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Abstract 

Seafloor hydrothermal vent systems form along mid-ocean ridges in all of the Earth’s oceans. 

They have a major impact on the chemical exchange between the lithosphere and the 

hydrosphere, as vast volumes of seawater cycle through these systems, thereby interacting 

with young, oceanic crust. Furthermore, seafloor hydrothermal vent systems provide an 

excellent environment for organisms to thrive, resulting in diverse and unique vent faunas. 

Due to their favourable ecological conditions and their existence throughout Earth’s history, 

they are regarded as a potential cradle where life on Earth could have emerged. 

Transition metals, such as iron, copper and zinc, are essential nutrients for all organisms on 

Earth and, thus, metabolic processes have direct influence on cycling of these elements in the 

environment. The development of high-resolution multicollector inductively coupled plasma 

mass spectrometry (MC-ICP-MS) in the mid-1990s enabled the use of transition metal stable 

isotope variations in nature as geochemical tracers. Studies on Fe, Cu and Zn isotope 

variations have revealed that metabolic reactions are capable of fractionating stable isotopes 

of these transition metals. Consequently, researchers have tried to find distinct isotopic 

fingerprints that allow identifying remnants of biological activity in geological samples, since 

DNA or microfossil structures are often missing in especially ancient samples due to later 

geological overprint. Unambiguous biological transition metal isotope signatures, however, 

have not been discovered so far. 

The objective of this thesis is to better understand fractionation of Fe, Cu and Zn isotopes in 

seafloor hydrothermal vent systems in general, and whether isotope variations of these 

transition metals may help to unravel (biological) formation processes of ancient 

hydrothermal deposits in particular. For this purpose, analytical methods were developed to 

determine Cu and Zn isotope variations in Fe-rich hydrothermal samples. Copper and zinc 

were purified from the sample matrices using a two-step ion-exchange chromatographic 

procedure. It was shown that no fractionation of Cu isotopes occurred during chromatographic 

separation of copper by applying a standard addition approach with an enriched 
65

Cu spike. 

Furthermore, a new 
64

Zn-
67

Zn double spike was calibrated in order to correct for instrumental 

mass bias during Zn isotope ratio determinations by MC-ICP-MS. Cu and Zn isotope 

measurements of international reference materials and inter-laboratory data comparison 

between the isotope laboratories at the University of Bergen and the Imperial College, 

London, confirmed the accuracy and applicability of the established analytical methods. 
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The samples investigated in this thesis derived from the Jan Mayen and the Loki’s Castle vent 

fields, situated along the Mohns Ridge, North Atlantic. Low temperature hydrothermal 

venting at the Jan Mayen vent fields leads to the formation of extensive microbial mats that 

mediate the precipitation of layered, siliceous Fe oxyhydroxide deposits. These deposits 

exhibit substantial amounts of encrusted filaments of the Fe-oxidising bacterium 

Mariprofundus ferrooxidans. Fe isotopic compositions of the siliceous Fe oxyhydroxides span 

a range from -2.09 to -0.66 ‰ in δ56
Fe, which is most likely the result of partial oxidation of 

hydrothermal Fe(II)aq by low concentrations of free oxygen in fluid-filled cavities within the 

deposits and/or by microbial iron oxidation. The Jan Mayen samples are enriched in the heavy 

Zn isotopes relative to the low temperature hydrothermal fluids, most likely caused by isotope 

fractionation during adsorption of Zn aquo complexes onto the surfaces of the siliceous Fe 

oxyhydroxides. Cu isotopes in the Jan Mayen samples, on the other hand, are fractionated 

towards lower δ65
Cu values relative to igneous rocks. Here, Cu isotope fractionation might be 

caused by partitioning of copper into different organic and inorganic complexes and 

subsequent preferential, pH-dependent adsorption of Cu aquo complexes onto siliceous Fe 

oxyhydroxides and/or by assimilation and adsorption of isotopically light copper by 

microorganisms. Isotope variations in the modern Jan Mayen siliceous Fe oxyhydroxide 

deposits were compared to those in Ordovician jasper beds from the Løkken ophiolite 

complex, Norway, which are interpreted to have formed from white smoker hydrothermal 

fallout deposits. Fe isotope variations in the Løkken jaspers, ranging from -0.38 to +0.89 ‰ in 

δ56
Fe, point to partial oxidation of Fe(II)aq in the hydrothermal plume. The isotopic 

compositions of copper and zinc in the jaspers are comparable to those of the modern 

siliceous Fe oxyhydroxide deposits from the Jan Mayen vent fields, and isotope fractionation 

might have been caused by similar (bio)chemical reactions despite different formation 

pathways of the two deposits. However, interpreting reactions causing the observed Cu and 

Zn isotope fractionations in these hydrothermal systems remains speculative. 

Besides low temperature deposits, hydrothermal sulphides which formed in high temperature 

white smoker chimneys at the Jan Mayen vent fields and in black smoker chimneys at the 

Loki’s Castle vent field were investigated. In these environments, fractionation of transition 

metal isotopes is mostly driven by inorganic chemical reactions. Variations of Fe, Cu and Zn 

isotopes were used to trace reaction pathways of sulphide formation. Isotopically light iron is 

incorporated into iron mono- and disulphides, such as pyrrhotite and marcasite, respectively, 

reflecting kinetic Fe isotope fractionation during sulphide precipitation. Kinetic isotope 
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effects are most likely also responsible for low δ56
Fe and δ66

Zn values in sphalerite solid 

solution, compared to δ56
Fe and δ66

Zn values of high temperature hydrothermal fluids. A 

correlation between FeS concentration and Zn isotopic composition in sphalerite was found, 

which might indicate an impact of zinc substitution for iron on Zn isotope fractionation. 

Equilibrium isotope fractionation of copper and iron between hydrothermal fluids and 

sulphides was identified during formation of isocubanite and chalcopyrite. Here, isotope 

fractionation is most likely driven by changes in the oxidation states of iron and copper. 

Overall, the results are in agreement with experimental studies published in literature. 

