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ABSTRACT

Most supervised machine learning tasks are subject to irreducible prediction errors.
Probabilistic predictive models address this limitation by providing probability
distributions that represent a belief over plausible targets, rather than point esti-
mates. Such models can be a valuable tool in decision-making under uncertainty,
provided that the model output is meaningful and interpretable. Calibrated models
guarantee that the probabilistic predictions are neither over- nor under-confident.
In the machine learning literature, different measures and statistical tests have been
proposed and studied for evaluating the calibration of classification models. For
regression problems, however, research has been focused on a weaker condition of
calibration based on predicted quantiles for real-valued targets. In this paper, we
propose the first framework that unifies calibration evaluation and tests for general
probabilistic predictive models. It applies to any such model, including classifica-
tion and regression models of arbitrary dimension. Furthermore, the framework
generalizes existing measures and provides a more intuitive reformulation of a
recently proposed framework for calibration in multi-class classification. In par-
ticular, we reformulate and generalize the kernel calibration error, its estimators,
and hypothesis tests using scalar-valued kernels, and evaluate the calibration of
real-valued regression problems.1

1 INTRODUCTION

We consider the general problem of modelling the relationship between a feature X and a target Y in a
probabilistic setting, i.e., we focus on models that approximate the conditional probability distribution
P(Y |X) of target Y for given feature X . The use of probabilistic models that output a probability
distribution instead of a point estimate demands guarantees on the predictions beyond accuracy,
enabling meaningful and interpretable predicted uncertainties. One such statistical guarantee is
calibration, which has been studied extensively in metereological and statistical literature (DeGroot
& Fienberg, 1983; Murphy & Winkler, 1977).

A calibrated model ensures that almost every prediction matches the conditional distribution of targets
given this prediction. Loosely speaking, in a classification setting a predicted distribution of the
model is called calibrated (or reliable), if the empirically observed frequencies of the different classes
match the predictions in the long run, if the same class probabilities would be predicted repeatedly. A
classical example is a weather forecaster who predicts each day if it is going to rain on the next day.
If she predicts rain with probability 60% for a long series of days, her forecasting model is calibrated
for predictions of 60% if it actually rains on 60% of these days.

If this property holds for almost every probability distribution that the model outputs, then the model
is considered to be calibrated. Calibration is an appealing property of a probabilistic model since it

1The source code of the experiments is available at https://github.com/devmotion/

Calibration_ICLR2021.
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provides safety guarantees on the predicted distributions even in the common case when the model
does not predict the true distributions P(Y |X). Calibration, however, does not guarantee accuracy
(or refinement)—a model that always predicts the marginal probabilities of each class is calibrated
but probably inaccurate and of limited use. On the other hand, accuracy does not imply calibration
either since the predictions of an accurate model can be too over-confident and hence miscalibrated,
as observed, e.g., for deep neural networks (Guo et al., 2017).

In the field of machine learning, calibration has been studied mainly for classification prob-
lems (Bröcker, 2009; Guo et al., 2017; Kull et al., 2017; 2019; Kumar et al., 2018; Platt, 2000;
Vaicenavicius et al., 2019; Widmann et al., 2019; Zadrozny, 2002) and for quantiles and confidence
intervals of models for regression problems with real-valued targets (Fasiolo et al., 2020; Ho & Lee,
2005; Kuleshov et al., 2018; Rueda et al., 2006; Taillardat et al., 2016). In our work, however, we do
not restrict ourselves to these problem settings but instead consider calibration for arbitrary predictive
models. Thus, we generalize the common notion of calibration as:

Definition 1. Consider a model PX := P (Y |X) of a conditional probability distribution P(Y |X).
Then model P is said to be calibrated if and only if

P(Y |PX) = PX almost surely. (1)

If P is a classification model, Definition 1 coincides with the notion of (multi-class) calibration by
Bröcker (2009); Kull et al. (2019); Vaicenavicius et al. (2019). Alternatively, in classification some
authors (Guo et al., 2017; Kumar et al., 2018; Naeini et al., 2015) study the strictly weaker property
of confidence calibration (Kull et al., 2019), which only requires

P (Y = argmaxPX |maxPX) = maxPX almost surely. (2)

This notion of calibration corresponds to calibration according to Definition 1 for a reduced problem

with binary targets Ỹ := ✶(Y = argmaxPX) and Bernoulli distributions P̃X := Ber(maxPX) as
probabilistic models.

For real-valued targets, Definition 1 coincides with the so-called distribution-level calibration by Song
et al. (2019). Distribution-level calibration implies that the predicted quantiles are calibrated, i.e., the
outcomes for all real-valued predictions of the, e.g., 75% quantile are actually below the predicted
quantile with 75% probability (Song et al., 2019, Theorem 1). Conversely, although quantile-based
calibration is a common approach for real-valued regression problems (Fasiolo et al., 2020; Ho & Lee,
2005; Kuleshov et al., 2018; Rueda et al., 2006; Taillardat et al., 2016), it provides weaker guarantees
on the predictions. For instance, the linear regression model in Fig. 1 empirically shows quantiles
that appear close to being calibrated albeit being uncalibrated according to Definition 1.
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Figure 1: Illustration of a conditional distribution P(Y |X) with scalar feature and target. We consider
a Gaussian predictive model P , obtained by ordinary least squares regression with 100 training data
points (orange dots). Empirically the predicted quantiles on 50 validation data points appear close to
being calibrated, although model P is uncalibrated according to Definition 1. Using the framework
in this paper, on the same validation data a statistical test allows us to reject the null hypothesis that
model P is calibrated at a significance level of α = 0.05 (p < 0.05). See Appendix A.1 for details.

Figure 1 also raises the question of how to assess calibration for general target spaces in the sense of
Definition 1, without having to rely on visual inspection. In classification, measures of calibration
such as the commonly used expected calibration error (ECE) (Guo et al., 2017; Kull et al., 2019;
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Naeini et al., 2015; Vaicenavicius et al., 2019) and the maximum calibration error (MCE) (Naeini
et al., 2015) try to capture the average and maximal discrepancy between the distributions on the left
hand side and the right hand side of Eq. (1) or Eq. (2), respectively. These measures can be generalized
to other target spaces (see Definition B.1), but unfortunately estimating these calibration errors from
observations of features and corresponding targets is problematic. Typically, the predictions are
different for (almost) all observations, and hence estimation of the conditional probability P (Y |PX),
which is needed in the estimation of ECE and MCE, is challenging even for low-dimensional target
spaces and usually leads to biased and inconsistent estimators (Vaicenavicius et al., 2019).

Kernel-based calibration errors such as the maximum mean calibration error (MMCE) (Kumar et al.,
2018) and the kernel calibration error (KCE) (Widmann et al., 2019) for confidence and multi-class
calibration, respectively, can be estimated without first estimating the conditional probability and
hence avoid this issue. They are defined as the expected value of a weighted sum of the differences of
the left and right hand side of Eq. (1) for each class, where the weights are given as a function of the
predictions (of all classes) and chosen such that the calibration error is maximized. A reformulation
with matrix-valued kernels (Widmann et al., 2019) yields unbiased and differentiable estimators
without explicit dependence on P(Y |PX), which simplifies the estimation and allows to explicitly
account for calibration in the training objective (Kumar et al., 2018). Additionally, the kernel-based
framework allows the derivation of reliable statistical hypothesis tests for calibration in multi-class
classification (Widmann et al., 2019).

However, both the construction as a weighted difference of the class-wise distributions in Eq. (1) and
the reformulation with matrix-valued kernels require finite target spaces and hence cannot be applied
to regression problems. To be able to deal with general target spaces, we present a new and more
general framework of calibration errors without these limitations.

Our framework can be used to reason about and test for calibration of any probabilistic predictive
model. As explained above, this is in stark contrast with existing methods that are restricted to simple
output distributions, such as classification and scalar-valued regression problems. A key contribution
of this paper is a new framework that is applicable to multivariate regression, as well as situations
when the output is of a different (e.g., discrete ordinal) or more complex (e.g., graph-structured) type,
with clear practical implications.

Within this framework a KCE for general target spaces is obtained. We want to highlight that for
multi-class classification problems its formulation is more intuitive and simpler to use than the
measure proposed by Widmann et al. (2019) based on matrix-valued kernels. To ease the application
of the KCE we derive several estimators of the KCE with subquadratic sample complexity and their
asymptotic properties in tests for calibrated models, which improve on existing estimators and tests
in the two-sample test literature by exploiting the special structure of the calibration framework.
Using the proposed framework, we numerically evaluate the calibration of neural network models
and ensembles of such models.

2 CALIBRATION ERROR: A GENERAL FRAMEWORK

In classification, the distributions on the left and right hand side of Eq. (1) can be interpreted
as vectors in the probability simplex. Hence ultimately the distance measure for ECE and MCE
(see Definition B.1) can be chosen as a distance measure of real-valued vectors. The total variation,
Euclidean, and squared Euclidean distances are common choices (Guo et al., 2017; Kull et al.,
2019; Vaicenavicius et al., 2019). However, in a general setting measuring the discrepancy between
P(Y |PX) and PX cannot necessarily be reduced to measuring distances between vectors. The
conditional distribution P(Y |PX) can be arbitrarily complex, even if the predicted distributions are
restricted to a simple class of distributions that can be represented as real-valued vectors. Hence in
general we have to resort to dedicated distance measures of probability distributions.

Additionally, the estimation of conditional distributions P(Y |PX) is challenging, even more so than
in the restricted case of classification, since in general these distributions can be arbitrarily complex.
To circumvent this problem, we propose to use the following construction: We define a random
variable ZX ∼ PX obtained from the predictive model and study the discrepancy between the joint
distributions of the two pairs of random variables (PX , Y ) and (PX , ZX), respectively, instead of
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the discrepancy between the conditional distributions P(Y |PX) and PX . Since

(PX , Y )
d
= (PX , ZX) if and only if P(Y |PX) = PX almost surely,

model P is calibrated if and only if the distributions of (PX , Y ) and (PX , ZX) are equal.

The random variable pairs (PX , Y ) and (PX , ZX) take values in the product space P×Y , where P is
the space of predicted distributions PX and Y is the space of targets Y . For instance, in classification,
P could be the probability simplex and Y the set of all class labels, whereas in the case of Gaussian
predictive models for scalar targets P could be the space of normal distributions and Y be R.

The study of the joint distributions of (PX , Y ) and (PX , ZX) motivates the definition of a generally
applicable calibration error as an integral probability metric (Müller, 1997; Sriperumbudur et al., 2009;
2012) between these distributions. In contrast to common f -divergences such as the Kullback-Leibler
divergence, integral probability metrics do not require that one distribution is absolutely continuous
with respect to the other, which cannot be guaranteed in general.

Definition 2. Let Y denote the space of targets Y , and P the space of predicted distributions PX . We
define the calibration error with respect to a space of functions F of the form f : P × Y → R as

CEF := sup
f∈F

∣∣EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

∣∣. (3)

By construction, if model P is calibrated, then CEF = 0 regardless of the choice of F . However, the
converse statement is not true for arbitrary function spaces F . From the theory of integral probability
metrics (see, e.g., Müller, 1997; Sriperumbudur et al., 2009; 2012), we know that for certain choices
of F the calibration error in Eq. (3) is a well-known metric on the product space P×Y , which implies
that CEF = 0 if and only if model P is calibrated. Prominent examples include the maximum mean
discrepancy2 (MMD) (Gretton et al., 2007), the total variation distance, the Kantorovich distance,
and the Dudley metric (Dudley, 1989, p. 310).

As pointed out above, Definition 2 is a generalization of the definition for multi-class classification
proposed by Widmann et al. (2019)—which is based on vector-valued functions and only applicable
to finite target spaces—to any probabilistic predictive model. In Appendix E we show this explicitly
and discuss the special case of classification problems in more detail. Previous results (Widmann
et al., 2019) imply that in classification MMCE and, for common distance measures d(·, ·) such as
the total variation and squared Euclidean distance, ECEd and MCEd are special cases of CEF . In
Appendix G we show that our framework also covers natural extensions of ECEd and MCEd to
countably infinite discrete target spaces, which to our knowledge have not been studied before and
occur, e.g., in Poisson regression.

The literature of integral probability metrics suggests that we can resort to estimating CEF from i.i.d.
samples from the distributions of (PX , Y ) and (PX , ZX). For the MMD, the Kantorovich distance,
and the Dudley metric tractable strongly consistent empirical estimators exist (Sriperumbudur et al.,
2012). Here the empirical estimator for the MMD is particularly appealing since compared with the
other estimators “it is computationally cheaper, the empirical estimate converges at a faster rate to the
population value, and the rate of convergence is independent of the dimension d of the space (for
S = Rd)” (Sriperumbudur et al. (2012)).

