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Abstract

The SLEUTH model (slope, landuse, exclusion, urban extent, transportation and hill-
shade), formerly called the Clarke Cellular Automaton Urban Growth Model, was developed
for and tested on various cities in North America, including Washington, DC, and San
Francisco. In contrast, this research calibrated the SLEUTH model for two European cities,
the Portuguese metropolitan areas of Lisbon and Porto. The SLEUTH model is a cellular
automaton model, developed with predefined growth rules applied spatially to gridded maps
of the cities in a set of nested loops, and was designed to be both scaleable and universally
applicable. Urban expansion is modeled in a modified two-dimensional regular grid. Maps of
topographic slope, land use, exclusions, urban extents, road transportation, and a graphic
hillshade layer form the model input. This paper examines differences in the model’s behavior
when the obviously different environment of a European city is captured in the data and
modeled. Calibration results are included and interpreted in the context of the two cities,
and an evaluation of the model’s portability and universality of application is made. Questions
such as scalability, sequential multistage optimization by automated exploration of model
parameter space, the problem of equifinality, and parameter sensitivity to local conditions are
explored. The metropolitan areas present very different spatial and developmental character-
istics. The Lisbon Metropolitan Area (the capital of Portugal) has a mix of north Atlantic and
south Mediterranean influences. Property is organized in large patches of extensive farmland
comprised of olive and cork orchards. The urban pattern of Lisbon and its environs is char-
acterized by rapid urban sprawl, focused in the urban centers of Lisbon, Oeiras, Cascais
Setubal, and Almada, and by intense urbanization along the main road and train lines
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radiating from the major urban centers. The Porto Metropolitan Area is characterized by a
coastal Atlantic landscape. The urban pattern is concentrated among the main nuclei (Porto
and Vila Nova de Gaia) and scattered among many small rural towns and villages. There are
very small isolated patches of intensive agriculture and pine forests in a topography of steep
slopes. These endogenous territorial characteristics go back in time to the formation of
Portugal — with a “Roman-Visigod North” and an “Arabic South” [Firmino, 1999 (Firmino,
A., 1999. Agriculture and landscape in portugal. Landscape and Urban planning, 46, 83-91);
Ribeiro, Lautensach, & Daveau, 1991 (Ribeiro, O., Lautensach, H., & Daveau, S., 1991.
Geografia de portugal (4 Vols., published between 1986 and 1991). Lisbon, Portugal: Jodo Sa
de Costa)]. The SLEUTH model calibration captured these city characteristics, and using the
standard documented calibration procedures, seems to have adapted itself well to the Eur-
opean context. Useful predictions of growth to 2025, and investigation of the impact of
planning and transportation construction can be investigated as a consequence of the suc-
cessful calibration. Further application and testing of the SLEUTH model in non-Western
environments may prove it to be the elusive universal model of urban growth, the antithesis of
the special case urban models of the 1960s and 1970s. © 2002 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Modeling is essential for the analysis, and especially for the prediction, of the
dynamics of urban growth. Yet the successful application of a model in one parti-
cular geographical area does not necessarily imply its successful use in another set-
ting where local characteristics, territorial constraints and the classic site and
situation properties of economic geography ensure that different development paths
have been followed. Urban and environmental models need to be adapted to or able
to “learn” the endogenous characteristics of the particular milieu that they explain
and predict. Models are often judged by their predictive power. Yet, to model
urbanization across locales, it is just as important to test the efficacy of the model’s
algorithms at capturing and simulating the land transformations that are specific to
a place (Batty & Xie, 1994b; Clarke, Hoppen, & Gaydos, 1996; Li & Yeh, 2000).

This paper focuses on calibrating the SLEUTH model, formerly the Clarke Cel-
lular Automaton Urban Growth Model (Clarke & Gaydos, 1998; Clarke, Hoppen,
& Gaydos, 1997) for two Portuguese metropolitan areas. SLEUTH is an acronym
for the input layers that the model uses in gridded map form: Slope, Land Use,
Exclusion, Urban Extent, Transportation and Hillshade. The basic growth proce-
dure in SLEUTH is a cellular automaton, in which urban expansion is modeled in a
spatial two-dimensional grid. Diffusion, breed, spread, slope and road coefficients
control the behavior of the cellular automaton, and four types of growth behavior
can take place: spontaneous, diffusive, organic and road-influenced. Self-modifica-
tion of the rules changes the control parameters when modeled growth rates are
exceeded, so that the model’s behavior includes feedback (Clarke et al., 1997). In
cellular automata simulating artificial life, self-modification is equivalent to adapta-
tion or evolution, and the calibration method used allows the model to “learn” its
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local setting over time (Clarke et al., 1996). This learning is quantified by the varia-
tion during calibration of the five control parameters. Calibration of the model has
taken place for many cities within North America, but not elsewhere. Application of
the model to Lisbon and Porto in Portugal is the first application to European cities,
and indeed the first major application outside of the United States.

The SLEUTH model was applied to the metropolitan areas of Lisbon and Porto.
These Portuguese cities present very different environmental and geographic char-
acteristics that test the model’s flexibility to adapt to different urban realities. Lisbon
is the capital of Portugal, and the administratively defined metropolitan area
includes large patches of farmland comprised of olive, cork, and fruit orchards sur-
rounding the mouth of the Tagus River. The urban pattern of Lisbon and its envir-
ons is characterized by recent rapid urban sprawl, focused in the urban centers of
Lisbon, Oeiras, Cascais Setubal, and Almada, and by intensive urbanization along
the main roads and train lines radiating from those major urban centers. By con-
trast, the Porto Metropolitan Area is characterized by a coastal Atlantic landscape
at the west-facing mouth of the smaller River Douro and is surrounded by moun-
tains. The urban pattern is concentrated at main nuclei (Porto and Vila Nova de
Gaia) and settlements are scattered among many small rural towns and villages with
small patches of intensive agriculture and pine forests.

2. Urban modeling and SLEUTH

One of the major criticisms of the first generation of computer-based urban models
was their specificity to the cities to which they were applied (Lee, 1973). It has taken a
new generation of computational models, using very different methods, to escape this
legacy. How global models reflect local characteristics is a central challenge if mod-
eling is ever to move beyond the comparison of case studies. Therefore, an effort
should be directed to an understanding of how increased spatial resolution improves
sensitivity to local factors. SLEUTH’s calibration involves such a multistage optimi-
zation of the model to a specific parameter space. Thus, we can learn about global
properties from local behavior of SLEUTH’s parameters. It is commonly accepted
that growth dynamics have measurable dimensions, both built and natural environ-
mental to their global nature. Urban sprawl is associated with suburbanization,
automobile dependency, and highway investments. In urbanized natural systems,
hydrologic impacts include increased run-off, stream channelization, and increased
contamination of surface water with urban by-products. Urban and regional models
are usually supported by a set of variables and parameters that feed system dynamics
and process interactions built into the models. Depending on which variables are
required by the model and for policy manipulation, common elements can be defined
and assigned behavior and significance, such as the importance of roadways, urban
extent, topographic slope, parks and reserves. Most urban and regional models
incorporate these general characteristics of urban settlement and change.

