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Abstract

In safety-critical applications a probabilistic model is usually required to be cali-
brated, i.e., to capture the uncertainty of its predictions accurately. In multi-class
classification, calibration of the most confident predictions only is often not suffi-
cient. We propose and study calibration measures for multi-class classification that
generalize existing measures such as the expected calibration error, the maximum
calibration error, and the maximum mean calibration error. We propose and evalu-
ate empirically different consistent and unbiased estimators for a specific class of
measures based on matrix-valued kernels. Importantly, these estimators can be in-
terpreted as test statistics associated with well-defined bounds and approximations
of the p-value under the null hypothesis that the model is calibrated, significantly
improving the interpretability of calibration measures, which otherwise lack any
meaningful unit or scale.

1 Introduction

Consider the problem of analyzing microscopic images of tissue samples and reporting a tumour grade,
i.e., a score that indicates whether cancer cells are well-differentiated or not, affecting both prognosis
and treatment of patients. Since for some pathological images not even experienced pathologists
might all agree on one classification, this task contains an inherent component of uncertainty. This
type of uncertainty that can not be removed by increasing the size of the training data set is typically
called aleatoric uncertainty (Kiureghian and Ditlevsen, 2009). Unfortunately, even if the ideal model
is among the class of models we consider, with a finite training data set we will never obtain the
ideal model but we can only hope to learn a model that is, in some sense, close to it. Worse still, our
model might not even be close to the ideal model if the model class is too restrictive or the number of
training data is small—which is not unlikely given the fact that annotating pathological images is
expensive. Thus ideally our model should be able to express not only aleatoric uncertainty but also
the uncertainty about the model itself. In contrast to aleatoric uncertainty this so-called epistemic
uncertainty can be reduced by additional training data.

Dealing with these different types of uncertainty is one of the major problems in machine learning.
The application of our model in clinical practice demands “meaningful” uncertainties to avoid doing
harm to patients. Being too certain about high tumour grades might cause harm due to unneeded
aggressive therapies and overly pessimistic prognoses, whereas being too certain about low tumour
grades might result in insufficient therapies. “Proper” uncertainty estimates are also crucial if the
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model is supervised by a pathologist that takes over if the uncertainty reported by the model is too
high. False but highly certain gradings might incorrectly keep the pathologist out of the loop, and on
the other hand too uncertain gradings might demand unneeded and costly human intervention.

Probability theory provides a solid framework for dealing with uncertainties. Instead of assigning
exactly one grade to each pathological image, so-called probabilistic models report subjective
probabilities, sometimes also called confidence scores, of the tumour grades for each image. The
model can be evaluated by comparing these subjective probabilities to the ground truth.

One desired property of such a probabilistic model is sharpness (or high accuracy), i.e., if possible,
the model should assign the highest probability to the true tumour grade (which maybe can not be
inferred from the image at hand but only by other means such as an additional immunohistochemical
staining). However, to be able to trust the predictions the probabilities should be calibrated (or
reliable) as well (DeGroot and Fienberg, 1983; Murphy and Winkler, 1977). This property requires
the subjective probabilities to match the relative empirical frequencies: intuitively, if we could
observe a long run of predictions (0.5, 0.1, 0.1, 0.3) for tumour grades 1, 2, 3, and 4, the empirical
frequencies of the true tumour grades should be (0.5, 0.1, 0.1, 0.3). Note that accuracy and calibration
are two complementary properties: a model with over-confident predictions can be highly accurate
but miscalibrated, whereas a model that always reports the overall proportion of patients of each
tumour grade in the considered population is calibrated but highly inaccurate.

Research of calibration in statistics and machine learning literature has been focused mainly on binary
classification problems or the most confident predictions: common calibration measures such as the
expected calibration error (ECE) (Naeini et al., 2015), the maximum calibration error (MCE) (Naeini
et al., 2015), and the kernel-based maximum mean calibration error (MMCE) (Kumar et al., 2018),
and reliability diagrams (Murphy and Winkler, 1977) have been developed for binary classification.
This is insufficient since many recent applications of machine learning involve multiple classes.
Furthermore, the crucial finding of Guo et al. (2017) that many modern deep neural networks are
miscalibrated is also based only on the most confident prediction.

