 40Hzo fo6kHz52c=L, the frequency-dependence of

HFP(f) is approximated by a simple ‘‘cavity pole’’ transfer function,

HSPðf Þ �
HFPðf5c=2LÞ

HFPð0Þ
� 1

1þ i
f

fc

ð10Þ

where fc ¼ cð1�rireÞ=4pL
ffiffiffiffiffiffiffi

rire
p

[16,29,30,34,35].

The LIGO detectors use a Pound–Drever–Hall detection scheme

to extract this phase information from the arm cavities, which is

recombined at the beam splitter. The laser electric field input into

the interferometer is phase-modulated at om=2p¼ 25MHz,

which effectively splits the field into a ‘‘carrier’’ field with the

original laser frequency, O, and upper and lower ‘‘sideband’’ fields

with frequency O7om. The sideband fields resonate in the power

recycling cavity but are anti-resonant in the arm cavities, and

therefore, unlike the carrier field, experience no phase change

from the arm cavity length variation. The Michelson is set up with

a fixed asymmetry such that, at the anti-symmetric port, the

carrier field is held on a dark fringe and the sideband fields are

not. In this setup, when the arm cavity lengths change

differentially, the carrier field moves away from the dark fringe,

mixes with the sideband field at the antisymmetric port, and a

beat signal at om is generated.

The power of the mixed field at the antisymmetric port

(in Watts) is sensed by four photodiodes. The photocurrent from

these diodes is converted to voltage, and then demodulated at

25MHz. This voltage signal (and therefore the change in DARM

length) is proportional to power of the input laser field, the

‘‘optical gain’’ (the product of Bessel functions of modulation

strength, the recycling cavity gain, the transmission of the

sidebands into the antisymmetric port from the Michelson

asymmetry, the reflectivity of the arm cavities for the carrier),

the quantum efficiency of the photodiodes, and the impedance of

the photodiode circuitry [31,16,34,35]. The demodulated voltage

from the photodiodes is whitened, and anti-aliased with analog

circuitry and then digitized by an analog-to-digital converter

which scales the voltage to digital counts. The frequency

dependence of the anti-aliasing filters and digitization process is

folded into the function ADC(f). We absorb all proportionality and

dimensions of this process into the single constant, KC , having

dimensions of digital counts per meter of DARM test mass motion.

The optical gain is time-dependent because small, low-

frequency ðf540HzÞ alignment and thermal lensing fluctuations

in the resonant cavities change the carrier and sideband field

amplitudes. The input laser power may also fluctuate from similar

alignment and thermal effects. We represent these variations

with a coefficient, aðtÞ. The input power, along with the carrier

and sideband power stored in the cavities, are monitored by

several independent photodiodes. Their signals are also digitized

and combined to form a coefficient, bðtÞ, used to digitally

compensate for the time-dependent variations. The compensated

anti-symmetric port signal forms the error signal for the DARM

control loop, eD(f). The sensing function therefore depends on

both time and frequency, but can be separated into independent

components CLðf ,tÞ ¼ gðtÞCLðf Þ, where

CLðf ÞpCFPðf Þ � ADCðf Þ ¼ ½Hx
SPðf ÞþHy

SPðf Þ� � ADCðf Þ ð11Þ

and

gðtÞ � aðtÞbðtÞ ð12Þ

is the scale factor of order unity accounting for the residual time

dependence after compensation.

2.2. Digital filters

The digital filters, D(f), are known functions in the model.

These filters are used to shape the digital DARM control loop error

signal, eD(f) (in digital counts proportional to displacement) into a

digital control signal, sD(f) (in digital counts proportional to force),

Dðf Þ ¼ sDðf Þ
eDðf Þ

: ð13Þ

Over the course of the science run, discrete changes are made

to the digital filters, D(f), to improve the performance and stability

of the detector (four times in the Hanford interferometers, three

in Livingston). These changes significantly alter the frequency-

dependence of the DARM control loop, and hence affect the

overall response function of the interferometer. We divide the run

into ‘‘epochs’’ defined by these changes.

Note that the digital filter component does not include all

digital filters in the DARM loop. Both the sensing function and the

actuation function contain digital filters, but their frequency

dependence is either negligible in the measurement band, only

important in a very narrow frequency range, or are compensating

for analog circuitry whose product with the digital filters form a

D

(t) C
L

A

e
D

A
n
a
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g

-1

Fig. 6. The single-input, single-output model of the control loop of differential end

test mass motion. The interferometer senses and digitizes a change in DARM

length, DLext according to gðtÞCLðf Þ, the result of which is the digital error signal eD,

which is then fed back through a set of digital filters D(f), and converted to analog

control via the actuation function of the end test masses A(f).

A
n
a
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e
D

CFP (t)

-1

Fig. 7. Schematic breakdown of the sensing function CL(f,t). Internal to the LIGO

Scientific Collaboration, the digital signal eD is often colloquially referred to by its

digital ‘‘channel’’ name DARM_ERR. From left to right, CFPðf ÞpHx
FPþHy

FP is the arm

cavity transfer function; aðtÞ is the time-dependent variation of the interferom-

eter’s input laser power and optical gain; KC is the scaling coefficient which

absorbs all constants including the input laser power, optical gain, the quantum

efficiency of the photodiodes, the impedance of the photodiode circuitry, and the

analog-to-digital gain; ADC(f) is the frequency dependence of the analog to digital

conversion; and bðtÞ is the digital factor which compensates for the analog change

aðtÞ. The compensation is not perfect, therefore the factor gðtÞ � aðtÞbðtÞ represents
the residual variation.
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unity transfer function. We include these filters in their respective

sub-systems for completeness.