Urban models usually internalize general and known characteristics that include
local variation for a specific area such as employment, population growth and
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highway construction. Alternatively, a model can include these general character-
istics, but give the user the freedom to incorporate local variation and adaptations
into the model structure in a way that allows model reuse from city to city and from
application to application. A statement of the central problem would be: how can
one apply a model developed for a specific urban context in another? The most
accepted process to answer this question is to build a general-purpose model and to
use a technique in modeling called calibration.

This paper documents the process of adapting and calibrating the SLEUTH
model to the local characteristics of two different Portuguese Metropolitan Areas.
The purposes were: (1) to demonstrate that the same model could apply not only to
North American but also to European cities; (2) to demonstrate how important
structural and geographical differences between applications could be revealed by
the calibrations that may be of use in comparative urban study; (3) to reveal how
spatial resolution improves model performance by making the model more sensitive
to local conditions; and (4) how a sequential multistage optimization throughout
different phases of calibration is the key to model application comparison.

A model is a simplified representation of part of the real world or its systems, that
retains enough aspects of the original system to make it useful to the modeler (Ford,
1999). In modeling, observations of system behavior are generally transposed into a
structure of model elements and their relations, that are then converted into equa-
tions and usually coded as a computer program that can be run as a simulation.
Understanding the complexity of urban landscapes and their behavior helps to
assure that planned human interventions in the processes benefit society and the
environment. Modeling and simulation are contributing to the rapid spread of geo-
graphic information into planning (Birkin, Clarke, Clarke, & Wilson, 1996; Scholten
& Stillwell, 1990; Stillwell Geertman, & Openshaw, 1999). The power that geo-
graphic information systems (GIS) have brought to urban spatial analysis has con-
siderably broadened the scope of urban and regional planning (Clarke, 1999;
Fischer, 1999; Goodchild, 2000; Goodchild & Steyaert, 1996).

Modeling geographic systems with cellular automata is a relatively recent process.
The potential of the approach was first related to planning during the 1980s (Batty
& Longley, 1994a; Batty, Xie, & Sun, 1999; Couclelis, 1985, 1997), and has seen
heightened interest in the last decade. Cellular automata (CA) are particularly well
suited to model complex dynamical systems composed of large numbers of indivi-
dual elements linked by nonlinear couplings (Openshaw & Openshaw, 1997; p. 247).
This versatility is responsible for the growth in the application of CA to the diverse
fields of urban and regional growth analysis (Clarke & Gaydos, 1998; Clarke et al.,
1997; Landis & Zhang, 1998), regional economics, demographics and land use
(White & Engelen, 1997), and location choices (Roy & Snickars, 1998). The utility of
GIS in providing real-world environments for CA is clear, yet the full integration of
CA tools directly into GIS has not yet been achieved (Park & Wagner, 1999).
Research on geographic modeling with CA is still exploring and building upon
modeling capabilities (Clarke & Gaydos, 1998; Li & Yeh, 2000).

Calibration is one of the most important elements of successful model application,
since it allows us to narrow down the resulting values of the model to reflect the
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characteristics of the local: Birkin et al. (1996; p. 93) contends that “‘the key com-
ponent of the modeling process [...] is calibration: the process by which numerical
values are assigned to the model parameters in such a way that the model accurately
reproduces the real patterns”. The importance of calibration is reflected by the
publication of calibration results that document this phase of model development
(Batty & Xie, 1994c¢; Birkin et al., 1996; Clarke et al., 1996; Landis & Zhang, 1998).
The absence of a calibration phase in model development and application reflects
poorly on a model’s applicability, verifiability, portability and robustness.

3. Calibration of SLEUTH

The calibration of the SLEUTH model for Lisbon and Porto followed the tech-
niques developed for the model as applied to the San Francisco and Washington/
Baltimore areas (Clarke & Gaydos, 1998, Clarke et al., 1996, 1997) and documented
on the Internet at url: www.ncgia.ucsb.edu/projects/gig. Version 2.1 of the model
was downloaded from the web site. The program code is written in the C program-
ming language, and supports three different modes: test, calibration, and prediction
modes.

The SLEUTH urban model is a CA model developed with sets of predefined
growth rules applied in a set of nested loops. An outer loop executes each growth
history and retains statistical data, while an inner loop executes the growth rules for
a single year. The “seed year” that the model takes is generally the earliest year,
against which the model runs and compares the modeled data with the available real
urban data (Clarke et al., 1997).

Besides the urban layers (that for statistical purposes need to number at least
four), the model requires at least two transportation layers of different years (in each
road layer it is also possible to define a road hierarchy), a single layer contains per-
cent topographic slope, one layer with areas excluded from urbanization (the model
allows classification in the layer by probability of exclusion), and a hillshade layer
for use only as a background with the graphical version of the model.

The growth of urbanized areas is the result of four growth rules applied to the
input layers: (1) spontaneous neighborhood growth, which simulates growth in areas
with suitable slope to develop under the control of the diffusion coefficient; (2) dif-
fusive growth and creation of new growth centers; (3) organic growth which repli-
cates the expansion of cities into their surroundings and infill; and (4) road
influenced growth, which expresses the importance of road gravity and road density
by allowing growth to happen on and along roads.

Besides these initial growth rules, a second level of behavior rules is defined in
this model. Each time the model records rapid growth, or little or no growth,
the model adapts itself to this new set of conditions. In the case of rapid growth, the
model multiplies the growth control parameters by a multiplier greater than one.
Little or no growth causes the control parameters to be multiplied by values less
than one. These “‘self-modification” rules are fundamental in order for the model to
reflect more accurately the typical S-curve growth rate of urban expansion. The
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parameter values increase most rapidly at the beginning of the growth cycle when
there are many cells available to urbanization, and then, with time, the parameters
are decreased as expansion levels off and the growth rate falls below the critical low.
Without self-modification the model would produce only linear or exponential
growth.

Both growth rules and self-modification rules are the core of the model, they
reflect the universal understanding of the process of urbanization, but, to be suc-
cessfully used they need to be refined to the locale. Without calibration it will be
impossible to correctly describe the behavior of the system and predict its possible
futures; this is done through the process of calibration. This phase is of such
importance that the authors considered it separately from the predictions, which will
be reported in future papers.

The model calibration is described in detail in Clarke et al. (1996). This process
has been automated, so that the model code tries many of the combinations and
permutations of the control parameters and performs multiple runs from the seed
year to the present (last) data set, each time computing 13 different measures of the
goodness of fit between the modeled and the real distributions (see Appendix for a
detailed description of these scores and coefficients). The calibration process, known
as “brute force calibration”, relies on the availability of significant computing
power, and benefits significantly from parallel processing and high performance
computing methods. Results are sorted, and parameters of the highest scoring model
runs are used to begin the next, more refined sequences or permutations over the
parameter space. Initial exploration of the parameter space uses a condensed,
resampled and smaller version of the data sets, and as the calibration closes in on the
“best” run, the data are increased in spatial resolution.