Our specific design of (PX , ZX) can be exploited to improve on these estimators. If
EZx∼Px

f(Px, Zx) can be evaluated analytically for a fixed prediction Px, then CEF can be es-
timated empirically with reduced variance by marginalizing out ZX . Otherwise EZx∼Px

f(Px, Zx)
has to be estimated, but in contrast to the common estimators of the integral probability metrics
discussed above the artificial construction of ZX allows us to approximate it by numerical integration
methods such as (quasi) Monte Carlo integration or quadrature rules with arbitrarily small error
and variance. Monte Carlo integration preserves statistical properties of the estimators such as
unbiasedness and consistency.

2As we discuss in Section 3, the MMD is a metric if and only if the employed kernel is characteristic.
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3 KERNEL CALIBRATION ERROR

For the remaining parts of the paper we focus on the MMD formulation of CEF due to the appealing
properties of the common empirical estimator mentioned above. We derive calibration-specific
analogues of results for the MMD that exploit the special structure of the distribution of (PX , ZX) to
improve on existing estimators and tests in the MMD literature. To the best of our knowledge these
variance-reduced estimators and tests have not been discussed in the MMD literature.

Let k : (P × Y) × (P × Y) → R be a measurable kernel with corresponding reproducing kernel
Hilbert space (RKHS) H, and assume that

EPX ,Y k1/2
(
(PX , Y ), (PX , Y )

)
< ∞ and EPX ,ZX

k1/2
(
(PX , ZX), (PX , ZX)

)
< ∞.

We discuss how such kernels can be constructed in a generic way in Section 3.1 below.

Definition 3. Let Fk denote the unit ball in H, i.e., F := {f ∈ H|‖f‖H ≤ 1}. Then the kernel
calibration error (KCE) with respect to kernel k is defined as

KCEk := CEFk
= sup

f∈Fk

∣∣EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

∣∣.

As known from the MMD literature, a more explicit formulation can be given for the squared kernel

calibration error SKCEk := KCE2
k (see Lemma B.2). A similar explicit expression for SKCEk was

obtained by Widmann et al. (2019) for the special case of classification problems. However, their
expression relies on Y being finite and is based on matrix-valued kernels over the finite-dimensional
probability simplex P . A key difference to the expression in Lemma B.2 is that we instead propose
to use real-valued kernels defined on the product space of predictions and targets. This construction
is applicable to arbitrary target spaces and does not require Y to be finite.

3.1 CHOICE OF KERNEL

The construction of the product space P ×Y suggests the use of tensor product kernels k = kP ⊗ kY ,
where kP : P × P → R and kY : Y × Y → R are kernels on the spaces of predicted distributions
and targets, respectively.3

By definition, so-called characteristic kernels guarantee that KCE = 0 if and only if the distributions
of (PX , Y ) and (PX , ZX) are equal (Fukumizu et al., 2004; 2008). Many common kernels such
as the Gaussian and Laplacian kernel on Rd are characteristic (Fukumizu et al., 2008).4 Szabó &
Sriperumbudur (2018, Theorem 4) showed that a tensor product kernel kP ⊗ kY is characteristic
if kP and kY are characteristic, continuous, bounded, and translation-invariant kernels on Rd, but
the implication does not hold for general characteristic kernels (Szabó & Sriperumbudur, 2018,
Example 1). For calibration evaluation, however, it is sufficient to be able to distinguish between
the conditional distributions P(Y |PX) and P(ZX |PX) = PX . Therefore, in contrast to the regular
MMD setting, it is sufficient that kernel kY is characteristic and kernel kP is non-zero almost surely,
to guarantee that KCE = 0 if and only if model P is calibrated. Thus it is suggestive to construct
kernels on general spaces of predicted distributions as

kP(p, p
′) = exp

(
− λdνP(p, p

′)
)
, (4)

where dP(·, ·) is a metric on P and ν, λ > 0 are kernel hyperparameters. The Wasserstein distance
is a widely used metric for distributions from optimal transport theory that allows to lift a ground
metric on the target space and possesses many important properties (see, e.g., Peyré & Cuturi, 2019,
Chapter 2.4). In general, however, it does not lead to valid kernels kP , apart from the notable
exception of elliptically contoured distributions such as normal and Laplace distributions (Peyré &
Cuturi, 2019, Chapter 8.3).

3As mentioned above, our framework rephrases and generalizes the construction used by Widmann et al.
(2019). The matrix-valued kernels that they employ can be recovered by setting kP to a Laplacian kernel on the
probability simplex and kY(y, y

′) = δy,y′ .
4For a general discussion about characteristic kernels and their relation to universal kernels we refer to the

paper by Sriperumbudur et al. (2011).
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In machine learning, common probabilistic predictive models output parameters of distributions such
as mean and variance of normal distributions. Naturally these parameterizations give rise to injective
mappings φ : P → Rd that can be used to define a Hilbertian metric

dP(p, p
′) = ‖φ(p)− φ(p′)‖2.

For such metrics, kP in Eq. (4) is a valid kernel for all λ > 0 and ν ∈ (0, 2] (Berg et al., 1984,
Corollary 3.3.3, Proposition 3.2.7). In Appendix D.3 we show that for many mixture models, and
hence model ensembles, Hilbertian metrics between model components can be lifted to Hilbertian
metrics between mixture models. This construction is a generalization of the Wasserstein-like distance
for Gaussian mixture models proposed by Chen et al. (2019; 2020); Delon & Desolneux (2020).

3.2 ESTIMATION

Let (X1, Y1), . . . , (Xn, Yn) be a data set of features and targets which are i.i.d. according to the law
of (X,Y ). Moreover, for notational brevity, for (p, y), (p′, y′) ∈ P × Y we let

h
(
(p, y), (p′, y′)

)
:= k

(
(p, y), (p′, y′)

)
− EZ∼p k

(
(p, Z), (p′, y′)

)

− EZ′∼p′ k
(
(p, y), (p′, Z ′)

)
+ EZ∼p,Z′∼p′ k

(
(p, Z), (p′, Z ′)

)
.

Note that in contrast to the regular MMD we marginalize out Z and Z ′. Similar to the MMD, there
exist consistent estimators of the SKCE, both biased and unbiased.

Lemma 1. The plug-in estimator of SKCEk is non-negatively biased. It is given by

ŜKCEk =
1

n2

n∑

i,j=1

h
(
(PXi

, Yi), (PXj
, Yj)

)
.

Inspired by the block tests for the regular MMD (Zaremba et al., 2013), we define the following

class of unbiased estimators. Note that in contrast to ŜKCEk they do not include terms of the form
h
(
(PXi

, Yi), (PXi
, Yi)

)
.

Lemma 2. The block estimator of SKCEk with block size B ∈ {2, . . . , n}, given by

ŜKCEk,B :=

⌊
n

B

⌋−1 ⌊n/B⌋∑

b=1

(
B

2

)−1 ∑

(b−1)B<i<j≤bB

h
(
(PXi

, Yi), (PXj
, Yj)

)
,

is an unbiased estimator of SKCEk.

The extremal estimator with B = n is a so-called U-statistic of SKCEk (Hoeffding, 1948; van der
Vaart, 1998), and hence it is the minimum variance unbiased estimator. All presented estimators are
consistent, i.e., they converge to SKCEk almost surely as the number n of data points goes to infinity.

The sample complexity of ŜKCEk and ŜKCEk,B is O(n2) and O(Bn), respectively.

3.3 CALIBRATION TESTS

A fundamental issue with calibration errors in general, including ECE, is that their empirical estimates
do not provide an answer to the question if a model is actually calibrated. Even if the measure is
guaranteed to be zero if and only if the model is calibrated, usually the estimates of calibrated models
are non-zero due to randomness in the data and (possibly) the estimation procedure. In classification,
statistical hypothesis tests of the null hypothesis

H0 : model P is calibrated,

so-called calibration tests, have been proposed as a tool for checking rigorously if P is cali-
brated (Bröcker & Smith, 2007; Vaicenavicius et al., 2019; Widmann et al., 2019). For multi-class
classification, Widmann et al. (2019) suggested calibration tests based on the asymptotic distributions
of estimators of the previously formulated KCE. Although for finite data sets the asymptotic distri-
butions are only approximations of the actual distributions of these estimators, in their experiments
with 10 classes the resulting p-value approximations seemed reliable whereas p-values obtained by
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so-called consistency resampling (Bröcker & Smith, 2007; Vaicenavicius et al., 2019) underestimated
the p-value and hence rejected the null hypothesis too often (Widmann et al., 2019).

For fixed block sizes
√
⌊n/B⌋

(
ŜKCEk,B − SKCEk

) d−→ N
(
0, σ2

B

)
as n → ∞, and, under H0,

nŜKCEk,n
d−→ ∑∞

i=1 λi(Zi − 1) as n → ∞, where Zi are independent χ2
1 distributed random

variables. See Appendix B for details and definitions of the involved constants. From these results
one can derive calibration tests that extend and generalize the existing tests for classification problems,
as explained in Remarks B.1 and B.2. Our formulation illustrates also the close connection of these
tests to different two-sample tests (Gretton et al., 2007; Zaremba et al., 2013).

4 ALTERNATIVE APPROACHES

For two-sample tests, Chwialkowski et al. (2015) suggested the use of the so-called unnormalized
mean embedding (UME) to overcome the quadratic sample complexity of the minimum variance
unbiased estimator and its intractable asymptotic distribution. As we show in Appendix C, there exists
an analogous measure of calibration, termed unnormalized calibration mean embedding (UCME),
with a corresponding calibration mean embedding (CME) test.

As an alternative to our construction based on the joint distributions of (PX , Y ) and (PX , ZX),
one could try to directly compare the conditional distributions P(Y |PX) and P(ZX |PX) = PX .
For instance, Ren et al. (2016) proposed the conditional MMD based on the so-called conditional
kernel mean embedding (Song et al., 2009; 2013). However, as noted by Park & Muandet (2020),
its common definition as operator between two RKHS is based on very restrictive assumptions,
which are violated in many situations (see, e.g., Fukumizu et al., 2013, Footnote 4) and typically
require regularized estimates. Hence, even theoretically, often the conditional MMD is “not an exact
measure of discrepancy between conditional distributions” (Park & Muandet (2020)). In contrast,
the maximum conditional mean discrepancy (MCMD) proposed in a concurrent work by Park &
Muandet (2020) is a random variable derived from much weaker measure-theoretical assumptions.
The MCMD provides a local discrepancy conditional on random predictions whereas KCE is a global
real-valued summary of these local discrepancies.5

5 EXPERIMENTS

In our experiments we evaluate the computational efficiency and empirical properties of the proposed
calibration error estimators and calibration tests on both calibrated and uncalibrated models. By
means of a classic regression problem from statistics literature, we demonstrate that the estimators
and tests can be used for the evaluation of calibration of neural network models and ensembles of
such models. This section contains only an high-level overview of these experiments to conserve
space but all experimental details are provided in Appendix A.

5.1 EMPIRICAL PROPERTIES AND COMPUTATIONAL EFFICIENCY

We evaluate error, variance, and computation time of calibration error estimators for calibrated and
uncalibrated Gaussian predictive models in synthetic regression problems. The results empirically
confirm the consistency of the estimators and the computational efficiency of the estimator with block
size B = 2 which, however, comes at the cost of increased error and variance.

Additionally, we evaluate empirical test errors of calibration tests at a fixed significance level α = 0.05.
The evaluations, visualized in Fig. 2 for models with ten-dimensional targets, demonstrate empirically
that the percentage of incorrect rejections of H0 converges to the set significance level as the number
of samples increases. Moreover, the results highlight the computational burden of the calibration test

that estimates quantiles of the intractable asymptotic distribution of nŜKCEk,n by bootstrapping.

5In our calibration setting, the MCMD is almost surely equal to supf∈FY

∣

∣EY |PX

(

f(Y )|PX

)

−

EZX |PX

(

f(ZX)|PX

)
∣

∣, where FY := {f : Y → R|‖f‖HY
≤ 1} for an RKHS HY with kernel kY : Y ×Y →

R. If kernel kY is characteristic, MCMD = 0 almost surely if and only if model P is calibrated (Park &
Muandet, 2020, Theorem 3.7). Although the definition of MCMD only requires a kernel kY on the target space,
a kernel kP on the space of predictions has to be specified for the evaluation of its regularized estimates.
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As expected, due to the larger variance of ŜKCEk,2 the test with fixed block size B = 2 shows a
decreased test power although being computationally much more efficient.
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Figure 2: Empirical test errors for 500 data sets of n ∈ {4, 16, 64, 256, 1024} samples from models
with targets of dimension d = 10. The dashed black line indicates the set signficance level α = 0.05.