The findings of this thesis show that transition metal isotope variations can be successfully 

used to trace chemical reactions in hydrothermal vent systems. However, the results also 

confirm that investigations solely based on Fe isotope variations are not suitable to distinguish 

between microbial and inorganic oxidation of reduced Fe(II)aq, which is an important reaction 

in oceanic and terrestrial low temperature environments. Combined studies of isotope 

fractionation of different transition metals, as presented in this thesis, are certainly a better 

approach to unravel formation reactions of minerals and hydrothermal deposits. However, the 

results of this thesis also emphasise the need of further research on metal isotope fractionation 

both in nature and laboratory experiments to enhance our knowledge of transition metal 

isotope fractionation and, thus, to allow accurate interpretations of measured isotope 

variations in nature. 
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1. Objectives 

Seafloor hydrothermal vent systems are thought to be one of the places where first organisms 

may have emerged (e.g., Baross and Hoffmann, 1985; Holm, 1992; Russell and Hall, 1997; 

Martin et al., 2008) and, thus, play an important role in understanding the evolution of early 

life on Earth. Stable isotope variations of ‘light elements’, such as carbon and sulphur, have 

proven to be useful to trace the presence of organisms in geological samples, even if visible 

remnants, i.e., fossils, are missing (e.g., Canfield and Raiswell, 1999; Schidlowski, 2001; 

Shen et al., 2001; House et al., 2003). With the development of high-resolution multicollector 

inductively coupled plasma mass spectrometry (MC-ICP-MS) in the mid-1990s, it became 

possible to accurately determine isotope variations of elements with higher masses, such as 

transitions metals, which play an important role in microbial nutrient cycles. However, more 

than a decade of research conducted on the fractionation of iron, copper and zinc isotopes has 

still not led to unambiguous conclusions if and how these isotope systems can be used to 

indentify biological processes. Especially in the case of copper and zinc, stable isotope 

research may still be considered as being in its infancy.  

The aim of this thesis is to better understand how iron, copper and zinc isotopes are 

fractionated in seafloor hydrothermal vent systems. For this purpose, three foci were set: 

1) Establishment of analytical procedures to accurately and precisely determine copper 

and zinc isotope variations in hydrothermal samples; 

2) Investigation of transition metal isotope variations in low temperature, diffuse 

venting areas, where Fe-oxidising bacteria form extensive Fe oxyhydroxide deposits; 

3) Investigation of transition metal isotope fractionation during precipitation of sulphide 

minerals in high temperature black and white smoker chimneys.  

 

First, a general overview of seafloor hydrothermal vent systems and the particular vent sites 

that were investigated will be given in this chapter. Furthermore, principles of stable isotope 

fractionation will be outlined, including brief literature reviews on iron, copper and zinc 

isotope fractionation and variations in nature. 
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2. Seafloor hydrothermal vent systems 

The ocean floor is pervaded by oceanic spreading centres along divergent tectonic plate 

boundaries, forming a continuous, approximately 80,000 km long network of mid-ocean 

ridges (MOR). New, permeable oceanic crust is formed at these sites. Along the MOR, 

seafloor hydrothermal vent fields occur as a result of seawater penetrating through the crust 

and interacting with crustal rocks at high temperatures (Fig. 1). The circulation of fluids 

through the oceanic crust has a major impact on heat transport between lithosphere and 

hydrosphere and also influences the chemical composition of the crust and the seawater.  

A short outline of reactions in hydrothermal systems below the seafloor will be given based 

on the article by Alt (1995). Seawater enters the oceanic crust through cracks and fissures. In 

the so-called recharge zone, the seawater is heated up and first reactions with the surrounding 

rocks take place. Dissolved oxygen carried with the seawater oxidises the rocks, resulting in 

formation of Fe oxyhydroxides, which replace olivine and primary sulphides in the crustal 

rocks and fill pores and veins. Due to heating of the seawater below the seafloor, calcium and 

sulphate precipitate as anhydrite. The alkali metals K, Rb and Cs as well as B are removed 

from the water and incorporated into micas and clay minerals. With increasing penetration 

depth, the evolving fluids become depleted in Mg
2+

 and OH
-
, which form components of 

smectite and chlorite. The extraction of OH
-
 leads to decreasing pH values, causing leaching 

of Ca, Na, K, Cu, Zn and other elements from the surrounding oceanic crust. In the reaction 

zone, the fluids are considered to experience the highest temperatures. Here, transition metals 

and sulphur are leached from the rocks and become enriched in the fluids. Phase separation 

into a vapour-rich and a brine phase may occur when the temperature and pressure conditions 

exceed those of the boiling curve for seawater (Von Damm et al., 1997). Due to the high 

pressure and temperatures in the reaction zone, density and viscosity of the evolved fluids 

decrease. As a result, the fluids become buoyant relative to cold seawater and rise rapidly 

towards the seafloor. Hydrothermal fluids either rise through focused or diffuse upflow zones. 

Focused upflow zones are characterised by massive sulphide deposits (VMS) and associated 

high temperature vents at the seafloor. Dependent on fluid temperature, either black or white 

smoker type chimneys form. In diffuse upflow zones, the hydrothermal fluids mix with 

seawater that penetrates into the crust below seafloor. Low temperature diffuse venting 

(< 50 °C), which often occurs in peripheral parts of hydrothermal vent sites, results in 

precipitation of Fe oxyhydroxides, Mn oxides and silica (Hannington et al., 1995). Both 

focused and diffuse venting with moderate to high temperatures release warm buoyant plumes 
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into the water column. In black smoker plumes, sulphide particles precipitate from dissolved 

metals and H2S carried in the hot hydrothermal fluids upon mixing with the cold ambient 

seawater. Successive oxidation results in formation of Fe oxyhydroxide particles (e.g., Mottl 

and McConachy, 1990).  

 

 

Fig. 1. Schematic cross section through a MOR. Fluid flows are indicated by black arrows. Seawater 

penetrating through the crust becomes depleted in alkali metals, sulphate, Mg and OH- in the recharge 

zone. At higher temperatures in the reaction zone, transition metals and sulphur are leached from the 

oceanic crust. Rising hydrothermal fluids may mix with circulating seawater in the upflow zone. 

 

Black smoker chimneys form from focussed high temperature hydrothermal fluids, commonly 

emanating through one central conduit (Fig. 2a). The formation of black smoker chimneys 

was first described by Haymon (1983). In a first stage of chimney growth, anhydrite 

precipitates due to mixing of hydrothermal fluids with ambient seawater, isolating the hot 

fluids against the cold seawater. Anhydrite is then gradually replaced by Cu-Fe sulphides, 

mainly chalcopyrite, isocubanite and pyrrhotite, which line the inner walls of the chimney 

(Hannington et al., 1995).  

