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ABSTRACT 

Shifts in working temperature are an important issue that prevents the successful transfer of 

calibration models from one chemical instrument to another. This effect is of special relevance 

when working with gas sensor arrays modulated in temperature. In this paper, we study the use 

of multivariate techniques to transfer the calibration model from a temperature modulated gas 

sensor array to another when a global change of temperature occurs. To do so, we built 12 

identical master sensor arrays composed of three different types of commercial Figaro sensors 

and acquired a dataset of sensor responses to three pure substances (ethanol, acetone and 

butanone) dosed at 7 concentrations. The master arrays are then shifted in temperature (from -50 

to 50°C, �T = 10°C) and considered as slave arrays. Data correction is performed for an 

increasing number of transfer samples with 4 different calibration transfer techniques: Direct 

Standardization, Piece-wise Direct Standardization, Orthogonal Signal Correction and 

Generalized Least Squares Weighting. In order to evaluate the performance of the calibration 

transfer, we compare the Root Mean Square Error of Prediction (RMSEP) of master and slave 

arrays, for each instrument correction. Best results are obtained from Piece-wise Direct 

standardization, which exhibits the lower RMSEP values after correction for the smaller number 

of transfer samples. 
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1. INTRODUCTION 

Shifts in working temperature prevent direct calibration transfer between chemical measuring 

instruments [1]. That is to say that calibration models built for instrument I1 working at a 

temperature T1 experience an important degradation on prediction when applied to data samples 

of instrument I2 at T2 (T2	T1). This is a matter of the utmost importance for temperature 

modulated metal oxide gas sensor arrays [2], where tolerances in heater resistances values, 

variations on the working flow conditions, and environmental fluctuations can give rise to a 

global shift �T of the sensor nominal temperature profile, and therefore of the sensor response 

waveform. A naïve approach to overcome invalid calibration transfer is to create independent 

calibration models for each of the arrays. However, this is an impractical solution, since it 

implies costly and labor-intensive measurement periods. A preferable methodology is the use of 

instrument standardization techniques [3] to correct the temperature shift in sensor arrays as 

compared to a reference array (from now on we will refer to these arrays as slave and master 

arrays respectively) calibrated for a complete set of experimental conditions and a proper 

temperature profile. The calibration transfer then relies on the measurement of only a small 

subset of experimental points in the slave array (herein called transfer samples). 

According to Marco and Gutierrez-Galvez [4], calibration transfer can be realized following 

three different strategies: (i) by transforming the slave instrument readings to keep the 

calibration model of the master instrument still valid on the slave instrument, (ii) by modifying 

the target labels of the samples from the slave instrument so as to match those obtained from the 

master instrument, and (iii) by forcing master and slave readings to become more similar before 

creating the calibration model. Direct Standardization (DS) and Piecewise Direct 

Standardization (PDS) are the more popular methods to standardize slave instrument response 

[5, 6]. With respect to the second strategy, the most frequently used method is univariate 

Multiplicative Signal Correction (MSC) [7]. Finally, Component Correction (CC), Orthogonal 

Signal Correction (OSC) and Generalized Least Squares Weighting (GLSW) are commonly 

used to remove instrument-to-instrument variability [8-10]. 
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A large number of studies on instrument standardization have been applied to Near Infrared 

Spectroscopy (NIRS). However, there is a noticeable lack of studies about the standardization of 

gas sensor arrays, with the exception of three important contributions. Balaban et al. [11] built a 

calibration model to identify the age of milk samples with a chemical sensor array of 12 

conductive polymers. They transferred this model to a different array with the same sensors. To 

do so, they transformed the slave array response into master array readings by applying three 

different types of corrections: Univariate Regression, Multivariate Regression (MLR) and 

Multilayer Perceptrons (MLP). These calibration transfer methods were evaluated comparing 

the classification rates of the master and the transformed master arrays. Multivariate regression 

showed the best performance in standardizing the instruments. In a similar study, Tomic et al. 