Recently Vaicenavicius et al. (2019) suggested that this analysis might be too reduced for many
realistic scenarios. In our example, a prediction of (0.5, 0.3, 0.1, 0.1) is fundamentally different
from a prediction of (0.5, 0.1, 0.1, 0.3), since according to the model in the first case it is only
half as likely that a tumour is of grade 3 or 4, and hence the subjective probability of missing
out on a more aggressive therapy is smaller. However, commonly in the study of calibration all
predictions with a highest reported confidence score of 0.5 are grouped together and a calibrated
model has only to be correct about the most confident tumour grade in 50% of the cases, regardless
of the other predictions. Although the ECE can be generalized to multi-class classification, its
applicability seems to be limited since its histogram-regression based estimator requires partitioning
of the potentially high-dimensional probability simplex and is asymptotically inconsistent in many
cases (Vaicenavicius et al., 2019). Sample complexity bounds for a bias-reduced estimator of the
ECE introduced in metereological literature (Bröcker, 2011; Ferro and Fricker, 2012) were derived
in concurrent work (Kumar et al., 2019).

2 Our contribution

In this work, we propose and study a general framework of calibration measures for multi-class
classification. We show that this framework encompasses common calibration measures for binary
classification such as the expected calibration error (ECE), the maximum calibration error (MCE),
and the maximum mean calibration error (MMCE) by Kumar et al. (2018). In more detail we study
a class of measures based on vector-valued reproducing kernel Hilbert spaces, for which we derive
consistent and unbiased estimators. The statistical properties of the proposed estimators are not only
theoretically appealing, but also of high practical value, since they allow us to address two main
problems in calibration evaluation.

As discussed by Vaicenavicius et al. (2019), all calibration error estimates are inherently random,
and comparing competing models based on these estimates without taking the randomness into
account can be very misleading, in particular when the estimators are biased (which, for instance,
is the case for the commonly used histogram-regression based estimator of the ECE). Even more
fundamentally, all commonly used calibration measures lack a meaningful unit or scale and are
therefore not interpretable as such (regardless of any finite sample issues).
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The consistency and unbiasedness of the proposed estimators facilitate comparisons between compet-
ing models, and allow us to derive multiple statistical tests for calibration that exploit these properties.
Moreover, by viewing the estimators as calibration test statistics, with well-defined bounds and
approximations of the corresponding p-value, we give them an interpretable meaning.

We evaluate the proposed estimators and statistical tests empirically and compare them with ex-
isting methods. To facilitate multi-class calibration evaluation we provide the Julia packages
ConsistencyResampling.jl (Widmann, 2019c), CalibrationErrors.jl (Widmann, 2019a),
and CalibrationTests.jl (Widmann, 2019b) for consistency resampling, calibration error esti-
mation, and calibration tests, respectively.

3 Background

We start by shortly summarizing the most relevant definitions and concepts. Due to space constraints
and to improve the readability of our paper, we do not provide any proofs in the main text but only
refer to the results in the supplementary material, which is intended as a reference for mathematically
precise statements and proofs.

3.1 Probabilistic setting

Let (X,Y ) be a pair of random variables with X and Y representing inputs (features) and outputs,
respectively. We focus on classification problems and hence without loss of generality we may
assume that the outputs consist of the m classes 1, . . . , m.

Let ∆m denote the (m− 1)-dimensional probability simplex ∆m := {z ∈ Rm
≥0 : ‖z‖1 = 1}. Then a

probabilistic model g is a function that for every input x outputs a prediction g(x) ∈ ∆m that models
the distribution

(

P[Y = 1 |X = x], . . . ,P[Y = m |X = x]
)

∈ ∆m

of class Y given input X = x.