5.2 FRIEDMAN 1 REGRESSION PROBLEM

The Friedman 1 regression problem (Friedman, 1979; 1991; Friedman et al., 1983) is a classic
non-linear regression problem with ten-dimensional features and real-valued targets with Gaussian
noise. We train a Gaussian predictive model whose mean is modelled by a shallow neural network and
a single scalar variance parameter (consistent with the data-generating model) ten times with different
initial parameters. Figure 3 shows estimates of the mean squared error (MSE), the average negative
log-likelihood (NLL), SKCEk, and a p-value approximation for these models and their ensemble
on the training and a separate test data set. All estimates indicate consistently that the models are
overfit after 1500 training iterations. The estimations of SKCEk and the p-values allow to focus
on calibration specifically, whereas MSE indicates accuracy only and NLL, as any proper scoring
rule (Bröcker, 2009), provides a summary of calibration and accuracy. The estimation of SKCEk in
addition to NLL could serve as another source of information for early stopping and model selection.
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Figure 3: Mean squared error (MSE), average negative log-likelihood (NLL), ŜKCEk (SKCE
(biased)), and p-value approximation (p-value) of ten Gaussian predictive models for the Friedman 1
regression problem versus the number of training iterations. Evaluations on the training data set
(100 samples) are displayed in green and orange, and on the test data set (50 samples) in blue and
purple. The green and blue line and their surrounding bands represent the mean and the range of the
evaluations of the ten models. The orange and purple lines visualize the evaluations of their ensemble.
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6 CONCLUSION

We presented a framework of calibration estimators and tests for any probabilistic model that captures
both classification and regression problems of arbitrary dimension as well as other predictive models.
We successfully applied it for measuring calibration of (ensembles of) neural network models.

Our framework highlights connections of calibration to two-sample tests and optimal transport theory
which we expect to be fruitful for future research. For instance, the power of calibration tests could
be improved by heuristics and theoretical results about suitable kernel choices or hyperparameters (cf.
Jitkrittum et al., 2016). It would also be interesting to investigate alternatives to KCE captured by our
framework, e.g., by exploiting recent advances in optimal transport theory (cf. Genevay et al., 2016).

Since the presented estimators of SKCEk are differentiable, we imagine that our framework could be
helpful for improving calibration of predictive models, during training (cf. Kumar et al., 2018) or
post-hoc. Currently, many calibration methods (see, e.g., Guo et al., 2017; Kull et al., 2019; Song
et al., 2019) are based on optimizing the log-likelihood since it is a strictly proper scoring rule and
thus encourages both accurate and reliable predictions. However, as for any proper scoring rule,
“Per se, it is impossible to say how the score will rank unreliable forecast schemes [. . .]. The lack
of reliability of one forecast scheme might be outbalanced by the lack of resolution of the other”
(Bröcker (2009)). In other words, if one does not use a calibration method such as temperature
scaling (Guo et al., 2017) that keeps accuracy invariant6, it is unclear if the resulting model is trading
off calibration for accuracy when using log-likelihood for re-calibration. Thus hypothetically flexible
calibration methods might benefit from using the presented calibration error estimators.
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A EXPERIMENTS

The source code of the experiments and instructions for reproducing the results are available
at https://github.com/devmotion/Calibration_ICLR2021. Additional material
such as automatically generated HTML output and Jupyter notebooks is available at https:
//devmotion.github.io/Calibration_ICLR2021/.

A.1 ORDINARY LEAST SQUARES

We consider a regression problem with scalar feature X and scalar target Y with input-dependent
Gaussian noise that is inspired by a problem by Gustafsson et al. (2020). Feature X is distributed
uniformly at random in [−1, 1], and target Y is distributed according to

Y ∼ sin(πX) + |1 +X|ǫ,
where ǫ ∼ N (0, 0.152). We train a linear regression model P with homoscedastic variance using
ordinary least squares and a data set of 100 i.i.d. pairs of feature X and target Y (see Fig. 4).
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Figure 4: Data generating distribution P(Y |X) and predicted distribution P (Y |X) of the linear
regression model. Training data is indicated by orange dots.

A validation data set of n = 50 i.i.d. pairs of X and Y is used to evaluate the empirical cumulative
probability

n−1
n∑

i=1

✶[0,τ ]

(
P (Y ≤ Yi|X = Xi)

)

of model P for quantile levels τ ∈ [0, 1]. Model P would be quantile calibrated (Song et al., 2019) if

τ = PX′,Y ′

(
P (Y ≤ Y ′|X = X ′) ≤ τ

)

for all τ ∈ [0, 1], where (X,Y ) and (X ′, Y ′) are independent identically distributed pairs of random
variables (see Fig. 5).

Additionally, we compute a p-value estimate of the null hypothesis H0 that model P is calibrated

using an estimation of the quantile of the asymptotic distribution of nŜKCEk,n with 100000 bootstrap
samples on the validation data set (see Remark B.2). Kernel k is chosen as the tensor product kernel

k
(
(p, y), (p′, y′)

)
= exp

(
−W2(p, p

′)
)
exp

(
− (y − y′)2/2

)

= exp

(
−
√
(mp −mp′)2 + (σp − σp′)2

)
exp

(
− (y − y′)2/2

)
,

where W2 is the 2-Wasserstein distance and mp,mp′ and σp, σp′ denote the mean and the standard
deviation of the normal distributions p and p′ (see Appendix D.1). We obtain p < 0.05 in our
experiment, and hence the calibration test rejects H0 at the significance level α = 0.05.
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Figure 5: Cumulative probability versus quantile level for the linear regression model on the validation
data (orange curve). The green curve indicates the theoretical ideal for a quantile-calibrated model.

A.2 EMPIRICAL PROPERTIES AND COMPUTATIONAL EFFICIENCY

We study two setups with d-dimensional targets Y and normal distributions PX of the form
N (c1d, 0.1

2
Id) as predictions, where c ∼ U(0, 1). Since calibration analysis is only based on

the targets and predicted distributions, we neglect features X in these experiments and specify only
the distributions of Y and PX .

In the first setup we simulate a calibrated model. We achieve this by sampling targets from the
predicted distributions, i.e., by defining the conditional distribution of Y given PX as

Y |PX = N (µ,Σ) ∼ N (µ,Σ).

In the second setup we simulate an uncalibrated model of the form

Y |PX = N (µ,Σ) ∼ N ([0.1, µ2, . . . , µd]
T,Σ).

We perform an evaluation of the convergence and computation time of the biased estimator ŜKCEk

and the unbiased estimator ŜKCEk,B with blocks of size B ∈ {2,√n, n}. We use the tensor product
kernel

k
(
(p, y), (p′, y′)

)
= exp

(
−W2(p, p

′)
)
exp

(
− (y − y′)2/2

)

= exp

(
−
√
(mp −mp′)2 + (σp − σp′)2

)
exp

(
− (y − y′)2/2

)
,

where W2 is the 2-Wasserstein distance and mp,mp′ and σp, σp′ denote the mean and the standard
deviation of the normal distributions p and p′.

Figures 6 to 9 visualize the mean absolute error and the variance of the resulting estimates for the
calibrated and the uncalibrated model with dimensions d = 1 and d = 10 for 500 independently
drawn data sets of n ∈ {4, 16, 64, 256, 1024} samples of (PX , Y ). Computation time indicates the
minimum time in the 500 evaluations on a computer with a 3.6 GHz processor. The ground truth

values of the uncalibrated models were estimated by averaging the estimates of ŜKCEk,1000 for 1000
independently drawn data sets of 1000 samples of (PX , Y ) (independent from the data sets used
for the evaluation of the estimates). Figures 6 and 7 illustrate that the computational efficiency of

ŜKCEk,2 in comparison with the other estimators comes at the cost of increased error and variance
for the calibrated models for fixed numbers of samples.

We compare calibration tests based on the (tractable) asymptotic distribution of
√
⌊n/B⌋ŜKCEk,B

with fixed block size B ∈ {2,√n} (see Remark B.1), the (intractable) asymptotic distribution of

nŜKCEk,n which is approximated with 1000 bootstrap samples (see Remark B.2), and a Hotelling’s
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Figure 6: Mean absolute error and variance of 500 calibration error estimates for data sets of
n ∈ {4, 16, 64, 256, 1024} samples from the calibrated model of dimension d = 1.
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Figure 8: Mean absolute error and variance of 500 calibration error estimates for data sets of
n ∈ {4, 16, 64, 256, 1024} samples from the uncalibrated model of dimension d = 1.
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Figure 9: Mean absolute error and variance of 500 calibration error estimates for data sets of
n ∈ {4, 16, 64, 256, 1024} samples from the uncalibrated model of dimension d = 10.
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T 2-statistic for UCMEk,10 with 10 test locations (see Appendix C). We compute the empirical test
errors (percentage of false rejections of the null hypothesis H0 that model P is calibrated if P is
calibrated, and percentage of false non-rejections of H0 if P is not calibrated) at a fixed significance
level α = 0.05 and the minimal computation time for the calibrated and the uncalibrated model with
dimensions d = 1 and d = 10 for 500 independently drawn data sets of n ∈ {4, 16, 64, 256, 1024}
samples of (PX , Y ). The 10 test predictions of the CME test are of the form N (m, 0.12Id) where
m is distributed uniformly at random in the d-dimensional unit hypercube [0, 1]d, the corresponding
10 test targets are i.i.d. according to N (0, 0.12Id).

Figures 10 and 11 show that all tests adhere to the set significance level asymptotically as the number
of samples increases. The convergence of the CME test with 10 test locations is found to be much
slower than the convergence of all other tests. The tests based on the tractable asymptotic distribution

of
√
⌊n/B⌋ŜKCEk,B for fixed block size B are orders of magnitudes faster than the test based on

the intractable asymptotic distribution of nŜKCEk,n, approximated with 1000 bootstrap samples. We
see that the efficiency gain comes at the cost of decreased test power for smaller number of samples,

explained by the increasing variance of ŜKCEk,B for decreasing block sizes B. However, in our

examples the test based on ŜKCEk,
√
n still achieves good test power for reasonably large number of

samples (> 30).
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Figure 10: Empirical test errors for 500 data sets of n ∈ {4, 16, 64, 256, 1024} samples from models
with targets of dimension d = 1. The dashed black line indicates the set signficance level α = 0.05.
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Figure 11: Empirical test errors for 500 data sets of n ∈ {4, 16, 64, 256, 1024} samples from models
with targets of dimension d = 10. The dashed black line indicates the set signficance level α = 0.05.
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A.3 FRIEDMAN 1 REGRESSION PROBLEM

We study the so-called Friedman 1 regression problem, which was initially described for 200 inputs
in the six-dimensional unit hypercube (Friedman, 1979; Friedman et al., 1983) and later modified
to 100 inputs in the 10-dimensional unit hypercube (Friedman, 1991). In this regression problem
real-valued target Y depends on input X via

Y = 10 sin (πX1X2) + 20(X3 − 0.5)
2
+ 10X4 + 5X5 + ǫ,

where noise ǫ is typically chosen to be independently standard normally distributed. We generate a
training data set of 100 inputs distributed uniformly at random in the 10-dimensional unit hypercube
and corresponding targets with identically and independently distributed noise following a standard
normal distribution.

We consider models P (θ,σ2) of normal distributions with fixed variance σ2

P (θ,σ2)
x = N (fθ(x), σ

2),

where fθ(x), the model of the mean of the distribution P(Y |X = x), is given by a fully connected
neural network with two hidden layers with 200 and 50 hidden units and ReLU activation functions.
The parameters of the neural network are denoted by θ.

We use a maximum likelihood approach and train the parameters θ of the model for 5000 iterations
by minimizing the mean squared error on the training data set using ADAM (Kingma & Ba, 2015)
(default settings in the machine learning framework Flux.jl (Innes, 2018; Innes et al., 2018)). In each
iteration, the variance σ2 is set to the maximizer of the likelihood of the training data set.

