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Calibration of Xinanjiang model parameters using hybrid

genetic algorithm based fuzzy optimal model

Wen-Chuan Wang, Chun-Tian Cheng, Kwok-Wing Chau and Dong-Mei Xu
ABSTRACT
Conceptual rainfall–runoff (CRR) model calibration is a global optimization problem with the main

objective to find a set of optimal model parameter values that attain a best fit between observed and

simulated flow. In this paper, a novel hybrid genetic algorithm (GA), which combines chaos and

simulated annealing (SA) method, is proposed to exploit their advantages in a collaborative manner.

It takes advantage of the ergodic and stochastic properties of chaotic variables, the global search

capability of GA and the local optimal search capability of SA method. First, the single criterion of the

mode calibration is employed to compare the performance of the evolutionary process of iteration

with GA and chaos genetic algorithm (CGA). Then, the novel method together with fuzzy optimal

model (FOM) is investigated for solving the multi-objective Xinanjiang model parameters calibration.

Thirty-six historical floods with one-hour routing period for 5 years (2000–2004) in Shuangpai

reservoir are employed to calibrate the model parameters whilst 12 floods in two recent years

(2005–2006) are utilized to verify these parameters. The performance of the presented algorithm

is compared with GA and CGA. The results show that the proposed hybrid algorithm performs

better than GA and CGA.
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INTRODUCTION

Conceptual rainfall–runoff (CRR) models have been widely

used for flood forecasting as basic tools for catchments

basin management. As the demand for timely and accurate

forecasts has increased in hydrology, the major difficulty
of CRR model calibration is that these models generally

have a large number of parameters that cannot be directly

obtained from measurable quantities of catchments charac-

teristics, and the accuracy of their calculations depends on

how the relevant parameters are defined. In the past,

manual calibrations were commonly used, which are very

tedious and time-consuming tasks because of the subjectiv-

ity. Moreover, it is difficult to explicitly assess the

confidence of model simulations. Owing to these shortcom-

ings, the automation of the calibration process has to be

explored. The calibration problem has been transformed

into a global optimization problem, aiming to determine a

set of model parameters by optimizing a number of objective

functions so that the model can simulate the hydrological

behaviour of the catchment as closely as possible. Thus,
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the development and implementation of automated effective

global optimization methods for parameter calibration are

important topics in hydrological modelling (Duan et al.

).

As global optimization methods (GOM), the metaheuris-

tic techniques, such as genetic algorithm (GA), simulated

annealing (SA) and other random search methods, have

become increasingly important over the last two decades

for CRR model parameter calibration. GA is one of the

global optimization metaheuristic techniques that have

gained popularity as a means to find near-optimal solutions

to nonlinear optimization problems. It has become one of

the most widely used techniques for model calibration

(Wang , ; Cooper et al. ; Franchini & Galeati

; Ndiritu & Daniell ). Recently, Cheng et al. (,

) combined a fuzzy optimal model (FOM) with GAs

to solve multi-objective rainfall–runoff model calibration.

Furthermore, Cheng et al. () proposed a hybrid

method that combines a parallel GA with a FOM in a cluster

of computers. SA has been successfully employed in a

number of model calibrations. Sumner et al. () and

Thyer et al. () applied SA for optimization of a CRR

model, Abdulla et al. () employed SA for the estimation

of base flow parameters of ARNO model and Rozos et al.

() combined the simplex method with SA for the cali-

bration of a semi-distributed model for conjunctive

simulation of surface and groundwater flows. The improve-

ment in performance of these techniques can be attributed

to their superior ability to navigate numerous local optima

present in the response complexity of the CRR model cali-

bration problem. However, owing to the complexities of

CRR models, these methods may not always be successful

in finding the global optimum (Gan & Biftu ; Goswami

& O’Connor ).

It is not guaranteed that GA is able to find the global

optima to solve large-scale and complex real-world pro-

blems. One of the main reasons is the problem of

premature convergence of the GAs. When combined with

other techniques, the individual strengths of each approach

can be exploited in a collaborative manner for the construc-

tion of a powerful hybrid algorithm. A combination of global

and local search methods was explored by Duan et al. (),

which combined GA with the simplex method, with newly

conceived concepts of complex partition and complex
://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
shuffling, for watershed model calibration purposes.

Franchini () reported a GA combined with a local

search method for the automatic calibration of CRR

models. In recent years, some methods, such as chaotic

optimization method, SA technique and so on, were inte-

grated with GA in order to provide a more efficient

behaviour and a higher flexibility when tackling large-scale

and complex real-world problems. Yuan et al. ()

employed the integration of chaotic sequence and GA with

a new self-adaptive error back propagation mutation oper-

ator to solve the short-term generation scheduling of hydro

system. Lu et al. () applied a chaotic approach to main-

tain the population diversity of GA in network training.

Cheng et al. () proposed chaos genetic algorithm

(CGA) based on the chaos optimization algorithm and GA

for monthly operation of a hydropower reservoir with a

series of monthly inflow of 38 years. The GA and SA with

improved bottom left algorithm were applied to two-dimen-

sional non-guillotine rectangular packing problems (Soke

& Bingul ). Chiu et al. () presented a hybrid

approach, combining GA with SA for optimizing reservoir

operation through fuzzy programming. In the hybrid search

procedure, the GA provides a global search and the SA algor-

ithm provides local search. The GA and SA are also

cooperatively used by Yoo & Gen () for a real-time

task in heterogeneousmultiprocessors system. Consequently,

it is a significant task to explore more effective hybrid

approaches and improvements on GA to speed up the

convergence and enhance the effectiveness of GA.