2.3. Actuation function

The actuation function A(f) is defined by the transfer function

between the digital control signal, sD(f), and the physical motion

imposed on the end test masses by the control loop, DLA,

Aðf Þ ¼ DLA
sDðf Þ

ð14Þ

and has units of end test mass displacement in meters per count

of digital control signal. We describe the actuation function as a

linear combination of functions for each test mass,

Aðf Þ ¼ xxAxðf ÞþxyAyðf Þ ð15Þ

where xx,y are known digital coefficients of order unity, roughly

equivalent, but opposite in sign. Once split, the control signal

flows through each component to the end test masses as shown in

Fig. 8.

For each arm, the digitally split control signal passes through

digital suspension filters, DA(f), and is converted from digital

signal to an analog voltage via the digital-to-analog conversion

element, DAC(f), which includes analog anti-imaging circuitry. The

resulting voltage passes through a resistance circuit converting it

into current, and is sent to the coil actuators which convert the

current into force on the magnets attached to the end test mass.

The suspended test mass is displaced according to the force-to-

displacement transfer function, P(f), changing each arm cavity

length, DLAðf Þ. The arm’s scaling coefficients, KA, absorb all

dimensions and frequency-independent factors in the actuation

path. This includes the digital-to-analog gain, the gain of the

resistance circuitry, the gain of the coil actuators, and the force-

to-displacement transfer function scale factor. In summary, we

express the individual end test mass actuation functions in

Eq. (15) as

Ax,yðf Þ ¼K
x,y
A � ½Dx,y

A ðf Þ � DACðf Þ � Px,yðf Þ�: ð16Þ

The actuation coefficients, KA, scale the arbitrary counts of digital

excitation force into meters of test mass motion. The remaining

terms in Eq. (16) are dimensionless.

The suspended test mass can be treated as a pendulum driven

by the coil actuators (see Fig. 2). The force-to-displacement

transfer function for the center of mass of a pendulum, Pcm(f), is

Pcmðf Þp
1

½f cm0 �2þ i
½f cm0 �
Q cm

f�f 2
ð17Þ

where f0
cm and Qcm are the frequency and quality factor of the

pendulum. A rigid body resonant mode akin to the fundamental

mode of a cylindrical plate [27] (see Fig. 9) known as the

‘‘drumhead’’ mode is also included in the force-to-displacement

model. Its radially symmetric shape, excited by the actuators, lies

directly in the optical path and amplifies the cavity’s response to

the length control signal above a several kHz [12]. We approx-

imate the effects of the resonance by multiplying Pcm(f) by an

additional pendulum transfer function, Pdh(f), defined by fre-

quency, f0
dh, and quality factor, Qdh. The total force-to-displace-

ment transfer function is

Pðf ÞpPcmðf ÞPdhðf Þ: ð18Þ

The digital suspension filters, DA(f), are between the split

control signal and the digital-to-analog converter. Their purpose

is to remove control signal in narrow frequency ranges around the

frequencies of other in-band, non-axisymmetric, rigid-body

resonant modes of the test masses that are excited by the

actuation forces [12], and to reduce the coupling between DARM

length motion and angular motion of the test mass.

3. Measurements

Each subsystem of the response function RL(f) is developed

using measurements of key parameters in their modeled

frequency dependence and their scaling coefficients. The digital

filter subsystem is completely known; its frequency dependence

and scaling coefficient are simply folded into the model of the

response function. The parameters of the frequency-dependent

portions of the sensing and actuation subsystems may be

obtained precisely by direct measurement or are known from

digital quantities and/or design schematics. As such, these

parameters’ measurements will only be briefly discussed.

The detector’s sensing function behaves in a non-linear fashion

when uncontrolled, therefore we may only infer the linear

model’s scaling coefficient, KC , from measurements of the

detectors under closed control loops. We infer that the remaining

magnitude ratio between our model and measurements of the

open loop transfer function GL(fUGF) as the sensing coefficient KC

(where fUGF is the unity gain frequency of the DARM control loop).

Other than the known frequency-independent magnitude of D(f),

the open loop gain model’s magnitude is set by the actuation scale

factor, KA. This makes it a crucial measurement in our model

because it sets the frequency-independent magnitude of the

entire response function. Measurements of the open loop transfer

Fig. 8. Schematic breakdown of the signal flow through the actuation function for

the X arm Ax(f). The digital signal sD(f) is colloquially referred to by its ‘‘channel’’

name DARM_CTRL. From right to left, xx is the fraction of the digital control signal

sent to the X arm; DA
x(f) are digital filters; DAC(f) is the frequency dependence of

digital-to-analog conversion; KA
x is the scaling coefficient proportional to the

digital-to-analog gain, the gain of resistance circuitry which converts voltage to

current, the gain of the coil actuators which convert current to magnetic force,

and the force-to-displacement transfer function gain; and PX is the frequency

dependence of the force-to-displacement transfer function.

Fig. 9. Physical shape of the end test mass drumhead internal resonance. Left:

cartoon, edge-on view of the fundamental mode of a cylindrical plate [27]. Right:

three-dimensional modal shape of the drumhead resonance from finite element

analysis of a cylinder with dimensions similar to the LIGO test masses [12].
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function over the entire gravitational wave frequency band are

used to confirm that we have modeled the correct frequency

dependence of all subsystems. Finally, measurements of gðtÞ track
the time dependence of the response function. The details of these

measurements and respective uncertainty estimates are described

below.

3.1. Actuation function

The components of each arm’s actuation function, Kx,y
A , DAC(f)

and Px,y(f) are measured independently in a given detector. As

with D(f), both xx,y and Dx,y
A ðf Þ are digital functions included in the

model without uncertainty.