Hydrothermal fluids that form white smoker chimneys carry less sulphur and metals, either 

because fluid temperatures are not high enough or because of conductive cooling or sub-

seafloor mixing with seawater, resulting in precipitation of sulphides below the seafloor. In 
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contrast to black smoker chimneys, anhydrite is less common in white smoker chimneys, and 

the structures are commonly cemented by silica and barite (Hannington et al., 1995). 

Sulphides, which precipitate inside the chimneys, are mostly marcasite, pyrite and sphalerite. 

Some white smokers may consist almost entirely of sphalerite. The chimney walls, however, 

remain porous and cold seawater can penetrate into the interior of the chimney, causing steep 

thermal and chemical gradients (Hannington et al., 1995). White smoker chimneys do not 

exhibit one distinct conduit (Fig. 2b), but rather a network of entangled, narrow channels with 

diameters of usually less than 1 cm (Tivey, 1995). In the late stage of chimney growth, silica 

precipitates in the open spaces and channels, eventually clogging the interior and cutting the 

chimney off from the hydrothermal flow.  

 

 

Fig. 2. Photographs of high temperature hydrothermal chimneys. (a) Hydrothermal fluids emanate 

from one distinct orifice of a black smoker chimney at Loki’s Castle, forming a black plume due to 

precipitation of sulphide particles in contact with ambient seawater. (b) White smoker chimney at the 

Jan Mayen vent fields consists of several, irregular spires from which almost clear hydrothermal fluids 

emanate.  

 

2.1. Study areas 

Samples investigated in this thesis derived from two seafloor hydrothermal vent sites along 

the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR) (Fig. 3). The black smoker type 

hydrothermal vent field Loki’s Castle is situated at the transition of the Mohns Ridge into the 

Knipovich Ridge at about 2400 m water depth (Pedersen et al., 2010b). Four black smoker 

chimneys were discovered, hosted by two hydrothermal sulphide mounds (Pedersen et al., 
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2010a). In contrast, the Jan Mayen vent fields, located near the southwestern termination of 

the Mohns Ridge, consist of two venting sites, both exhibiting white smoker type chimneys in 

water depth between approximately 550 and 700 m (Pedersen et al., 2010b). Distal to the 

northern vent field called Troll Wall, diffuse low temperature venting leads to the formation 

of siliceous Fe oxyhydroxide deposits which spread over several hundred metres. Microbial 

communities with abundant Fe-oxidising bacteria are thought to mediate the precipitation of 

the Fe oxyhydroxides.  

In addition, transition metal isotope variations were analysed in Ordovician jasper beds from 

the Løkken ophiolite complex, western Trondheim region, Norway. The jasper beds were 

interpreted to have formed from siliceous Fe oxyhydroxide gel precursors, which cumulated 

as fallout deposits around mainly white smoker type venting sites in a back arc basin (Grenne 

and Slack, 2003; Grenne and Slack, 2005).  

 

 

 

Fig. 3. Location of the investigated hydrothermal vent sites Loki’s Castle and the Jan Mayen vent 

fields along the Arctic Mid-Ocean Ridges.  
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3. Principles of stable isotope fractionation 

Isotopes are atomic variants of a chemical element with equal numbers of protons, but 

different numbers of neutrons in the nucleus. They can either be stable or unstable, depending 

on the ratio of protons to neutrons in their nuclei. Unstable isotopes are radioactive, i.e., they 

decay under emission of high-energy radiation into nuclides of a different chemical element. 

‘Stable’ isotopes, on the other hand, are either truly stable, i.e., they do not decay, or they are 

radioactive by theory with extremely long half-lives.  

The abundances of stable isotopes of a chemical element are variable. Partitioning of isotopes 

between two substances or phases with different isotope ratios is called ‘isotope 

fractionation’. Mass-dependent isotope fractionation is caused by differences in mass between 

the isotopes of an element. For elements heavier than H, C, N, O and S, which are widely 

used stable isotope systems since the 1950s, or elements with high ionisation potentials, 

accurate measurements of isotope ratios could not be performed before new innovations in 

mass spectrometry. In particular, the introduction of multicollector mass spectrometers with 

inductively-coupled plasma (MC-ICP-MS) in the mid-1990s has enabled isotope ratio 

measurements of elements such as Li, Mg, Ca, Cr, Fe, Cu, Zn, Se, Mo and Cd (see reviews of 

Johnson et al., 2004a (2004) and Anbar and Rouxel (2007)), which are often described as 

‘non-traditional’ isotope systems. 

Differences in the stable isotope abundances of a particular element A are commonly given as 

the ratio R of two isotopes of the element: 

(1.1) 

 

Due to the rather small variations of isotope abundances in nature, these are reported in the 

δ-notation relative to a reference material as per mill deviation by multiplying with a factor of 

10
3
: 

(1.2) 

 

The fractionation of isotopes of an element A between educt E and product P is described by 

the fractionation factor α, which is defined as 

(1.3) 

 

A

A
light

heavy

R

standard

samplelightheavy

R

R
A/

E

P
EP

R

R
,
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In isotope studies, isotope fractionation between two substances is often given as the 

difference Δ between their measured isotopic compositions: 

(1.4) 

where α is related to Δ by 

(1.5) 

 

Mass-dependent fractionation of stable isotopes can be caused by two different processes, i.e., 

equilibrium and kinetic isotope fractionation. A brief summary of the theory of stable isotope 

fractionation based on recent reviews of Chacko et al. (2001) and Schauble (2004) is given 

below. 