[12] aimed at compensating the effect of sensor replacement in a hybrid sensor array composed 

of 12 MOS (metal-oxide semiconductor) sensors and 5 MOSFET (metal-oxide semiconductor 

field-effect transistor).  The problem to solve was to distinguish between milk in good condition 

from off-flavor milk. They acquired twice the complete set of measurements, before and after 

the sensor replacement. Then they modeled the data of the old sensor array, which was selected 

as the master instrument. Measurements obtained from the new array were adapted to be used in 

the master classification model with two different techniques: Component Correction (CC) and 

Multiplicative Drift Correction (MDC). The later was shown to be slightly more efficient in 

rectifying the slave instrument response using the classification rate obtained for the test as a 

figure of merit. In a more recent paper, Carmel et al. [13] showed the possibility of building 

mappings between two different sensor technology arrays, a 32 conducting polymer array (CP) 

and an 8 sensor quartz microbalance module (QMB), which were exposed to a set of 23 pure 

chemicals. The authors built a PCA model for each instrument and tried to classify test samples 

according to the distance to the centroid of the nearest class. After that, they transformed the 

projected data from one sensor array to the other in both directions. To perform this task, they 

investigated three different approaches: Multivariate Regression (MLR, PCR, PLS), Neural 

Networks (NN) and Tesselation-based Linear Interpolation (TLI). Again, the classification rate 



4�

� �

was the figure of merit used to compare master and the standardized slave instruments. Their 

results showed that the performance of the different standardization methods was dependent on 

the mapping direction, obtaining the best results for the conversion from CP to QMB using NN, 

and applying TLI in the reverse mapping.  In all these previous works the complete set of 

training samples used to create the data models was transferred from the master to the slave 

instrument. 

Beyond these valuable contributions, we have identified three important open questions for 

calibration transfer in e-noses. (i) E-nose arrays can tune their operational parameters so as to 

enhance their sensitivity to different compounds [14]. Therefore, instrument dissimilarities due 

to tolerances on the operational parameters must be corrected accordingly. (ii) In order to make 

an efficient calibration transfer, a limited subset of experiments should be run in the slave 

instruments. To the best of our knowledge, no systematic study comparing the performance of 

different calibration transfer techniques with respect to the number of transfer samples is found 

in the literature for e-noses. (iii) Continuous calibration models (regressors) provide a more 

sensitive measure of the calibration transfer performance than discrete calibration models 

(classifiers). However, in the literature you can only find classification models transferred from 

one instrument to another. 

In this paper, we address these three open questions with the following study. We have explored 

the calibration transfer problem for temperature modulated metal oxide sensor arrays when a 

global shift of temperature occurs (i). In an exhaustive study that includes 132 master-slave 

instrument combinations, we will evaluate the quality of the calibration transfer obtained from 

several instrument standardization techniques. We will compare master and slave errors 

(RMSEP) for different temperature shifts and sizes of the transfer sample set (ii) and on 

concentration prediction (iii).  



5�

� �

2. THEORY 

In this paper, we follow two of the three different strategies proposed in the literature for 

calibration transfer [Marco and Gutierrez-Galvez, 2012]. The first one consists in transforming 

the sensor responses of the slave instrument so they resemble those of the master instrument. In 

this way, we can directly use the calibration model built on the sensor responses of the master 

instrument with the transformed slave sensor responses. In this strategy, we work on the space 

of responses of the master instrument. To transform the sensor responses of the slave 

instrument, we used Direct Standardization (DS) and Piece-wise Direct Standardization (PDS). 

The second strategy consists of transforming not only the sensor responses of the slave 

instrument but also those of the master instrument to a joint master-slave space. Thus, the 

calibration model is built in this joint space. The sensor response transformation methods used 

in this strategy are Generalized Least Squares Weighting (GLSW) and Orthogonal Signal 

Correction (OSC). Figure 1 illustrates both strategies.  

In addition to this, we realized a sample subset selection to sort out the samples used to study 

the performance of the calibration transfer in terms of the number of samples considered from 

the slave instrument. We test two different approaches: select samples before or after creating 

the calibration model of the master instrument. Next, we describe the main features of the 

different calibration transfer techniques used in this paper, as well as the two methodologies 

used to perform sample subset selection. 