In order to avoid premature convergence and trap into

poor local optima in a solution search process, the key

point is to find some ways to maintain the population diver-

sity and prevent the inbreeding leading to misleading local

optima (Eshelman & Schaffer ). The chaos is a general

phenomenon in nonlinear systems and has characteristics

such as ergodicity, regularity, randomicity and acquisition

of all kinds of states in a self-rule in a certain range. It can

be employed to improve the performance of GA (Yuan

et al. ; Lu et al. ; Cheng et al. ). Moreover,

since GA lacks the hill-climbing capacity, it may easily fall

in a trap in locating a local minimum but not the true sol-

ution. SA is an iterative improvement scheme with the

hill-climbing ability, which allows it to reject inferior local

solutions and find more globally near-optimal solutions. In
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this paper, a novel hybrid metaheuristic search algorithm is

presented by taking advantage of the ergodic and stochastic

properties of chaotic variables, the global search capability

of GA and the local optimal search capability of SA

method. The novel algorithm adopts chaotic variables to

maintain the population diversity. Annealing chaotic

mutation operation is utilized to replace standard mutation

operator in order to avoid the search being trapped in

local optimum. SA algorithm is applied in order to jump

over the local minima using Metropolis rule. It starts with

a solution candidate obtained by the GA, and then repeat-

edly attempts to find a better solution by moving to a

neighbour with higher fitness, until it finds a solution

where none of its neighbours has a higher fitness. The

novel method can facilitate their advantages of the GA in

a collaborative manner to improve the performance of the

GA and overcome their disadvantages. The new proposed

algorithm is used to optimize parameter values of the

Xinanjiang model for flood forecasting in Shuangpai reser-

voir. First, the single criterion of the mode calibration is

employed to demonstrate the performance of evolutionary

process of iteration. Then, the novel method together with

FOM is investigated for solving the multi-objective Xinan-

jiang model parameters calibration. The correlative

examination indicates that the hybrid method has more

powerful search capabilities in order to avoid premature

convergence and trap into poor local optima, and has an

enhanced performance in terms of solution quality and com-

putation efficiency.
Figure 1 | Flow chart for the Xinanjiang model.

om http://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
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XINANJIANG MODEL

The Xinanjiang model studied is a conceptual rainfall–

runoff (CRR) model with distributed parameters, which is

developed by Zhao et al. () and Zhao () and has

been successfully and widely applied to large basins in

the humid and semi-humid regions of China for flood

forecasting. The model structure is shown in Figure 1. It

has 17 parameters, including seven runoff-generating com-

ponent parameters (Um, Lm, Dm, B, Im, K, C ) and 10 runoff

routing parameters (Sm, Ex, Kg, Ki, Cg, Ci, Cs, Ke, Xe, L). The

runoff routing component parameter L, the lag time of rout-

ing for each sub-area, an empirical value that is mainly

dependent on the length and slope of a stream, can be esti-

mated by relating to observable characteristics of the

watershed. The physical descriptions of these parameters

are listed in Table 1. The value of each parameter is usually

within certain ranges according to physical and

mathematical constraints, information about watershed

characteristics and from modelling experiences.

The parameters of the Muskingum method must

satisfy the following constraints for each channel of the

sub-basin.

2KeXe ≤ Δt ≤ 2(Ke � KeXe)

where Ke and Xe are the Muskingum coefficients, Ke is a

storage constant having the dimension of time, Xe is a

dimensionless constant for the reach of the channel and



Table 1 | Parameters of the Xinanjiang model

Parameter Physical meaning Unit

Runoff generating parameter

1 Um Averaged soil moisture storage capacity of the upper layer [mm]

2 Lm Averaged soil moisture storage capacity of the lower layer [mm]

3 Dm Averaged soil moisture storage capacity of the deep layer [mm]

4 B Exponential parameter with a single parabolic curve, which represents the non-uniformity of the spatial
distribution of the soil moisture storage capacity over the catchment

[–]

5 Im Percentage of impervious and saturated areas in the catchment [%]

6 K Ratio of potential evapotranspiration to pan evaporation [–]

7 C Coefficient of the deep layer that depends on the proportion of the basin area covered by vegetation with deep
roots

[–]

Runoff routing parameter

8 Sm Areal mean free water capacity of the surface soil layer, which represents the maximum possible deficit of free
water storage

[mm]

9 Ex Exponent of the free water capacity curve influencing the development of the saturated area [–]

10 Kg Outflow coefficients of the free water storage to groundwater relationships [–]

11 Ki Outflow coefficients of the free water storage to interflow relationships [–]

12 Cg Recession constants of the groundwater storage [–]

13 Ci Recession constants of the lower interflow storage [–]

14 Cs Recession constant in the lag and route method for routing through the channel system with each sub-basin [–]

15 Ke Parameter of the Muskingum method [–]

16 Xe Parameter of the Muskingum method [–]

17 L Lag in time [–]
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Δt is the routing period. For a detailed description and

explanation of the Xinanjiang model, please refer to Zhao

().
HYBRID GA WITH CHAOS AND SA

Genetic algorithm (GA)

GA is a heuristic search technique based on the mechanics

of natural selection and genetics for global optimization in a

complex search space (Goldberg ; Holland ). In a

generation process, GA generates initial population ran-

domly. It then evaluates the population and operates on

the population using selection, crossover and mutation oper-

ators to produce new and hopefully better solutions. GA

operators are briefly described as follows:
://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
Population: It is a set of possible solutions of the pro-

blem. Because the size of the population varies with a

problem, there is no clear indication how large it should be.