3.1.1. Actuation scaling coefficients, Kx,y
A

The standard method for determining the actuation coefficients,

K
x,y
A , used for the fifth science run is an interferometric method

known as the ‘‘free-swinging Michelson’’ technique; a culmination

of several measurements with the interferometer in non-standard

configurations. The method uses the interferometer’s well-known

Nd:YaG laser wavelength (l¼ 1064:170:1nm [24,36]) as the

calibrated length reference while using the test mass’ coil actuators

to cause a length change. Details of the technique are described in

Appendix A. The actuation coefficient is measured using this

method many times for each optic in each interferometer over the

course of the science run, and their mean used as the actuation

scaling coefficient for all model epochs. Table 2 summarizes the

actuation coefficients, Kx,y
A , for the three interferometers in the fifth

science run, using free-swinging techniques.

3.1.2. Force-to-displacement transfer function, P(f)

Each test mass coil actuator system is equipped with an optical

position sensor system that consists of an infrared LED emitter

aimed at a small photodiode mounted in the coil actuator, and a

mechanical ‘‘flag’’ attached to the magnet on the optic that cuts

through the beam. From amplitude spectral densities of these

sensor signals while the optic is free-swinging, the frequency of

each center-of-mass transfer function, f0
cm is measured with

negligible uncertainty. The quality factors, Qcm, depend on the

amount of local damping applied to suspension, but are estimated

from driven transfer functions. The uncertainty of this estimation,

though large, has little effect on the center-of-mass transfer

function in the frequency band of interest and is ignored. Table 3

shows the results for the center of mass force-to-displacement

transfer function. The drumhead frequency, f0
dh for each test mass

in the Hanford and Livingston detectors have been measured to be

9.20 and 9.26kHz, respectively, with Qdh � 105 [12,25], where

again though the uncertainty in these parameters may be large, it

has little effect in band and is ignored.

3.1.3. Digital-to-analog conversion, DAC(f)

The digital-to-analog conversion model DAC(f) includes the

effects of the finite sample-and-hold method used to convert

digital signal to an analog voltage, the analog anti-imaging filter,

measured residual frequency dependence from imperfect digital

compensation of analog de-whitening, and the time delay arising

from computation and signal travel time.

We use the standard model for the sample and hold of the

digital-to-analog converter [28,11]

Hsðf Þ ¼ sinc½ð2pf Þ=ð2fsÞ�e�ið2pf Þ=ð2fsÞ
, ð19Þ

where the sample frequency fs ¼ 16384Hz is used in all

detectors.

The same analog anti-image filter is used for each of the four

coils on the test mass. They are analog, third-order, Chebyshev

low-pass filters with 0.5 dB passband ripple whose corner

frequency is at 7.5 and 8.1 kHz for the Hanford and Livingston

detectors, respectively, and modeled as such in the DAC(f) transfer

function. We also include residuals measured between the

modeled anti-imaging filter and its analog counterpart.

For a given end test mass, there is a complementary pair of

digital and analog whitening filters for each of the four coil

actuators. A comparison between the digital compensation and

the real analog electronics has shown non-negligible, frequency-

dependent residuals. We measure the residuals for all four coils in

each test mass by taking the ratio of transfer functions between a

digital excitation and the analog output of the whitening filters

with the digital filters on and off. We include the average residual

of the four coils in our model.

A detailed analysis of the digital time delay in the digital-to-

analog conversion has been performed elsewhere [10]. For the

actuation model we estimate the time delay from our model of

the open loop transfer function (attributing all residual delay in

the loop to the actuation function), and assign a fixed delay to

each epoch.

3.1.4. Actuation uncertainty, sA

The digital suspension filters, DA(f), have well-known digital

transfer functions, which are included in the model without an

uncertainty. The model of force-to-displacement transfer func-

tion, P(f), and digital-to-analog conversion, DAC(f), are derived

from quantities with negligible uncertainty. Hence, the uncer-

tainty estimate for the actuation function is derived entirely from

measurements of the actuation scaling coefficient, KA.

The actuation coefficient is measured using a series of complex

transfer functions taken to be frequency independent as described

in Appendix A. We take advantage of this fact by estimating the

frequency-independent uncertainty in the overall actuation

function from the statistical uncertainty of all free-swinging

Michelson measurements. For magnitude, we include a systema-

tic uncertainty originating from an incomplete model of the

actuation frequency-dependence, such that the total actuation

uncertainty is

sjAj
jAj

� �2

¼ sjKA j
jKAj

� �2

þ
sðr=aÞ
ðr=aÞ

� �2

ð20Þ

s2
fA

¼ s2
f

KA

: ð21Þ

The statistical uncertainties, sjKA j=jKAj and sf
KA
, are the

quadrature sum of the scaling coefficient uncertainty from each

test mass, as measured by the free-swinging Michelson technique.

For each optic’s coefficient, we estimate the uncertainty by taking

the larger value of either the standard deviation of all measure-

ment medians, or the mean of all measurement uncertainties

divided by the square root of the number of frequency points in a

given measurement. These two numbers should be roughly the

same if the measured quantity followed a Gaussian distribution

Table 2

Summary of the actuation scaling coefficients measured during S5.