2.1  Calibration Transfer Techniques   

The purpose of calibration transfer is to correct instrumental differences so that the readings of 

the slave instrument (XS) become similar to the readings of the master instrument (XM). Each of 

the calibration transfer techniques employed in this work has been trained to perform this task 

using a subset of samples of the training set of master and slave instruments. These samples are 

usually called transfer samples S. This notation is employed in the description of the following 

four calibration transfer techniques. 
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a) Direct Standardization (DS)

Direct Standardization [15] is a calibration transfer technique that relates the readings of the 

slave instrument to those of the master according to the following linear transformation: 

�� � �� � �� (eq.1) 

whereSM andSS  are the mean-centered response matrices of transfer samples of master and 

slave instruments and F the slave-to-master transformation matrix, which is estimated as the 

productSM and the pseudo-inverse ofSS:    

� � ��� � ���
(eq.2) 

In this way, new samples from the slave instrument XS can be projected onto the master 

instrument response space XM: 

��	 � ��	 � �� (eq.3) 

b) Piece-Wise Direct Standardization (PDS) 

The DS method has the limitation of not properly transform the responses from slave to master 

instruments when the number of variables per sample is greater than the number of samples. 

Thus, the transformation matrix F (eq. 2) becomes underdetermined [7]. Piece-wise Direct 

Standardization [16] avoids this problem using local PLS models. It creates local linear models 

fj that relate the response of the master instrument variables within a window of size w centered 

at the j-th variable to the j-th variable on the slave array. The resulting transformation matrix for 

the method F has a diagonal structure:  

� � 
��
���	 � ��	 � ��	�� (eq.4) 

Where k is the number of variables on both instruments. The projection of data from the master 

onto the slave instrument is performed following eq.3. 
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c) Orthogonal Signal Correction (OSC) 

Orthogonal Signal Correction [17] aims to remove the sources of variance of the slave 

instrument that are orthogonal to the master array. The OSC algorithm starts calculating the 

scores vector t1 of the first Principal component of the slave array matrix of transfer samples, 

SS. That vector is then orthogonalized against the master instrument response matrix of transfer 

samples SM, giving raise to t1’

                                     

��� � �� � �� � ���	 � ����� � ��	 � � ��� (eq.5) 

After that, the weights w1 of the product SSw1 are calculated for the maximum projection onto 

the orthogonal scores vector t1’: 

�� � ��� � ��� � (eq.6) 

SS
 +

 being the pseudo-inverse of SS. The scores vector t1 is then updated: 

�� � �� � ��� (eq.7) 

Next, the algorithm returns to eq.5, where the determination of the orthogonal score vector is 

repeated until convergence. At this point, the loading vector corresponding to the first 

orthogonal score is computed as: 

�� � ��	 � �����	�����
� (eq.8) 

and the first OSC component can be removed from the original SS matrix obtaining the deflated 

data matrix SS,1:  

�� � � �� � � !�"�# (eq.9) 

Finally, the complete process can be repeated until the N-th Orthogonal Signal Component as 

follows: 
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(eq.10)

d) Generalized Least Squares Weighting (GLSW) 

Generalized Least Squares Weighting [18] method identifies and down-weights the instrument 

channels (features) responsible for the major sources of variance between master and slave 

instruments. To build the filter, the covariance matrix C from the difference between the mean-

centered master and slave matrix of transfer samples is computed: 

( � ��� � ���	��� � ���� (eq.11)

Next, C is factorized as the product of three matrices through singular value decomposition 

(SVD): 

) � *+�*# (eq.12)

where V and D are, respectively, the eigenvector and the singular value matrices. After that, the 

S matrix is weighted in the following way: 

, � -.�
/ 0 1� (eq.13)�

Being W the matrix of the weighted eigenvalues, � the weighting parameter and I the identity 

matrix. The parameter � controls the degree of dissimilarity allowed to the instruments. While 

high values of � increase the down weighting, lower values of � reduce its effect. The filtering 

matrix G is then calculated using the inverse of the weighted eigenvalues: 

2 � *3��*# (eq.14)
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2.2 Sample subset selection 

Sample subset selection can be conducted in two manners: a) by looking for the non-

characteristic samples (with respect the multivariate mean) on the master instrument matrixXM 

through the calculus of the leverage matrix H [19]: 

4 � ����	 � (eq.15)

And b) by seeking for the most influential samples of the master’s instrument calibration model, 

approaching H as the leverage matrix for the inverse calibration modelXM
+
, also mean-

centered: 

4 � ����� � (eq.16) 

5
In both cases, the maximum diagonal element of H corresponds to the most relevant sample in 

the training set. Once the first sample is obtained, the rest of the dataset is orthogonalized 

against it, a new leverage matrix H is created, and the next most influential sample can be 

selected. Table 1 shows the first 12 samples selected using both methods. 