Selection: Selection operator is the procedure in which

chromosomes are selected according to their fitness

values. A popular approach is weighted roulette wheel selec-

tion, in which the probability pi of an individual i being

selected is given by

pi ¼ fiPn
i¼1 fi

(1)

where fi is the fitness of i and n is the population size.

Crossover: Crossover operator is powerful for exchan-

ging information between chromosomes and creating new

solutions. It is hoped that good parents may produce good

solutions.

Mutation: Mutation operates on one parent solution

and generates an offspring solution by randomly modifying
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the parent solution’s features. It helps to preserve a reason-

able level of population diversity, and provides a mechanism

to escape from local optima.
Figure 2 | Dynamics of logistic map.

Figure 3 | Random variable.
CHAOS AND LOGISTIC MAPPING

Chaos is a universal phenomenon in the natural world. The

chaotic sequence can usually be produced by the following

well-known one-dimensional logistic map defined by May

():

xkþ1 ¼ μxk(1� xk); xk ∈ (0, 1), k ¼ 0, 1, 2, . . . (2)

in which μ is a control parameter, 0� μ� 4. It can be

observed that Equation (2) is a deterministic dynamic

system without any stochastic disturbance. It seems that

the long-term behaviour of the system in Equation (2)

varies significantly with μ. The value of the control par-

ameter μ determines whether x stabilizes at a constant

size, oscillates between a limited sequences of sizes or

whether x behaves chaotically in an unpredictable pattern.

For certain values of the parameter μ, of which μ¼ 4 is

one and x0∉ {0.25, 0.5, 0.75} the above system exhibits

chaotic behaviour. A very small difference in the initial

value of x causes a large difference in its long-term behav-

iour, which is the basic characteristic of chaos. The

variable x is called a chaotic variable. The track of chaotic

variable can travel ergodically over the whole space of

interest. The variation of the chaotic variable has a delicate

inherent rule in spite of the fact that its variation appears to

be in disorder. Figure 2 shows its chaotic dynamics charac-

teristic, where x0¼ 0.01, maximum value of k¼ 300.

Figure 3 shows the random sample characteristic, where x

is a random variable. It can be seen that the logistic map

is an efficient approach for maintaining the population

diversity in the problem of interest.
SIMULATED ANNEALING (SA)

SA is probabilistic hill-climbing technique that imitates the

natural process of metals annealing (Kirkpatrick et al.

). The SA carries out a random search in the range

of values based on the Metropolis criterion (Metropolis
om http://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
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et al. ). In each step of the approach, an atom is dis-

placed through a random perturbation of its current

state, and the consequential change ΔE in the energy of

the system is calculated. If ΔE� 0, the change is accepted

deterministically because it represents a perturbation and

results in a lower energy of the system, and the new con-

figuration of system constitutes the starting point for the

next step. If ΔE> 0, it indicates an uphill move to a

higher energy state and the proposed change is accepted

with a probability given by the Boltzmann distribution:

P(ΔE) ¼ exp (�ΔE=kBT ) (3)
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where kB is Boltzmann’s constant and T corresponds to

the current temperature. The use of P(ΔE) forces the

system to evolve into thermal equilibrium, i.e. after a

large number of perturbations, the probability distribution

of the states approaches the Boltzmann distribution (van

Laarhoven & Aarts ).
HYBRID GA WITH CHAOS AND SA (CGASA)

Literature review shows that GA is a versatile and effective

search technique for solving optimization problems.However,

there are still some situations, such as slow convergence and

premature local optimum, where GA on its own does not per-

form particularly well to solve large-scale and complex real-

world problems. The population diversity is an important

factor for successful application of GA. If GA cannot hold its

diversitywell before the global optimum is reached, itmay pre-

maturely converge to a local optimum.

In order to maintain diversity of population, the initial

individuals are taken for granted to be diversified and, in

other words, distributed uniformly. The conventional initia-

lization methods such as random approach can bring

problems. Even if they can guarantee that the initial popu-

lation is evenly distributed in the search space, they

cannot guarantee the qualities of initial population are

also uniformly arranged. Indeed, an overwhelming majority

of the initial chromosomes are banal and far from the global

optimum which cause the slow convergence of GA.

Moreover, during the searching process the population

variety falls and chromosomes of individuals tend to

coincide under selective pressure. As such, in many cases,

the GA’s searches are found to be stuck by local traps.

Thus, the hybrid technique ought to be explored to maintain

diversity of evolution population and improve performance

of GA.