We train 10 models with different initializations of parameters θ. The initial values of the weight
matrices of the neural networks are sampled from the uniform Glorot initialization (Glorot & Bengio,
2010) and the offset vectors are initialized with zeros. In Fig. 12, we visualize estimates of accuracy
and calibration measures on the training and test data set with 100 and 50 samples, respectively, for
5000 training iterations. The pinball loss is a common measure and training objective for calibration
of quantiles (Song et al., 2019). It is defined as

EX,Y Lτ

(
Y, quantile(PX , τ)

)
,

where Lτ (y, ỹ) = (1 − τ)(ỹ − y)+ + τ(y − ỹ)+ and quantile(Px, τ) = infy{Px(Y ≤ y) ≥ τ}
for quantile level τ ∈ [0, 1]. In Fig. 12 we plot the average pinball loss (pinball) for quantile levels

τ ∈ {0.05, 0.1, . . . , 0.95}. We evaluate ŜKCEk,n (SKCE (unbiased)) and ŜKCEk (SKCE (biased))
for the tensor product kernel

k
(
(p, y), (p′, y′)

)
= exp

(
−W2(p, p

′)
)
exp

(
− (y − y′)2/2

)

= exp

(
−
√
(mp −mp′)2 + (σp − σp′)2

)
exp

(
− (y − y′)2/2

)
,

where W2 is the 2-Wasserstein distance and mp,mp′ and σp, σp′ denote the mean and the standard
deviation of the normal distributions p and p′ (see Appendix D.1). The p-value estimate (p-value) is

computed by estimating the quantile of the asymptotic distribution of nŜKCEk,n with 1000 bootstrap
samples (see Remark B.2). The estimates of the mean squared error and the average negative log-
likelihood are denoted by MSE and NLL. All estimators indicate consistently that the trained models
suffer from overfitting after around 1000 training iterations.

Additionally, we form ensembles of the ten individual models at every training iteration. The
evaluations for the ensembles are visualized in Fig. 12 as well. Apart from the unbiased estimates
of SKCEk, the estimates of the ensembles are consistently better than the average estimates of the
ensemble members. For the mean squared error and the negative log-likelihood this behaviour is
guaranteed theoretically by the generalized mean inequality.

B THEORY

B.1 GENERAL SETTING

Let (Ω,A,P) be a probability space. Define the random variables X : (Ω,A) → (X ,ΣX) and
Y : (Ω,A) → (Y,ΣY ) such that ΣX contains all singletons, and denote a version of the regular
conditional distribution of Y given X = x by P(Y |X = x) for all x ∈ X .
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Figure 12: Estimates of different accuracy and calibration measures of ten Gaussian predictive models
for the Friedman 1 regression problem versus the number of training iterations. Evaluations on the
training data set (100 samples) are displayed in green and orange, and on the test data set (50 samples)
in blue and purple. The green and blue line and their surrounding bands represent the mean and the
range of the evaluations of the ten models. The orange and purple lines visualize the evaluations of
their ensemble.

Let P : (X ,ΣX) →
(
P,B(P)

)
be a measurable function that maps features in X to probability

measures in P on the target space Y . We call P a probabilistic model, and denote by Px := P (x)
its output for feature x ∈ X . This gives rise to the random variable PX : (Ω,A) →

(
P,B(P)

)
as

PX := P (X). We denote a version of the regular conditional distribution of Y given PX = Px by
P(Y |PX = Px) for all Px ∈ P .

B.2 EXPECTED AND MAXIMUM CALIBRATION ERROR

The common definition of the expected and maximum calibration error (Guo et al., 2017; Kull et al.,
2019; Naeini et al., 2015; Vaicenavicius et al., 2019) for classification models can be generalized to
arbitrary predictive models.

Definition B.1. Let d(·, ·) be a distance measure of probability distributions of target Y , and let µ be
the law of PX . Then we call

ECEd = E d
(
P(Y |PX), PX

)
and MCEd = µ- ess sup d

(
P(Y |PX), PX

)

the expected calibration error (ECE) and the maximum calibration error (MCE) of model P with
respect to measure d, respectively.

B.3 KERNEL CALIBRATION ERROR

Recall the general notation: Let k : (P×Y)×(P×Y) → R be a kernel, amd denote its corresponding
RKHS by H.

If not stated otherwise, we assume that

(K1) k(·, ·) is Borel-measurable.

(K2) k is integrable with respect to the distributions of (PX , Y ) and (PX , ZX), i.e.,

EPX ,Y k1/2
(
(PX , Y ), (PX , Y )

)
< ∞

and
EPX ,ZX

k1/2
(
(PX , ZX), (PX , ZX)

)
< ∞.
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Lemma B.1. There exist kernel mean embeddings µPXY , µPXZX
∈ H such that for all f ∈ H

〈f, µPXY 〉H = EPX ,Y f(PX , Y ) and 〈f, µPXZX
〉H = EPX ,ZX

f(PX , ZX).

This implies that

µPXY = EPX ,Y k(·, (PX , Y )) and µPXZX
= EPX ,ZX

k(·, (PX , ZX)).

Proof. The linear operators TPXY f := EPX ,Y f(PX , Y ) and TPXZX
f := EPX ,ZX

f(PX , ZX) for
all f ∈ H are bounded since

|TPXY f | = |EPX ,Y f(PX , Y )| ≤ EPX ,Y |f(PX , Y )| = EPX ,Y |〈k((PX , Y ), ·), f〉H|
≤ EPX ,Y ‖k((PX , Y ), ·)‖H‖f‖H] = ‖f‖H EPX ,Y k1/2((PX , Y ), (PX , Y ))

and similarly

|TPXZX
f | ≤ ‖f‖H EPX ,ZX

k1/2((PX , ZX), (PX , ZX)).

Thus Riesz representation theorem implies that there exist µPXY , µPXZX
∈ H such that TPXY f =

〈f, µPXY 〉H and TPXZX
f = 〈f, µPXZX

〉H. The reproducing property of H implies

µPXY (p, y) = 〈k((p, y), ·), µPXY 〉H = EPX ,Y k((p, y), (PX , Y ))

for all (p, y) ∈ P × Y , and similarly µPXZX
(p, y) = EPX ,ZX

k((p, y), (PX , ZX)).

Lemma B.2. The squared kernel calibration error (SKCE) with respect to kernel k, defined as
SKCEk := KCE2

k, is given by

SKCEk = EPX ,Y,PX′ ,Y ′ k
(
(PX , Y ), (PX′ , Y ′)

)
− 2EPX ,Y,PX′ ,ZX′ k

(
(PX , Y ), (PX′ , ZX′)

)

+ EPX ,ZX ,PX′ ,ZX′ k
(
(PX , ZX), (PX′ , ZX′)

)
,

where (PX′ , Y ′, ZX′) is independently distributed according to the law of (PX , Y, ZX)

Proof. From Lemma B.1 we know that there exist kernel mean embeddings µPXY , µPXZX
∈ H that

satisfy

〈f, µPXY − µPXZX
〉H = 〈f, µPXY 〉H − 〈f, µPXZX

〉H
= EPX ,Y f(PX , Y )− EPX ,ZX

f(PX , ZX)

for all f ∈ H. Hence by the definition of the dual norm

CEFk
= sup

f∈Fk

∣∣EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

∣∣

= sup
f∈Fk

∣∣〈f, µPX ,Y − µPX ,ZX
〉H
∣∣ = ‖µPX ,Y − µPX ,ZX

‖H,

which implies
SKCEk = 〈µPXY − µPXZX

, µPXY − µPXZX
〉H.

From Lemma B.1 we obtain

SKCEk = EPX ,Y,PX′ ,Y ′ k
(
(PX , Y ), (PX′ , Y ′)

)
− 2EPX ,Y,PX′ ,ZX′ k

(
(PX , Y ), (PX′ , Z ′

X)
)

+ EPX ,ZX ,PX′ ,Z′
X
k
(
(PX , ZX), (PX′ , Z ′

X)
)
,

which yields the desired result.

Recall that (PX1
, Y1), . . . , (PXn

, Yn) is a validation data set that is sampled i.i.d. according to the
law of (PX , Y ) and that for all (p, y), (p′, y′) ∈ P × Y

h((p, y), (p′, y′)) := k((p, y), (p′, y′))− EZ∼p k((p, Z), (p′, y′))

− EZ′∼p′ k((p, y), (p′, Z ′)) + EZ∼p,Z′∼p′ k((p, Z), (p′, Z ′)).

Lemma B.3. For all i, j = 1, . . . , n,
∣∣h
(
(PXi

, Yi), (PXj
, Yj)

)∣∣ < ∞
almost surely.
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Proof. Let i, j ∈ {1, . . . , n}. By assumption (K2) we know that
∣∣k
(
(PXi

, Yi), (PXj
, Yj)

)∣∣ ≤ k1/2
(
(PXi

, Yi), (PXi
, Yi)

)
k1/2

(
(PXj

, Yj), (PXj
, Yj)

)
< ∞

almost surely. Moreover,

∣∣EZXi
k
(
(PXi

, ZXi
), (PXj

, Yj)
)∣∣ ≤ EZXi

∣∣k
(
(PXi

, ZXi
), (PXj

, Yj)
)∣∣

≤ EZXi

(
k1/2

(
(PXi

, ZXi
), (PXi

, ZXi
)
)
k1/2

(
(PXj

, Yj), (PXj
, Yj)

))
< ∞

almost surely, and similarly
∣∣EZXi

,ZXj
k
(
(PXi

, ZXi
), (PXj

, ZXj
)
)∣∣ < ∞ almost surely. Thus

∣∣h
(
(PXi

, Yi), (PXj
, Yj)

)∣∣ ≤
∣∣k
(
(PXi

, Yi), (PXj
, Yj)

)∣∣+
∣∣EZXi

k
(
(PXi

, ZXi
), (PXj

, Yj)
)∣∣

+
∣∣EZXj

k
(
(PXi

, Yi), (PXj
, ZXj

)
)∣∣+

∣∣EZXi
,ZXj

k
(
(PXi

, ZXi
), (PXj

, ZXj
)
)∣∣ < ∞

almost surely.

Lemma 1. The plug-in estimator of SKCEk is non-negatively biased. It is given by

ŜKCEk =
1

n2

n∑

i,j=1

h
(
(PXi

, Yi), (PXj
, Yj)

)
.

Proof. From Lemma B.2 we know that KCEk < ∞, and Lemma B.3 implies that ŜKCEk < ∞
almost surely.

For i = 1, . . . , n, the linear operators Tif := EZXi
f(PXi

, ZXi
) for f ∈ H are bounded almost

surely since

|Tif | =
∣∣EZXi

f(PXi
, ZXi

)
∣∣ ≤ EZXi

∣∣f(PXi
, ZXi

)
∣∣ = EZXi

∣∣〈k
(
(PXi

, ZXi
), ·
)
, f〉H

∣∣

≤ EZXi

(∥∥k
(
(PXi

, ZXi
), ·
)∥∥

H‖f‖H
)

= ‖f‖H EZXi
k1/2

(
(PXi

, ZXi
), (PXi

, ZXi
)
)
.

Hence Riesz representation theorem implies that there exist ρi ∈ H such that Tif = 〈f, ρi〉H
almost surely. From the reproducing property of H we deduce that ρi(p, y) = 〈k

(
(p, y), ·

)
, ρi〉H =

EZXi
k
(
(p, y), (PXi

, ZXi
)
)

for all (p, y) ∈ P × Y almost surely.

Thus by the definition of the dual norm the plug-in estimator K̂CEk satisfies

K̂CEk = sup
f∈Fk

1

n

∣∣∣∣∣

n∑

i=1

(
f(PXi

, Yi)− EZXi
f(PXi

, ZXi
)
)
∣∣∣∣∣

= sup
f∈Fk

1

n

∣∣∣∣∣

n∑

i=1

〈
k
(
(PXi

, Yi), ·
)
− ρi, f

〉
H

∣∣∣∣∣

= sup
f∈Fk

1

n

∣∣∣∣∣

〈 n∑

i=1

(
k
(
(PXi

, Yi), ·
)
− ρi

)
, f

〉

H

∣∣∣∣∣

=
1

n

∥∥∥∥∥

n∑

i=1

(
k
(
(Gi, Yi), ·

)
− ρi

)∥∥∥∥∥
H

=
1

n

(〈 n∑

i=1

k
(
(PXi

, Yi), ·
)
− ρi,

n∑

i=1

k
(
(PXi

, Yi), ·
)
− ρi

〉

H

)1/2

=
1

n

(
n∑

i,j=1

h
(
(PXi

, Yi), (PXj
, Yj)

)
)1/2

= ŜKCE
1/2

k < ∞

almost surely, and hence indeed ŜKCE
1/2

k is the plug-in estimator of KCEk.
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Since (PX , Y ), (PX′ , Y ′), (PX1
, Y1), . . . , (PXn

, Yn) are identically distributed and pairwise inde-
pendent, we obtain

n2 E ŜKCEk =
n∑

i,j=1,
i 6=j

EPXi
,Yi,PXj

,Yj
h
(
(PXi

, Yi), (PXj
, Yj)

)

+
n∑

i=1

EPXi
,Yi

h
(
(PXi

, Yi), (PXi
, Yi)

)

= n(n− 1)EPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
+ nEPX ,Y h

(
(PX , Y ), (PX , Y )

)

= n(n− 1)SKCEk + nEPX ,Y h
(
(PX , Y ), (PX , Y )

)
.