By running the model, a set of control parameters is refined in the sequential
calibration phase (coarse, fine and final calibrations). Between phases in the cali-
bration, the user tries to extract the values that best match the five factors that
control the behavior of the system: diffusion (overall scatter of the growth), breed
(likelihood of new settlements being generated), spread (growth outward and inward
from existing spreading centers), slope resistance (flat ground is preferred) and road
gravity (attraction of urbanization to roads and diffusion of urbanization along
roads). Coefficient combinations result in combinations of the 13 metrics: each
either the coefficient of determination of fit between actual and predicted values for
the pattern (such as number of pixels, number of edges, number of clusters), for
spatial metrics such as shape measures, or for specific targets, such as the corre-
spondence of land use and closeness to the final urban pixel count (Clarke & Gay-
dos, 1998). The highest scoring numeric results from each factor that control the
behavior of the system from each phase of calibration feed the subsequent phase,
with user-determined weights assigned to the different metrics. Calibration relies on
maximizing spatial and other statistics between the model behavior and the known
data at specific calibration data years. Monte Carlo simulation is used, and averages
are computed across multiple runs to ensure robustness of the solutions.

Therefore, it is possible to carefully adapt the model to local characteristics
throughout calibration, by using different spatial resolutions and a sequential
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multistage optimization of the coefficients that control the system. For instance,
the user assumes that he does not know the importance of roadways in a specific
area, and therefore, the maximum range of possible values (100) is proposed. Next,
several attempts are made to adjust that range to local characteristics. Then, each
calibration phase corresponds to a multistage selection that depends both on the
increased spatial resolution and the control values that the previous calibration
phase identified. A new output file (control.stats) contains the new refined control
values that once again will feed the next calibration phase and a more detailed
spatial resolution. Besides the behavior of the growth rules, the self modification
rules included in the model increase the score values, or decrease the values, each
time the system records a modification in the parameter values, and forces the four
growth rules to improve their spatial behavior, speeding up or down the growth
rates.

The calibration mode of SLEUTH is the most important phase for the success of
predictions. It determines ‘‘given a starting image of urban extent, which set of
initial control parameters leads to a model run which best fits the observed historic
data” (Clarke & Gaydos, 1998; p. 706). By narrowing both the spatial scale and the
range of parameters in three calibration sequences, the model user can close in on
the parameter set that best simulates the application data. These parameters are then
used to determine the parameter values that best allow the model to run into the
future, i.e. to predict.

To complete the explanation of the model before describing the case studies, it is
also important to briefly mention the test mode phase before the calibration mode.
Prior to calibration, the first step in the application of the SLEUTH model is the
verification of the data sets and their initial reaction to the input data (test mode),
including assuring that they conform to data input specifications. A minimum of
four urban years, two road years and at least one excluded layer, one hillshade
image and one slope layer are required, and the code verifies the correct input of
each of these data sets. The test mode also allows simulation of the growth for
known data years up to the present and visual verification that the model is reacting
as expected. This step revealed itself to be very important, for example in the Lisbon
Metropolitan Area (AMP), water bodies and land outside the AMP were initially
not defined correctly in the excluded layer, and consequently the model was seen
expanding urbanization to these areas. It was also observed during this test phase
that the slope layer was not contributing to the model calibration, for the test mode
statistics did not seem to be sensitive to changes in slope. It was found that the per-
cent slope image had been altered during its conversion from TIF to GIF format.
Without this initial test, the model could run for days during calibration, and the
time would be unnecessarily lost. It is prudent to first run the model in test mode at
all the different resolutions and to verify the statistical files as well as the different
GIF images produced.

Once the test mode is complete, the next phase is the calibration mode, as pre-
viously described, the most important step for the success of model prediction.
When the calibration mode is complete, the results are used for forecasting studies,
and no validation is possible without repeating the calibration.
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4. Case studies

The results of the calibration applied to the Lisbon Metropolitan Area and to the
Porto Metropolitan Area (Fig. 1), are presented and then compared. In order to
better understand the resulting metrics within the calibration results, the two
metropolitan areas are first described. The metrics that best describe each system are
explained in terms of their behavior according to the landscape characteristics and
history. Finally, we compare the scores and coefficients of both metropolitan areas
to understand to what extent the model reflects different realities, and which metrics
were more sensitive.

Several events crisscrossed both metropolitan areas and the country resulting from
different political, social-economic and cultural changes during recent times. The
first event marks the period before the revolution of 1974. The second time period
comprises the years between 1974 and the end of the 1980s. The third period corre-
sponds to Portuguese membership in the European Community from 1986 until the
present. After the end of the dictatorship in 1974, a period of political instability,
worldwide economic crisis followed, including a massive return of population from
Portugal’s former overseas colonies, characterized by a period of unorganized and
irregular growth (including the development of slums). In the years after 1974, Por-
tugal had to house 650 000 citizens from the colonies, around half of whom settled in
the Lisbon Metropolitan Area (Lisbon, Amadora, and Almada were some of the
municipalities that received those citizens). The decade of the 1980s, especially after
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Fig. 1. Lisbon and Porto Metropolitan Areas in Portugal.
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the European Community’s massive investments, and a growing European and
world economy invigorated a Portuguese ““urban renaissance’. During this period
the importance of planning was also significantly reinforced.

Two other factors are important to describe the two metropolitan areas. First, the
housing market and the rental laws protected property renters. During the dicta-
torship, rents in the area of both Lisbon and Porto Metropolitan Areas were frozen,
and were restrained in the rest of the country. After the revolution, Portugal imple-
mented urban rent control countrywide. The major consequence was a decline in the
rental markets, degradation of the urban old areas, and mainly, the acceleration of
construction in the peripheries. In the majority of the cases in the north of Portugal,
new houses were built by the land owners, in their small parcels, for their own use,
promoting a more scattered urban pattern, and compromising the viability of plan-
ning new developments because of their irregular spatial growth. In the south of
Portugal, small developers tended to market and sell to a local clientele, creating
new urbanization in the immediate periphery of Lisbon.

The second important factor was the law of municipal economic autonomy,
yielding to each municipality the right to income from licenses it gave to build new
homes. These factors, and low mortgage rates, led to very rapid urbanization all
over the country.

5. Case study A — Lisbon Metropolitan Area (AML)

The Lisbon Metropolitan Area contains 2 554240 inhabitants in an area of 312
km? for a population density of 817 people/km?. Population is concentrated mainly
around the city of Lisbon, the central urban nucleus and then extends out along
main roadways and railways (along the municipalities of Cascais, Oeiras, Amadora,
and Vila Franca de Xira). Since early times it was clear that the capital of the
country and its environs needed integrated planning. Therefore, a metropolitan plan
was developed and proposed to guide the future activities and urbanization. In 1964,
the regional plan “Plano Director da Regido de Lisboa’ was established to organize
housing, industry, harbors, airports and tourism in the metropolitan area. This
regional plan was the definition of a clear structure for transportation in the entire
area. A second phase in the planning of the metropolitan area was the regional plan
“Plano Regional de Ordenamento do Territorio” in 1992, once again the different
activities were organized throughout the entire metropolitan areas with special
emphases given to the transportation infrastructure and its hierarchy. Neither of
these plans were ever approved, but nevertheless they were important elements in
structuring the transportation infrastructure and therefore constraining the inten-
sity, direction and shape of urban growth (Silva, 1999).