K
x
A (nm/ct) K

y
A (nm/ct)

H1 0.84770.024 0.87170.019

H2 0.93470.022 0.95870.034

L1 0.43370.039 0.41570.034

These single numbers are formed by the mean of each measurement’s median

/K
x,y
A Sj (6 for each end test mass in H1, 5 in H2, and 14 and 15 for the X and Y test

masses, respectively in L1). Only statistical uncertainty is reported here;

systematic uncertainty is folded the total uncertainty of the actuation function.
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around some real mean value and stationary in time. For all

optics, in all interferometers, in both magnitude and phase, these

two quantities are not similar, implying that the measurements

do not arise from a parent Gaussian distribution. We attribute this

to the quantity changing over time, or a systematic error in our

measurement technique that varies with time. Later studies of the

free-swinging Michelson technique have revealed that the

probable source of this time variation is our assumption that

the optical gain of the simple Michelson remains constant over

the measurement suite (see Appendix A).

We have folded in an additional sðr=aÞ=ðr=aÞ ¼ 4% systematic

error in magnitude for the Hanford detectors only. This correction

results from the following systematic difference between the

Hanford and Livingston free-swinging Michelson measurement

setup. Analog suspension filters, common to all detectors, are

used to increase the dynamic range of the coil actuators during

initial control of the test masses. When optic motions are

sufficiently small enough to keep the cavity arms on resonance,

they are turned off and left off as the detectors approach designed

sensitivity [2,14]. These additional suspension filters were left in

place for the Hanford measurements in order to obtain better

signal-to-noise ratios for the driven transfer functions described

in Appendix A. The filters’ color had been compensated with

digital filters, but the average residual frequency dependence is

roughly 4% for both end test masses in H1 and H2.

The total uncertainty for each interferometer’s actuation

function, as described in Eq. (21), is shown in Fig. 10. These

estimates include statistical and known systematic uncertainties.

To investigate potential unknown systematic uncertainties in the

actuation functions we applied two fundamentally different

calibration methods. The results of these investigations are

described in Section 5.

3.2. Sensing function

The components of the sensing function, KC , CFP(f), and ADC(f)

are described in Section 2.1. The frequency-dependent compo-

nents are developed from measured parameters with negligible

uncertainties, and KC is obtained as described above. The

techniques used to obtain the parameters are described below.

3.2.1. Sensing scaling coefficient, KC

In principle, the scaling coefficient KC is also composed of

many independently measurable parameters as described in

Section 2.1. In practice, these components (specifically compo-

nents of the optical gain) are difficult to measure independently

as the interferometer must be controlled into the linear regime

before precise measurements can be made. The scaling coefficient

for the other subsystems are either measured (in the actuation) or

known (in the digital filters). We take advantage of this by

developing the remainder of sensing subsystem (i.e. its fre-

quency-dependence), forming the frequency-dependent loop

model scaled by the measured actuation and known digital filter

gain, and assume the remaining gain difference between a

measurement of open loop transfer function and the model is

entirely the sensing scale factor. Results will be discussed in

Section 3.3.

3.2.2. Fabry–Perot cavity response, CFP(f)

Our model of the Fabry–Perot Michelson frequency response is

the sum of the response from each arm as in Eq. (11). Using the

Table 3

Summary of pendulum frequencies, f0
cm, and quality factors, Qcm, used to compose

models of each interferometer’s center-of-mass pendulum transfer functions in S5.

X end test mass Y end test mass

f0
cm (Hz) Qcm f0

cm (Hz) Qcm

H1 0.767 10 0.761 10

H2 0.749 10 0.764 10

L1 0.766 100 0.756 100
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Fig. 10. Summary of the actuation uncertainty for all detectors in S5.
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single pole approximation (Eq. (10)), the frequency response of

each arm cavity Hx,y
SP ðf Þ can be calculated explicitly using a single

measured quantity, the cavity pole frequency fc. We compute fc by

measuring the light storage time t¼ 1=ð4pfcÞ in each cavity.

A single measurement of the storage time is performed by

aligning a single arm of the interferometer (as in the right panel of

Fig. 17) and holding the cavity on resonance using the coil

actuators. Then, the power transmitted through that arm is

recorded as we rapidly take the cavity out of resonance. We fit the

resulting time series to a simple exponential decay, whose time

constant is the light storage time in the cavity. This measurement

is performed several times per arm, and the average light storage

time is used to calculate the cavity pole frequency. Table 4 shows

the values of fc used in each model.

3.2.3. Analog-to-digital conversion, ADC(f)

Each of the four photodiodes used to measure the power at the

dark port are sampled at 16384Hz. The dominant frequency

dependence of this analog-to-digital conversion process arises

from the analog anti-aliasing filters. These filters are analog

eighth order elliptic filters, which differ only in corner frequency

at the two sites: 7.5 kHz for the Hanford and 8.1 kHz for

Livingston. The frequency dependence is unity below 1kHz.

Above a fewkHz, the magnitude changes less than 2%, but the

phase loss from these filters becomes non-negligible ð41803Þ. The
residual frequency dependence between this model and mea-

sured transfer function of the filter is also included. The

discrepancy occurs only above 1kHz and varies less than 2% in

magnitude and 51 in phase.

3.2.4. Time dependence, gðtÞ
We measure the time dependence of the sensing function by

digitally injecting a signal, scl(f), at the output of the digital filters,

D(f), prior to the control signal, sD(f), at three line frequencies fcl
near 50, 400, and 1100Hz. The time-dependent coefficient gðtÞ is
defined as

gðtÞ ¼ aðtÞbðtÞ ¼� 1

GLðfclÞ
sDðfclÞ�sclðfclÞ

sDðfclÞ
ð22Þ

where GL(fcl) is the modeled DARM open loop transfer function at

the reference time in each epoch at a given calibration line

frequency, fcl; scl(fcl) and sD(fcl) are the excitation signal and the

control signal, respectively, each digitally demodulated at the

same frequency and averaged over 60 s. The coefficient generated

from fcl � 400Hz is used to scale the response function model; the

other two frequencies are used to confirm that the variations are

independent of frequency. In the ideal case (no noise on top of the

injected line and with a perfect model for GL(fcl)), the coefficient is

a real factor near unity. Fig. 11 shows the evolution of RefgðtÞg
over the course of the science run for each detector.