 

Equilibrium isotope fractionation 

Mass-dependent equilibrium isotope fractionation is a quantum mechanical phenomenon, 

which is mainly caused by differences in vibrational energies of molecules containing atoms 

of different masses (Urey, 1947). These differences in vibrational energies are associated with 

differences in the zero-point energy (ZPE) of the chemical bonds in the molecules, and thus 

with bond strength. The energy associated with atomic motion is distributed over translation, 

rotation and vibration. In general, the ZPE is predominantly determined by the vibrational 

frequency of a bond, whereas rotational and translational frequencies have subordinate 

effects. For a simple harmonic vibration, the vibrational energy is defined as 

(1.6) 

 

where n (= 0, 1, 2, …) is the quantum number, h is the Planck’s constant and υ the oscillation 

frequency of the vibration. As an approximation, the ZPE (i.e., n = 0) of a simple diatomic gas 

molecule (AB) can therefore be written as  

(1.7) 

 

The vibrational frequency υ can be approximated by a harmonic oscillator: 

(1.8) 

 

hνnEvib
2

1

hνZPE
2

1

k

BABA

ln
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where k is the effective spring constant and μ is the reduced mass of the molecule AB, which 

is defined by the masses of the atoms A and B, mA and mB, as 

(1.9) 

 

Therefore, the ZPE is a function of the masses of the atoms A and B and is greater for bonds 

involving a light isotope than for bonds with a heavier isotope. The larger the difference 

between ZPE and the energy of the dissociated atoms (Fig. 4), the stronger is the bond. Thus, 

the bond strength increases when a heavier isotope substitutes for a lighter one.  

 

 

 

 

Fig. 4. Schematic energy curve for a diatomic molecule AB. B is monoisotopic. The zero-point energy 

(ZPE) for the molecule with the heavier isotope y incorporated (yAB) is lower than the ZPE for the 

molecule with the lighter isotope x (xAB). A lower ZPE means higher dissociation energy and, thus, 

stronger chemical bonds. 

 

 

 

Equilibrium isotope fractionation can be calculated using the approach of Urey (1947), which 

assumes harmonic vibrations, as described above, rigid-body rotation and simplified rotation 

energies. These assumptions are reasonable for most geochemical applications (Schauble, 

2004).  

A simple isotope exchange reaction can be defined by 

(1.10) 

BA

BA

mm

mm

AABAAB xyyx
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where x and y are two isotopes of the element A, and B is in this case monoisotopic. The 

equilibrium constant keq of this reaction is defined as the quotient of the activities of the 

products and educts: 

(1.11) 

which is equivalent to the equilibrium isotope fractionation factor αAB,A: 

(1.12) 

 

The equilibrium constant is related to the free energies of the products and educts with 

(1.13) 

giving 

(1.14) 

 

where ΔG
0
 is the Gibbs free energy of the reaction, R is the molar gas constant and T is the 

absolute temperature.  

During isotope exchange reactions, the bond structure, and thus the potential energy of each 

molecule, is unaffected. Therefore, only energy associated with atomic motion has to be 

considered for the calculations. Furthermore, isotope exchange does, in general, not affect 

pressure (P) and the molar volumes (V). Therefore, the Gibbs free energy G is equivalent to 

the Helmholtz free energy F: 

  and          (1.15) 

The basic expression for the equilibrium constant can, thus, be given as 

(1.16) 

 

As an approximation, the atomic motion can be described by a harmonic oscillator. Here, the 

energy difference ΔF equals approximately the difference in zero-point energies ΔZPE, which 

can be calculated using Eqn. 1.7, 

 

AAB

AAB xy

yxeqk

A
A

AB
AB

y

x

y

x

,AABeqk

eqkRTG ln

RT

G
keq exp

PVFG FG

RT

F
keq exp
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(1.17) 

This illustrates that equilibrium isotope fractionation between two substances is mainly driven 

by the differences in vibrational frequency Δυ, which is related to the mass of the isotopes 

(Eqns. 1.8 and 1.9). 

As mentioned before, the above described approach solely considers molecules in their 

ground vibrational state, which is an oversimplification. Partition functions Q describe the 

total energy of a system of molecules, including vibrational, rotational and translational 

energies, as the sum over all energy states and the probabilities that the molecule will occupy 

a particular state. Q is related to the Helmholtz free energy by 

(1.18) 

The vibrational partition function Qvib describes the sum over all vibrational energies En in a 

molecule: 

with        (1.19) 

 

where k is the Boltzmann’s constant and n (= 0, 1, 2, …) describes the energy state, i.e., the 

quantum number, of the vibrational degree of freedom.  

The partition functions for rotation Qrot and translation Qtrans in a molecule can be 

approximated by 

and         (1.20) 

 

(1.21) 

where I is the moment of inertia, V the volume and m the mass of the molecule.  

The total energy of atomic motion is 

(1.22) 

resulting in the following expression of the equilibrium constant keq and the equilibrium 

fractionation factor α: 

 

hhhZPEF
EductsProducts

QRTF ln

n nvib kTEQ exp hnEn

h

IkT
Qrot

h

mkT
VQtrans

transrotvib QQQRTF ln
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(1.23) 

 

Inserting the partition functions in the equation above, the equilibrium fractionation factor 

αAB,A can be calculated as 

 

 

 

 

(1.24) 

 

 

if the vibrational frequencies υ and the moment of inertia I are known. 

 

The fractionation factor α between two substances P and E can be expressed as partition 

function ratios: 

(1.25) 

Calculated partition function ratios are usually reported as reduced partition functions (β-

factors), which ignore rotational and translational energies. Using these β-factors, equilibrium 

fractionation factors can be calculated with 

or          (1.26) 

(1.27) 
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Schauble (2004) summarised a few simplified qualitative rules governing equilibrium isotope 

fractionation. These rules predict large isotope fractionation between two substances with 

marked differences in oxidation state, bond strength, electron configuration and coordination 

number at low temperature: 

 Equilibrium fractionation decreases with increasing temperature, roughly with 1/T 
2
. 

 Fractionation is largest for elements with low atomic masses and large relative mass 

differences between the isotopes of interest.  

 Heavy isotopes are preferentially incorporated in the substance where they form the 

stiffest, i.e., short and strong, chemical bonds. Bond stiffness correlates with high 

oxidation state, bonding partners near the top of the periodic table, highly covalent 

bonds, low-spin electronic configuration number for transition metals and low 

coordination number. 

 

Kinetic isotope fractionation 

In contrast to equilibrium isotope fractionation, kinetic fractionation between two substances 

can occur during incomplete isotope exchange reactions. In most cases, these are 

unidirectional, such as evaporation, diffusion or dissociation reactions. The kinetic isotope 

effect is caused by differences in the reaction rate constants of different isotopes of an 

element, which is the result of the mass dependence of the dissociation energy, and, thus, of 

the bond strength (Fig. 4).  