Two main bridges were built during these two decades that have had a major
impact in the organization of the space. The ‘“Ponte 25 de Abril” in 1966, and the
“Ponte Vasco da Gama” in 1998. The first is considered to be one of the main fac-
tors contributing to the intense urban pressures on the west side of the south margin
of the Tagus River (municipalities of Almada, Seixal, Barreiro), and it seems to be
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clear that a similar process will happen in the east side of the south bank because of
the 1998 bridge (mainly in the municipalities of Alcochete and Palmela). Main
trends related with the location of economic activity and residential development as
identified for the Lisbon Metropolitan Area by Gaspar (1997; p. 165) are: (1) the
strengthening of the city of Lisbon, as the principal nucleus of tertiary economic
activity; (2) the emergence of tertiary centers related to the use of the private car and
oriented towards expressways, having an important land speculation component; (3)
a growing concentration of population on the axis served by railways; and (4) The
spread of residential areas of low density, based upon transport by private car.

The collection of data for the Lisbon Metropolitan Area database involved a
variety of sources, including Landsat imagery, published maps and reports, and
transportation plans. Maps with cells of 100x 100 m for urbanization, roads, exclu-
ded areas, topographic slope, and a hillshaded backdrop were created in the ArcInfo
GIS and converted into the 8-bit GIF format used by the SLEUTH Model (Fig. 2).
By observing the urban extent over time (urbanization maps for the control years:
1984, 1995, 1997, and the seed year of 1975) it is clear that intense and rapid growth
is affecting the entire Metropolitan Area, and that once new urban centers start to
grow, growth increases substantially in each year. The analyses of the results
strengthened this conclusion and explore the nature of the growth.

Irb75 Irh84 Urb93 Jrh 1997

Rd 2000

e

Slope Hillshade

Fig. 2. The Lisbon Metropolitan Area input data sets to SLEUTH.



E.A. Silva, K.C. Clarke | Comput., Environ. and Urban Systems 26 (2002) 525-552 535
6. Calibration results for the Lisbon Metropolitan Area

Results from the three phases of the calibration mode (Coarse, Fine, and Final
calibrations) are presented in Tables 1-3. Each table presents the sorted top five
highest scoring results from thousands of model runs.

The values marked in bold define the composite results of the optimum values for
the diffusion, spread, slope and road gravity parameters. The tables show successive
improvement in the parameters that control the behavior of the system. From a set
of initial control parameter values ranging from 1 in the case of the diffusion coeffi-
cient (the minimum value possible at which diffusion would occur) and 100 as the
maximum values for each of breed, spread, slope resistance and road gravity. In
the coarse calibration, the resulting values were narrowed to 1, 100, 50, 25, 20 and
became even more sensitive to the locale with the final calibration results presenting,
respectively, values of: 16, 57, 50, 25, and 30. The importance of this sequential
multistage optimization is shown by extensive automated exploration of the para-
meter space throughout the selection of the different scores, which allowed narrow-
ing to actual values that better reflect the characteristics of the metropolitan area.
The sensitivity to local conditions will be explored later.

The comparison of the model final “population” (number of urban pixels) and the
urbanization for the control years gives a high summary correlation of 0.90 (com-
pare_score), making it possible to state that the prediction of the model based on the
initial seed year of the present urban pattern using those refined values is very simi-
lar to what happened in reality. The shape and form of urbanization seems also to
confirm that calibration adjusts the values to reflect local characteristics. The final
calibration correlations were 0.78 in the case of the score 1> edges (modeled urban
edges against the urban edges of control years), and 0.87 in the case of the cluster_r?
score (modeled urban clustering against known urban clustering).

How sensitive is the model to the characteristics of the locale, now that besides
having the values of the model we also know the history of this region? Why is the
road coefficient higher than the diffusion coefficient? Why are the breed and spread
coefficients higher then the other coefficients? The lower value of 16 of the diffusion
coefficient controls the overall dispersiveness of the growth. As previously char-
acterized, the urbanization of the metropolitan area tended to occur from the main
nucleus (that is why the spread_coefficient is high at 50) and clearly along the
main transportation infrastructures. The breed coefficient at (57) reflects the intense
investment that was made in transportation infrastructure (mainly highways) spread
urbanization in space, allowing for the creation of new nuclei on bare land, yet close
to the main nodes of such highways.

7. Case study B — the Porto Metropolitan Area (AMP)

The Porto Metropolitan Area has a population of 1196850, an area of 817
km?, and a population density of 1464.1 people/km? (AMP-INE, 1998). Porto
is characterized by dispersed urban settlements with the highest densities in the



Table 1

AML — coarse calibration, 196x209 run time 06.01.2000:11:42—06.02.2000:5:14

Composite Compare 12 Edge r? Mean Leesalee Average pct xmu ymu sdist Iu Diffusion Breed Spread Slope Road

score Population® 12 Clusters cluster slope > Urban r» > r?>  Value coefficient coefficient coefficient resistance gravity
size r? r?

0.23 0.97 0.92 0.98 093 0.97 032 0.99 0.92 098 0.97 0.99 1 1 100 50 25 20

0.22 0.99 0.91 0.96 0.90 0.98 0.33 0.99 0.91 0.98 097 098 1 1 75 50 25 30

0.22 0.97 0.91 0.95 0.98 1 0.32 0.99 0.91 0.97 097 098 1 1 1 50 25 1

0.22 0.97 0.91 0.96 091 0.97  0.33 0.97 0.91 0.99 099 09 1 25 25 50 25 40

0.22 0.93 091 0.96 0.99 0.97 0.33 0.99 0.91 0.96 094 098 1 1 25 50 1 40

4 Population indicates no. of urban oixels.

Table 2

AML — fine Calibration, 392x418 run time: 06.02.2000:14:14-06.02:2000:20:02

Composite Compare 1> Edge r? Mean Leesalee Average pct xmu ymu sdist lu Diffusion Breed Spread Slope Road

score Population® 2 Clusters cluster slope > Uurban > > >  Value coefficient coefficient coefficient resistance gravity
size r? r?

0.19 0.88 0.91 0.99 0.85 098  0.34 0.99 0.91 0.97 095 098 1 20 51 50 25 30

0.19 0.88 0.91 0.99 0.85 0.98  0.33 1 0.91 0.96 0.95 0.98 1 15 76 50 25 1

0.19 0.88 0.91 0.99 0.87 098 0.34 0.98 0.91 0.96 0.94 0.98 1 20 51 50 25 15

0.19 0.87 0.91 1 0.92 0.97 0.34 0.92 0.91 0.96 0.94 0.98 1 25 51 50 25 5

0.19 0.87 0.91 0.99 0.83 0.903 0.34 0.99 0.91 0.96 0.96 0.98 1 20 51 50 25 20

¢ Population indicates no. of urban oixels.
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Table 3

AML — final calibration, 784 x 836 run time: 06.03.2000:16:35-06.15.2000:13:45

Composite Compare 12 Edge r? Mean Leesalee Average pct mu mu sdist lu Diffusion Breed Spread Slope Road

score Population® r? Clusters cluster slope > Urban > > 1>  Value coefficient coefficient coefficient resistance gravity
size 12 r?