We also separate the relative uncertainty of the time depen-

dent coefficient ðsg=gÞ2 into those of systematic and statistical

origin. As the coefficient is ideally real and unity, we expect the

imaginary part of the measurement defined in Eq. (22) to be a

random time series with zero mean. A non-zero mean would

indicate a systematic error in our estimate of RfgðtÞg, given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ðImfgðtÞgÞ2
q

(assuming the real part of gðtÞ is unity). The

measured mean is less than 5% for all detectors, implying a

negligible systematic error of 0.1% and is ignored.

The statistical error is determined by the signal-to-noise ratio

of the calibration line at frequency fcl, and is estimated by the

standard deviation of ImfgðtÞg, measured in every epoch at a

sampling rate of 1Hz. Though the statistical error is roughly

equivalent in all epochs for a given detector, we chose the largest

standard deviation as a representative error for the entire run.

Fig. 12 shows an example histogram of ImfgðtÞg for H2.

3.3. Open loop transfer function

The open loop transfer function, GL(f), is measured while the

interferometer is controlled, operating in the nominal configuration,
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Fig. 12. Histogram of ImfgðtÞg for the epoch 1 in H2, the standard deviation of

which represents the error estimation sg for this epoch.

Table 4

Summary of cavity pole frequencies fc used in each interferometer’s sensing

function in S5.

fc
x (Hz) fc

y (Hz)

H1 85.671.5 85.671.5

H2 158.572.0 158.572.0

L1 85.170.8 82.370.5

H1 and H2 have used the average of each arm, hence their numbers reported

below are the same, with uncertainty estimated as the quadrature sum of each

result.
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Fig. 11. Time-dependent corrections to the sensing function RefgðtÞg over the

course of the science run.
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at designed sensitivity. We use a digital DARM excitation with

amplitude much larger than DLext , such that we may assume it to be

a contribution to measurement noise. During the measurement we

assume no time-dependent variations occur, and set gðtÞ ¼ 1. We

compare this measurement against our model of the open loop

transfer function which is the product of each subsystem described

above (see Eq. (5)), and scale the model by the measurement’s

magnitude at the expected unity gain frequency to form KC as

described in Section 3.2. Values for the sensing scaling coefficient

averaged over epochs, are shown in Table 5.

We measure the open loop transfer function many times

during the course of the science run. To compare these measure-

ments against the model for each epoch, they are normalized by

the magnitude of the open loop transfer function at a fixed

unity gain frequency. This normalization removes the time

dependent scale factors between measurement times such that

a fair comparison can be made. Fig. 13 shows the results of this

comparison.

The uncertainty estimation in the open loop transfer function

magnitude and phase (ðsjGL j=jGLjÞ2 and s2
fGL

) are separated into

systematic and statistical uncertainty. We expect the ratio of the
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Fig. 13. Open loop transfer function model vs. measurement comparisons for H1 (top left), H2 (top right), and L1 (bottom) in all of S5. The four panels shown are the

magnitude and phase of model and measurements (top and bottom left), and the ratio between model and measurements (top and bottom right).

Table 5

Average value for scaling coefficients KC for the sensing function, CL(f,t) for each

interferometer.

KC ðcts=10�15 mÞ

H1 0.15

H2 0.61

L1 9.1

They are stated without uncertainty, since these quantities are derived from

measurements of the open loop gain and actuation scaling coefficient. See further

discussion in Section 4.

J. Abadie et al. / Nuclear Instruments and Methods in Physics Research A 624 (2010) 223–240 233



model and our measurements to follow a Gaussian distribution

with unity mean in magnitude and zero mean in phase. This ratio

is shown in Fig. 13. We observe a non-Gaussian systematic in all

detectors from an unknown source, most apparent in the Hanford

detectors. We estimate this systematic uncertainty in magnitude

and phase by subtracting a smoothed version of the residuals,

Gres
L ðf Þ ¼/Gmodel

L =Gmeas
L S, from unity and zero, respectively. The

statistical uncertainty, sSjGL j and sSfGL
, is estimated from the

standard deviation of the remaining scatter in the ratio after

the systematic error GL
res(f) is subtracted. Both the systematic and

statistical errors are added in quadrature to form the total

uncertainty in the open loop transfer function model,

sjGL j
jGLj

� �2

¼ ðsSjGLjÞ
2þð1�jGres

L ðf ÞjÞ2 ð23Þ

s2
fGL

¼ ðsSfGL
Þ2þðfGres

L
ðf ÞÞ2: ð24Þ

4. Uncertainty estimation

The measurement uncertainty of each component of the

response function described in Section 3 are folded into a complex

function of frequency known as the ‘‘error budget.’’

We do not assign any uncertainty to the digital filters D(f) nor

directly to the time-independent component of the sensing function

CL(f). The digital filters, which are well-known digital functions, are

placed into the model without uncertainty. As described in Section

3.2, the frequency dependence of the sensing function is composed

of parameters measured to negligible uncertainty. Uncertainties in

its scaling coefficient KC are accounted for in the open loop transfer

function and actuation function uncertainty.