The mass of a molecule or atom m affects its velocity v. For an ideal gas, where the 

translational kinetic energy Ekin is equivalent for all molecules or atoms, this can be illustrated 

by 

(1.28) 

where k is the Boltzmann’s constant and T the absolute temperature. The velocities of 

molecules or atoms with different masses differ according to 

(1.29) 

This means that the heavier isotope reacts more slowly than the lighter one. Therefore, in 

many kinetic, i.e., non-equilibrium, reactions, the light isotopes are enriched in the reaction 

product. 
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3.1. Stable iron isotopes 

Iron (Fe) is the second most abundant element on Earth. As most of the iron is cumulated in 

the Earth’s core, it represents the fourth most abundant element in the Earth’s crust (Rudnick 

and Gao, 2004). Besides metallic Fe
0
, it occurs mainly as reduced ferrous Fe

2+
 and oxidised 

ferric Fe
3+

 in nature. Iron is an essential nutrient for almost all known terrestrial and oceanic 

organisms. Furthermore, it is a major element in many rock-forming minerals. Due to its 

importance to biological and inorganic processes, fractionation of iron isotopes has become 

the focus of an increasing number of studies over the last decade. 

Iron has four stable isotopes (with approximate natural mole fractions by de Laeter et al. 

(2003)): 
54

Fe (5.85%), 
56

Fe (91.75%), 
57

Fe (2.12%) and 
58

Fe (0.28%). Some researchers 

prefer to report Fe isotopic compositions of natural samples in the δ-notation (Eqn. 1.2) 

relative to the average isotopic composition of igneous rocks (e.g., Beard et al., 2003a; 

Johnson et al., 2005; Johnson et al., 2008a; Beard et al., 2010; Percak-Dennett et al., 2011; 

Wu et al., 2012). However, Fe isotopic compositions are usually given relative to the 

reference material IRMM-014 (Taylor et al., 1992), certified for its isotope abundances and 

distributed by the Institute for Reference Materials and Measurements (IRMM) in Geel, 

Belgium, expressed in per mill (‰) by multiplying with a factor of 10
3
: 

(1.30) 

The first attempts to measure stable Fe isotopic compositions in natural samples were made 

using thermal ionisation mass spectrometry (TIMS) (e.g., Völkening and Papanastassiou, 

1989; Dixon et al., 1993; Walczyk, 1997; Johnson and Beard, 1999). However, significant 

analytical difficulties, such as large instrumental mass bias drift, hampered accurate Fe 

isotope ratio determinations. Although the precision of measurements could readily be 

improved by using Fe double spikes to correct for instrumental mass bias, analytical 

uncertainties were still in the order of ±0.2 to 0.3 ‰ (1 standard deviation) on δ56
Fe values 

(Johnson and Beard, 1999). More precise and accurate Fe isotope measurements with 

reproducibilities of around ±0.05 ‰ (2 standard deviation) on δ56
Fe could be achieved with 

the development of the MC-ICP-MS in the late 1990s (e.g., Belshaw et al., 2000; Weyer and 

Schwieters, 2003; Arnold et al., 2004; Schoenberg and von Blanckenburg, 2005). Since then, 

a lot of research has been done on determining Fe isotope fractionation factors for biological 

and inorganic reactions using experimental (e.g., Bullen et al., 2001; Skulan et al., 2002; 
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5456
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014IRMM
FeFe

FeFe
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Welch et al., 2003; Brantley et al., 2004; Icopini et al., 2004; Wiesli et al., 2004; Crosby et al., 

2005; Johnson et al., 2005; Schuessler et al., 2007; Mikutta et al., 2009; Wu et al., 2011) and 

theoretical approaches (e.g., Schauble et al., 2001; Anbar et al., 2005; Hill and Schauble, 

2008; Polyakov and Soultanov, 2011). Comprehensive reviews on experimentally obtained Fe 

isotope fractionation factors and Fe isotope variations measured in nature have recently been 

published (Anbar, 2004; Beard and Johnson, 2004; Johnson et al., 2004b; Dauphas and 

Rouxel, 2006; Johnson and Beard, 2006; Anbar and Rouxel, 2007; Johnson et al., 2008b). 

Here, a short overview of the for this study most important reactions causing Fe isotope 

fractionation as well as about known Fe isotope variations of selected natural systems will be 

given. 

A collection of samples from chondrites, meteorites from Mars and Vesta, lunar rocks and 

igneous rocks from the Earth has given evidence for the assumption that the planetary bodies 

of our solar system are relatively homogenous in their Fe isotopic composition (Zhu et al., 

2001; Beard et al., 2003a; Poitrasson et al., 2004; Poitrasson and Freydier, 2005; Weyer et al., 

2005; Schoenberg and von Blanckenburg, 2006). For bulk igneous rocks on Earth, an average 

δ56
Fe value of 0.09 ± 0.08 ‰ relative to IRMM-014 has been proposed (Beard et al., 2003a). 

Magmatic differentiation, however, can cause slight Fe isotope fractionation between 

minerals within melts and rocks (e.g., Poitrasson and Freydier, 2005; Schuessler et al., 2007; 

Teng et al., 2008; Williams et al., 2012).  

Equilibrium isotope fractionation decreases with increasing temperature, thus, the largest Fe 

isotope effects are expected to occur in low temperature environments. In the biosphere, 

fractionation of Fe isotopes is driven by metabolic processes. Microorganisms are able use 

iron for assimilatory and dissimilatory redox processes, both as electron donor and acceptor 

(e.g., Kappler and Straub, 2005). Therefore, extensive research has been done on Fe isotope 

fractionation during dissimilatory iron reduction (DIR) (Beard et al., 1999; Crosby et al., 

2005; Johnson et al., 2005; Crosby et al., 2007; Wu et al., 2009; Tangalos et al., 2010; Percak-

Dennett et al., 2011) as well as during Fe(II) oxidation by anoxygenic photoautotrophic 

(Croal et al., 2004) and acidophilic chemolithotrophic bacteria (Balci et al., 2006). 

Furthermore, it has been shown that most plants significantly fractionate Fe isotopes during 

Fe uptake and plant growth, getting increasingly depleted in the heavy Fe isotopes relative to 

its source in soils (Guelke and von Blanckenburg, 2007).  