3.2 Calibration

3.2.1 Common notion

The common notion of calibration, as, e.g., used by Guo et al. (2017), considers only the most
confident predictions maxy gy(x) of a model g. According to this definition, a model is calibrated if

P[Y = argmax
y

gy(X) | max
y

gy(X)] = max
y

gy(X) (1)

holds almost always. Thus a model that is calibrated according to Eq. (1) ensures that we can partly
trust the uncertainties reported by its predictions. As an example, for a prediction of (0.4, 0.3, 0.3)
the model would only guarantee that in the long run inputs that yield a most confident prediction of
40% are in the corresponding class 40% of the time.1

3.2.2 Strong notion

According to the more general calibration definition of Bröcker (2009); Vaicenavicius et al. (2019),
a probabilistic model g is calibrated if for almost all inputs x the prediction g(x) is equal to the
distribution of class Y given prediction g(X) = g(x). More formally, a calibrated model satisfies

P[Y = y | g(X)] = gy(X) (2)

almost always for all classes y ∈ {1, . . . ,m}. As Vaicenavicius et al. (2019) showed, for multi-class
classification this formulation is stronger than the definition of Zadrozny and Elkan (2002) that only
demands calibrated marginal probabilities. Thus we can fully trust the uncertainties reported by the
predictions of a model that is calibrated according to Eq. (2). The prediction (0.4, 0.3, 0.3) would
actually imply that the class distribution of the inputs that yield this prediction is (0.4, 0.3, 0.3).
To emphasize the difference to the definition in Eq. (1), we call calibration according to Eq. (2)
calibration in the strong sense or strong calibration.

1This notion of calibration does not consider for which class the most confident prediction was obtained.
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To simplify our notation, we rewrite Eq. (2) in vectorized form. Equivalent to the definition above, a
model g is calibrated in the strong sense if

r(g(X))− g(X) = 0 (3)

holds almost always, where

r(ξ) :=
(

P[Y = 1 | g(X) = ξ], . . . ,P[Y = m | g(X) = ξ]
)

is the distribution of class Y given prediction g(X) = ξ.

The calibration of certain aspects of a model, such as the five largest predictions or groups of
classes, can be investigated by studying the strong calibration of models induced by so-called
calibration lenses. For more details about evaluation and visualization of strong calibration we refer
to Vaicenavicius et al. (2019).

3.3 Matrix-valued kernels

The miscalibration measure that we propose in this work is based on matrix-valued kernels k : ∆m ×
∆m → Rm×m. Matrix-valued kernels can be defined in a similar way as the more common real-
valued kernels, which can be characterized as symmetric positive definite functions (Berlinet and
Thomas-Agnan, 2004, Lemma 4).

Definition 1 (Micchelli and Pontil (2005, Definition 2); Caponnetto et al. (2008, Definition 1)).
We call a function k : ∆m ×∆m → Rm×m a matrix-valued kernel if for all s, t ∈ ∆m k(s, t) =
k(t, s)⊺ and it is positive semi-definite, i.e., if for all n ∈ N, t1, . . . , tn ∈ ∆m, and u1, . . . , un ∈ Rm

n
∑

i,j=1

u⊺

i k(ti, tj)uj ≥ 0.

There exists a one-to-one mapping of such kernels and reproducing kernel Hilbert spaces (RKHSs)
of vector-valued functions f : ∆m → Rm. We provide a short summary of RKHSs of vector-valued
functions on the probability simplex in Appendix D. A more detailed general introduction to RKHSs
of vector-valued functions can be found in the publications by Caponnetto et al. (2008); Carmeli et al.
(2010); Micchelli and Pontil (2005).

Similar to the scalar case, matrix-valued kernels can be constructed from other matrix-valued kernels
and even from real-valued kernels. Very simple matrix-valued kernels are kernels of the form

k(s, t) = k̃(s, t)Im, where k̃ is a scalar-valued kernel, such as the Gaussian or Laplacian kernel,
and Im is the identity matrix. As Example D.1 shows, this construction can be generalized by, e.g.,
replacing the identity matrix with an arbitrary positive semi-definite matrix.