The uncertainties of the remaining quantities in the response

function A(f), GL(f), and gðtÞ are treated as uncorrelated. If the

uncertainties are completely correlated (i.e. there are none in

CL(f)), the covariant terms in the estimation reduce the overall

estimate of the response function uncertainty [23]. Since we do

not have an independent estimate of the uncertainty in the

sensing function, we adopt this conservative estimate.

We re-write the response function in terms of the measured

quantities to which we assign uncertainty,

RLðf ,tÞ ¼ Aðf ÞDðf Þ1þgðtÞGLðf Þ
gðtÞGLðf Þ

ð25Þ

and separate into magnitude and phase (dropping terms which

include the uncertainty in D(f)),

jRLj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jAj
gjGLj

� �2

½1þðgjGLjÞ2þ2gjGLjcosðfGL
Þ�

s

ð26Þ

fRL
¼ arctan

gjGLjsinðfAÞþsinðfA�fGL
Þ

gjGLjcosðfAÞþcosðfA�fGL
Þ

 !

ð27Þ

such that the relative uncertainty in magnitude and absolute

uncertainty in phase are

sjRL j
jRLj

� �2

¼ sjAj
jAj

� �2

þRefWg2 sjGL j
jGLj

� �2

þImfWg2s2
fGL

þRefWg2 sg
g

� �2

ð28Þ

s2
fRL

¼ s2
fA

þImfWg2 sjGL j
jGLj

� �2

þRefWg2s2
fGL

þImfWg2 sg
g

� �2

ð29Þ

where we defineW � 1=ð1þGLÞ [23]. Each uncertainty component

in Eqs. (28) and (29) is assumed to be the same over the course of

the science run (independent of epochs). However, the complex

coefficient W is different for each epoch.

Our calculation of the response function includes the open

loop transfer function model which is approximated by replacing

the complete cavity response HFP(f) (Eq. (9)) with the single pole

transfer function HSP(f) (Eq. (10)) in the sensing function

subsystem. We include the ratio of the response function

calculated with and without the correct cavity response in our

error budget,

RFP
L ðf Þ

RSP
L ðf Þ

¼ 1þðHFP=HSPÞGLðf Þ
1þGLðf Þ

ð30Þ

added linearly (as opposed to in quadrature) because the

approximation results in a frequency-dependent scaling of the

response function with known sign. As with the weighting

function W, this term involves the direct multiplication of the

open loop transfer function and therefore is epoch dependent. As

an example, Fig. 14 shows this error contribution from the third

epoch in each detector.

5. Results

In Fig. 15 we plot the final response function for all

interferometers for the entire fifth science run. Fig. 16 shows

the frequency dependence of all terms in the error budget of the

response function for the third epoch of each detector. In Table 6,

we summarize the frequency-dependent uncertainty of each

interferometer’s response function by dividing the error into three

frequency bands: 40–2000, 2000–4000 and 4000–6000Hz and

computing the RMS errors across each band, averaged over all

epochs. All epoch uncertainties are within 1% of the mean

uncertainty stated.

The largest source of systematic error in most data analysis

techniques used to analyze S5 LIGO data is the uncertainty in

response function magnitude [1,3,5]. Our inability to measure the

sensing function independently of the closed loop (specifically its

scaling coefficient) forces a conservative, uncorrelated treatment

of the uncertainty in the measured subsystems, A(f) and GL(f),

inflating the total uncertainty in the response function. In all
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detectors, we find the uncertainty in the actuation function, A(f),

dominates the response function error budget in magnitude.

The statistical uncertainty in the free-swinging Michelson

measurements of the actuation scaling coefficient are the primary

source of the actuation uncertainty. In the Hanford detectors, the

uncertainty arises from our inability to displace the test mass

above residual external noise sources at high frequency. This

decreases the signal-to-noise of the measurement, inflating the

uncertainty estimate across the measurement band. For L1, in

which we have obtained a large number of measurements using

several methods of the free-swinging Michelson technique (see

Appendix A), we have found the results to be inconsistent with a

Gaussian distribution. We attribute this to a poorly understood

underlying variation in the technique, for example the assump-

tion that the optical gain is time-independent over the course of

the measurement suite.

The assumption that the actuation scaling coefficient is linear

in amplitude over the range of actuation, from the 10�8m

employed for the free-swinging Michelson technique to the

10�18m required to compensate for expected gravitational wave

signals, has not been confirmed. To investigate the linearity of the

actuation scaling coefficients over this range of actuation

amplitudes, and to bound potential overall systematic errors, we

have employed two additional, fundamentally different, actuator

calibration methods. The so-called ‘‘frequency modulation’’

technique [19] uses an independently calibrated oscillator to

frequency-modulate the interferometer’s laser light, creating an

effective length modulation on the order of 10�13m while

operating in a single-arm interferometer configuration. The so-

called ‘‘photon calibrator’’ technique [17] uses auxiliary, power-

modulated lasers to displace the test masses by approximately

10�18m via radiation pressure with the interferometer in its

nominal configuration (see Fig. 1). Both methods are employed at

selected frequencies across the LIGO measurement band. Statis-

tical uncertainties for both methods are reduced to the 1% level by

averaging many measurements.
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Fig. 15. Frequency dependent response function, RL(f), for the three LIGO interferometers for all epochs of the S5 science run.
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At the end of the S5 science run, a detailed comparison

between these two methods and the free-swinging Michelson

technique was performed. With all three calibration methods,

actuation coefficients were measured over the frequency band

from 90 to 1kHz for each end test mass. For the H1 and H2

interferometers, all calculated actuation coefficients – for all

frequencies, for all four masses, and for all three methods – were

within a 715% range. The maximum difference between the

mean value for any method and the mean value for all three

methods, for any of the four end test masses, was 3.7% [18]. This

indicates that the overall systematic uncertainties in the actuation

functions determined using the free-swinging Michelson method,
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and therefore the magnitudes of the interferometer response

functions, are within these bounds.