0.15 0.90 091 0.78 0.85 089 035 0.99 0.91 0.97 0.97 098 1 16 57 50 25 30

0.15 0.91 0.90 0.77 0.85 0.89  0.35 0.99 090 097 0.96 098 1 16 55 50 25 5

0.15 0.90 0.91 0.78 0.84 0.89 0.35 0.99 0.91 0.97 0.97 098 1 16 76 50 25 25

0.14 0.90 0.91 0.78 0.83 0.90 0.35 0.99 0.91 0.97 0.97 098 1 17 58 50 25 5

0.14 0.90 0.91 0.77 0.85 0.89  0.36 0.98 0.91 0.97 0.96 098 1 15 57 50 25 25

2 Population indicates no. of urban oixels.
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municipalities of Porto, Vila Nova de Gaia, and Matosinhos. Just as in the Lisbon
Metropolitan Area, the last 25 years have also seen intense urbanization.

Two main time periods define the evolution of the Porto Metropolitan Area: the
decades of the 1950s and the 1980s. During the 1950s, new roadways linked the north
and the Lisbon Area (e.g. Vias Norte and Via Rapida). This period also saw con-
struction of the “Ponte da Arrabida”, finished in 1963. This bridge was one of the
major elements to shape the future of urbanization on both banks of the Douro River.

The 1950s also saw a major political action that moved urbanization outward to
Porto’s urban fringe, the Porto plan “Plano de Melhoramentos™ (1956). This plan,
though confined to the city of Porto, was a very important force in the renewal of
the industrial population from the city center that lived in slums called “ilhas”. This
kind of ““urban renewal” period had a major influence on the relocation of popula-
tion to the urban periphery. This plan also favored providing low cost housing,
making the Municipality of Porto the biggest landlord in the country (Cardoso,
1996; p. 24). Development of the north—south transportation infrastructure along
the Littoral, as well as the development of the new port “Porto de Leixdes” also
took place. The consequence was a west urbanization axis, which included the
Municipalities of Matosinhos and Vila Nova de Gaia. Industries, facilities for tour-
ism, and housing built densely in the seashore areas.

The 1980s saw construction of the ““Ponte do Freixo’ that began a second phase of
urban/transportation change. This time another axis developed, first intensifying the
east—west connection reinforcing the municipalities of the metropolitan areas, and in
a second phase, regionally within the east and northeast of northern Portugal. At the
same time, the roadway system of the western municipalities of the Porto Metropoli-
tan Area was consolidated. This encouraged reinforcement of the connectivity with
the center of Portugal (mainly the littoral), and with the capital of the country (Lisbon).

Two other main characteristics should be highlighted in order to understand the
Porto Metropolitan Area urban pattern. The first is related to the defense by the
state authorities of a polycentric model of dispersion (Cardoso, 1996; p. 90), both by
trying to extract advantages from historical patterns (populations and activities
scattered throughout the area) and, at the same time, reinforcing even more that
tendency. The second characteristic was a total absence of regional planning in the
area that now comprises the Porto Metropolitan Area, reinforcing once again
the scattered populations and activities.

Similar to the Lisbon Metropolitan Area, the same data themes were compiled in the
database and were used as input to the model for Porto, comprising four urban layers,
two road layers, one excluded layer, one slope layer and one hillshade layer (Fig. 3).
Due to data availability, the years do not match those of the Lisbon Metropolitan
Area. Nevertheless, their time period covers approximately the same 25 years. The
same methods of data collection were used, to allow comparison of the case studies.

7.1. Calibration results for the Porto Metropolitan Area

Once again, calibration narrowed the total universe of parameter values to a very
small set that best represent the historical growth pattern of the Porto Metropolitan
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Excluded Areas Slope fillshade

Fig. 3. The Porto Metropolitan Area input data sets to SLEUTH.

Area. The comparison of the modeled urbanization to the urbanization of the four
control years presents a high correlation of 0.97, and very high correlation values of
form and shape of urban areas. A 2 cluster of 0.99, and a 0.98 in the case of the
r?>_edges result from the final calibration (Tables 4-6).

It is possible to demonstrate the advantages of a sequential optimization of the
parameters throughout the refinement of the values that best describe the spatial
characteristics. From initial coefficient ranges of 100 given to breed, spread, slope,
roads, and diffusion, it is possible to isolate the output values of the coarse calibra-
tion that should feed the next calibration phase (fine calibration; diffusion=1,
breed =100, spread = 50, slope =50, roads="75). The sensitivity to local character-
istics was greatly improved in the next two calibrations by narrowing the, scores and
naturally, also as a result of the improvement in spatial resolution. From coarse to
final calibration the spatial resolution is improved by two fold from coarse to fine,
and by four fold from fine to final resolution.



Table 4

AMP — coarse calibration 86x 140 run time: 06.09.2000:10:18—06:09.2000:13:22

Composite Compare r? Edge r? Mean Leesalee Average pct xmu ymu sdist lu Diffusion Breed Spread Slope Road

score Population® 2 Clusters cluster slope > Urban > 1> >  Value coefficient coefficient coefficient resistance gravity
size 12 r?

041 0.94 0.99 098 0.97 0.99 0.53 0.99 0.99 0.90 0.96 098 1 1 100 50 50 75

0.39 0.89 0.99 1 0.91 095 0.53 0.99 0.99 0.99 0.99 098 1 1 1 25 25 50

0.39 0.93 0.99 0.97 0.94 098  0.53 0.99 099 0.95 094 098 1 1 75 50 25 1

0.39 0.98 0.99 0.96 0.95 0.99 0.51 0.93 0.99 098 0.94 097 1 50 1 25 25 25

0.39 0.96 0.99 0.99 0.95 098  0.53 0.99 0.99 0.87 0.96 098 1 1 75 50 50 100

@ Population indicates no. of urban oixels.

Table 5

AMP — fine calibration 173x281 run time: 06.16.2000-06:18.2000:23:41

Composite Compare r? Edge r? Mean Leesalee Average pct xmu ymu sdist lu Diffusion Breed Spread Slope Road

score Population® 2 Clusters cluster slope > Urban > 1> 1>  Value coefficient coefficient coefficient resistance gravity
size 12 72

0.47 0.99 0.99 0.99 0.95 099 057 0.98 099 098 091 098 1 40 1 35 40 25

0.47 0.99 0.99 0.99 0.99 099  0.57 0.99 0.99  0.99 0.88 098 1 1 50 35 30 25

0.47 0.92 0.99 0.99 0.97 099  0.58 0.99 099 099 091 098 1 1 75 45 45 25

0.47 0.99 0.99 0.99 0.95 099  0.56 0.98 099 096 0.95 098 1 30 100 30 45 25

0.46 0.99 0.99 1 0.96 099  0.56 0.99 099 097 0.90 098 1 20 25 35 50 25

4 Population indicates no. of urban oixels.
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Table 6

AMP — final calibration 347x563 run time: 06.16.2000:17:02-06.22.2000:05:22

Composite Compare 12 Edge r? Mean Leesalee Average pct xmu ymu sdist lu Diffusion Breed Spread Slope Road

score Population® 2 Clusters cluster slope > Urban > 1> 2 Value coefficient coefficient coefficient resistance gravity
size 12 r?