(B.1)

With the same reasoning as above, there exist ρ, ρ′ ∈ H such that for all f ∈ H EZX
f(PX , ZX) =

〈f, ρ〉H and EZX′ f(PX′ , ZX′) = 〈f, ρ′〉H almost surely. Thus we obtain

h
(
(PX , Y ), (PX′ , Y ′)

)
= 〈k

(
(PX , Y ), ·

)
− ρ, k

(
(PX′ , Y ′), ·

)
− ρ′〉H

almost surely, and therefore by Lemma B.2 and the Cauchy-Schwarz inequality

SKCEk = EPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)

= EPX ,Y,PX′ ,Y ′〈k
(
(PX , Y ), ·

)
− ρ, k

(
(G′, Y ′), ·

)
− ρ′〉H

≤ EPX ,Y,PX′ ,Y ′

∣∣〈k
(
(PX , Y ), ·

)
− ρ, k

(
(PX′ , Y ′), ·

)
− ρ′〉H

∣∣
≤ EPX ,Y,PX′ ,Y ′

∥∥k
(
(PX , Y ), ·

)
− ρ
∥∥
H
∥∥k
(
(PX′ , Y ′), ·

)
− ρ′

∥∥
H

≤ E
1/2
PX ,Y

∥∥k
(
(PX , Y ), ·

)
− ρ
∥∥2
H E

1/2
PX′ ,Y ′

∥∥k
(
(PX′ , Y ′), ·

)
− ρ′

∥∥2
H.

Since (PX , Y ) and (PX′ , Y ′) are identically distributed, we obtain

SKCEk ≤ EPX ,Y

∥∥k
(
(PX , Y ), ·

)
− ρ
∥∥2
H = EPX ,Y h

(
(PX , Y ), (PX , Y )

)
.

Thus together with Eq. (B.1) we get

n2 E ŜKCEk ≥ n(n− 1)SKCEk + nSKCEk = n2SKCEk,

and hence ŜKCEk has a non-negative bias.

Lemma 2. The block estimator of SKCEk with block size B ∈ {2, . . . , n}, given by

ŜKCEk,B :=

⌊
n

B

⌋−1 ⌊n/B⌋∑

b=1

(
B

2

)−1 ∑

(b−1)B<i<j≤bB

h
(
(PXi

, Yi), (PXj
, Yj)

)
,

is an unbiased estimator of SKCEk.

Proof. From Lemma B.2 we know that SKCEk < ∞, and Lemma B.3 implies that ŜKCEk,B < ∞
almost surely.

For b ∈ {1, . . . , ⌊n/B⌋}, let

η̂b :=

(
B

2

)−1 ∑

(b−1)B<i<j≤bB

h
(
(PXi

, Yi), (PXj
, Yj)

)
(B.2)

be the estimator of the bth block. From Lemma B.3 it follows that η̂b < ∞ almost surely for all b.
Moreover, for all b, η̂b is a so-called U-statistic of SKCEk and hence satisfies E η̂b = SKCEk (see,
e.g., van der Vaart, 1998). Since (PX1

, Y1), . . . , (PXn
, Yn) are pairwise independent, this implies

that ŜKCEk,B is an unbiased estimator of SKCEk.
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B.4 CALIBRATION TESTS

Lemma B.4. Let B ∈ {2, . . . , n}. If VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞, then for all

b ∈ {1, . . . , ⌊n/B⌋}

V η̂b = σ2
B :=

(
B

2

)−1(
2(B − 2)ζ1 + VPX ,Y,PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

))
,

where η̂b is defined according to Eq. (B.2) and

ζ1 := EPX ,Y E
2
PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

)
− SKCE2

k. (B.3)

If model P is calibrated, it simplifies to

σ2
B =

(
B

2

)−1

EPX ,Y,PX′ ,Y ′ h2
(
(PX , Y ), (PX′ , Y ′)

)
.

Proof. Let b ∈ {1, . . . , ⌊n/B⌋}. Since VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞, the Cauchy-

Schwarz inequality implies V η̂b < ∞ as well.

As mentioned in the proof of Lemma 2 above, η̂b is a U-statistic of SKCEk. From the general formula
of the variance of a U-statistic (see, e.g., Hoeffding, 1948, p. 298–299) we obtain

V η̂b =

(
B

2

)−1((
2

1

)(
B − 2

2− 1

)
ζ1 +

(
2

2

)(
B − 2

2− 2

)
VPX ,Y,PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

))

=

(
B

2

)−1(
2(B − 2)ζ1 + VPX ,Y,PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

))
,

where
ζ1 = EPX ,Y E

2
PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

)
− SKCE2

k.

If model P is calibrated, then (PX , Y )
d
= (PX , Z), and hence for all (p, y) ∈ P × Y

EPX ,Y h
(
(p, y), (PX , Y )

)
= EPX ,Y k

(
(p, y), (PX , Y )

)
− EZ′∼p EPX ,Y k

(
(p, Z ′), (PX , Y )

)

− EPX ,Z k
(
(p, y), (PX , Z)

)
+ EZ′∼p EPX ,Z k

(
(p, Z ′), (PX , Y )

)

= 0.

This implies ζ1 = EPX ,Y E
2
PX′ ,Y ′ h

(
(PX , Y ), (PX′ , Y ′)

)
= 0 and SKCE2

k = 0 due to Lemma B.2.

Thus

σ2
B =

(
B

2

)−1

EPX ,Y,PX′ ,Y ′ h2
(
(PX , Y ), (PX′ , Y ′)

)
,

as stated above.

Corollary B.1. Let B ∈ {2, . . . , n}. If VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞, then

V ŜKCEk,B = ⌊n/B⌋−1σ2
B .

where σ2
B is defined according to Lemma B.4.

Proof. Since the estimators η̂1, . . . , η̂⌊n/B⌋ in each block are pairwise independent, this is an imme-
diate consequence of Lemma B.4.

Corollary B.2. Let B ∈ {2, . . . , n}. If VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞, then

√
⌊n/B⌋

(
ŜKCEk,B − SKCEk

) d−→ N
(
0, σ2

B

)
as n → ∞,

where block size B is fixed and σ2
B is defined according to Lemma B.4.

Proof. The result follows from Lemma 2, Lemma B.4, and the central limit theorem (see, e.g.,
Serfling, 1980, Theorem A in Section 1.9).
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Remark B.1. Corollary B.2 shows that ŜKCEk,B is a consistent estimator of SKCEk in the large
sample limit as n → ∞ with fixed number B of samples per block. In particular, for the linear
estimator with B = 2 we obtain√

⌊n/2⌋
(
ŜKCEk,2 − SKCEk

) d−→ N
(
0, σ2

2

)
as n → ∞.

Moreover, Lemma B.4 and Corollary B.2 show that the p-value of the null hypothesis that model P
is calibrated can be estimated by

Φ

(
−
√

⌊n/B⌋ŜKCEk,B

σ̂B

)
,

where Φ is the cumulative distribution function of the standard normal distribution and σ̂B is the
empirical standard deviation of the block estimates η̂1, . . . , η̂⌊n/B⌋, and

Φ

(
−
√

⌊n/B⌋B(B − 1)ŜKCEk,B√
2σ̂

)
,

where σ̂2 is an estimate of EPX ,Y,PX′ ,Y ′ h2
(
(PX , Y ), (PX′ , Y ′)

)
. Similar p-value approximations

for the two-sample test with blocks of fixed size were used by Chwialkowski et al. (2015).

Corollary B.3. Assume VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞. Let s ∈ {1, . . . , ⌊n/2⌋}. Then

for all b ∈ {1, . . . , s}
√
B
(
η̂b − SKCEk

) d−→ N (0, 4ζ1) as B → ∞, (B.4)

where η̂b is defined according to Eq. (B.2) with n = Bs, the number s of equally-sized blocks is fixed,
and ζ1 is defined according to Eq. (B.3).

If model P is calibrated, then
√
B
(
η̂b − SKCEk

)
=

√
Bη̂b is asymptotically tight since ζ1 = 0, and

Bη̂b
d−→

∞∑

i=1

λi(Zi − 1) as B → ∞, (B.5)

where Zi are independent χ2
1 distributed random variables and λi ∈ R are eigenvalues of the

Hilbert-Schmidt integral operator

Kf(p, y) := EPX ,Y

(
h((p, y), (PX , Y ))f(PX , Y )

)

for Borel-measurable functions f : P × Y → R with EPX ,Y f2(PX , Y ) < ∞.

Proof. Let s ∈ {1, . . . , ⌊n/2⌋} and b ∈ {1, . . . , s}. As mentioned above in the proof of Lemma 2,
the estimator η̂b, defined according to Eq. (B.2), is a so-called U-statistic of SKCEk (see, e.g., van der
Vaart, 1998). Thus Eq. (B.4) follows from the asymptotic behaviour of U-statistics (see, e.g., van der
Vaart, 1998, Theorem 12.3).

If P is calibrated, then we know from the proof of Lemma B.4 that ζ1 = 0, and hence η̂b is a so-called
degenerate- U-statistic (see, e.g., van der Vaart, 1998, Section 12.3). From the theory of degenerate
U-statistics it follows that the sequence Bη̂b converges in distribution to the limit distribution in
Eq. (B.5), which is known as Gaussian chaos.

Corollary B.4. Assume VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞. Let s ∈ {1, . . . , ⌊n/2⌋}. Then

√
B
(
ŜKCEk,B − SKCEk

) d−→ N (0, 4s−1ζ1) as B → ∞,

where the number s of equally-sized blocks is fixed, n = Bs, and ζ1 is defined according to Eq. (B.3).

If model P is calibrated, then
√
B
(
ŜKCEk,B − SKCEk

)
=

√
BŜKCEk,B is asymptotically tight

since ζ1 = 0, and

BŜKCEk,B
d−→ s−1

∞∑

i=1

λi(Zi − s) as B → ∞,

where Zi are independent χ2
s distributed random variables and λi ∈ R are eigenvalues of the

Hilbert-Schmidt integral operator

Kf(p, y) := EPX ,Y

(
h((p, y), (PX , Y ))f(PX , Y )

)

for Borel-measurable functions f : P × Y → R with EPX ,Y f2(PX , Y ) < ∞.
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Proof. Since the estimators η̂1, . . . , η̂s in each block are pairwise independent, this is an immediate
consequence of Corollary B.3.

Remark B.2. Corollary B.4 shows that ŜKCEk,B is a consistent estimator of SKCEk in the large
sample limit as B → ∞ with fixed number ⌊n/B⌋ of blocks. Moreover, for the minimum variance
unbiased estimator with B = n, Corollary B.4 shows that under the null hypothesis that model P is
calibrated

nŜKCEk,n
d−→

∞∑

i=1

λi(Zi − 1) as n → ∞,

where Zi are independent χ2
1 distributed random variables. Unfortunately quantiles of the limit

distribution of
∑∞

i=1 λi(Zi − 1) (and hence the p-value of the null hypothesis that model P is
calibrated) can not be computed analytically but have to be estimated by, e.g., bootstrapping (Arcones
& Giné, 1992), using a Gram matrix spectrum (Gretton et al., 2009), fitting Pearson curves (Gretton
et al., 2007), or using a Gamma approximation (Johnson et al., 1994, p. 343, p. 359).

Corollary B.5. Assume VPX ,Y,PX′ ,Y ′ h
(
(PX , Y ), (PX′ , Y ′)

)
< ∞. Then

√
⌊n/B⌋B

(
ŜKCEk,B − SKCEk

) d−→ N (0, 4ζ1) as B → ∞ and ⌊n/B⌋ → ∞, (B.6)

where B is the block size and s is the number of equally-sized blocks, n = Bs, and ζ1 is defined
according to Eq. (B.3).

If model P is calibrated, then
√
⌊n/B⌋B

(
ŜKCEk,B − SKCEk

)
=
√

⌊n/B⌋BŜKCEk,B is asymp-
totically tight since ζ1 = 0, and

√
⌊n/B⌋BŜKCEk,B

d−→ N
(
0,

∞∑

i=1

λ2
i

)
as B → ∞ and ⌊n/B⌋ → ∞,

where λi ∈ R are eigenvalues of the Hilbert-Schmidt integral operator

Kf(p, y) := EPX ,Y

(
h((p, y), (PX , Y ))f(PX , Y )

)

for Borel-measurable functions f : P × Y → R with EPX ,Y f2(PX , Y ) < ∞.

Proof. The result follows from Corollary B.3 and the central limit theorem (see, e.g., Serfling, 1980,
Theorem A in Section 1.9).