In the randomized searches process of conventional

GA, there are no necessary connections between the current

and next generations except for some controlling par-

ameters such as crossover and mutation probabilities. In

other words, the feedback information from former popu-

lations is discarded. The individuals’ experiences are

completely ignored during their lifetime. However, many

experiments show that an improved GA with resource to
://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
domain-specific heuristics information always has a good

performance in evolution (Goldberg ). Essentially,

such good performance is attributed to the feedback infor-

mation from the evolutionary system. The scheme of

biological evolution can be well described as ‘random evol-

utionþ feedback’ from the viewpoint of chaos, where

randomicity is an intrinsic property of biological society

and the feedback part contains sufficient information for

species to evolve. SA is an iterative improvement scheme

with the hill-climbing ability, which allows it to reject

inferior local solutions and find more globally near-optimal

solutions. SA allows occasionally an uphill move to sol-

utions with lower fitness by using a temperature parameter

to control the acceptance of the moves (with a probability)

to avoid getting trapped in poor local optima. Only those

who can successfully deal with the feedback information

from evolution can survive well and keep evolving from

low to higher classes. Consequently, a novel hybrid GA

with chaos and SA is presented in this paper.
THE IMPLEMENTATION OF CGASA

In initial implementation of GA, the variables were encoded

as strings of binary alphabets, i.e. zero and one. A major

drawback of binary GAs is that they face difficulties when

applied to problems having large search space and seeking

high precision, because they encode parameters as finite

length strings and therefore spend a considerable time per-

forming encoding and decoding processes. To overcome

this problem, real coded GA, in which variables are encoded

as real numbers, is now becoming popular. Experiments

have shown that real coded GAs are superior to binary

coded GAs for optimization problems (Janikow &

Michalewicz ). In this study, a real coded GA is applied,

and some measures are adopted to improve its performance,

such as generating initial population by chaotic sequence,

utilization of annealing chaotic mutation operation to

replace standard mutation operator and SA technique

providing neighbour local search.

To implement the hybrid algorithms parameters such as

the population size Psize, the probability of crossover Pc, the

probability of mutation Pm, the chaos iteration time Tmax,
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the evolution number of generationGmax, the initial tempera-

tureTof SA, Boltzmann’s constant kB etc. need to be selected.

1. Generation of initial population by chaotic sequence: The

variable solutions of initial population are generated by the

Logistic Equation of chaos, which usually will have a

better effect than randomized generation. This will

improve the diversity of the initial population and calcu-

lated efficiency.

Them initial values of very small difference xk (0� xk,i�
1, i¼ 1, 2, 3,…,m) are given in Equation (2) and x0,i∉
(0.25, 0.5, 0.75) to assure the evolution process proceeds

correctly. It will generate m chaotic variables xk,i (xk,i, i¼
1, 2,…m) of different trajectory. The m chaotic variables

aremapped tovariable spaceof optimization and translated

into chaotic variable x*k,i according to Equation (4):

x�k,i ¼ ai þ (bi � ai)xk,i (4)

Forfixedk, x*k¼ (x*k,1, x
*
k,2,…, x*k,m) represents a feasible

solution. The n feasible solutions generated, which can

satisfy variable space of optimization, become the initial

population.

2. Computation of fitness value: According to the objective

function or the properly transformed objective function,

the fitness value of individuals is determined.

3. Selection: The fitness value selection adopts the weighted

roulette wheel approach, in which the probability Pi of an

individual i being selected is given by Equation (1). In

order to ensure that good chromosomes have a higher

chance of being selected for the next generation, ranking

schemes are always used. Ranking schemes operate by

sorting the population on the basis of fitness values and

then assigning a probability of selection based upon the

rank. So a variable with higher fitness has a higher prob-

ability of being selected.

4. Crossover: The crossover operation can create new indi-

viduals. It is responsible for the global search property of

the GA. The common crossover operations are single

point, two points and uniform arithmetic crossover. For

the real numbers encoding individuals, uniform arithmeti-

cal crossover is usually used. Suppose two parent

individuals that have been selected from the ith generation

population are xiv¼ (v1, v2,…, vn), xiw¼ (w1, w2,…,wn),
om http://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
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respectively, offspring individuals that are produced by

the linear combination of the parent individuals are

x(iþ1)v ¼ @xiv þ (1� @)xiw,

x(iþ1)w ¼ @xiw þ (1� @)xiv
(5)

where ∂ is a constant between 0 and 1.

5. Annealing chaotic mutation operation: Mutation operator

changes the characteristics of genetic material in a chromo-

some to sustain population diversity, and bring the

individual of higher fitness value and guide evolution of

the whole population. A large scale of mutation is good

for acquiring the optimum solution in an extensive search,

but the search is rough and the solution precision is poor.

On the other hand, if the precision is satisfactory, the sol-

ution will be trapped at a local optimum or take too long

to converge. In order to overcome these flaws, this paper

adopts the annealing chaoticmutationoperation. It canpre-

ferably simulate the chaotic evolutionaryprocessof biology.

Simultaneously, it is quite easy to find another better sol-

ution in the current neighbourhood area of optimum

solution and let GA possess ongoing motivity all along. It

directly adopts the chaotic variable to carry through an

ergodic search of solution space and the process of search

goes along according to the rule of chaos movement.

Accordingly, it effectively overcomes the default that

speed obviously becomes slow by feedback information

when search is close to the global optimum. The main pro-

cess is shown as follows:

The nth generation population (yn1, yn2,…, ynm) of cur-

rent solution space (a, b) is mapped to chaotic variable

interval [0, 1] to form chaotic variable space Y *
n, Yn

*¼
(y*n1, y

*
n2,…, y*nm)

y�ni ¼
yni � a
b� a

, i ¼ 1, 2, . . . , m;n ¼ 1, 2, . . . , Gmax (6)

where Gmax is the maximum evolutional generation of

the population.

The ith chaotic variable xk,i is degenerated and

summed up to individual mapped y*ni, and the chaotic

mutation individuals are mapped to interval [0, 1]

(Wang et al. ).