0.48 0.97 0.99 0.98 0.99 0.97 0.58 1 0.99 0.98 092 098 1 20 20 40 45 20

0.47 0.97 0.99 0.98 0.99 0.97 0.58 0.99 0.99 0.99 0.82 098 1 1 40 40 35 20

0.47 0.97 0.99 0.98 0.98 0.96 0.58 0.99 0.99 0.98 093 098 1 1 20 40 40 20

0.47 0.97 0.99 0.98 0.98 0.96 0.58 1 0.99 0.98 093 098 1 1 1 40 40 30

0.47 0.98 0.99 0.97 0.99 0.97 0.57 0.99 0.99 0.97 093 098 1 20 40 35 30 25

2 Population indicates no. of urban oixels.
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In the case of the Porto Metropolitan Area the scores and coefficients resulting
from each model run seem to present an adjustment to the local characteristics
between the coarse—fine and then fine—final calibration. It seems that the model
needs to adapt itself to a kind of chaotic system, tending to push the values further
down than needed and then adjusting those values to the “real” upper value in the
final calibration. The most extreme adjustment happens with the breed coefficient,
the values pass from 100 to one, from coarse to fine calibration, and then the cali-
bration makes an adjustment of the system, bringing the value to 20. Smaller
adjustments to the high values of the fine calibration happen also in all the other
composite scores (e.g. in the coarse—fine calibrations from values of spread of 50 to
35, and then from 35-40 from fine to final calibration).

The same question posed of the Lisbon Metropolitan Area can also be posed of
the Porto Metropolitan Area. The resulting values from the model seem to reflect
local characteristics, and therefore, validate the importance of the different calibra-
tion phases, even for the short historic evolution that characterizes this region. The
proof seems to be the initial erratic behavior of the model trying to adjust to a
chaotic system, with dispersed populations and activities, and where no integrated
urban system in the region existed. Could the model’s sensitivity to local condition
be improved if spatial resolution was increased, or if more scores and coefficients
were calculated, or if the model were run more times? With a cell size of 100x 100 m
it is hard to extract details from layers such as the slope. The fact that the Porto
Metropolitan Area is a very small area mapped at a relatively coarse resolution
makes it difficult to detail elements with a spatial resolution closer to Lisbon.
Nevertheless, the model seems to reflect the same scattered character of populations
and activities throughout the Metropolitan Area of Porto, which our analysis of
history and landscape characteristics seems to present.

8. Self-Modification Rules

Finally, regarding the boom and bust phases that the mechanism of self-
modification rules allows, how were they included in the calibration results when
simulating urbanization to the present, or predicting the future (prediction mode)?
To answer this question we ran parameter averaging on the best results from the
final calibration. The self-modification qualities of the model alter coefficient values
during a run. The finishing values of all the coefficients (located in a file called
param.log) were used to find the final best values that describe the boom and boost
periods in the system. After this parameter run was completed, the param.log file
from the finish year can be used as input for a utility included with the model that
sorts and averages the output values. This utility averages the finishing coefficient
values stored in the param.log file, and returns a set of five integers that represent
the best coefficient values resulting from the entire process of calibration, reflecting
both the growth rules, and the self modification rules.

The result of this sorting and averaging was reflected in a change to higher values
in the final coefficients that control the model. The start values for Lisbon in the
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final calibration phase of: 16, 57, 50, 25, 30, changed with the self-modification rules
to values of: 19, 70, 62, 38, 43. In the case of the Porto Metropolitan Area to the
final calibration phase start values of: 20, 20, 40, 45, 50, were refined throughout
self-modification rules to values of: 25, 25, 51, 100, 75 in diffusion, spread, slope,
and road gravity, respectively. It seems that the Lisbon Metropolitan Area is more
susceptible to intense boom phases, seen in the high amplitude of the change in the
Breed coefficient: from 57 to 70 after the self-modification rules. In the Porto
Metropolitan Area, the change that immediately catches one’s attention is the 100
value of slope_resistance after self-modification. The conclusion could be that
urbanization grows all over in the Porto Metropolitan Area with exception of high
slopes that seem to be the only constraint to urbanization. Careful attention should
be paid when making this conclusion due to several reasons. First since the area of
the Porto Metropolitan Area is substantially smaller than the Lisbon Metropolitan
Area, urbanization spread over greater distance than in the Porto Metropolitan Area.
Therefore, it may be better to increase the spatial resolution in the Porto Metropo-
litan Area, to increase substantially the sensitivity of the model to the local char-
acteristics (e.g. increase slope variability would probably narrow down the slope
scores).

9. Findings and discussion

Table 7 presents the selected calibration results for both metropolitan areas (the
underlined values extracted from Tables 1-6). The two first lines give the composite
scores one and two (all the scores multiplied together and a ratio comparison of
model final urban areas to the actual urban area) the > values are the regression
scores for urbanization, urban edges and urban clusters. And the final lines corre-
spond to the five factors that control the behavior of the system.

Table 7
Best overall calibrations by resolution (extracted from italic values in Tables 1-6)

AML AMP
Score/resolution 784x 836 392x4181 196x209 347x563 173x281 86x 140
Composite score 0.15 0.19 0.23 0.48 0.47 0.41
Compare 0.90 0.88 0.97 0.97 0.99 0.94
2 Population® 0.91 0.91 0.92 0.99 0.99 0.99
Edges r? 0.78 0.99 0.98 0.98 0.99 0.98
Cluster 72 0.85 0.85 0.93 0.99 0.95 0.97
Leesalle 0.35 0.34 0.32 0.58 0.57 0.53
Diffusion 16 20 1 20 40 1
Breed 57 51 100 20 1 100
Spread 50 50 50 40 35 50
Slope 25 25 25 45 40 50
Roads 30 30 20 20 25 75

4 Population indicates no. of urban oixels.
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From the overall analysis of both results we conclude:

1.

Model performance in both metropolitan areas was improved with increased
spatial and parameter resolution. As we can see from initial values of 100 or one
(in the case of diffusion) the five coefficients (diffusion, breed, spread, slope resis-
tance, and road gravity) were narrowed down to more accurately reflect each
metropolitan area. From an initial breed coefficient of 100 in the metropolitan
area of Lisbon and Porto it was possible to narrow down to a breed coefficient
of 57 in the case of Lisbon and a breed coefficient of 20 in the case of Porto.