3. METHODS 

3.1 Experimental 

To perform this study, we used a set of three different types of Figaro metal oxide 

semiconductor sensors (TGS-2600, TGS-2610, TGS-2620) replicated 12 times each. In all 

experiments, one group of three different sensors was used as a master instrument to find a 

calibration model and the rest treated as slave arrays to study the calibration transfer. The read 

out of the sensors is performed through a load resistor (RL=6.1 K
) in a half bridge 

configuration. We modulated the sensor temperatures with a ramp profile ranging from ambient 
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temperature to 495°C ± 5°C [20] in a period of 90 seconds. The 36 sensors were exposed during 

900 seconds to 3 analytes (ethanol, acetone, butanone) at 7 different concentrations (0, 20, 40, 

60, 80, 100, 120), giving rise to 21 different experiments. Detailed information on the odor 

delivery system and the estimation of sample concentration can be found in our previous work 

[21]. After each measurement block, the sensor chamber was cleaned in synthetic air over a 

period of 1800 seconds. Using this set of experiments, we built calibration models of the master 

instruments for the prediction of ethanol, acetone and butanone concentration. We acquired a 

different number of repetitions per experiment for training (7) and testing (3) the calibration 

models. Experiments with concentration levels of 0, 40, 80 and 120 ppm were acquired and 

used as a training set (3 pure analytes x 4 concentrations x 7 repetitions = 84 samples). 

Similarly, experiments with concentrations of 20, 60, 100 ppm were acquired and employed for 

testing the calibration models (3 pure analytes x 3 concentrations x 3 repetitions = 27 samples). 

The selected temperature window used for the calibration of the master instruments was [200-

300] ºC. 

3.2 Calibration model 

We have approached the calibration of our instruments as a regression problem to provide more 

sensitivity when transferring the calibration model to another instrument. In particular, we have 

used partial least squares regression (PLSR). We note that the PLSR model of the master 

instrument provides simultaneously a prediction for the concentration of ethanol, acetone and 

butanone of gas samples. We employed the set of training samples to generate the calibration 

models, whose level of complexity (i.e. the number of latent variables) was set through a cross-

validation stage based on the Leave One Block Out (LOBO) approach. More specifically, each 

block of samples used for cross-validation belonged to one experiment type of the training set. 

Therefore, we employed 12 blocks of experiments, with 7 samples each. Basically, the LOBO 

method computes the Root Mean Square Error in Cross-Validation (RMSECVM) as the average 

RMSE obtained from predicting each of the different blocks of experiments using a PLSR 

model built from the complementary blocks of experiments: 
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(eq.17) 

where �i,j,k and vi,j,k are, respectively, the observed and the predicted concentration values for the 

i-th sample, the j-th pure substance and the k-th data partition, NV is the number of samples for 

testing each partition of the validation set (7), M  the number of pure analytes present in the 

dataset (3) and C the number of  blocks of experiments of the training set (12). The number of 

latent variables of the calibration model was determined calculating the RMSECVM (lv) for an 

increasing number of latent variables (lv from 1 to 10). When the current RMSECVM (lv=r) did 

not reduce the previous RMSECVM (lv=r-1) value more than a 1%, the selected number of 

latent variables was determined lv=r-1. 

The measure of the model’s performance fitting the test data for the master array was the Root 

Mean Squared Error of Prediction (RMSEPM): 

67�8D� � -: : �;<= > � ;= >��>'�?E='� �
A	 � 7 �

(eq.18) 

where �i,j and yi,j were, respectively, the observed and the predicted concentration values for the 

sample i-th sample, the j-th pure analyte, NT  is the number of samples of test set (27), M  the 

number of pure analytes present in the dataset (3). The RMSEP was also used as a measure of 

goodness of fit for the transformed slave readings (RMSEPS).  

3.3 Calibration transfer  

In this study, we have evaluated the ability of four techniques (DS, PDS, OSC, GLSW) to 

counteract the effect of temperature shift on calibration transfer. A series of experiments were 

conducted where the temperature of the slaves was shifted according to the following 

temperature values:  �T = 0°C, ±10°C, ±20°C, ±30°C, ±40°C, ±50 °C. Figure 2 shows the 

dramatic change on MOX sensor waveforms due to temperature shifting (�T =-50 °C), for a 

temperature modulated TGS 2620 sensor exposed to the 3 test set ethanol concentrations. The 
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effect of the number of transfer samples (from 1 up to 12) on the calibration transfer quality was 

studied, giving rise to a total of 17424 different calibration models transferred (12 masters x 11 

slaves x 11 temperature shifts x 12 transfer samples) per instrument standardization technique. 