Remark B.3. Corollary B.5 shows that ŜKCEk,B is a consistent estimator of SKCEk in the large
sample limit as B → ∞ and ⌊n/B⌋ → ∞, i.e., as both the number of samples per block and the
number of blocks go to infinity. Moreover, Corollaries B.3 and B.5 show that the p-value of the null
hypothesis that P is calibrated can be estimated by

Φ

(
−
√

⌊n/B⌋ŜKCEk,B

σ̂B

)
,

where σ̂B is the empirical standard deviation of the block estimates η̂1, . . . , η̂⌊n/B⌋. Similar p-value
approximations for the two-sample problem with blocks of increasing size were proposed and applied
by Zaremba et al. (2013).

C CALIBRATION MEAN EMBEDDING

C.1 DEFINITION

Similar to the unnormalized mean embedding (UME) proposed by Chwialkowski et al. (2015) in
the standard MMD setting, instead of the calibration error CEFk

= ‖µPXY − µPXZX
‖H we can

consider the unnormalized calibration mean embedding (UCME).
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Definition C.1. Let J ∈ N. The unnormalized calibration mean embedding (UCME) for kernel k
with J test locations is defined as the random variable

UCME2
k,J = J−1

J∑

j=1

(
µPXY (Tj)− µPXZX

(Tj)
)2

= J−1
J∑

j=1

(
EPX ,Y k(Tj , (PX , Y ))− EPX ,ZX

k(Tj , (PX , ZX))
)2
,

where T1, . . . , TJ are i.i.d. random variables (so-called test locations) whose distribution is absolutely
continuous with respect to the Lebesgue measure on P × Y .

As mentioned above, in many machine learning applications we actually have P × Y ⊂ Rd (up to
some isomorphism). In such a case, if k is an analytic, integrable, characteristic kernel, then for each
J ∈ N UCMEk,J is a random metric between the distributions of (PX , Y ) and (PX , ZX), as shown
by Chwialkowski et al. (2015, Theorem 2). In particular, this implies that UCMEk,J = 0 almost
surely if and only if the two distributions are equal.

C.2 ESTIMATION

Again we assume (PX1
, Y1), . . . , (PXn

, Yn) is a validation data set of predictions and targets, which

are i.i.d. according to the law of (PX , Y ). The consistent, but biased, plug-in estimator of UCME2
k,J

is given by

ÛCME
2

k,J = J−1
J∑

j=1

(
n−1

n∑

i=1

(
k
(
Tj , (PXi

, Yi)
)
− EZXi

k
(
Tj , (PXi

, ZXi
)
))
)2

.

C.3 CALIBRATION MEAN EMBEDDING TEST

As Chwialkowski et al. (2015) note, if model P is calibrated, for every fixed sequence of unique

test locations
√
nÛCME

2

k,J converges in distribution to a sum of correlated χ2 random variables,
as n → ∞. The estimation of this asymptotic distribution, and its quantiles required for hypothesis
testing, requires a bootstrap or permutation procedure, which is computationally expensive. Hence
Chwialkowski et al. (2015) proposed the following test based on Hotelling’s T 2-statistic (Hotelling,
1931).

For i = 1, . . . , n, let

Zi :=



k
(
T1, (PXi

, Yi)
)
− EZXi

k
(
T1, (PXi

, ZXi
)
)

...

k
(
TJ , (PXi

, Yi)
)
− EZXi

k
(
TJ , (PXi

, ZXi
)
)


 ∈ RJ ,

and denote the empirical mean and covariance matrix of Z1, . . . , Zn by Z and S, respectively. If
UCMEk,J is a random metric between the distributions of (PX , Y ) and (PX , ZX), then the test
statistic

Qn := nZ
T
S−1Z

is almost surely asymptotically χ2 distributed with J degrees of freedom if model P is calibrated,
as n → ∞ with J fixed; moreover, if model P is uncalibrated, then for any fixed r ∈ R almost
surely P(Qn > r) → 1 as n → ∞ (Chwialkowski et al., 2015, Proposition 2). We call the resulting
calibration test calibration mean embedding (CME) test.

D KERNEL CHOICE

A natural choice for the kernel k : (P × Y) × (P × Y) → R on the product space of predicted
distributions P and targets Y is a tensor product kernel of the form k = kP ⊗ kY , i.e., a kernel of the
form

k
(
(p, y), (p′, y′)

)
= kP(p, p

′)kY(y, y
′),
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where kP : P × P → R and kY : Y × Y → R are kernels on the spaces of predicted distributions
and targets, respectively.

As discussed in Section 3.1, if kernel k is characteristic, then the kernel calibration error KCEk of
model P is zero if and only if P is calibrated. Unfortunately, as shown by Szabó & Sriperumbudur
(2018, Example 1), even if kP and kY are characteristic, the tensor product kernel k = kP ⊗kY might
not be characteristic. However, when analyzing calibration, it is sufficient to be able to distinguish
distributions for which the conditional distributions P(Y |PX) and P(ZX |PX) = PX are not equal
almost surely. Thus it is sufficient if kY is characteristic and kP is non-zero almost surely.

Many common kernels such as the Gaussian and Laplacian kernel on Rd are characteristic and can
therefore be chosen as kernel kY for real-valued target spaces. The choice of kP might be less
obvious since P is a space of probability distributions. Intuitively one might want to use kernels of
the form

kP
(
p, p′

)
= exp

(
− λdνP(p, p

′)
)
, (D.1)

where dP : P × P → R is a metric on P and ν, λ > 0 are kernel hyperparameters. Kernels of this
form would be a generalization of the Gaussian and Laplacian kernel, and would clearly be non-zero
almost surely.

Unfortunately, this construction does not necessarily yield valid kernels. Most prominently, the
Wasserstein distance does not lead to valid kernels kP in general (Peyré & Cuturi, 2019, Chapter 8.3).
However, if dP(·, ·) is a Hilbertian metric, i.e., a metric of the form

dP(p, p
′) =

∥∥φ(p)− φ(p′)
∥∥
H

for some Hilbert space H and mapping φ : P → H , then kP in Eq. (D.1) is a valid kernel for all
λ > 0 and ν ∈ (0, 2] (Berg et al., 1984, Corollary 3.3.3, Proposition 3.2.7).

D.1 NORMAL DISTRIBUTIONS

Assume that Y = Rd and P = {N (µ,Σ): µ ∈ Rd,Σ ∈ Rd×d psd}, i.e., the model outputs normal
distributions PX = N (µX ,ΣX). The distribution of these outputs is defined by the distribution of
their mean µX and covariance matrix ΣX .

Let Px = N (µx,Σx) ∈ P , y ∈ Y = Rd, and γ > 0. We obtain

EZx∼Px
exp

(
− γ‖Zx − y‖22

)

=
∣∣Id + 2γΣx

∣∣−1/2
exp

(
− γ(µx − y)

T
(
Id + 2γΣx

)−1
(µx − y)

)

from Mathai & Provost (1992, Theorem 3.2.a.3). In particular, if Σx = diag(Σx,1, . . . ,Σx,d), then

EZx∼Px
exp

(
− γ‖Zx − y‖22

)

=
d∏

i=1

[(
1 + 2γΣx,i

)−1/2
exp

(
− γ
(
1 + 2γΣx,i

)−1(
µx,i − yi

)2)
]
.

Let Px′ = N (µx′ ,Σx′) be another normal distribution. Then we have

EZx∼Px,Zx′∼Px′ exp
(
− γ‖Zx − Zx′‖22

)

=
∣∣Id + 2γΣx

∣∣−1/2
EZx′∼Px′ exp

(
− γ
(
µx − Zx′

)T(
Id + 2γΣx

)−1(
µx − Zx′

))

=
∣∣Id + 2γ(Σx +Σx′)

∣∣−1/2
exp

(
− γ
(
µx − µx′

)T(
Id + 2γ(Σx +Σx′)

)−1(
µx − µx′

))
.

Thus if Σx = diag(Σx,1, . . . ,Σx,d) and Σx′ = diag
(
Σx′,1, . . . ,Σx′,d

)
, then

EZx∼Px,Zx′∼Px′ exp
(
− γ‖Zx − Zx′‖22

)

=

d∏

i=1

[(
1 + 2γ(Σx,i +Σx′,i)

)−1/2
exp

(
− γ
(
1 + 2γ(Σx,i +Σx′,i)

)−1(
µx,i − µx′,i

)2)
]
.
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Hence we see that a Gaussian kernel

kY(y, y
′) = exp

(
− γ‖y − y′‖22

)

with inverse length scale γ > 0 on the space of targets Y = Rd allows us to compute
EZx∼Px

kY(Zx, y) and EZx∼Px,Zx′∼Px′ kY(Zx, Zx′) analytically. Moreover, the Gaussian kernel is

characteristic on Rd (Fukumizu et al., 2008). Hence, as discussed above, by choosing a kernel kP
that is non-zero almost surely we can guarantee that KCEk = 0 if and only if model P is calibrated.

On the space of normal distributions, the 2-Wasserstein distance with respect to the Euclidean distance
between Px = N (µx,Σx) and Px′ = N (µx′ ,Σx′) is given by

W 2
2

(
Px, Px′

)
= ‖µx − µx′‖22 +Tr

(
Σx +Σx′ − 2

(
Σx′

1/2ΣxΣx′
1/2
)1/2)

,

which can be simplified to

W 2
2

(
Px, Px′

)
=
∥∥µx − µx′

∥∥2
2
+
∥∥∥Σ1/2

x − Σ
1/2
x′

∥∥∥
2

Frob
,

if ΣxΣx′ = Σx′Σx. This shows that the 2-Wasserstein distance is a Hilbertian metric on the space of
normal distributions. Hence as discussed above, the choice

kP
(
Px, Px′

)
= exp

(
− λW ν

2 (Px, Px′)
)

yields a valid kernel for all λ > 0 and ν ∈ (0, 2].

Thus for all λ, γ > 0 and ν ∈ (0, 2]

k
(
(p, y), (p′, y′)

)
= exp

(
− λW ν

2 (p, p
′)
)
exp

(
− γ‖y − y′‖22

)

is a valid kernel on the product space P × Y of normal distributions on Rd and Rd that allows to
evaluate h

(
(p, y), (p′, y′)

)
analytically and guarantees that KCEk = 0 if and only if model P is

calibrated.

D.2 LAPLACE DISTRIBUTIONS

Assume that Y = R and P = {L(µ, β) : µ ∈ R, β > 0}, i.e., the model outputs Laplace distributions
PX = L(µX , βX) with probability density function

pX(y) =
1

2βX
exp

(
− β−1

X |y − µX |
)

for y ∈ Y = R. The distribution of these outputs is defined by the distribution of their mean µX and
scale parameter βX .

Let Px = L(µx, βx) ∈ P , y ∈ Y = R, and γ > 0. If βx 6= γ−1, we have

EZx∼Px
exp

(
− γ|Zx − y|

)

=
(
β2
xγ

2 − 1
)−1
(
βxγ exp

(
− β−1

x |µx − y|
)
− exp

(
− γ|µx − y|

))
.

Additionally, if βx = γ−1, the dominated convergence theorem implies

EZx∼Px
exp

(
− γ|Zx − y|

)

= lim
γ→β−1

x

(
β2
xγ

2 − 1
)−1
(
βxγ exp

(
− β−1

x |µx − y|
)
− exp

(
− γ|µx − y|

))

=
1

2

(
1 + γ|µx − y|

)
exp

(
− γ|µx − y|

)
.

Let Px′ = L(µx′ , βx′) be another Laplace distribution. If βx 6= γ−1, βx′ 6= γ−1, and βx 6= βx′ , we
obtain

EZx∼Px,Zx′∼Px′ exp
(
− γ|Zx − Zx′ |

)
=

γβ3
x

(β2
xγ

2 − 1)(β2
x − βx′

2)
exp

(
− β−1

x |µx − µx′ |
)

+
γβ3

x′

(β2
x′γ2 − 1)(βx′

2 − β2
x)

exp
(
− βx′

−1|µx − µx′ |
)

+
1

(β2
xγ

2 − 1)(βx′
2γ2 − 1)

exp
(
− γ|µx − µx′ |

)
.
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As above, all other possible cases can be deduced by applying the dominated convergence theorem.
More concretely,

• if βx = βx′ = γ−1, then

EZx∼Px,Zx′∼Px′ exp
(
− γ|Zx − Zx′ |

)

=
1

8

(
3 + 3γ|µx − µx′ |+ γ2|µx − µx′ |2

)
exp

(
− γ|µx − µx′ |

)
,

• if βx = βx′ and βx 6= γ−1, then

EZx∼Px,Zx′∼Px′ exp
(
− γ|Zx − Zx′ |

)
=

1

(β2
xγ

2 − 1)
2 exp

(
− γ|µx − µx′ |

)

+

(
γ
(
βx + |µx − µx′ |

)

2(β2
xγ

2 − 1)
− βxγ

(β2
xγ

2 − 1)
2

)
exp

(
− β−1

x |µx − µx′ |
)
,

• if βx 6= βx′ and βx = γ−1, then

EZx∼Px,Zx′∼Px′ exp
(
− γ|Zx − Zx′ |

)
=

βx′
3γ3

(βx′
2γ2 − 1)

2 exp
(
− βx′

−1|µx − µx′ |
)

−
(
1 + γ|µx − µx′ |
2(βx′

2γ2 − 1)
+

βx′
2γ2

(βx′
2γ2 − 1)

2

)
exp

(
− γ|µx − µx′ |

)
,

• and if βx 6= βx′ and βx′ = γ−1, then

EZx∼Px,Zx′∼Px′ exp
(
− γ|Zx − Zx′ |

)
=

β3
xγ

3

(β2
xγ

2 − 1)
2 exp

(
− β−1

x |µx − µx′ |
)

−
(
1 + γ|µx − µx′ |
2(β2

xγ
2 − 1)

+
β2
xγ

2

(β2
xγ

2 − 1)
2

)
exp

(
− γ|µx − µx′ |

)
.