Z�
ni ¼ y�ni þ @xk,i (7)
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in which ∂ is the annealing operation

@ ¼ 1� n� 1
n

����
����
k

(8)

where n is iterative time and k is an integer.

At last, the chaoticmutation individual obtained in inter-

val [0, 1] is mapped to the solution interval (a, b) by definite

probability, which completes a mutative operation,

Zni ¼ aþ (b� a)Z�
ni (9)

As we can see from Equations (8) and (9), the anneal-

ing chaos mutation operation is processed according to

definitive probability of mutation and generates offspring

generation. It simulates the process of species evolution

of nature. Usually appearing with more evolutionary

attempts because of higher mutative probability, it results

in diversity of population in the initial stage of the evol-

ution. However, with the increase of evolutionary
Figure 4 | The flow chart of the GA implemented with chaos and SA.

://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
generation, the population gradually becomes stable as

the function of mutation operation becomes slower and

the function of crossover operation becomes increasingly

important. Integrating crossover operation with selection

operation can perform accurate search in local solution

space.

6. Using SA for neighbour local search: GA is good at gener-

ating populations which have high average fitness value,

but it is short of the means that can generate the optimum

individual of higher fitness value. SA strategy may

help obtain the optimum individual solutions of higher fit-

ness value associated with local optima of the fitness

function.

7. Termination condition: The algorithm will be stopped if it

arrives at a total generation of evolution or the optimum

individual does not improve after n iterative search. Or

else, return to step 2 and go on next time iterative oper-

ation. The framework flow chart of CGASA is shown in

Figure 4.
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CASE STUDY

Study area

The proposed algorithm in this paper is used to estimate par-

ameter values of the Xinanjiang model for flood forecasting

in Shuangpai reservoir (Figure 5), which is located in Hunan

Province of southern China and downstream of the

Xiaoshui Stream, which is one of the tributary rivers in

the Xiangjiang River. The reservoir, with a drainage area

of 10,594 km2 and a water holding capacity of up to 373.8

million cubic metres, is used for power generation and

flood control, as well as for irrigation purposes. The length

of the main stream is 154.9 km with an average slope of
Figure 5 | Map of the Shuangpai area with locations of rain gauge stations.

om http://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
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0.61%. The area is in a sub-tropical monsoon zone with

rich rainfalls and good vegetation cover. The annual rainfall

is 1,500 mm; the average depth of runoff is 893 mm and the

average discharge is 300 m3/s. However, the temporal distri-

bution of the rainfall during a given year is significantly

heterogeneous in this area. The flood events in this area

are mainly due to thunderstorms. 45.9% of the total rainfall

falls between April and June, and 34% of the total rainfall

between September and October, which are referred to as

the high-flow periods. The region is divided into 12 sub-

areas, each of which has the same set of model parameters.

Each sub-area is represented by a rain gauge station. Table 2

summarizes the rain gauge stations covered in this study,

including the representing area and the corresponding



Table 2 | Details of rain gauge stations in the study area

Station Type of station Station name Weighting Area (km2)

01 Rainfall Jiangcun 0.0915 745

02 Rainfall Daoxian 0.0846 691

03 Rainfall Haofu 0.0689 562

04 Rainfall Jiangyong 0.1134 926

05 Rainfall Dalupu 0.1200 979

06 Rainfall Centianhe 0.0326 266

07 Rainfall Simaqiao 0.0651 531

08 Rainfall Youxiang 0.0762 622

09 Rainfall Ningyuan 0.0911 744

10 Rainfall Shuishi 0.0651 532

11 Rainfall Baijiaping 0.1210 988

12 Rainfall/streamflow Shuangpai 0.0705 576
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weighting for each rain gauge. A total of 36 historical floods

with one-hour routing period between 2000 and 2004 are

employed to calibrate the model parameters whilst 12

floods between 2005 and 2006 are utilized to verify these

parameters. Table 3 lists the initial ranges of parameter

values for the Shuangpai reservoir.
CALIBRATION CRITERIA

CRR model calibration is a highly complex nonlinear pro-

blem. A successful calibration depends not only on

effective optimization methods, but also on calibration

objective. This situation is because the performance evalu-

ation and parameter adjustment procedures are objective,

in the sense that they establish explicit rules by which the

actual sequence of parameter adjustments is made in an

automatic calibration process. The single criterion selected

to measure the closeness of the model output and data has

been devoted to identifying the ‘best’ criterion and the

‘best’ optimization. In general, the criterion most commonly
Table 3 | The initial ranges of parameter values

Parameter: Um Lm Dm B Im K C Sm

Lower 10 50 10 0.1 0.0 0.1 0.1 10

Upper 40 90 80 0.9 0.1 1.2 0.3 50

://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
used in the literature has been the root-mean-squared error

(RMSE) evaluated on either the streamflows or the log of

the streamflows (Boyle et al. ):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
(Qs(i)�Q0(i))

2

r
(10)

where Q0(i) and Qs(i) are, respectively, the observed and

simulated streamflow or log streamflow and N is the

number of data points considered.