The largest inorganic (equilibrium) fractionation effects are associated with redox reactions 

and, thus, changes in the oxidation state of iron. In aqueous solutions, oxidation of Fe(II)aq to 
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Fe(III)aq causes fractionation by ~3 ‰ in Δ56
FeFe(III)-Fe(II) (Welch et al., 2003). Enrichment of 

the heavy Fe isotopes has also been observed during precipitation of Fe(III)-oxyhydroxides 

from reduced solutions (Bullen et al., 2001; Beard et al., 2010; Wu et al., 2011; Wu et al., 

2012). Apart from redox reactions, considerable Fe isotope fractionation occurs during 

precipitation of carbonates (Wiesli et al., 2004) and sulphides (Butler et al., 2005; Guilbaud et 

al., 2011a; 2011b) due to equilibrium and/or kinetic effects. Adsorption of iron onto mineral 

surfaces (Icopini et al., 2004) and isotope exchange between absorbed and reactive Fe in the 

outer crystal layers (Crosby et al., 2005; Crosby et al., 2007; Jang et al., 2008; Mikutta et al., 

2009) may further alter the Fe isotopic compositions of minerals and surrounding aqueous 

solutions.   

In marine environments, isotopically light Fe(II)aq is produced in anoxic sediment pore waters 

and released into the water column along continental margins (Severmann et al., 2006; 

Staubwasser et al., 2006). Alteration of oceanic crust by hydrothermal fluids causes 

preferential leaching of isotopically light Fe(II) from the basaltic rocks, shifting the Fe 

isotopic composition of altered basalts towards higher δ56
Fe values (Rouxel et al., 2003). As a 

consequence, high temperature end member fluids of hydrothermal vent systems are depleted 

in the heavy Fe isotopes relative to the host rocks (Sharma et al., 2001; Beard et al., 2003b; 

Severmann et al., 2004; Rouxel et al., 2008; Bennett et al., 2009). Precipitation of sulphides 

from hydrothermal fluids tends to kinetically fractionate iron, causing especially iron mono- 

and disulphides to be even further depleted in the heavy Fe isotopes (Rouxel et al., 2004b; 

Rouxel et al., 2008). Associated with hydrothermal activity in Precambrian oceans, large 

deposits of banded iron formations (BIF) formed (e.g., Klein, 2005 for review). BIFs are 

characterised by highly variable Fe isotopic compositions, with δ56
Fe values ranging between 

around -2 and +2 ‰ (e.g., Johnson et al., 2003; Yamaguchi et al., 2005; Frost et al., 2007; 

Whitehouse and Fedo, 2007; Johnson et al., 2008a; Steinhoefel et al., 2010; Planavsky et al., 

2012), reflecting biogeochemical iron cycling during early sediment diagenesis (Yamaguchi 

et al., 2005; Johnson et al., 2008a) and/or temporal variations in the ocean’s Fe isotopic 

composition (Rouxel et al., 2005). 
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3.2. Stable copper isotopes 

Copper (Cu) is a trace element in igneous rocks and is present in the Earth’s crust at 

concentrations of about 50 ppm (Hofmann, 1988; Rudnick and Gao, 2004). It occurs in nature 

mainly as metallic Cu
0
, cuprous Cu

1+
 and cupric Cu

2+
. In the biosphere, copper is cofactor of 

various enzymes and, therefore, an essential micronutrient. However, elevated concentrations 

of copper are toxic to most organisms. 

Copper has two stable isotopes: 
63

Cu (69.15%) and 
65

Cu (30.85%) (de Laeter et al., 2003). Cu 

isotopic compositions are reported relative to the certified reference material SRM 976 from 

the National Institute of Standards and Technology (NIST): 

(1.31) 

Compared with iron, much less research has been done on Cu isotope fractionation in nature. 

Accurate measurements of Cu isotope ratios may be hampered by non-quantitative 

chromatographic separation of copper from the sample matrix, which causes significant Cu 

isotope fractionation (Maréchal and Albarède, 2002), and by difficulties in monitoring 

instrumental mass bias and isobaric interferences on the Cu masses, as it has only two stable 

isotopes. Therefore, most of the earlier studies focused on Cu isotope fractionation in, for 

instance, ore deposits (Zhu et al., 2000; Larson et al., 2003; Mason et al., 2005; Asael et al., 

2007), as highly enriched or almost pure copper samples do not necessarily require extensive 

chemical purification before measurement. However, the pioneering study of Maréchal et al. 

(1999) has provided analytical routines to precisely determine Cu isotopic compositions of 

samples less enriched in copper. Since then, the analytical methods were successively refined 

and adapted to various sample matrices (e.g., Archer and Vance, 2004; Ehrlich et al., 2004; 

Mason et al., 2004a; Mason et al., 2004b; Bermin et al., 2006; Borrok et al., 2007; Peel et al., 

2008; Larner et al., 2011).  

Terrestrial igneous rocks seem to have limited Cu isotope variations with a mean δ65
Cu value 

of ~0 ‰ (Luck et al., 2003 and references therein; Herzog et al., 2009; Li et al., 2009; 

Moynier et al., 2010). Lunar rocks and soils, on the other hand, exhibit δ65
Cu values spanning 

a range of around 6 ‰, probably reflecting isotope fractionation of the moderately volatile 

copper due to vaporisation during impact events and/or sputtering (Moynier et al., 2006; 

Herzog et al., 2009).  
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Cu isotope fractionation factors have been experimentally determined for both inorganic and 

biologically mediated reactions. In inorganic systems, large Cu isotope fractionation is caused 

by redox reactions with Δ65
CuCu(II)-Cu(I) values of ~3 ‰ (Ehrlich et al., 2004; Pekala et al., 

2011). Chemical reactions without changes in the oxidation state of copper, however, may 

also result in significant isotope fractionation. Adsorption onto mineral surfaces enriches the 

adsorbed copper in the heavy isotope (Balistrieri et al., 2008; Pokrovsky et al., 2008). 

Furthermore, variations in Cu isotopic compositions associated with differences in 

coordination number, and thus bond strength, between coexisting aqueous copper complexes 

have been proposed based on experimental observations (Maréchal and Albarède, 2002; Zhu 

et al., 2002) and theoretical approaches (Seo et al., 2007). The same effect of chemical 

bonding has been suggested to fractionate Cu isotopes in the presence of organic ligands 

(Vance et al., 2008; Bigalke et al., 2010b). Experiments involving bacteria showed that Cu 

isotopes are fractionated during metabolic assimilation (Zhu et al., 2002; Navarrete et al., 

2011) and adsorption onto cells (Mathur et al., 2005; Pokrovsky et al., 2008; Kimball et al., 

2009; Navarrete et al., 2011).  