6. Summary

The LIGO interferometers have provided some of the world’s

most sensitive gravitational wave strain measurements during

their fifth science run. We have described a model used for each

interferometer’s differential arm length control loop known as the

length response function, RL(f,t), the proportionality between the

digital Pound–Drever–Hall error signal and differential displace-

ment of the end test masses. Measurements presented here have

shown the frequency-dependent uncertainty in RL(f,t) is less than

15% in magnitude and 53 in phase in the frequency band where

the interferometer is most sensitive. Because we cannot measure

the sensing function without the interferometers under control,

this estimate is limited by our ability to measure the actuation

function. The results of two fundamentally different, high-

precision methods for measuring the actuation functions [19,17]

confirm that the free-swinging Michelson results are within the

stated uncertainties [18].

In the two calendar year science run, as our knowledge of the

long-term characteristics of the instrument increased, a great deal

of improvements were made to our measurement techniques

compared with prior results [7]. However, future detectors will

have more sophisticated actuation and sensing methods [15,20].

In addition, an amplitude uncertainty of 10% or less is required to

reduce the calibration uncertainty below other systematic errors

in the continually improving astrophysical searches [26]. To

achieve this goal, the non-Gaussian distribution of the actuation

function measurements must be better understood and indepen-

dent techniques of measuring the actuation coefficient, like the

frequency modulation and photon calibrator, must be used in

concert with the standard techniques presented in this paper to

reduce limiting systematic errors.
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Appendix A. The free-swinging Michelson techniques

The technique used for determining the actuation coefficients,

K
x,y
A , for the fifth science run is known as the ‘‘free-swinging

Michelson’’ technique. This technique uses the interferometer’s

well-known Nd:YaG laser wavelength (l¼ 1064:170:1nm,

[24,36]) as the calibrated length reference while using the test

mass coil actuators to cause a change in length of simple

interferometer configurations. The technique may be used in

two similar methods: the ‘‘simple Michelson’’ and ‘‘asymmetric

Michelson’’ methods.

The simple Michelson method is composed of two steps. The

first step determines the actuation scaling coefficient for the input

test masses Ki with the interferometer in a non-standard

configuration called a frequency-modulated simple Michelson

(see left panel of Fig. 17). The second step determines the end test

mass actuation coefficient, KA, from the input test coefficient, Ki,

and transfer function measurements of the input and end test

masses of a single Fabry–Perot arm cavity (see right panel of

Fig. 17). The Asymmetric Michelson determines KA directly using

the configuration shown in Fig. 20. Both free-swinging Michelson

methods are described below.

Table 6

Summary of band-limited response function errors for the S5 science run.

RL(f) Magnitude error (%) RL(f) Phase error (Deg)

40–2000Hz 2–4kHz 4–6kHz 40–2000Hz 2–4kHz 4–6kHz

H1 10.4 15.4 24.2 4.5 4.9 5.8

H2 10.1 11.2 16.3 3.0 1.8 2.0

L1 14.4 13.9 13.8 4.2 3.6 3.3
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Fig. 17. Interferometer configurations used during the simple Michelson method of measuring the actuation scaling coefficient. Left: the simple Michelson configuration,

where the power recycling mirror and end test masses are misaligned. Right: the single arm configuration, with the power recycling mirror and the opposing arm’s input

and end test mass are misaligned.
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A.1. Simple Michelson method

The Pound–Drever–Hall error signal at the anti-symmetric port,

qAS, for a frequency-modulated simple Michelson interferometer is

qAS ¼
1

2
Appsin

4p

l
D‘

� �

ð31Þ

where App is the peak-to-peak amplitude of the signal (proportional

to the input power, the product of Bessel functions of modulation

strength, and the transmission of the sidebands

into the antisymmetric port from the Michelson asymmetry),

l¼ 1064nm is the wavelength of the input laser light, and

D‘¼ ‘x�‘y is the differential arm length of the Michelson. App is

measured by aligning the simple Michelson and recording the qAS
time series as it is left uncontrolled. In this configuration, external

noise sources (e.g. residual ground motion) are large enough to

cause the Michelson to sweep through many interference fringes.

For the simple Michelson, when D‘=l51,

qAS � kD‘ ð32Þ

with the simple Michelson’s ‘‘optical gain,’’

k¼ ð2p=lÞApp, ð33Þ

which has units of digital signal counts per meters of input test

mass motion. After a measurement of App is obtained, we control

the optics using their coil actuators, forcing the Michelson into the

linear regime where Eq. (33) is valid.

The actuation function of the suspended input test masses can

be approximated by the center-of-mass force-to-displacement

transfer function, Pcm
i with a scaling coefficient, Ki. We obtain a

measurement of Ki for a given input test mass by introducing a

digital excitation exci into the control loop that is much larger

than residual external noise sources. The excitation is performed

over many frequencies in the gravitational wave band; assuming

the model is complete, the coefficient should be frequency-

independent across the band. We obtain a solution for the digital

excitation counts on the input test mass in terms of meters of

resulting motion as measured by qAS (normalized by the

pendulum response Pcm
i ),

Ki ¼
qAS
exci

� �

1þGSM

k

� �

1

Pi
cm

� �

: ð34Þ

The first term is the measured response of the Michelson during

the single input test mass excitation. The second term contains

the open loop transfer function GSM of the simple Michelson

control loop (measured just prior to measuring the response to

excitation) and the quantity k is as defined in Eq. (33). We take the

median of Ki (denoted with ‘‘bra’’‘‘kets,’’ /S), over the measured

frequency points to remove measurement outliers and residual

frequency dependence (or time dependence of k, as discussed in

Section 4). Fig. 18 shows an example measurement of Ki for each

input test mass in H2.