An important class of kernels are so-called universal kernels. Loosely speaking, a kernel is called uni-
versal if its RKHS is a dense subset of the space of continuous functions, i.e., if in the neighbourhood
of every continuous function we can find a function in the RKHS. Prominent real-valued kernels on
the probability simplex such as the Gaussian and the Laplacian kernel are universal, and can be used
to construct universal matrix-valued kernels of the form in Example D.1, as Lemma D.3 shows.

4 Unification of calibration measures

In this section we introduce a general measure of strong calibration and show its relation to other
existing measures.

4.1 Calibration error

In the analysis of strong calibration the discrepancy in the left-hand side of Eq. (3) lends itself
naturally to the following calibration measure.

Definition 2. Let F be a non-empty space of functions f : ∆m → Rm. Then the calibration error
(CE) of model g with respect to class F is

CE[F , g] := sup
f∈F

E [(r(g(X))− g(X))
⊺
f(g(X))] .

4



A trivial consequence of the design of the CE is that the measure is zero for every model that is
calibrated in the strong sense, regardless of the choice of F . The converse statement is not true in
general. As we show in Theorem C.2, the class of continuous functions is a space for which the
CE is zero if and only if model g is strongly calibrated, and hence allows to characterize calibrated
models. However, since this space is extremely large, for every model the CE is either 0 or ∞.2.
Thus a measure based on this space does not allow us to compare miscalibrated models and hence is
rather impractical.

4.2 Kernel calibration error

Due to the correspondence between kernels and RKHSs we can define the following kernel measure.

Definition 3. Let k be a matrix-valued kernel as in Definition 1. Then we define the kernel calibration
error (KCE) with respect to kernel k as KCE[k, g] := CE[F , g], where F is the unit ball in the
RKHS corresponding to kernel k.

As mentioned above, a RKHS with a universal kernel is a dense subset of the space of continuous
functions. Hence these kernels yield a function space that is still large enough for identifying strongly
calibrated models.

Theorem 1 (cf. Theorem C.1). Let k be a matrix-valued kernel as in Definition 1, and assume that
k is universal. Then KCE[k, g] = 0 if and only if model g is calibrated in the strong sense.

From the supremum-based Definition 2 it might not be obvious how the KCE can be evaluated.
Fortunately, there exists an equivalent kernel-based formulation.

Lemma 1 (cf. Lemma E.2). Let k be a matrix-valued kernel as in Definition 1. If
E[‖k(g(X), g(X))‖] < ∞, then

KCE[k, g] =
(

E
[

(eY − g(X))
⊺
k(g(X), g(X ′))(eY ′ − g(X ′))

]

)1/2

, (4)

where (X ′, Y ′) is an independent copy of (X,Y ) and ei denotes the ith unit vector.

4.3 Expected calibration error

The most common measure of calibration error is the expected calibration error (ECE). Typically it is
used for quantifying calibration in a binary classification setting but it generalizes to strong calibration
in a straightforward way. Let d : ∆m×∆m → R≥0 be a distance measure on the probability simplex.
Then the expected calibration error of a model g with respect to d is defined as

ECE[d, g] = E[d(r(g(X)), g(X))]. (5)

If d(p, q) = 0 ⇔ p = q, as it is the case for standard choices of d such as the total variation distance
or the (squared) Euclidean distance, then ECE[d, g] is zero if and only if g is strongly calibrated as
per Eq. (3).

The ECE with respect to the cityblock distance, the total variation distance, or the squared Euclidean
distance, are special cases of the calibration error CE, as we show in Lemma I.1.

4.4 Maximum mean calibration error

Kumar et al. (2018) proposed a kernel-based calibration measure, the so-called maximum mean
calibration error (MMCE), for training (better) calibrated neural networks. In contrast to their work,
in our publication we do not discuss how to obtain calibrated models but focus on the evaluation
of calibration and on calibration tests. Moreover, the MMCE applies only to a binary classification
setting whereas our measure quantifies strong calibration and hence is more generally applicable. In
fact, as we show in Example I.1, the MMCE is a special case of the KCE.