A large fraction of the published literature focuses on Cu isotope variations in ore bodies, 

especially in porphyry copper deposits. Here, researchers have been investigating natural 

systems with emphasis on redox conditions (Asael et al., 2009; Asael et al., 2012) and cycling 

of copper within the ore deposits (Larson et al., 2003; Graham et al., 2004; Markl et al., 2006; 

Maher and Larson, 2007; Mathur et al., 2009; Mirnejad et al., 2010; Braxton and Mathur, 

2011). In addition, leaching experiments revealed that oxidative dissolution of primary and 

secondary Cu minerals causes the released aqueous copper to be enriched in the heavy Cu 

isotope relative to the minerals by up to 3 ‰ in δ65
Cu (Mathur et al., 2005; Fernandez and 

Borrok, 2009; Kimball et al., 2009; Mathur and Schlitt, 2010; Wall et al., 2011).  

In marine hydrothermal vent systems, secondary copper minerals are systematically enriched 

in the heavy Cu isotope relative to primary sulphides in black smoker chimneys as the result 

of oxidation of the primary copper sulphides in contact with ambient seawater (Zhu et al., 

2000; Rouxel et al., 2004a). Reworking and dissolution of secondary copper minerals in 

sulphide deposits below the seafloor may release isotopically heavy Cu into high temperature 

vent fluids, causing variable isotopic compositions of the emanating hydrothermal fluids. The 

remobilisation of isotopically heavy copper was proposed as one reason for variable Cu 

isotopic compositions of primary sulphides in hydrothermal vent system, ranging from ca. 

-0.3 to +3.1 ‰ in δ65
Cu (Rouxel et al., 2004a).  
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3.3. Stable zinc isotopes 

Zinc (Zn) is, as copper, a trace element in most rocks and occurs in the Earth’s crust at 

concentrations of about 70 ppm (Rudnick and Gao, 2004). It is the second most abundant 

transition metal in organisms after iron and is a building block in numerous enzymes 

(Broadley et al., 2007).  

Zinc has five stable isotopes: 
64

Zn (48.27%), 
66

Zn (27.98%), 
67

Zn (4.10%), 
68

Zn (19.02%) and 

70
Zn (0.63%) (de Laeter et al., 2003). Initially, no reference material certified for Zn isotope 

abundances was available when the first methods for determining stable Zn isotope variations 

in natural samples by MC-ICP-MS were developed in the late 1990s and early 2000s. 

Therefore, Maréchal et al. (1999) introduced the in-house reference material ‘JMC Lyon’ 

prepared from the zinc metal Zn JMC 3-0749 L (Johnson Matthey
©

), which was afterwards 

used by the majority of research groups. However, ‘JMC Lyon’ is no longer available from 

the Lyon-CNRS laboratory, and the new certified reference material IRMM-3702 was 

introduced as alternative reference material (Ponzevera et al., 2006), which gives a 

Δ66
ZnJMC Lyon–IRMM-3702 value of -0.30 ± 0.05 ‰ (Cloquet et al., 2006; Petit et al., 2008; Borrok 

et al., 2010; Moeller et al., 2012). Most laboratories still use ‘JMC Lyon’ to report Zn isotope 

ratios of samples. In this thesis, however, δ66
Zn values will be reported relative to both 

reference materials: 

,             (1.32) 

Various terrestrial silicate rocks have been investigated for their Zn isotopic compositions, 

including basalts (Maréchal et al., 2000; Chapman et al., 2006; Cloquet et al., 2006; Viers et 

al., 2007; Herzog et al., 2009), granites (Viers et al., 2007) and andesites (Bentahila et al., 

2008; Toutain et al., 2008). The data show a narrow range of δ66
Zn values, ranging from 

about 0.2 to 0.6 ‰ relative to ‘JMC Lyon’. In contrast to this rather homogenous Zn isotopic 

composition of the silicate Earth, large variations in δ66
Zn have been found in extraterrestrial 

material, spanning a range of around 10 ‰ as the result of evaporation-condensation 

processes (Luck et al., 2005; Moynier et al., 2006; Herzog et al., 2009).  

Except for its metallic form, zinc occurs almost exclusively as Zn
2+

 in nature. As shown 

above, the largest fractionations of iron and copper isotopes are related to changes in their 

oxidation states. In case of zinc, however, redox reactions do not influence Zn isotopic 

compositions in most environments. Instead, isotope fractionation was found to be associated, 
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for instance, with adsorption of zinc onto mineral surfaces (Pokrovsky et al., 2005; Balistrieri 

et al., 2008; Juillot et al., 2008), diatoms (Gélabert et al., 2006; John et al., 2007) and organic 

matter (Jouvin et al., 2009), generally causing the adsorbed zinc to be enriched in the heavy 

isotopes relative to the remaining Zn in solution by up to ~0.5 ‰ in δ66
Zn. Complexation of 

aqueous zinc was suggested to create considerable isotope fractionation due to differences in 

chemical bonding (Fujii et al., 2010; Black et al., 2011; Fujii et al., 2011).  

Due to its importance in metabolic processes, a number of studies focused on fractionation of 

Zn isotopes in biological systems. It was shown that translocation of zinc within higher plants 

favours the lighter Zn isotopes, resulting in leaves and shoots being enriched in the lighter Zn 

isotopes relative to the roots (Weiss et al., 2005; Viers et al., 2007; Moynier et al., 2009). 

Similar, diatoms preferentially assimilate isotopically light zinc (John et al., 2007).  

A recent review by Weiss et al. (2008) emphasised the potential of Zn isotope variations to 

trace anthropogenic pollutant sources in natural environments. Fractionation of Zn isotopes 

during e.g. smelting (Mattielli et al., 2009) or combustion of coal (Borrok et al., 2010) enables 

to distinguish anthropogenic from natural zinc sources (Cloquet et al., 2006; Dolgopolova et 

al., 2006; Gioia et al., 2008; Sivry et al., 2008; Sonke et al., 2008; Chen et al., 2009; Bigalke 

et al., 2010a).  

Zinc is one of the major metals that occur in seafloor hydrothermal vent systems. 