. A first improvement in model performance took place initially in the coarse

calibration phase. Before coarse calibration, the maximum extreme values were
given, from that maximum of 100, in all the coefficient values except diffusion
that was given one (the objective was to see how much diffusion could
increase). From that initial value, the resulting set of values output from coarse
calibration were 1, 100, 50, 50, 75 in the case of the Porto Metropolitan Area,
and 1, 100, 50, 25, 25 in the Lisbon Metropolitan Area. As already explained
before, these values fed the next calibration phase (fine calibration).

. The most substantial improvement in model performance was reached between

the coarse and the fine calibration phases. For instance, during coarse calibra-
tion, and for both metropolitan areas, the maximum value of breed coefficients
was 100. In the case of the Lisbon Metropolitan Area, that value was narrowed
to 51, and in the Porto Metropolitan Area it assumed the opposite extreme
value of one (reflecting the previously mentioned erratic behavior of the model
trying to adjust itself to an ‘“unknown reality’’). In the case of diffusion,
because this is a coefficient that measures organic growth, we wanted to see
how far it could increase, so we began assuming that it spread outward one cell
per year in the coarse calibration in both metropolitan areas. In the Lisbon
Metropolitan Area it was possible to see that calibration extended approxi-
mately 20 pixels of urban extent from the initial urban nucleus. In the Porto
Metropolitan Area the model gave the result of 40 urban pixels of spread.
Therefore, other self-adjustments had to be made in order to tune the values to
the spatial characteristics of the Porto Metropolitan Area.

An adjustment of the values, less intense than in the previous calibration phases,
happened between the fine and final calibration phases. Using the same exam-
ples, it was possible to see that from fine to final calibration a, slight adjustment
was made to the values of the Lisbon Metropolitan Area (they passed from 51 to
57 in the case of breed, and 20 to 16 in the case of Diffusion). In the case of the
Porto Metropolitan Area this adjustment was higher, the values of breed passed
from one in fine calibration to 20 in final calibration, and from diffusion values
of 40-20, respectively from final-to-fine calibration.

. Initial values for the coefficients of diffusion, breed, spread, slope, and road

gravity improved from coarse to fine and then to final calibration in both
metropolitan areas. The intensity and values of this improvement varied with
the local environmental and urban characteristics of both metropolitan areas.
Consequently:
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o The Lisbon Metropolitan Area presented a more regular transition from
coarse, fine and final calibration (Fig. 4); the values tend to adjust to local
characteristics gradually.

o The Porto Metropolitan Area, due to its landscape characteristics, shows a
decrease of model performance after the coarse phase, with a later increase
in model performance from coarse to fine calibration. During the second
phase, from fine to final calibration the model needed to adjust itself to
higher values in order to reflect the detailed nature of the diffuse urban set-
tlements. In other words, the model became more sensitive to the actual
pattern of urbanization only at the finest spatial scale and therefore near the
very end of the calibration process.

Comparing the different scores of both models in detail, other differences between
these metropolitan areas are evident. Comparison of the simulated urbanization
against the urbanization of the control years reflected in the compare_score, shows
that in both case studies the model accurately reflects through calibration the evo-
lution of urbanization in both metropolitan areas (a score of 0.90 for Lisbon and
0.97 for Porto). Through calibration, it was not only possible to simulate accurately
the evolution of both metropolitan areas, it also allows us to interpret the different
character of the urban evolution in each case, as seen in the leesallee score. This
score measures the degree of shape match between the modeled growth and the
known urban extent for the control years, if the model grows in different ways or
with different intensities and directions this index will reflect that. The shape index
presented a value of 0.35 for the Lisbon Metropolitan Area in the final calibration,
against a value of 0.58 in the Porto Metropolitan Area. Knowing that it is very hard
to obtain high values of shape match in this index (Clarke & Gaydos, 1998, p. 708) a
value of 0.35 is very good for the Lisbon Metropolitan Area. In contrast, the very
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Fig. 4. The behavior of each Metropolitan Area to the different coefficients (represented in bold at
Tables 1-6, and described in detail in the Appendix).
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defined shape of road influenced urbanization in Lisbon that makes it hard for the
model to fit the actual shape exactly. Porto also has scattered urbanization
throughout its area, making it harder to define many particular shapes or forms at
this scale except by scattering pixels of urbanization all over. In such a case, a high
shape value could only be achieved through a highly unlikely exact match.

The same can be stated when comparing the five coefficients that control the sys-
tem and that the user passes on to each new calibration phase (diffusion_coefficient,
breed_coefficient, spread_coefficient, slope_resistance, and road_gravity). Variation
in these coefficients seems to reflect the experience we have from these case studies,
and also the human and environmental history of the cities. Porto presents a higher
value of diffusion compared with Lisbon; because Porto has more scattered urbani-
zation. It is also understandable why Lisbon presents a much higher breed value
compared with Porto, because the amount of vacant land suitable for development
is more abundant in Lisbon than in Porto. This observation is reinforced when
looking at the slope and road values. Lisbon has fewer constraints to urbanization
due to slope and has as a result high values of road influence. The slope factor
allows us to predict that the south margin of the Tagus River will suffer intense
urban pressures because of flatter land, and because of a transportation infra-
structure that is recently built with a high capacity to spread urbanization. This is
another reason why the spread coefficient is higher in Lisbon. In contrast, Porto
presents much higher slope values and a transportation network that is still
restructuring itself, and therefore, has less impact on the urban growth, compared
with the capital of the country.

It is also important to report that the self-modification rules were internalized very
well by the model and played a crucial role in capturing the character of both
metropolitan areas. It is known that, historically, population tended to grow more
constantly in Porto. Lisbon, by contrast tended to have periods of boost, followed
by periods of less intense growth. This fact certainty influenced the Lisbon Metro-
politan Area breed score. New nuclei were formed during these intense periods of
migration of population, investments in new highways, and development of new
urban areas. Porto retains an older structure, with a more stable population, grow-
ing constantly, and so giving higher values of diffusion.

A final question could be posed: why did the overall behavior of the scores present
a final better fit for Porto than for Lisbon, a composite score of 0.15 in the case of
Lisbon, and a composite score of 0.48 in the case of Porto? The first conclusion
would be that the model performed better for Porto than Lisbon. But, the question
should be: by increasing the spatial resolution of the data in the case of Porto, could
it be easier to capture detail and therefore better narrow down the values to the local
characteristics? If so, it would be harder to exactly simulate the patterns and pro-
cesses, and consequently it would be harder to reach the optimum correlation and
model performance. This seems important in the discussion of spatial resolution
and sufficiency of local conditions. Finally, could we improve detail and refine even
more sensitivity to the local conditions, and therefore narrow down, for instance,
the high value of slope_resistance in the case of the Porto Metropolitan Area?
Questions such as this one seem to be very hard to answer, but more studies in this
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metropolitan areas (and other areas) using different scales, more variables, and more
model runs can clarify this discussion.

10. Conclusions

The most important finding from our calibration experiments is the fact that
detailed and exhaustive calibration improves the performance of the SLEUTH
model in a significant way. The most interesting finding is the observation of how
these two different urban settings constrained the evolution of the three calibration
phases in order to adjust the model more closely to the reality of each area.