2Assume CE[F , g] < ∞ and let f1, f2, . . . be a sequence of continuous functions with CE[F , g] =
limn→∞ E [(r(g(X))− g(X))⊺fn(g(X))]. From Remark C.2 we know that CE[F , g] ≥ 0. Moreover,

f̃n := 2fn are continuous functions with 2CE[F , g] = limn→∞ E

[

(r(g(X))− g(X))⊺f̃n(g(X))
]

≤

supf∈F E [(r(g(X))− g(X))⊺f(g(X))] = CE[F , g]. Thus CE[F , g] = 0.
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5 Calibration error estimators

Consider the task of estimating the calibration error of model g using a validation set D =
{(Xi, Yi)}

n
i=1 of n i.i.d. random pairs of inputs and labels that are distributed according to (X,Y ).

From the expression for the ECE in Eq. (5), the natural (and, indeed, standard) approach for estimating
the ECE is as the sample average of the distance d between the predictions g(X) and the calibration
function r(g(X)). However, this is problematic since the calibration function is not readily available
and needs to be estimated as well. Typically, this is addressed using histogram-regression, see, e.g.,
Guo et al. (2017); Naeini et al. (2015); Vaicenavicius et al. (2019), which unfortunately leads to
inconsistent and biased estimators in many cases (Vaicenavicius et al., 2019) and can scale poorly to
large m. In contrast, for the KCE in Eq. (4) there is no explicit dependence on r, which enables us to
derive multiple consistent and also unbiased estimators.

Let k be a matrix-valued kernel as in Definition 1 with E[‖k(g(X), g(X))‖] < ∞, and define for
1 ≤ i, j ≤ n

hi,j := (eYi
− g(Xi))

⊺
k(g(Xi), g(Xj))(eYj

− g(Xj)).

Then the estimators listed in Table 1 are consistent estimators of the squared kernel calibration error

SKCE[k, g] := KCE2[k, g] (see Lemmas F.1 to F.3). The subscript letters “q” and “l” refer to the
quadratic and linear computational complexity of the unbiased estimators, respectively.

Table 1: Three consistent estimators of the SKCE.

Notation Definition Properties Complexity

ŜKCEb n−2
∑n

i,j=1 hi,j biased O(n2)

ŜKCEuq

(

n
2

)−1 ∑

1≤i<j≤n hi,j unbiased O(n2)

ŜKCEul ⌊n/2⌋
−1 ∑⌊n/2⌋

i=1 h2i−1,2i unbiased O(n)

6 Calibration tests

In general, calibration errors do not have a meaningful unit or scale. This renders it difficult to
interpret an estimated non-zero error and to compare different models. However, by viewing the
estimates as test statistics with respect to Eq. (3), they obtain an interpretable probabilistic meaning.

Similar to the derivation of the two-sample tests by Gretton et al. (2012), we can use the consistency
and unbiasedness of the estimators of the SKCE presented above to obtain bounds and approximations
of the p-value for the null hypothesis H0 that the model is calibrated, i.e., for the probability that the
estimator is greater than or equal to the observed calibration error estimate, if the model is calibrated.
These bounds and approximations do not only allow us to perform hypothesis testing of the null
hypothesis H0, but they also enable us to transfer unintuitive calibration error estimates to an intuitive
and interpretable probabilistic setting.

As we show in Theorems H.2 to H.4, we can obtain so-called distribution-free bounds without making
any assumptions about the distribution of (X,Y ) or the model g. A downside of these uniform
bounds is that usually they provide only a loose bound of the p-value.