However, according to the national criteria for flood

forecasting in China (NCHI ), the three statistical

ratios of acceptable criteria relative to the peak discharge,

peak time and total runoff volume among the calibrated

and validated historical flood events, respectively, are used

to evaluate the parameter calibration performance for rain-

fall–runoff model. They are expressed as rpeak_discharge,

rpeak_time and rrunoff:

Maximize rpeak discharge ¼
Mpd

N
× 100% (11a)

Maximize rpeak time ¼
Mpt

N
× 100% (11b)

Maximize rrunoff ¼
Mr

N
× 100% (11c)

where Mpd, Mpt and Mr represent the total number of floods

that satisfy the acceptable criteria relative to the peak dis-

charge, peak time and total runoff volume, respectively,

and N is the total number of the calibrated or validated

floods. When all three ratios are greater than 85%, the per-

formances of parameter calibration satisfy the first level

standard of flood forecasting calibration or validation.

When all three ratios are greater than 75% and one is less

than 85%, the performances of parameter calibration satisfy

the second level standard of flood forecasting calibration or
Ex Kg Ki Cg Ci Cs Ke Xe

1.1 0.1 0.2 0.7 0.1 0.01 0.5 0.01

1.4 0.4 0.6 0.99 0.99 0.4 2 0.5
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validation. Otherwise, the results of the performances of

parameter calibration are unsatisfactory for online flood

forecasting.

In this study, first, the single criterion is employed to

demonstrate the performance of the proposed algorithms

in this paper. Then the combination of a FOM with the pro-

posed algorithms is used to optimize multi-objective

Xinanjiang models for real-time flood forecasting and

flood simulation. Cheng et al. () introduced a FOM

with limited alternatives and multiple criteria for CRR

model parameter calibration. Except for the specific fitness

value calculated below, the multiple criteria CGASA pre-

sented in this section is basically the same as the single

criteria CGASA presented earlier. It is assumed that the

total number of criteria for a chromosome evaluation is m,

and the alternative set consisting of n alternatives is denoted

by A¼ {A1, A2,…,An}. The decision matrix is represented by

X¼ (xij)m×nwhere xij is the ith criteria value of the alternative

Aj ( j¼ 1, 2,…, n). In determining the relatively optimal

decision among n alternatives, the decision matrix X should

be transformed into the matrix of membership degree by the

following equations:

rij ¼ xij=ximax (12)

rij ¼ (1� xij)=ximax (13)

where ximax ¼ ∨
n

j¼1
xij. If the maximum value represents more

optimum membership degree, Equation (12) should be

adopted; otherwise, Equation (13) should be applied. After

the transformation, the matrix of membership degree is rep-

resented as:

R ¼ (rij)m×n (14)

Here, only the final equation is given:

uij ¼ 1þ
Pm

i¼1 [wi(1� rij)]
2Pm

i¼1 (wirij)
2

" #�1

(15)

where i¼ 1, 2,…,m; j¼ 1, 2,…, n. For details, please refer to

Cheng et al. ().
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Generally, the weights of criteria are determined from

experience depending on the individual problem. In this

study, the weights of the peak value, peak time and total

runoff volume are 0.333, 0.333 and 0.333, respectively, i.e.

w¼ (0.333, 0.333, 0.333)T, because they are equally impor-

tant according to the national criteria for flood forecasting

in China. The value of uj is obtained from Equation (15).

By sorting the values of membership degree of n alternatives

in descending order, the optimal order of alternatives can be

obtained. Comparing with the procedure reproducing off-

spring in CGASA for the next generation, the membership

degree of alternative uj can defined as the fitness of the jth

chromosome.
APPLICATION AND PERFORMANCE COMPARISON

In this study, GA and CGA are employed as a yardstick to

gauge the performance of the proposed CGASA algorithms.

Some parameters of algorithms need to be chosen in order

to obtain good performance of GA and its improvement,

such as the choice of a moderate population size (Psize), a

high crossover probability (Pc) and a low mutation prob-

ability (Pm). Psize critically affects the efficiency and

solution quality of the GAs. Generally, Psize is set to be a

value between 150 and 300. Pc controls the frequency of

crossover operation. Generally, Pc is chosen between 0.5

and 0.8. Pm is a critical factor in extending the diversity of

the population. Generally, Pm is often chosen between

0.001 and 0.1. The same Psize¼ 300, Pc¼ 0.8, Pm¼ 0.1 are

employed for GA, CGA and CGASA in order to examine

their performance. The weighted roulette wheel approach

and the ranking schemes are adopted for GA, CGA and

CGASA. The initial value of temperature T¼ 100 and

the value of Boltzmann’s constant kB¼ 0.99 are set for

CGASA.

Figure 6 demonstrates its evolutionary process of iter-

ation using a single criterion (RMSE) to optimize

parameters of the complex Xinanjiang model where the

evolution number of generation Gmax¼ 2000. Obviously,

CGASA can obtain better objective value than the classical

GA and CGA. The convergence speed of CGASA is faster

than the classical GA and CGA. CGASA can give a solution



Figure 6 | Evolutionary process of iteration.
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near 400 generations, which surpasses the final one from

GA when the iteration number of GA is near 2000. Further-

more, the solution of CGA almost halts at 600 generations

and CGASA continues to converge. This demonstrates that

generating initial population by chaotic sequence and

annealing chaotic mutation operation can improve the

diversity of population and performance of GA. Moreover,

SA strategy can help obtain the optimum individual sol-

utions of higher objective value by neighbour local search.

In order to simulate all the important characteristics of

the flood forecasting system according to national criteria

in China, the combination of a FOM with CGASA is used

to calibrate multi-objective Xinanjiang model parameters.

Table 4 shows the results of parameter calibration. Table 5

lists the performances of the calibrated parameters.