Looking at the results (Fig. 4) one might deduce that in the Lisbon Metropolitan
Area, where growth is concentrated along main axes and radials, the calibration of
the model was facilitated, reaching the best values sooner. However, the more rapid
closure on results also reflects an urban reality that easily corresponds both to the
history of human settlement and to the roots of the computational models of urba-
nization and land use change that have been applied (Oppenheim, 1980; Wegener,
1998). On the other hand, accurately modeling the Porto Metropolitan Area’s dif-
fusive growth well gives extra strength to the model’s own ability to automatically
calibrate itself.

Since the model is a cellular automaton, each pixel in space assimilates past evo-
lution, but reacts independently to allow the model to adjust to a pattern of growth
that depends more on local characteristics than on regional models and laws. This
sense of individuality present in each cell seems more suited to market dynamics,
and consequently, to the genesis of modern urban settlements. An independent
individual basis for modeling substantiates the fact that from the final calibration a
set of numerical values are estimated for each metropolitan area (through aver-
aging). These numbers can be used to predict future growth in the SLEUTH model
prediction mode. However, they also both reflect the adaptation of the CA to the
urban environment in the model, and allow comparative analysis of different cities
using the same model (Clarke & Gaydos, 1998). Thus, cities may show a higher
degree of influence of infill from a relatively modest number of existing centers (as in
Porto) or stronger impact of transportation on growth (Lisbon). Throughout cali-
bration these different characteristics can be captured in the set of final coefficients
that best describe the specific system/reality under study at the same time, and so
can predict future developments. For Lisbon, the calibration yielded a set of starting
parameter values in 1975 of: diffusion=19, breed =70, spread =62, slope= 38,
roads=43. For Porto, the equivalent values were: diffusion=25, breed=25,
spread =51, slope=100, roads="75.

11. Recommendations for future research

We present the results of an exhaustive and rigorous calibration of the SLEUTH
model to data from two Portuguese metropolitan areas. During the calibration
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process, several impediments to CA modeling were detected and, as a result of the
experience, some recommendations for future research and improvements can be
made.

First, data quality is one of the most important elements for a successful model
calibration. This was observed in the slope layer and the 2000 urban extent layers for
Porto, which posed a problem during the calibration process. The need to improve
these two data layers in order to improve the calibration and allow a successful run
of the model in prediction mode was revealed only by carefully following a data pre-
testing procedure as described in the model documentation.

Second, we seek to assess to what extent improving the spatial resolution of the
Porto Metropolitan Area could narrow down the scores and make the model more
sensitive to the local conditions. Naturally, improved resolution could pose pro-
blems if a direct comparison was to be made between the Porto and Lisbon Metro-
politan Areas. Another solution could be, to run more Monte Carlo iterations, and
try to see if in that case more particularities of the landscape could be seen without
having to change spatial resolution. For instance, would a 1000 Monte Carlo itera-
tions improve the model sensitivity? The third question is related to the sequential
multistage optimization by extensive automated exploration of the parameter space.
This step-by-step action is very important in adapting the model to local conditions.
The question could be: what is the best value resulting from each calibration if other
procedures were applied instead of the averaging of best parameter values; or if
other input layers were added, or if different scores were calculated? These questions
could be tested in further studies in order to better understand the model behavior
and performance, and to reinforce that interpretation of the output values of the
model should rely on a solid basis of experience.

Fourth, remotely sensed images were one of the most important data sources to
extract urban land use. Accurate extraction of urban features is hard, even more so
when trying to apply the same methodologies to different areas and at different
dates. Bahr (1999); Canters, Erens, and Veroustraete (1999), and Cihlar (2000),
Morain and Baros (1996) discuss in more detail some of the current methods in
remote sensing suitable for urban analysis.

Finally, the computation time needed in each of the phases of calibration is sig-
nificant. High performance computing and parallel processing techniques offer real
promise here and the advantage of using these techniques have been examined
(Mineter & Dowers, 1999; Niccanna & Bean, 1997; Openshaw & Openshaw, 1999).
Version 3 of the SLEUTH model, now in beta release, will allow the model to be run
on parallel processor machines. Finally, urban modeling with CA is ongoing
research. Forecasting (using prediction mode) presents another challenge, by allow-
ing us to simulate how the two cities will evolve, what will be the possible shapes,
sizes, and problems of the future cities that will form gigalopolis.

In summary, we assembled data for two metropolitan areas of Portugal, and
applied the SLEUTH model. While modeling involved many individual steps and
there are many pitfalls for the modeler, overall, the SLEUTH model was relatively
simple to use, requiring only large amounts of computer time once data were
assembled. We conclude that the basic CA model is highly versatile, and does indeed
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apply equally as well to European cities as to the North American cities for which it
was designed, representing in detail local characteristics of each metropolitan area.
Without rigorous calibration, this suitability of the model to local characteristics
would be compromised. Individual-based complex systems modeling with auto-
mated adaptive calibration may indeed offer a first vision of a single, universal
model of urban growth with important planning applications.
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Appendix
Scores and coefficients defined in the Tables 1-6

Scores
For all scores: 1 =exact match of modeled to control data.

Composite score: all other scores multiplied together.

Compare: comparison of modeled final population! to real data final population'.
r?> Population?: least squares regression score for modeled urbanization compared
with actual urbanization for the control years.

Edge_r?: least squares regression score for modeled urban edge count compared
with actual urban edge count for the control years.

2 Clusters: least squares regression score for modeled urban clustering compared
with known urban clustering for the control years.

Mean_cluster_size_r?: least squares regression score for modeled average urban
cluster size compared with known mean urban cluster size for the control years.
Leesalee: a shape index, a measurement of spatial fit between the model’s growth
and the known urban extent for the control years.

! Units measure in numbers of urban pixels.
2 Population indicates No. of urban pixels.
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Average_slope_r%: least squares regression of average slope for modeled urbanized
cells compared with average slope of known urban cells for the control years.
pct_Urban_r?: least squares regression of percent of available pixels urbanized
compared with the urbanized pixels for the control years.

xmu_r?: (center of gravity [x]) least squares regression of average x_values for
modeled urbanized cells compared with average x_values of known urban cells
for the control years.

ymu_r%: (center of gravity [y]) least squares regression of average y values for
modeled urbanized cells compared with average y_values of known urban cells
for the control years.

sdist_r?: standard deviation averaged over (XY).

lu_Value: a proportion of goodness of fit across landuse classes.

Coefficients

Diffusion_coefficient': determines the overhaul dispersiveness of growth, for both
single grid cells and of the movement of new settlements outward through the
road systems.

Breed_coefficient!: determines how likely a newly generated detached settlement is
to begin its own growth cycle.

Spread_coefficient': controls the amount of outward ““organic’ expansion.
Slope_resistance! >: influences the likelihood of settlement extending up steeper
slopes.

Road_gravity!: encourages new settlements to develop near or along the trans-
portation network.
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