Precipitation of sulphides results in incorporation of isotopically light zinc from the 

hydrothermal fluids into the minerals, studied in modern, active vent systems (John et al., 

2008) as well as in volcanic massive sulphide (VMS) ore deposits (Mason et al., 2005; 

Wilkinson et al., 2005; Kelley et al., 2009). As a consequence, formation of VMS below the 

seafloor may alter the Zn isotopic composition of the emanating fluids towards higher δ66
Zn 

values (John et al., 2008).  

 

4. Synopsis of research findings 

The research findings of this thesis are presented in the following three chapters.  

Chapter II describes the two-step ion-exchange chromatographic protocol that was 

developed as part of this thesis at the University of Bergen in order to purify copper and zinc 

from matrices typical for the here investigated hydrothermal samples. Possible fractionation 

of Cu isotopes during the chromatographic separation was excluded by applying a standard 
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addition approach with an enriched 
65

Cu spike. Furthermore, the chapter presents analytical 

routines for measurements of Cu and Zn isotopic compositions by MC-ICP-MS. A new 

64
Zn-

67
Zn double spike was prepared and calibrated to correct for instrumental mass bias 

during measurements of Zn isotope ratios. The accuracy and applicability of the here 

developed analytical methods were assessed by inter-laboratory data comparison between the 

isotope laboratories at the University of Bergen and the Imperial College, London. Special 

emphasis was placed on calibrating new reference materials certified for Cu and Zn isotope 

abundances in order to maintain inter-laboratory comparison of Cu and Zn isotope data in the 

future.  

Chapter III presents transition metal isotope variations of low temperature hydrothermal 

deposits. It focuses on the question whether biological processes leave a specific isotopic 

fingerprint, which may be used to detect traces of microorganisms in ancient rock sequences. 

The formation of the investigated siliceous Fe oxyhydroxide mounds from the Jan Mayen 

vent fields was mediated by extensive microbial mats mainly consisting of the Fe-oxidising 

bacterium Mariprofundus ferrooxidans. Fe isotope variations with δ56
Fe values spanning a 

range between -2.09 and -0.66 ‰ reflect partial oxidation of aqueous Fe(II), which derived 

from the low temperature hydrothermal fluids, due to low concentrations of free oxygen in 

fluid-filled cavities within the mounds and/or microbial activity of the Fe-oxidising bacteria. 

Fractionation of Cu and Zn isotopes is likely caused by adsorption of these elements onto the 

surfaces of siliceous Fe oxyhydroxides. Preceding partitioning of copper into different 

aqueous organic and inorganic complexes, followed by preferential adsorption of aquo 

complexes onto the Fe oxyhydroxides, might have shifted the Cu isotopic composition of the 

Jan Mayen samples towards lower δ65
Cu values relative to those of igneous rocks. Isotopic 

compositions of the modern Jan Mayen deposits were compared to those of Ordovician jasper 

beds from the Løkken ophiolite complex. δ56
Fe values of these jaspers ranging from -0.38 to 

+0.89 ‰ indicate partial oxidation of Fe(II)aq in the hydrothermal plume. The Løkken jaspers 

exhibit Cu and Zn isotope variations remarkably similar to the modern siliceous Fe 

oxyhydroxide mounds from the Jan Mayen vent fields, although formation processes of these 

two deposits are different. Overall, clear isotopic evidence for biological activity could neither 

be found in the modern Fe oxyhydroxide deposits nor in the jasper beds. 

Chapter IV presents transition metal isotope investigations of high temperature hydrothermal 

sulphides from black and white smoker chimneys at the Jan Mayen and the Loki’s Castle vent 

fields. Fe, Cu and Zn isotope variations were successfully applied to trace reaction pathways 
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of sulphide formation. Iron mono- and disulphides, i.e., pyrrhotite and marcasite, respectively, 

are depleted in the heavy Fe isotopes relative to hydrothermal fluids, reflecting kinetic isotope 

fractionation during precipitation. Kinetic isotope effects are most likely also the reason for 

isotopically light iron and zinc incorporated into sphalerite solid solutions. In contrast, the Cu-

Fe sulphides isocubanite and chalcopyrite form in isotopic equilibrium with the surrounding 

fluids. The results presented in this chapter confirm the findings of earlier experimental 

studies performed by other research groups (Ehrlich et al., 2004; Butler et al., 2005; Guilbaud 

et al., 2011a; Pekala et al., 2011).  

 

5. Future perspectives 

This thesis provides new insights into transition metal isotope fractionation in seafloor 

hydrothermal vent systems. In search of distinctive isotopic fingerprints to indentify 

biological activity, the here presented findings may help to give directions for future research. 

The use of Fe isotope variations to distinguish between inorganic and biologically mediated 

reactions has long been under debate. The results of chapter III of this thesis reinforce the 

difficulties to pinpoint biological iron oxidation solely based on Fe isotope data, as even in 

systems where the oxidation of iron is clearly microbially mediated, spontaneous inorganic 

oxidation by dissolved oxygen cannot be excluded. Variations of Cu and Zn isotopes may be 

a promising complement to further address the question of how to identify remnants of 

biological activity in the rock record by chemical proxies. However, very little is known about 

the fractionation of Cu and Zn isotopes, for instance, during interactions with microorganisms 

and complexation by organic and inorganic ligands. Furthermore, the findings of chapter III 

suggest that Cu and Zn isotope fractionation caused by microbial activity might be 

superimposed by isotope effects during inorganic reactions. Here, experimental studies are 

needed in order to understand individual isotope fractionation mechanisms in complex natural 

systems and how biological isotope signatures may be preserved.  

Chapter IV of this thesis shows that fractionation of Fe, Cu and Zn isotopes are useful to trace 

pathways and mechanisms of sulphide formation. Although there are already a few 

experimental studies on isotope fractionation during iron and copper sulphide formation, 

fractionation of Fe and Zn isotopes during precipitation of sphalerite solid solutions has not 

yet been investigated, and the proposed kinetic effects are solely based on isotope variations 

measured in natural samples. Furthermore, this thesis shows that the knowledge of the Cu 
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isotopic composition of hydrothermal fluids is a crucial aspect for understanding Cu isotope 

fractionation in high as well as low temperature hydrothermal systems. This, however, still 

remains unknown and should be addressed in future studies. 
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