Table 6 lists performances of the validated parameters.

Table 7 presents statistical comparisons of results by

CGASA, GA and CGA during calibration and validation

stages. The performances of all simulated hydrographs of

rainfall–runoff process by different calibration methods

from 2000 to 2004 during the calibration and from 2005 to
Table 4 | Results of the calibrated model parameters by CGASA

Parameter: Um Lm Dm B

Value 21.2192 65.0837 49.3368 0.9

Parameter: Ex Kg Ki Cg

Value 1.1863 0.2902 0.3803 0.9

://iwaponline.com/jh/article-pdf/14/3/784/386832/784.pdf
2006 during the validation are shown in Figures 7 and 8,

respectively. As can be seen from Figures 7 and 8, using

CGASA calibration parameters of the Xinanjiang model

have better fitting ability between the simulated and

observed flows hydrograph than by using GA and CGA.

From Table 7, using the CGASA method calibration, the

values of three criteria: rpeak_discharge, rpeak_time and rrunoff, are

86.11, 91.67 and 86.11%, respectively, for the calibrated

result, and 100, 91.67 and 91.67% for the validated result.

The qualificatory ratios of the peak discharge, peak time

and runoff total volume are all more than 85%. Whilst the

results calibrated by GA are 83.33, 91.67 and 80.56%, the

validated results are 100, 91.67 and 75%. The results cali-

brated by CGA are 83.33, 91.67 and 83.33% whilst the

validated results are 100, 91.67 and 83.33%. The qualifica-

tory ratios of peak time of the three methods are the same,

while in the calibration phase the qualificatory ratios of

the peak discharge and runoff total volume by CGASA cali-

bration are 2.78 and 5.55% higher by GA calibration,

respectively. During the validation phase, the qualificatory

ratio of the runoff total volume by CGASA calibration is

16.67% more than that by GA calibration. Thus the results

of this analysis indicate that using CGASA calibration par-

ameters of the Xinanjiang model enables better forecasting

results to be obtained than by using GA and CGA.
CONCLUSIONS

To improve GA convergence and performance, a novel

hybrid GA that combines chaos and SA algorithm is pro-

posed to exploit their advantages in a collaborative

manner in this paper. Chaos, as a primary mode of nature

motion, is ergodic, internal stochastic and sensible to initial

conditions. A chaotic system applied to GA can significantly

enhance GA’s potential in terms of maintaining the
Im K C Sm

98 0.0574 0.6548 0.1436 39.9985

Ci Cs Ke Xe

867 0.1 0.2031 2 0.1498



Table 5 | Performance of the calibrated parameters by CGASA

Floods
Observed
(m3/s�1)

Simulated
(m3/s�1)

Percentage
(error/%)

Observed peak time
(yyyy-mm-dd hh)

Simulated peak time
(yyyy-mm-dd hh)

Error
(number)

Total volume
(error/%)