Lemma 2 (Distribution-free bounds (see Theorems H.2 to H.4)). Let k be a matrix-valued kernel
as in Definition 1, and assume that Kp;q := sups,t∈∆m ‖k(s, t)‖p;q < ∞ for some 1 ≤ p, q ≤ ∞.3

Let t > 0 and Bp;q := 21+1/p−1/qKp;q , then for the biased estimator we can bound

P

[

ŜKCEb ≥ t
∣

∣

∣
H0

]

≤ exp

(

−
1

2

(

max
{

0,
√

nt/Bp;q − 1
})2

)

,

and for either of the unbiased estimators T ∈ {ŜKCEuq, ŜKCEul}, we can bound

P

[

T ≥ t
∣

∣

∣
H0

]

≤ exp

(

−
⌊n/2⌋t2

2B2
p;q

)

.

3For a matrix A we denote by ‖A‖p;q the induced matrix norm supx 6=0 ‖Ax‖q/‖x‖p.
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Asymptotic bounds exploit the asymptotic distribution of the test statistics under the null hypothesis,
as the number of validation data points goes to infinity. The central limit theorem implies that the
linear estimator is asymptotically normally distributed.

Lemma 3 (Asymptotic distribution of ŜKCEul (see Corollary G.1)). Let k be a matrix-valued
kernel as in Definition 1, and assume that E[‖k(g(X), g(X))‖] < ∞. If Var[hi,j ] < ∞, then

P

[

√

⌊n/2⌋ ŜKCEul ≥ t
∣

∣

∣
H0

]

→ 1− Φ

(

t

σ̂

)

as n → ∞,

where σ̂ is the sample standard deviation of h2i−1,2i (i = 1, . . . , ⌊n/2⌋) and Φ is the cumulative
distribution function of the standard normal distribution.

In Theorem G.2 we derive a theoretical expression of the asymptotic distribution of n ŜKCEuq,
under the assumption of strong calibration. This limit distribution can be approximated, e.g., by
bootstrapping (Arcones and Giné, 1992) or Pearson curve fitting, as discussed by Gretton et al. (2012).

7 Experiments

We conduct experiments to confirm the derived theoretical properties of the proposed calibration error
estimators empirically and to compare them with a standard histogram-regression based estimator of

the ECE, denoted by ÊCE.4

We construct synthetic data sets {(g(Xi), Yi)}
250
i=1 of 250 labeled predictions for m = 10 classes from

three generative models. For each model we first sample predictions g(Xi) ∼ Dir(0.1, . . . , 0.1), and
then simulate corresponding labels Yi conditionally on g(Xi) from

M1 : Cat(g(Xi)), M2 : 0.5Cat(g(Xi)) + 0.5Cat(1, 0, . . . , 0), M3 : Cat(0.1, . . . , 0.1),

where M1 gives a calibrated model, and M2 and M3 are uncalibrated. In Appendix J.2 we
investigate the theoretical properties of these models in more detail.

For simplicity, we use the matrix-valued kernel k(x, y) = exp (−‖x− y‖/ν)I10, where the kernel
bandwidth ν > 0 is chosen by the median heuristic. The total variation distance is a common distance
measure of probability distributions and the standard distance measure for the ECE (Bröcker and
Smith, 2007; Guo et al., 2017; Vaicenavicius et al., 2019), and hence it is chosen as the distance
measure for all studied calibration errors.

7.1 Calibration error estimates

In Fig. 1 we show the distribution of ÊCE and of the three proposed estimators of the SKCE, evalu-
ated on 104 randomly sampled data sets from each of the three models. The true calibration error of
these models, indicated by a dashed line, is calculated theoretically for the ECE (see Appendix J.2.1)

and empirically for the SKCE using the sample mean of all unbiased estimates of ŜKCEuq.

We see that the standard estimator of the ECE exhibits both negative and positive bias, whereas

ŜKCEb is theoretically guaranteed to be biased upwards. The results also confirm the unbiasedness

of ŜKCEul.