An example of the calibration transfer process is shown in figures (3a-c) using Direct 

Standardization, for a temperature shifting of �T =-50 °C and 12 transfer samples. These figures 

show the scores plot of a PCA model for the master array (3a), the uncorrected slave array (3b) 

and corrected slave array (3c). Calibration transfer allows placing test samples back to its 

original position or nearby.  

3.3.1 Calibration transfer models  

We optimized the 4 calibration transfer methods minimizing the difference between the master 

and the corrected slave array readings. This procedure optimized the parameters of the different 

calibration transfer algorithms selecting them among a set of possible values. The range of 

parameter values depended on the particular technique employed.  The window size w was 

selected from a list of 1 to 31 channels for PDS. The maximum value for w was limited to 31 so 

that allowed temperature shift correction between instruments without mixing features from 

different sensors of the master array. The range of the weighting parameter � in GLSW was 

selected taking into account different possible degrees of the dissimilarity between master and 

slave instruments. Large values for � (close to 1) are needed for correcting instrumental 

dissimilarities whose impact in the overall variance of the data is comparable to the useful 

variance of the measurement. In practice, we selected � from the collection of values 1, 0.5, 

0.01, 0.05, 0.001, 0.005.  Finally, the number of Orthogonal Components, ncomp, in OSC was 

set in the range from 2 to 12. The reason for that was that the maximum value of this parameter 

was limited by number of transfer samples used to perform the calibration transfer between 

master and slave instruments (from 2 to 12). The validation started performing data correction 

for each technique and set of parameter values. The calibration model of the master instrument 

was then applied on the transformed training set of the slave instrument and the predictions of 
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both instruments were compared.  The comparison was performed through the calculation of the 

Root Mean Squared Error of Calibration (RMSECM-S):   
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where y
M

i,j and y
S

i,j are the predicted concentration values of the master and slave instruments 

for the sample i-th sample and the j-th pure substances, NC (84) is the number of training 

samples and M  the number of substances present in the dataset (3). The set of parameter values 

whose RMSECM-S was not able to be reduced in more than 1% by any other set was selected to 

build the calibration transfer model, for each calibration transfer algorithm. The RMSE was also 

employed as a measure of goodness of fit for the transformed slave readings of the test set 

(RMSEPM-S).  

4. RESULTS 

To gain some insight on the effect of temperature shift on calibration model transfer, we will 

show first results of the master calibration model applied directly on the slave without 

correction. This will provide a baseline performance from where to improve. Then, we will 

present the results of the slave RMSEP for an increasing number of transfer samples and also as 

temperature shifts varies in the range of [-50,50] °C. Finally, the results for the RMSEPM-S

across all temperature shifts and number of transfer samples will provide a comprehensive 

picture of the performance of the different calibration transfer techniques.   

In this study, each of the array replicates was used both as master instrument for the other 

replicates or as slave array to be corrected by another master array. When acting as master 

instruments, the array replicates produced similar calibration models in terms of complexity and 

model performance. Most of the array replicates built a 4 latent variable PLSR model (9 out of 

12) whereas the remaining (3) needed 5 latent variables to achieve the specifications set for 

cross-validation. The average RMSEPM for the set of master instruments was (4.7±1.1) ppm.     
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The direct application of the master calibration model in the slave arrays led, as anticipated, to 

high RMSEPS. Figure 4 shows the average prediction error of uncorrected slave arrays 

(RMSEPS) along temperature shift, for all possible master-slave combinations. The RMSEPS

was substantially higher than the RMSEPM. The minimum difference between instruments was 

found when no temperature shift was produced (RMSEPS|�T=0=29.1 ±18.9 ppm). As can be 

expected, the RMSEPS increased as the temperature shift between instruments increased. 