The calculations above show that by choosing a Laplacian kernel

kY
(
y, y′

)
= exp

(
− γ|y − y′|

)

with inverse length scale γ > 0 on the space of targets Y = R, we can compute EZx∼Px
kY(Zx, y)

and EZx∼Px,Zx′∼Px′ kY(Zx, Zx′) analytically. Additionally, the Laplacian kernel is characteristic on
R (Fukumizu et al., 2008).

Since the Laplace distribution is an elliptically contoured distribution, we know from Gelbrich
(1990, Corollary 2) that the 2-Wasserstein distance with respect to the Euclidean distance between
Px = L(µx, βx) and Px′ = L(µx′ , βx′) can be computed in closed form and is given by

W 2
2

(
Px, Px′

)
= (µx − µx′)

2
+ 2(βx − βx′)

2
.

Thus we see that the 2-Wasserstein distance is also a Hilbertian metric on the space of Laplace
distributions, and hence

kP
(
Px, Px′

)
= exp

(
− λW ν

2 (Px, Px′)
)

is a valid kernel for 0 < ν ≤ 2 and all λ > 0.

Therefore, as discussed above, for all λ, γ > 0 and ν ∈ (0, 2]

k
(
(p, y), (p′, y′)

)
= exp

(
− λW ν

2 (p, p
′)
)
exp

(
− γ|y − y′|

)

is a valid kernel on the product space P × Y of Laplace distributions and R that allows to evaluate
h
(
(p, y), (p′, y′)

)
analytically and guarantees that KCEk = 0 if and only if model P is calibrated.
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D.3 PREDICTING MIXTURES OF DISTRIBUTIONS

Assume that the model predicts mixture distributions, possibly with different numbers of components.
A special case of this setting are ensembles of models, in which each ensemble member predicts a
component of the mixture model.

Let p, p′ ∈ P with p =
∑

i πipi and p′ =
∑

j π
′
jp

′
j , where π, π′ are histograms and pi, p

′
j are the

mixture components. For kernel kY and y ∈ Y we obtain

EZ∼p kY(Z, y) =
∑

i

πi EW∼pi
kY(Z, y)

and
EZ∼p,Z′∼p′ kY(Z,Z

′) =
∑

i,j

πiπ
′
j EZ∼pi,Z′∼p′

j
kY(Z,Z

′).

Of course, for these derivations to be meaningful, we require that they do not depend on the choice of
histograms π, π′ and mixture components pi, p

′
j .

Definition D.1 (see Yakowitz & Spragins (1968)). A family P of finite mixture models is called

identifiable if two mixtures p =
∑K

i=1 πipi ∈ P and p′ =
∑K′

j=1 π
′
jp

′
j ∈ P , written such that all pi

and all p′j are pairwise distinct, are equal if and only if K = K ′ and the indices can be reordered

such that for all k ∈ {1, . . . ,K} there exists some k′ ∈ {1, . . . ,K} with πk = π′
k′ and pk = p′k′ .

Clearly, if P is identifiable, then the derivations above do not depend on the choice of histograms
and mixture components. Prominent examples of identifiable mixture models are Gaussian mixture
models and mixture models of families of products of exponential distributions (Yakowitz & Spragins,
1968).

Moreover, similar to optimal transport for Gaussian mixture models by Chen et al. (2019; 2020);
Delon & Desolneux (2020), we can consider metrics of the form

inf
w∈Π(π,π′)

(∑

i,j

wi,jc
s(pi, p

′
j)

)1/s

,

where

Π(π, π′) =

{
w :

∑

i

wi,j = π′
j ∧
∑

j

wi,j = πi ∧ ∀i, j : wi,j ≥ 0

}

are the couplings of π and π′, and c(·, ·) is a cost function between the components of the mixture
model.

Theorem D.1. Let P be a family of finite mixture models that is identifiable in the sense of Defini-
tion D.1, and let s ∈ [1,∞).

If d(·, ·) is a (Hilbertian) metric on the space of mixture components, then the Mixture Wasserstein
distance of order s defined by

MWs(p, p
′) := inf

w∈Π(π,π′)

(∑

i,j

wi,jd
s(pi, p

′
j)

)1/s

, (D.2)

is a (Hilbertian) metric on P .

Proof. First of all, note that for all p, p′ ∈ P an optimal coupling ŵ exists (Villani, 2009, Theo-
rem 4.1). Moreover,

∑
i,j ŵi,jd

s(pi, p
′
j) ≥ 0, and hence MWs(p, p

′) exists. Moreover, since P
is identifiable, we see that MWs(p, p

′) does not depend on the choice of histograms and mixture
components. Thus MWs is well-defined.

Clearly, for all p, p′ ∈ P we have MWs(p, p
′) ≥ 0 and MWs(p, p

′) = MWs(p
′, p). Moreover,

MWs
s(p, p) = min

w∈Π(π,π)

∑

i,j

wi,jd
s(pi, pj) ≤

∑

i,j

πiδi,jd
s(pi, pj)

=
∑

i

πid
s(pi, pi) =

∑

i

πi0
2 = 0,
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and hence MWs(p, p) = 0. On the other hand, let p, p′ ∈ P with optimal coupling ŵ with respect to
π and π′, and assume that MWs(p, p

′) = 0. We have

p =
∑

i

πipi =
∑

i,j

ŵi,jpi =
∑

i,j : ŵi,j>0

ŵi,jpi.

Since MWs(p, p
′) = 0, we have ŵi,jd

s(pi, p
′
j) = 0 for all i, j, and hence ds(pi, p

′
j) = 0 if ŵi,j > 0.

Since d is a metric, this implies pi = p′j if ŵi,j > 0. Thus we get

p =
∑

i,j : ŵi,j>0

ŵi,jpi =
∑

i,j : ŵi,j>0

ŵi,jp
′
j =

∑

i,j

ŵi,jp
′
j =

∑

j

π′
jp

′
j = p′.

Function MWs also satisfies the triangle inequality, following a similar argument as Chen et al.

(2019). Let p(1), p(2), p(3) ∈ P and denote the optimal coupling with respect to π(1) and π(2) by

ŵ(12), and the optimal coupling with respect to π(2) and π(3) by ŵ(23). Define w(13) by

w
(13)
i,k :=

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

.

Clearly w
(13)
i,k ≥ 0 for all i, k, and we see that

∑

i

w
(13)
i,k =

∑

i

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

=
∑

j : π
(2)
j

6=0

∑

i

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

=
∑

j : π
(2)
j

6=0

π
(2)
j ŵ

(23)
j,k

π
(2)
j

=
∑

j : π
(2)
j

6=0

ŵ
(23)
j,k = π(3) −

∑

j : π
(2)
j

=0

ŵ
(23)
j,k

for all k. Since for all j, k, π
(2)
j ≥ ŵ

(23)
j,k , we know that π

(2)
j = 0 implies ŵ

(23)
j,k = 0 for all k. Thus

for all k

∑

i

w
(13)
i,k = π(3).

Similarly we obtain for all i

∑

k

w
(13)
i,k = π(1).
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Thus w(13) ∈ Π(π(1), π(3)), and therefore by exploiting the triangle inequality for metric d and the
Minkowski inequality we get

MWs

(
p(1), p(3)

)
≤
(∑

i,k

w
(13)
i,k ds

(
p
(1)
i , p

(3)
k

))1/s

=

(∑

i,k

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

ds
(
p
(1)
i , p

(3)
k

))
1/s

≤
(∑

i,k

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

(
d(p

(1)
i , p

(2)
j ) + d(p

(2)
j , p

(3)
k )
)s
)1/s

≤
(∑

i,k

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

ds
(
p
(1)
i , p

(2)
j

))1/s

+

(∑

i,k

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ŵ

(23)
j,k

π
(2)
j

ds
(
p
(2)
j , p

(3)
k

))1/s

=

(∑

i

∑

j : π
(2)
j

6=0

ŵ
(12)
i,j ds

(
p
(1)
i , p

(2)
j

))1/s

+

(∑

k

∑

j : π
(2)
j

6=0

ŵ
(23)
i,k ds

(
p
(2)
j , p

(3)
k

))1/s

≤
(∑

i,j

ŵ
(12)
i,j ds

(
p
(1)
i , p

(2)
j

))1/s

+

(∑

j,k

ŵ
(23)
i,k ds

(
p
(2)
j , p

(3)
k

))1/s

= MWs

(
p(1), p(2)

)
+MWs

(
p(2), p(3)

)
.

Thus MWs is a metric, and it is just left to show that it is Hilbertian if d is Hilbertian. Since d is a
Hilbertian metric, there exists a Hilbert space H and a mapping φ such that

d(x, y) = ‖φ(x)− φ(y)‖H.

Let r1, . . . , rn ∈ R with
∑

i ri = 0 and p(1), . . . , p(n) ∈ P . Denote the optimal coupling with

respect to π(i) and π(j) by ŵ(i,j). Then we have
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l ‖φ(p(i)k )‖2H =

∑

i,k

ri‖φ(p(i)k )‖2H
∑

j

rj
∑

l

ŵ
(i,j)
k,l

=
∑

i,k

ri‖φ(p(i)k )‖2H
∑

j

rjπ
(i)
k

=
∑

i,k

riπ
(i)
k ‖φ(p(i)k )‖2H

∑

j

rj = 0,

(D.3)

and similarly ∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l ‖φ(p(j)l )‖2H = 0. (D.4)

Moreover, for all k, l we get

∑

i,j

rirjŵ
(i,j)
k,l

〈
φ
(
p
(i)
k

)
, φ
(
p
(j)
l

)〉
H

=
〈∑

i

ri

√
ŵ

(i,j)
k,l φ

(
p
(i)
k

)
,
∑

j

rj

√
ŵ

(i,j)
k,l φ

(
p
(j)
l

)〉
H

=
∥∥∥
∑

i

ri

√
ŵ

(i,j)
k,l φ

(
p
(i)
k

)∥∥∥
2

H
≥ 0,

and hence ∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

〈
φ(p

(i)
k ), φ(p

(j)
l )
〉
H

≥ 0, (D.5)
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and similarly ∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

〈
φ(p

(j)
l ), φ(p

(i)
k )
〉
H

≥ 0. (D.6)

Hence from Eqs. (D.3) to (D.6) we get

∑

i,j

rirjMWs
s(p

(i), p(j)) =
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l ds

(
p
(i)
k , p

(j)
l

)

=
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

∥∥∥φ
(
p
(i)
k

)
− φ

(
p
(j)
l

)∥∥∥
2

H

=
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

∥∥∥φ
(
p
(i)
k

)∥∥∥
2

H

−
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

〈
φ
(
p
(i)
k

)
, φ
(
p
(j)
l

)〉
H

−
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

〈
φ
(
p
(j)
l

)
, φ
(
p
(i)
k

)〉
H

+
∑

i,j

rirj
∑

k,l

ŵ
(i,j)
k,l

∥∥∥φ
(
p
(j)
l

)∥∥∥
2

H

≤ 0,

which shows that MWs
s is a negative definite kernel (Berg et al., 1984, Definition 3.1.1). Since

0 < 1/s < ∞, MWs is a negative definite kernel as well (Berg et al., 1984, Corollary 3.2.10), which
implies that metric MWs is Hilbertian (Berg et al., 1984, Proposition 3.3.2).