We then configure the interferometer to form a single Fabry–

Perot cavity composed of one arm of the interferometer, and

control it such that the cavity is under resonance (see Fig. 17). In

this configuration, the response of the single arm cavity (now

recorded by the in-phase demodulated output iAS, see Ref. [35] for

details) to sequential length excitations of the input test mass,

exci, and end test mass, exce, are measured. The ratio, Rie of these

to transfer functions can then be used to write the actuation

coefficient for the end test masses as

KA ¼Rie

Pi
cm

Pcm

� �

/KiS¼ iAS
exce

� �

exci
iAS

� �

Pi
cm

Pcm

� �

/KiS, ð35Þ

where KA has units of test mass motion in meters (as measured by

qAS) per count of digital excitation. Fig. 19 shows a measurement

of KA for each test mass in H1. As in the first step, the median of

the frequency points measured in KA is used to form a single value

for the coefficient over the measurement bands.

A.2. Asymmetric Michelson method

During the latter part of the science run, a more direct

approach of determining the actuation coefficient KA was taken,

using the ‘‘asymmetric Michelson technique.’’ This method is

similar in principle to the simple Michelson version of the free-

swinging Michelson technique, however, we configure the

interferometer as shown in Fig. 20. In this method the response
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of the end test mass is measured directly and

KA ¼
qAS
exce

� �

1þGAM

k

� �

1

Pcm

� �

: ð36Þ

Fig. 21 shows an example result for L1.

The quantity k may vary slowly over the measurement period

due to input laser power fluctuations, interferometer alignment,

etc. The asymmetric Michelson is particularly sensitive to these

variations as round trip power loss is large. For this method, we

employ a more sophisticated technique for determining the

amplitude App, developed originally by Rolland et al. [32]. A plot

of qAS versus the total power incident on the photodiodes should

be an ellipse whose semi-minor axis is App/2. We obtain a fit to

this ellipse and extract App with a quantifiable statistical error

(Fig. 22).

A.3. Results

Using the above methods, the actuation coefficient is mea-

sured many times for each optic in each interferometer over the

course of the science run, and the mean of all measurements’

medians in magnitude is used as the actuation scaling coefficient

for all model epochs. Only the magnitude is used, as the phase of

each measurement is consistent with zero. Fig. 23 shows the

representative median and estimated uncertainty for each of

these measurements. Table 7 summarizes the actuation coeffi-

cients used in the actuation model, /KAS for the three

interferometers in the fifth science run, using either simple

Michelson or asymmetric Michelson techniques, with statistical

uncertainty as described in Section 3.1.4.

Each simple Michelson measurement of a given optic’s

coefficient is assigned magnitude and phase uncertainty,

sjKA j
jKAj

� �2

¼ stdðjKijÞ
/jKijS

� �2

þ 1

/jRiejS
stdðjRiejÞ

ffiffiffiffi

N
p

� �2

ð37Þ

s2
f

KA

¼ stdðf
Ki
Þ2þ

stdðf
Rie

Þ
ffiffiffiffi

N
p

� �

ð38Þ

and asymmetric Michelson measurement is assigned magnitude

and phase uncertainty

sjKA j
jKAj

� �2

¼ stdðjKAjÞ
/jKAjS

� �2

ð39Þ

s2
f

KA

¼ stdðf
KA
Þ2: ð40Þ

In simple Michelson technique, measurements of Ki were

found to be inconsistent with a Gaussian distribution across the

frequency band. We therefore estimate the uncertainty in the

median, /KiS to be the standard deviation alone. However, in the

second step (Eq. (35)), we have found the single arm transfer

function ratio, Rie, to be consistent with a Gaussian distribution

across the frequency band, so we estimate the median uncertainty

as though it were a Gaussian distribution and divide the standard

deviation by
ffiffiffiffi

N
p

where N is the number of frequency points. In

the asymmetric Michelson method, where the measurement of KA

is similar to that of Ki in the simple Michelson method, we again

do not assume a Gaussian distribution over the measurement

band, and take the standard deviation alone.
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Fig. 23. Individual measurement medians and uncertainties of the actuation scaling coefficients, /K
x
ASj (left) and /K

y
ASj (right), measured over the course of the fifth

science run. Measurement numbers 6 in H1 and 7 through 15 in L1 used the asymmetric Michelson technique, the remainder were measured with the simple Michelson

technique. Only the magnitude for each measurement (top panels) is used to determine the total scaling coefficient for each test mass (indicated by horizontal lines), as the

phase (bottom panels) is consistent with zero. The statistical uncertainty of actuation function is the quadrature sum of each arm’s actuation coefficient uncertainty, which

takes the larger of the standard deviation of each measurements median, /KASj or the mean uncertainty divided by the number of measurements sKA ,j .

Table 7

Summary of the actuation scaling coefficients measured during S5.

K
x
A (nm/ct) K

y
A (nm/ct)

H1 0.84770.024 0.87170.019

H2 0.93470.022 0.95870.034

L1 0.43470.039 0.41570.034

These single numbers are formed by the mean of each measurement’s median

/KASj (6 for each end test mass in H1, 5 in H2, and 14 and 15 for the X and Y test

masses, respectively, in L1). Only statistical uncertainty is reported here;

systematic uncertainty is folded the total uncertainty of the actuation function.
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