Though, this effect was not symmetric: shifts towards higher temperatures exhibited a greater 

penalty on the RMSEPS than shifts in the opposite direction. Comparing the most extreme 

temperature shifts in both directions we found that the error of prediction at �T=+50ºC was 

RMSEPS|�T=+50ºC=128.2 ±41.4 ppm, whereas at �T=--50ºC was RMSEPS|�T=-50ºC=40.6 ±6.1 ppm.  

After data correction, the RMSEPS of the slave arrays was considerably reduced. The degree of 

error reduction depended on the amount of transfer samples and the shift of temperature. As a 

general trend, the RMSEPS decreased gradually until saturation as the number of transfer 

samples increased, for any temperature shift and calibration transfer technique. The influence of 

the transfer sample subset size on the quality of the calibration transfer is illustrated in figure 

5(a-d).  The figure shows the average RMSEPS of the corrected slave instruments of the 

different calibration transfer techniques, for an increasing number of transfer samples and a 

fixed temperature shift of �T=-20ºC. DS and PDS obtained the lowest RMSEPS levels (6.3 ±2.1 

ppm, and 6.1 ±1.4 ppm, respectively) although PDS needed a fewer number of samples to reach 

error saturation (five instead of eleven). OSC and GLSW showed higher RMSEPS values 

(around 8 ppm, for both techniques) and slower transitions to saturation. Concerning the 

influence of temperature shift, we found that the lowest RMSEPS were biased towards negative 

shifts, for any number of transfer samples and calibration transfer technique. However, PDS 

demonstrated to be the most robust technique against this direction-dependent effect. An 

example of this behavior can be seen on figure 6 (a-d), where we show the average RMSEPS of 

the corrected slave arrays using the four instrument standardization methods, for the complete 

set of the temperature shifts, fixing to 5 the number of transfer samples.  The minimum 
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RMSEPS value for DS and PDS is obtained for a temperature shift of �T=-30ºC (9.4±4.0 ppm, 

and 6.2 ±1.6 ppm, respectively). On the other hand, OSC and GLSW presented their minimum 

RMSEPS value for �T=0ºC (8.7±2.8 ppm for OSC and 9.1±3.3 ppm for GLSW). 

Figure 7(a-d) shows the color maps plots for the average RMSEPM-S of the transformed slaves, 

for each number of transfer samples, temperature shift and calibration transfer technique. 

Dark/light tones denote good/bad performances in correcting instrument dissimilarities. To 

enhance the contrast of plots, the prediction errors below 5 ppm and above 20 ppm were 

saturated, respectively, to black and white colors. To compare the quality of the different 

instrument standardization methods we evaluated the percentage of slave arrays with errors of 

prediction below 5 ppm in Fig.7 (a-d). According to this criterion, DS was able to correct 

properly around the 23 % of these slave arrays. However, DS needed at least 5 transfer samples 

to obtain prediction errors below 20 ppm, and tended to present better corrections for slave 

arrays biased towards negative temperature shifts. Regarding OSC and GLSW, they exhibited a 

similar behavior in the sense that they experienced difficulties to correct the effect of 

temperature shifting. Note that both techniques needed at least 8 transfer samples to reduce the 

prediction error below 5 ppm, for the nearest temperature shift (�T= -10 ºC). In any case, none 

of them properly corrected more than a 15% of the slave arrays. Again, PDS presented the best 

performance, since the technique could cope better with the RMSEP error contribution due to 

the temperature shift direction. For instance, PDS only needed 5 transfer samples to correct 

slave arrays in the range of temperature shifts that goes from �T=-20ºC to �T=20 ºC. 

Consequently, provided the highest number of properly slave corrections (60 % of the slave 

arrays).   

5. DISCUSSION  

The reason why PDS performed better corrections than DS is that PDS creates local corrective 

models for each of the channels of the slave array, whereas DS generates a single global model, 

less flexible and more complex.  This seems to be so also for OSC and GLSW. In addition to 
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this, PDS detected which channels of the master array (within a window) were more correlated 

to the particular channel on the slave array, down-weighting the contribution to the correction of 

the non-important channels. As a consequence, the number of transfer samples between master 

and slave arrays needed to achieve the same error level tended to be lower for PDS. That 

suggests that the piece-wised extensions of OSC and GLSW may outperform the results 

obtained from the global versions of the algorithms, although this discussion is beyond the 

scope of this paper.  