Hence we can lift a Hilbertian metric for the mixture components to a Hilbertian metric for the mixture
models. For instance, if the mixture components are normal distributions, then the 2-Wasserstein
distance with respect to the Euclidean distance is a Hilbertian metric for the mixture components.
When we lift it to the space P of Gaussian mixture models we obtain the MW2 metric proposed by
Chen et al. (2019; 2020); Delon & Desolneux (2020). As shown by Delon & Desolneux (2020), the
discrete formulation of MW2 obtained by our construction is equivalent to the definition

MW2
2(p, p

′) := inf
γ∈Π(p,p′)∩GMM2n(∞)

∫

Rn×Rn

d2(y, y′) dγ(y, y′) (D.7)

for two Gaussian mixtures p, p′ on Rn, where Π(p, p′) are the couplings of p and p′ (not of the
histograms!) and GMM2n(∞) = ∪k≥0GMM2n(k) is the set of all finite Gaussian mixture distribu-
tions on R2n. The construction of the discrete formulation as a solution to a constrained optimization
problem similar to Eq. (D.7) can be generalized to mixtures of t-distributions. However, it is not
possible for arbitrary mixture models such as mixtures of generalized Gaussian distributions, even
though they are elliptically contoured distributions (Deledalle et al., 2018; Delon & Desolneux, 2020).

The optimal coupling of the discrete histograms can be computed efficiently using techniques from
linear programming and optimal transport theory such as the network simplex algorithm and the
Sinkhorn algorithm. As discussed above, if metric dP is of the form in Eq. (D.2), functions of the
form

kP(p, p
′) = exp

(
− λdνP(p, p

′)
)

are valid kernels on P for all λ > 0 and ν ∈ (0, 2].

Thus taken together, if kY is a characteristic kernel on the target space Y and d(·, ·) is a Hilbertian
metric on the space of mixture components, then for all s ∈ [1,∞), λ > 0, and ν ∈ (0, 2]

k
(
(p, y), (p′, y′)

)
= exp

(
− λMWν

s (p, p
′)
)
kY(y, y

′)

is a valid kernel on the product space P×Y of mixture distributions and targets that allows to evaluate
h
(
(p, y), (p′, y′)

)
analytically and guarantees that KCEk = 0 if and only if model P is calibrated.
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E CLASSIFICATION AS A SPECIAL CASE

We show that the calibration error introduced in Definition 2 is a generalization of the calibration
error for classification proposed by Widmann et al. (2019). Their formulation of the calibration error
is based on a weighted sum of class-wise discrepancies between the left hand side and right hand side
of Definition 1, where the weights are output by a vector-valued function of the predictions. Hence
their framework can only be applied to finite target spaces, i.e., if |Y| < ∞.

Without loss of generality, we assume that Y = {1, . . . , d} for some d ∈ N \ {1}. In our notation, the
previously defined calibration error, denoted by CCE (classification calibration error), with respect
to a function space G ⊂ {f : P → Rd} is given by

CCEG := sup
g∈G

∣∣∣∣EPX

(∑

y∈Y

(
P(Y = y|PX)− PX({y})

)
gy
(
PX

))∣∣∣∣.

For the function class

F :=
{
f : P × Y → R, (p, y) 7→ gy(p)

∣∣g ∈ G
}

we get
CCEG = sup

f∈F

∣∣EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

∣∣ = CEF .

Similarly, for every function class F ⊂ {f : P × Y → R}, we can define the space

G :=
{
g : P → Rd, p 7→

(
f(p, 1), . . . , f(p, d)

)T∣∣∣f ∈ F
}
,

for which

CEF = sup
g∈G

∣∣∣∣EPX

(∑

y∈Y

(
P(Y = y|PX)− PX({y})

)
gy
(
PX

))∣∣∣∣ = CCEG .

Thus both definitions are equivalent for classification models but the structure of the employed
function classes differs. The definition of CCE is based on vector-valued functions on the probability
simplex whereas the formulation presented in this paper uses real-valued function on the product
space of the probability simplex and the targets.

An interesting theoretical aspect of this difference is that in the case of KCE we consider real-valued
kernels on P × Y instead of matrix-valued kernels on P , as shown by the following comparison. By
ei ∈ Rd we denote the ith unit vector, and for a prediction p ∈ P its representation vp ∈ Rd in the
probability simplex is defined as

(vp)y = p
(
{y}
)

for all targets y ∈ Y .

Let k : (P × Y)× (P × Y) → R. We define the matrix-valued function K : P × P → Rd×d by
[
K(p, p′)

]
y,y′ = k

(
(p, y), (p′, y′)

)

for all y, y′ ∈ Y and p, p′ ∈ P . From the positive definiteness of kernel k it follows that K is a
matrix-valued kernel (Micchelli & Pontil, 2005, Definition 2). We obtain

SKCEk = EPX ,Y,PX′ ,Y ′

[
K(PX , PX′)

]
Y,Y ′ − 2EPX ,Y,PX′ ,ZX′

[
K(PX , PX′)

]
Y,ZX′

+ EPX ,ZX ,PX′ ,ZX′

[
K(PX , PX′)

]
ZX ,ZX′

= EPX ,Y,PX′ ,Y ′ eTY K(PX , PX′)eY ′ − 2EPX ,Y,PX′ ,Y ′ eTY K(PX , PX′)vPX′

+ EPX ,Y,PX′ ,Y ′ vTPX
K(PX , PX′)vPX′

= EPX ,Y,PX′ ,Y ′ (eY − vPX
)
T
K(PX , PX′)(eY ′ − vPX′ ),

which is exactly the result by Widmann et al. (2019) for matrix-valued kernels.

As a concrete example, Widmann et al. (2019) used a matrix-valued kernel of the form (p, p′) 7→
exp (−γ‖p− p′‖)Id in their experiments. In our formulation this corresponds to the real-valued

tensor product kernel
(
(p, y), (p′, y′)

)
7→ exp (−γ‖p− p′‖)δy,y′ .

34



F TEMPERATURE SCALING

Since many modern neural network models for classification have been demonstrated to be uncali-
brated (Guo et al., 2017), it is of high practical interest being able to improve calibration of predictive
models. Generally, one distinguishes between calibration techniques that are applied during training
and post-hoc calibration methods that try to calibrate an existing model after training.

Temperature scaling (Guo et al., 2017) is a simple calibration method for classification models with
only one scalar parameter. Due to its simplicity it can trade off calibration of different classes (Kull
et al., 2019), but conveniently it does not change the most-confident prediction and hence does not
affect the accuracy of classification models with respect to the 0-1 loss.

In regression, common post-hoc calibration methods are based on quantile binning and hence
insufficient for our framework. Song et al. (2019) proposed a calibration method for regression
models with real-valued targets, based on a special case of Definition 1. This calibration method was
shown to perform well empirically but is computationally expensive and requires users to choose
hyperparameters for a Gaussian process model and its variational inference. As a simpler alternative,
we generalize temperature scaling to arbitrary predictive models in the following way.

Definition F.1. Let Px be the output of a probabilistic predictive model P for feature x. If Px has
probability density function px with respect to a reference measure µ, then temperature scaling with
respect to µ with temperature T > 0 yields a new output Qx whose probability density function qx
with respect to µ satisfies

qx ∝ p1/Tx .

The notion for classification models given by Guo et al. (2017) can be recovered by choosing the
counting measure on the classes as reference measure.

For some exponential families on Rd we obtain particularly simple transformations with respect to
the Lebesgue measure λd that keep the type of predicted distribution and its mean invariant. Hence
in contrast to other calibration methods, for these models temperature scaling yields analytically
tractable distributions and does not negatively impact the accuracy of the models with respect to the
mean squared error and the mean absolute error.

For instance, temperature scaling of multivariate power exponential distributions (Gómez et al., 1998)
in Rd, of which multivariate normal distributions are a special case, with respect to λd corresponds to

multiplication of their scale parameter with T 1/β , where β is the so-called kurtosis parameter (Gómez-
Sánchez-Manzano et al., 2008). For normal distributions, this corresponds to multiplication of the
covariance matrix with T .

Similarly, temperature scaling of Beta and Dirichlet distributions with respect to reference measure

µ(dx) := x−1(1− x)−1
✶(0,1)(x)λ

1(dx)

and

µ(dx) :=

( d∏

i=1

x−1
i

)
✶(0,1)d(x)λ

d(dx),

respectively, corresponds to division of the canonical parameters of these distributions by T without
affecting the predicted mean value.

All in all, we see that temperature scaling for general predictive models preserves some of the nice
properties for classification models. For some exponential families such as normal distributions
reference measure µ can be chosen such that temperature scaling is a simple transformation of the
parameters of the predicted distributions (and hence leaves the considered model class invariant)
that does not affect accuracy of these models with respect to the mean squared error and the mean
absolute error.

G EXPECTED CALIBRATION ERROR FOR COUNTABLY INFINITE DISCRETE

TARGET SPACES

In literature, ECEd and MCEd are defined for binary and multi-class classification problems (Guo
et al., 2017; Naeini et al., 2015; Vaicenavicius et al., 2019). For common distance measures on the
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probability simplex such as the total variation distance and the squared Euclidean distance, ECEd

and MCEd can be formulated as a calibration error in the framework of Widmann et al. (2019), which
is a special case of the framework proposed in this paper for binary and multi-class classification
problems.

In contrast to previous approaches, our framework handles countably infinite discrete target spaces
as well. For every problem with countably infinitely many targets, such as, e.g., Poisson regression,
there exists an equivalent regression problem on the set of natural numbers. Hence without loss
of generality we assume Y = N. Denote the space of probability distributions on N, the infinite
dimensional probability simplex, with ∆∞. Clearly, ∆∞ can be viewed as a subspace of the sequence
space ℓ1 that consists of all sequences x = (xn)n∈N with xn ≥ 0 for all n ∈ N and ‖x‖1 = 1.

Theorem G.1. Let 1 < p < ∞ with Hölder conjugate q. If

F := {f : ∆∞ × N → R | EPX
‖
(
f(PX , n)

)
n∈N

‖pp ≤ 1},
then

CEq
F = EPX

‖P(Y |PX)− PX‖qq.

Let µ be the law of PX . If F := {f : ∆∞ × N → R | EPX
‖(f(PX , n))n∈N‖1 ≤ 1}, then

CEF = µ- ess sup
ξ∈∆∞

sup
y∈N

|P(Y = y|PX = ξ)− ξ({y})|.

Moreover, if F = {f : ∆∞ × N → R | µ- ess supξ∈∆∞ supy∈N |f(ξ, y)| ≤ 1}, then

CEF = EPX
‖P(Y |PX)− PX‖1.

Proof. Let 1 ≤ p ≤ ∞, and let µ be the law of PX and ν be the counting measure on N. Since both
µ and ν are σ-finite measures, the product measure µ⊗ ν is uniquely determined and σ-finite as well.
Using these definitions, we can reformulate F as

F = {f ∈ Lp(∆∞ × N;µ⊗ ν) | ‖f‖p;µ⊗ν ≤ 1}.

Define the function δ : ∆∞ × N → R (µ⊗ ν)-almost surely by

δ(ξ, y) := P(Y = y |PX = ξ)− ξ({y}).
Note that δ is well-defined since we assume that all singletons on ∆∞ are µ-measurable. Moreover,
δ ∈ Lq(∆∞ × N;µ ⊗ ν), which follows from (ξ, y) 7→ P(Y = y |PX = ξ) and (ξ, y) 7→ ξ({y})
being functions in Lq(∆∞ × N;µ⊗ ν).

Since µ⊗ ν is a σ-finite measure, the extremal equality of Hölder’s inequality implies that

CEF = sup
f∈F

EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

= sup
f∈F

∣∣∣∣EPX ,Y f(PX , Y )− EPX ,ZX
f(PX , ZX)

∣∣∣∣

= sup
f∈F

∣∣∣∣
∫

∆∞×N

f(ξ, y)δ(ξ, y) (µ⊗ ν)(d(ξ, y))

∣∣∣∣

= ‖δ‖q;µ⊗ν .

Note that the second equality follows from the symmetry of the function spaces F : for every f ∈ F ,
also −f ∈ F .

Hence for 1 < p ≤ ∞, we obtain

CEq
F =

∫

∆∞×N

|δ(ξ, y)|q (µ⊗ ν)(d(ξ, y))

= EPX
‖(δ(PX , y))y∈N‖qq = EPX

‖P(Y |PX)− PX‖qq.
For p = 1, we get

CEF = µ- ess sup
ξ∈∆∞

sup
y∈N

|δ(ξ, y)| = µ- ess sup
ξ∈∆∞

sup
y∈N

|P(Y = y|PX = ξ)− ξ({y})|,

which concludes the proof.
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We see that our framework deals with countably infinite discrete target spaces seamlessly whereas
the previously proposed framework by Widmann et al. (2019) is not applicable to such spaces. It
is mathematically pleasing to see that for countably infinite discrete targets the calibration errors
obtained in Theorem G.1 within our framework coincide with the natural generalization of ECEd

and MCEd given in Appendix B.2.
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