20000426 718.5 665.1 �7.43 2000-04-26 22 2000-04-26 23 1 34.33

20000430 737.7 799.5 8.37 2000-04-30 12 2000-04-30 09 �3 12.44

20000510 691.3 730.3 5.64 2000-05-10 07 2000-05-10 07 0 18.30

20000527 1,343.4 1,257.6 �6.39 2000-05-27 07 2000-05-27 08 1 1.07

20000528 2,445.3 2,513.7 2.80 2000-05-28 16 2000-05-28 18 2 17.18

20001022 1,569.4 1,387.0 �11.62 2000-10-22 09 2000-10-23 16 31 17.71

20010406 1,494.3 1,116.0 �25.32 2001-04-06 17 2001-04-06 16 �1 �8.96

20010417 732.7 550.7 �24.84 2001-04-17 00 2001-04-16 23 �1 13.68

20010418 899.8 740.6 �17.70 2001-04-19 01 2001-04-18 23 �2 �13.78

20010421 1,298.1 1,123.3 �13.47 2001-04-20 21 2001-04-20 23 2 10.41

20010509 1,249.6 1,170.3 �6.35 2001-05-09 23 2001-05-09 22 �1 4.47

20010613 4,976.6 4,543.2 �8.71 2001-06-13 20 2001-06-13 17 �3 19.63

20010707 1,896.2 1,462.8 �22.86 2001-07-07 19 2001-07-07 23 4 7.22

20020313 2,347.1 2,037.1 �13.21 2002-03-13 21 2002-03-13 21 0 11.78

20020411 1,656.6 1,192.6 �28.01 2002-04-11 02 2002-04-11 02 0 �10.83

20020426 1,556.6 1,448.5 �6.94 2002-04-26 04 2002-04-26 03 �1 6.85

20020510 1,222.6 1,078.4 �11.80 2002-05-10 06 2002-05-10 04 �2 42.39

20020514 2,615.5 2,063.6 �21.10 2002-05-14 20 2002-05-14 20 0 8.83

20020618 3,184.9 2,715.6 �14.73 2002-06-18 12 2002-06-18 10 �2 �6.45

20020701 6,245.8 6,128.3 �1.88 2002-07-01 23 2002-07-01 21 �2 �3.77

20020721 1,132.1 1,065.0 �5.92 2002-07-21 06 2002-07-21 07 1 16.11

20020726 3,532.1 2,954.6 �16.35 2002-07-26 13 2002-07-26 14 1 �3.84

20020807 5,230.2 5,443.4 4.08 2002-08-08 00 2002-08-08 00 0 10.01

20020819 3,365.2 2,874.9 �14.57 2002-08-19 21 2002-08-19 21 0 17.79

20021030 3,226.5 3,089.9 �4.23 2002-10-30 08 2002-10-30 06 �2 5.45

20030420 2,196.2 2,226.3 1.37 2003-04-20 16 2003-04-20 17 1 9.68

20030513 1,650.9 1,752.7 6.16 2003-05-13 22 2003-05-13 23 1 19.48

20030515 4,490.6 4,438.0 �1.17 2003-05-15 22 2003-05-15 21 �1 16.35

20030607 3,171.1 2,884.8 �9.03 2003-06-07 04 2003-06-07 00 �4 16.44

20030629 1,079.3 899.1 �16.69 2003-06-29 03 2003-06-29 01 �2 6.13

20040508 1,267.9 1,258.4 �0.75 2004-05-08 07 2004-05-08 07 0 24.77

20040513 1,783.0 1,545.2 �13.34 2004-05-13 04 2004-05-13 03 �1 �11.79

20040517 2,879.7 2,705.6 �6.05 2004-05-16 18 2004-05-16 17 �1 18.13

20040531 1,101.9 1,119.2 1.57 2004-05-31 19 2004-05-31 17 �2 21.45

20040616 2,710.3 3,218.5 18.75 2004-06-16 21 2004-06-16 21 0 35.68

20040712 2,364.2 1,960.9 �17.06 2004-07-12 17 2004-07-12 16 �1 8.54

Notes: The total number of floods is 36. 31 of them are qualificatory relative to the error of peak discharge and the ratio of qualifying simulation is 86.11%. 33 are qualificatory relative to

the error of peak time and the ratio of qualifying simulation is 91.67%. 31 are qualificatory relative to the error of total runoff volume and the ratio of qualifying simulation is 86.11%.
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Table 6 | Performances of validated parameter by CGASA

Floods
Observed
(m3/s�1)

Simulated
(m3/s�1)

Percentage
(error/%)

Observed peak time
(yyyy-mm-dd hh)

Simulated peak time
(yyyy-mm-dd hh)

Error
(number)

Total volume
(error/%)

20050215 1,775.5 1,890.8 6.50 2005-02-15 18 2005-02-15 18 0 19.92

20050420 627.4 583.5 �7.01 2005-04-20 06 2005-04-20 05 �1 40.79

20050506 1,041.5 889.2 �14.62 2005-05-06 08 2005-05-06 06 �2 11.54

20050527 1,552.4 1,440.6 �7.20 2005-05-27 22 2005-05-27 20 �2 12.49

20050606 1,579.1 1,677.3 6.22 2005-06-06 04 2005-06-06 03 �1 17.83

20050622 2,776.0 2,870.0 3.39 2005-06-22 02 2005-06-22 01 �1 18.86

20060527 2,366.0 2,339.5 �1.12 2006-05-27 05 2006-05-27 05 0 7.78

20060601 971.9 944.0 �2.87 2006-06-01 09 2006-06-01 09 �1 16.47

20060608 2,641.5 2,642.2 0.03 2006-06-08 01 2006-06-08 01 0 15.15

20060615 2,329.1 2,089.4 �10.29 2006-06-15 02 2006-06-15 02 �1 14.06

20060716 5,020.2 4,405.1 �12.25 2006-07-16 05 2006-07-15 13 16 �4.37

20060805 1,877.4 2,114.9 12.65 2006-08-05 01 2006-08-05 01 0 6.34

Notes: The total number of floods is 12. All of them are qualificatory relative to the error of peak discharge and the ratio of qualifying simulation is 100%. 11 are qualificatory relative to the

error of peak time and the ratio of qualifying simulation is 91.67%. 11 are qualificatory relative to the error of total runoff volume and the ratio of qualifying simulation is 91.67%.

Table 7 | Result comparison of GA, CGA and CGASA algorithms

Ratio of qualificatory in calibration/% Ratio of qualificatory in validation/%
Algorithm Peak discharge Peak time Total runoff Peak discharge Peak time Total runoff

GA 83.33 91.67 80.56 100 91.67 75

CGA 83.33 91.67 83.33 100 91.67 83.33

CGASA 86.11 91.67 86.11 100 91.67 91.67

Figure 7 | The rain, observed hydrographs and simulated hydrographs (GA, CGA, CGASA) for 2000–2004 during calibration.
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Figure 8 | The rain, observed hydrographs and simulated hydrographs (GA, CGA, CGASA) for 2005–2006 during validation.
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population diversity during the evolutionary process. An

annealing chaotic mutation operation is employed to

replace the standard mutation operator in the evolutionary

process of GA. SA strategy can jump over the local

minima using the Metropolis rule and improve the hill-

climbing capacity of GA. The new proposed algorithm is

used to optimize parameter values of the Xinanjiang

model for flood forecasting in Shuangpai reservoir. First,

the single criterion of the mode calibration is employed to

compare the performance of the evolutionary process of

iteration with GA and CGA. It shows that the proposed

CGASA outperforms the GA and CGA. Then, the novel

method together with the FOM is investigated for solving

the multi-objective Xinanjiang model parameters cali-

bration. The resulting comparisons obtained from case

applications indicate that the CGASA is capable of dealing

with large and complex problems, and is a new, promising

hybrid metaheuristic algorithm for optimization of CRR

models.
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