The performance of a calibration model with a high degree of complexity is directly related with 

the availability of a large number of samples. Effectively, as we know from figure 5(a-d), an 

increment on the number of transfer samples provides, up to a point, an enhancement of the 

corrected RMSEPS. This improvement is reflected on the structure of the calibration transfer 

models (Table 2a), where the parameters that govern the sample transformations are gradually 

modified until reaching saturation. The reason for error saturation on the corrected slave arrays 

can be deduced from the selection of the calibration transfer sample subset, shown in Table 1. 

Basically, for a certain number of selected samples we start to find samples that belong to a 

previously acquired category (substance and concentration). In consequence, no new 

information is added to the transfer models and the error of prediction for the corrected slave 

arrays cannot decrease significantly.  The transition to error saturation is faster when the option 

for selecting the transfer samples is Method 2.  That occurs because it includes a representative 

of each of the categories present on the training set (with the exception of the air samples) 

before adding sample replicates, while Method 1 discards three sample categories. In reference 

to the calibration transfer models, those methods that performed data correction before to build 

the calibration model (GLSW and OSC) exhibited their best results employing the sample 

subset Method 1, whereas those methods that applied data correction after the creation of the 

calibration model (DS and PDS) showed their best performance for the sampling subset method 

2. 
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A special comment deserves the asymmetry in sensor response with respect to temperature shift. 

Revisiting the results of figure 6(a-d) we observe that an increase on the temperature shift forces 

an increment on the model’s specifications (see Table 2b). Interestingly, the asymmetry showed 

by the RMSEPS for opposite temperature shift positions is also present on the parameter values 

of all the calibration transfer techniques. This is in agreement with the results obtained in figure 

4 for a direct calibration transfer between instruments shifted in temperature, where the higher 

prediction errors were found towards positive temperature shifts. The asymmetry on the error 

due to temperature shifting was produced because the uncorrected slave array response tends to 

saturate to the highest voltage level (10 V) for any substance and concentration, as review in 

figure 2. Projecting the response of test set samples of a slave array shifted towards negatives 

increments of temperature (�T=-50ºC) on a PCA model built from the training set of a master 

array (figure 3-b) we see that these samples approximate to the master array response to air. 

Taking that result as a reference we can estimate the lower bound for the uncorrected slave array 

substituting the slave array samples by air measurements of the master array. That gives rise to a 

lower error bound around the 68 ppm. Towards positive temperature shifts, no saturation on the 

uncorrected slave array response is produced, so the test samples tend to spread on the PCA 

space and the error is continuously increasing. 

6. CONCLUSIONS 

In the present study, we showed that the effect of temperature shifts between homologous MOX 

sensor arrays leads to invalid calibration transfers featured with low predictive performance and 

direction-dependent error magnitudes. To overcome instrument dissimilarities the use of 

calibration transfer techniques is required. Among the four different calibration techniques used 

in this paper, the Piece-wise Direct Standardization procedure showed the best performance in 

reducing the slave array prediction error for any temperature shift direction and using fewer 

transfer samples. The main advantage of the PDS method lied in its ability to correct 

individually each one of the slave instruments channels through the use of multivariate local 

models. This results in a calibration transfer model with less complexity and more flexibility. 
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Figure Captions 

Fig. 1. Block diagram of the calibration transfer process  a) to transform the responses of the 

slave instrument so as to work on the space of responses of the master instrument (DS and 

PDS), and  b) to transform the responses of the master and slave instrument in order to work on 

a joint master-slave space (OSC, GLSW). 

Fig. 2. Response of a TGS 2620 sensor unit to 20, 60, 100 ppm of ethanol within a nominal 

temperature window of 200-300 °C for a) no temperature shift (gray-dashed corves) and b) for a 

temperature shift of �T =-50°C (red corves). 

Fig. 3(a-c). PCA plot of the sensor response for the training (black circles) and test sets with 

interleaved concentrations for: a) the master experiments (blue squares), b) the uncorrected 

slaves (red diamonds) and c) the corrected slaves after performing a Direct Standardization 

(green triangles), (�T=-50ºC). 

Fig. 4. Averaged RMSEPS as function of the temperature shift for the non-corrected slave 

instruments. Note as the worst predictions are biased towards positive temperature shifts. 