7.2 Calibration tests

We repeatedly compute the bounds and approximations of the p-value for the calibration error
estimators that were derived in Section 6 on 104 randomly sampled data sets from each of the three

models. More concretely, we evaluate the distribution-free bounds for ŜKCEb (Db), ŜKCEuq

(Duq), and ŜKCEul (Dul) and the asymptotic approximations for ŜKCEuq (Auq) and ŜKCEul (Al),
where the former is approximated by bootstrapping. We compare them with a previously proposed
hypothesis test for the standard ECE estimator based on consistency resampling (C), in which

4The implementation of the experiments is available online at https://github.com/devmotion/
CalibrationPaper.
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Figure 1: Distribution of calibration error estimates of 104 data sets that are randomly sampled from
the generative models M1, M2, and M3. The solid line indicates the mean of the calibration error
estimates, and the dashed line displays the true calibration error.

data sets are resampled under the assumption that the model is calibrated by sampling labels from
resampled predictions (Bröcker and Smith, 2007; Vaicenavicius et al., 2019).

For a chosen significance level α we compute from the p-value approximations p1, . . . , p104 the
empirical test error

1

104

104
∑

i=1

✶[0,α](pi) (for M1) and
1

104

104
∑

i=1

✶(α,1](pi) (for M2 and M3).

In Fig. 2 we plot these empirical test errors versus the significance level.

As expected, the distribution-free bounds seem to be very loose upper bounds of the p-value, resulting
in statistical tests without much power. The asymptotic approximations, however, seem to estimate
the p-value quite well on average, as can be seen from the overlap with the diagonal in the results for
the calibrated model M1 (the empirical test error matches the chosen significance level). Additionally,

calibration tests based on asymptotic distribution of these statistics, and in particular of ŜKCEuq, are
quite powerful in our experiments, as the results for the uncalibrated models M2 and M3 show. For
the calibrated model, consistency resampling leads to an empirical test error that is not upper bounded
by the significance level, i.e., the null hypothesis of the model being calibrated is rejected too often.
This behaviour is caused by an underestimation of the p-value on average, which unfortunately makes
the calibration test based on consistency resampling for the standard ECE estimator unreliable.

7.3 Additional experiments

In Appendix J.2.3 we provide additional results for varying number of classes and a non-standard

ECE estimator with data-dependent bins. We observe that the bias of ÊCE becomes more prominent
with increasing number of classes, showing high calibration error estimates even for calibrated models.
The estimators of the SKCE are not affected by the number of classes in the same way. In some

experiments with 100 and 1000 classes, however, the distribution of ŜKCEul shows multi-modality.

The considered calibration measures depend only on the predictions and the true labels, not on how
these predictions are computed. Hence directly specifying the predictions allows a clean numerical
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Figure 2: Empirical test error versus significance level for different bounds and approximations of
the p-value, evaluated on 104 data sets that are randomly sampled from the generative models M1,
M2, and M3. The dashed line highlights the diagonal of the unit square.

evaluation and enables comparisons of the estimates with the true calibration error. Nevertheless, we
provide a more practical evaluation of calibration for several modern neural networks in Appendix J.3.

8 Conclusion

We have presented a unified framework for quantifying the calibration error of probabilistic classifiers.
The framework encompasses several existing error measures and enables the formulation of a new
kernel-based measure. We have derived unbiased and consistent estimators of the kernel-based error
measures, which are properties not readily enjoyed by the more common and less tractable ECE.
The impact of the kernel and its hyperparameters on the estimators is an important question for future
research. We have refrained from investigating it in this paper, since it deserves a more exhaustive
study than, what we felt, would have been possible in this work.

The calibration error estimators can be viewed as test statistics. This confers probabilistic interpretabil-
ity to the error measures. Specifically, we can compute well-founded bounds and approximations of
the p-value for the observed error estimates under the null hypothesis that the model is calibrated.
We have derived distribution-free bounds and asymptotic approximations for the estimators of the
proposed kernel-based error measure, that allow reliable calibration tests in contrast to previously
proposed tests based on consistency resampling with the standard estimator of the ECE.
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