Fig. 5(a-d).  Average RMSEPS of the corrected slave instruments as function of the number of 

transfer samples, for a fixed temperature shift of �T=-20ºC.  Data correction was performed 

using a) Direct Standardization (blue-dotted line), b) Piece-wise Direct Standardization red-

dotted line), c) Orthogonal Signal Correction (green-dotted line), and d) Generalized Least 

Squares Weighting (black-dotted line).  The averaged RMSEPM is included in each of the plots 

with comparative purposes. 

Fig. 6(a-d). Average RMSEPS of the corrected slave instruments as function of the temperature 

shift, for a number of 5 transfer samples. Data correction was performed using a) Direct 

Standardization (blue-dotted line), b) Piece-wise Direct Standardization red-dotted line), c) 

Orthogonal Signal Correction (green-dotted line), and d)Generalized Least Squares Weighting 
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(black-dotted line). The average RMSEPM is included in each of the plots with comparative 

purposes. 

Fig. 7(a-d). Average RMSEPM-S of the corrected slave instruments as function of the 

temperature shift,  for each temperature shift and number of transfer samples. Data correction 

was performed using a) Direct Standardization, b) Piece-wise Direct Standardization, c) 

Orthogonal Signal Correction, and d) Generalized Least Squares Weighting. 

Table 1.  First 12 transfer samples of the calibration dataset selected using methods 1 and 2.  

Table 2a.  Median, first quartile and third quartile of the optimized set of parameters used 

compensate for a temperature shift of -20ºC in the slave arrays, for a different number of 

transfer sample and calibration transfer technique.  

Table 2b. Median, first quartile and third quartile of the optimized set of parameters used to 

correct the readings slave arrays, for the different temperature shifts and calibration transfer 

technique and fixing to 5 the number of transfer samples.  
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 Method 1 Method 2 

Transfer Sample 

Replicate 

Concentration (ppm) Sample 

Replicate 

Concentration (ppm) 

Samples Eth Acet But Eth Acet But 

1 9 0 120 0 10 120 0 0 

2 10 0 0 0 2 0 120 0 

3 6 120 0 0 5 0 0 120 

4 1 0 0 120 7 0 0 40 

5 8 40 0 0 10 80 0 0 

6 10 80 0 0 10 0 40 0 

7 6 0 0 40 3 0 0 80 

8 9 0 0 120 2 40 0 0 

9 2 0 120 0 7 0 80 0 

10 7 40 0 0 7 0 0 120 

11 5 0 0 120 4 120 0 0 

12 5 0 0 40 8 0 80 0 

 

 

 

 

 

 

 

 

 

 

 

Table1



 

Transfer PDS (w ) OSC (ncomp) GLSW (α ) 

Samples Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

2 1 9 11 2 2 2 0.1 0.1 0.1 

3 3 9 12 3 3 3 0.1 0.1 0.1 

4 5 9 17 2 4 4 0.01 0.1 0.1 

5 8 12 19 2 5 5 0.01 0.05 0.1 

6 7 13 21 2 6 6 0.01 0.05 0.05 

7 7 15 23 3 5 7 0.01 0.01 0.05 

8 9 15 23 3 5 8 0.005 0.01 0.05 

9 9 15 27 3 6 9 0.005 0.01 0.01 

10 11 17 27 3 6 8 0.005 0.01 0.01 

11 13 21 27 3 6 8 0.005 0.01 0.01 

12 13 21 27 3 6 8 0.003 0.01 0.01 

 

Table2a



 

Temp. PDS (w ) OSC (ncomp) GLSW (α ) 

Shift (ºC) Q1 Median Q3 Q1 Median Q3 Q1 Median Q3 

-50 17 19 29 5 5 5 0.01 0.05 0.1 

-40 13 21 31 5 5 5 0.01 0.05 0.1 

-30 9 21 27 5 5 5 0.01 0.05 0.1 

-20 8 13 22 3 5 5 0.01 0.05 0.1 

-10 7 11 20 2 4 5 0.01 0.05 0.1 

0 5 9 13 2 3 5 0.01 0.01 0.05 

10 5 7 13 3 5 5 0.01 0.05 0.1 

20 7 9 11 2.5 5 5 0.01 0.1 0.1 

30 11 13 15 3 5 5 0.01 0.1 0.1 

40 11 13 16 5 5 5 0.01 0.1 0.1 

50 15 13 19 5 5 5 0.01 0.1 0.1 

 

 

Table2b
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